51
|
Pélissier R, Violle C, Morel JB. Plant immunity: Good fences make good neighbors? CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102045. [PMID: 33965754 DOI: 10.1016/j.pbi.2021.102045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Plant immunity is modulated by several abiotic factors, and microbiome has emerged as a major biotic driver of plant resistance. Recently, a few studies showed that plants also modify resistance to pests and pathogens in their neighborhood. Several types of neighborhood could be identified depending on the biological processes at play: intraspecific and interspecific competition, kin and stranger recognition, plant-soil feedbacks, and danger signaling. This review highlights that molecules exchanged aboveground and belowground between plants can modulate plant immunity, either constitutively or after damage or attack. An intriguing relationship between allelopathy and immunity has been evidenced and should merit further investigation. Interestingly, most reported cases of modulation of immunity by the neighbors are positive, opening new perspectives for the understanding of natural plant communities as well as for the design of more diverse cultivated systems.
Collapse
Affiliation(s)
- Rémi Pélissier
- PHIM Plant Health Institute, CEFE, Univ Montpellier, Institut Agro, INRAE, CIRAD, TA A-54/K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry, Campus du CNRS, 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jean-Benoit Morel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, TA A-54 / K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France.
| |
Collapse
|
52
|
Rufián JS, Rueda-Blanco J, López-Márquez D, Macho AP, Beuzón CR, Ruiz-Albert J. The bacterial effector HopZ1a acetylates MKK7 to suppress plant immunity. THE NEW PHYTOLOGIST 2021; 231:1138-1156. [PMID: 33960430 DOI: 10.1111/nph.17442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The Pseudomonas syringae type III secretion system translocates effector proteins into the host cell cytosol to suppress plant basal immunity. Effector HopZ1a suppresses local and systemic immunity triggered by pathogen-associated molecular patterns (PAMPs) and effectors, through target acetylation. HopZ1a has been shown to target several plant proteins, but none fully substantiates HopZ1a-associated immune suppression. Here, we investigate Arabidopsis thaliana mitogen-activated protein kinase kinases (MKKs) as potential targets, focusing on AtMKK7, a positive regulator of local and systemic immunity. We analyse HopZ1a interference with AtMKK7 by translocation of HopZ1a from bacteria inoculated into Arabidopsis expressing MKK7 from an inducible promoter. Reciprocal phenotypes are analysed on plants expressing a construct quenching MKK7 native expression. We analyse HopZ1a-MKK7 interaction by three independent methods, and the relevance of acetylation by in vitro kinase and in planta functional assays. We demonstrate the AtMKK7 contribution to immune signalling showing MKK7-dependent flg22-induced reactive oxygen species (ROS) burst, MAP kinas (MAPK) activation and callose deposition, plus AvrRpt2-triggered MKK7-dependent signalling. Furthermore, we demonstrate HopZ1a suppression of all MKK7-dependent responses, HopZ1a-MKK7 interaction in planta and HopZ1a acetylation of MKK7 with a lysine required for full kinase activity. We demonstrate that HopZ1a targets AtMKK7 to suppress local and systemic plant immunity.
Collapse
Affiliation(s)
- José S Rufián
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Javier Rueda-Blanco
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Diego López-Márquez
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Carmen R Beuzón
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Javier Ruiz-Albert
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| |
Collapse
|
53
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
54
|
Signals in systemic acquired resistance of plants against microbial pathogens. Mol Biol Rep 2021; 48:3747-3759. [PMID: 33893927 DOI: 10.1007/s11033-021-06344-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/07/2021] [Indexed: 01/06/2023]
Abstract
After a local infection by the microbial pathogens, plants will produce strong resistance in distal tissues to cope with the subsequent biotic attacks. This type of the resistance in the whole plant is termed as systemic acquired resistance (SAR). The priming of SAR can confer the robust defense responses and the broad-spectrum disease resistances in plants. In general, SAR is activated by the signal substances generated at the local sites of infection, and these small signaling molecules can be rapidly transported to the systemic tissues through the phloem. In the last two decades, numerous endogenous metabolites were proved to be the potential elicitors of SAR, including methyl salicylate (MeSA), azelaic acid (AzA), glycerol-3-phosphate (G3P), free radicals (NO and ROS), pipecolic acid (Pip), N-hydroxy-pipecolic acid (NHP), dehydroabietinal (DA), monoterpenes (α-pinene and β-pinene) and NAD(P). In the meantime, the proteins associated with the transport of these signaling molecules were also identified, such as DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1) and AZI1 (AZELAIC ACID INDUCED 1). This review summarizes the recent findings related to synthesis, transport and interaction of the different signal substances in SAR.
Collapse
|
55
|
Khanna K, Kohli SK, Ohri P, Bhardwaj R. Plants-nematodes-microbes crosstalk within soil: A trade-off among friends or foes. Microbiol Res 2021; 248:126755. [PMID: 33845302 DOI: 10.1016/j.micres.2021.126755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022]
Abstract
Plants interact with enormous biotic and abiotic components within ecosystem. For instance, microbes, insects, herbivores, animals, nematodes etc. In general, these interactions are studied independently with plants, that condenses only specific information about the interaction. However, the limitation to study the cross-interactions masks the collaborative role of organisms within ecosystem. Beneficial microbes are most prominent organisms that are needed to be studied due to their bidirectional nature towards plants. Fascinatingly, Plant-Parasitic Nematodes (PPNs) have been profoundly observed to cause mass destruction of agricultural crops worldwide. The huge demand for agriculture for present-day population requires optimization of production potential by curbing the damage caused by PPNs. Chemical nematicides combats their proliferation, but their extended usage has abruptly affected flora, fauna and human populations. Because of consistent pressing issues in regard to environment, the use of biocontrol agents are most favourable alternatives for managing agriculture. However, this association is somehow, tug of war, and understanding of plant-nematode-microbial relation would enable the agriculturists to monitor the overall development of plants along with limiting the use of agrochemicals. Soil microbes are contemporary bio-nematicides emerging in the market, that stimulates the plant growth and impedes PPNs populations. They form natural enemies and trap nematodes, henceforth, it is crucial to understand these interactions for ecological and biotechnological perspectives for commercial use. Moreover, acquiring the diversity of their relationship and molecular-based mechanisms, outlines their cascade of signaling events to serve as biotechnological ecosystem engineers. The omics based mechanisms encompassing hormone gene regulatory pathways and elicitors released by microbes are able to modulate pathogenesis-related (PR) genes within plants. This is achieved via Induced Systemic Resistance (ISR) or acquired systemic channels. Taking into account all these validations, the present review mainly advocates the relationship among microbes and nematodes in plants. It is believed that this review will boost zest and zeal within researchers to effectively understand the plant-nematodes-microbes relations and their ecological perspectives.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
56
|
Schreiber KJ, Lewis JD. Identification of a Putative DNA-Binding Protein in Arabidopsis That Acts as a Susceptibility Hub and Interacts With Multiple Pseudomonas syringae Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:410-425. [PMID: 33373263 DOI: 10.1094/mpmi-10-20-0291-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytopathogens use secreted effector proteins to suppress host immunity and promote pathogen virulence, and there is increasing evidence that the host-pathogen interactome comprises a complex network. To identify novel interactors of the Pseudomonas syringae effector HopZ1a, we performed a yeast two-hybrid screen that identified a previously uncharacterized Arabidopsis protein that we designate HopZ1a interactor 1 (ZIN1). Additional analyses in yeast and in planta revealed that ZIN1 also interacts with several other P. syringae effectors. We show that an Arabidopsis loss-of-function zin1 mutant is less susceptible to infection by certain strains of P. syringae, while overexpression of ZIN1 results in enhanced susceptibility. Functionally, ZIN1 exhibits topoisomerase-like activity in vitro. Transcriptional profiling of wild-type and zin1 Arabidopsis plants inoculated with P. syringae indicated that while ZIN1 regulates a wide range of pathogen-responsive biological processes, the list of genes more highly expressed in zin1 versus wild-type plants is particularly enriched for ribosomal protein genes. Altogether, these data illuminate ZIN1 as a potential susceptibility hub that interacts with multiple effectors to influence the outcome of plant-microbe interactions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102, U.S.A
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102, U.S.A
- Plant Gene Expression Center, United States Department of Agriculture, Albany, CA 94710-1105, U.S.A
| |
Collapse
|
57
|
Martínez-Aguilar K, Hernández-Chávez JL, Alvarez-Venegas R. Priming of seeds with INA and its transgenerational effect in common bean (Phaseolus vulgaris L.) plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110834. [PMID: 33691968 DOI: 10.1016/j.plantsci.2021.110834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Accepted: 01/30/2021] [Indexed: 05/14/2023]
Abstract
Priming is a mechanism of defense that prepares the plant's immune system for a faster and/or stronger activation of cellular defenses against future exposure to different types of stress. This enhanced resistance can be achieved by using inorganic and organic compounds which imitate the biological induction of systemic acquired resistance. INA (2,6 dichloro-isonicotinic acid) was the first synthetic compound created as a resistance inducer for plant-pathogen interactions. However, the use of INA to activate primed resistance in common bean, at the seed stage and during germination, remains experimentally unexplored. Here, we test the hypothesis that INA-seed treatment would induce resistance in common bean plants to Pseudomonas syringae pv. phaseolicola, and that the increased resistance is not accompanied by a tradeoff between plant defense and growth. Additionally, it was hypothesized that treating seeds with INA has a transgenerational priming effect. We provide evidence that seed treatment activates a primed state for disease resistance, in which low nucleosome enrichment and reduced histone activation marks during the priming phase, are associated with a defense-resistant phenotype, characterized by symptom appearance, pathogen accumulation, yield, and changes in gene expression. In addition, the priming status for induced resistance can be inherited to its offspring.
Collapse
|
58
|
Schreiber KJ, Hassan JA, Lewis JD. Arabidopsis Abscisic Acid Repressor 1 is a susceptibility hub that interacts with multiple Pseudomonas syringae effectors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1274-1292. [PMID: 33289145 DOI: 10.1111/tpj.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Pathogens secrete effector proteins into host cells to suppress host immunity and promote pathogen virulence, although many features at the molecular interface of host-pathogen interactions remain to be characterized. In a yeast two-hybrid assay, we found that the Pseudomonas syringae effector HopZ1a interacts with the Arabidopsis transcriptional regulator Abscisic Acid Repressor 1 (ABR1). Further analysis revealed that ABR1 interacts with multiple P. syringae effectors, suggesting that it may be targeted as a susceptibility hub. Indeed, loss-of-function abr1 mutants exhibit reduced susceptibility to a number of P. syringae strains. The ABR1 protein comprises a conserved APETALA2 (AP2) domain flanked by long regions of predicted structural disorder. We verified the DNA-binding activity of the AP2 domain and demonstrated that the disordered domains act redundantly to enhance DNA binding and to facilitate transcriptional activation by ABR1. Finally, we compared gene expression profiles from wild-type and abr1 plants following inoculation with P. syringae, which suggested that the reduced susceptibility of abr1 mutants is due to the loss of a virulence target rather than an enhanced immune response. These data highlight ABR1 as a functionally important component at the host-pathogen interface.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jana A Hassan
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- United States Department of Agriculture, Plant Gene Expression Center, Albany, CA, USA
| |
Collapse
|
59
|
Littlejohn GR, Breen S, Smirnoff N, Grant M. Chloroplast immunity illuminated. THE NEW PHYTOLOGIST 2021; 229:3088-3107. [PMID: 33206379 DOI: 10.1111/nph.17076] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/12/2020] [Indexed: 05/04/2023]
Abstract
The chloroplast has recently emerged as pivotal to co-ordinating plant defence responses and as a target of plant pathogens. Beyond its central position in oxygenic photosynthesis and primary metabolism - key targets in the complex virulence strategies of diverse pathogens - the chloroplast integrates, decodes and responds to environmental signals. The capacity of chloroplasts to synthesize phytohormones and a diverse range of secondary metabolites, combined with retrograde and reactive oxygen signalling, provides exquisite flexibility to both perceive and respond to biotic stresses. These processes also represent a plethora of opportunities for pathogens to evolve strategies to directly or indirectly target 'chloroplast immunity'. This review covers the contribution of the chloroplast to pathogen associated molecular pattern and effector triggered immunity as well as systemic acquired immunity. We address phytohormone modulation of immunity and surmise how chloroplast-derived reactive oxygen species underpin chloroplast immunity through indirect evidence inferred from genetic modification of core chloroplast components and direct pathogen targeting of the chloroplast. We assess the impact of transcriptional reprogramming of nuclear-encoded chloroplast genes during disease and defence and look at future research challenges.
Collapse
Affiliation(s)
- George R Littlejohn
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Susan Breen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
60
|
Peng KC, Lin CC, Liao CF, Yu HC, Lo CT, Yang HH, Lin KC. Expression of L-amino acid oxidase of Trichoderma harzianum in tobacco confers resistance to Sclerotinia sclerotiorum and Botrytis cinerea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110772. [PMID: 33487356 DOI: 10.1016/j.plantsci.2020.110772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/01/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
L-amino acid oxidase (ThLAAO) secreted by Trichoderma harzianum ETS323 is a flavoenzyme with antimicrobial characteristics. In this study, we transformed the ThLAAO gene into tobacco to elucidate whether ThLAAO can activate defense mechanisms and confer resistance against phytopathogens. Transgenic tobacco overexpressing ThLAAO showed enhanced resistance against Sclerotinia sclerotiorum and Botrytis cinerea and activated the expression of defense-related genes and the genes involved in salicylic acid, jasmonic acid, and ethylene biosynthesis accompanied by substantial accumulation of H2O2 in chloroplasts, cytosol around chloroplasts, and cell membranes of transgenic tobacco. Scavenge of H2O2 with ascorbic acid abolished disease resistance against B. cinerea infection and decreased the expression of defense-related genes. ThLAAO-FITC application on tobacco protoplast or overexpression of ThLAAO-GFP in tobacco revealed the localization of ThLAAO in chloroplasts. Chlorophyll a/b binding protein (CAB) was isolated through ThLAAO-ConA affinity chromatography. The pull down assay results confirmed ThLAAO-CAB binding. Application of ThLAAO-Cy5.5 on cabbage roots promptly translocated to the leaves. Treatment of ThLAAO on cabbage roots induces systemic resistance against B. cinerea. Overall, these results demonstrate that ThLAAO may target chloroplast and activate defense mechanisms via H2O2 signaling to confer resistance against S. sclerotiorum and B. cinerea.
Collapse
Affiliation(s)
- Kou-Cheng Peng
- Department of Life Science, National Dong Hwa University, Hualien 974, Taiwan
| | - Chao-Chi Lin
- Department of Life Science, National Dong Hwa University, Hualien 974, Taiwan
| | - Chong-Fu Liao
- Department of Life Science, National Dong Hwa University, Hualien 974, Taiwan
| | - Hsin-Chiao Yu
- Department of Life Science, National Dong Hwa University, Hualien 974, Taiwan
| | - Chaur-Tsuen Lo
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Kuo-Chih Lin
- Department of Life Science, National Dong Hwa University, Hualien 974, Taiwan.
| |
Collapse
|
61
|
Nan J, Zhang S, Jiang L. Antibacterial Potential of Bacillus amyloliquefaciens GJ1 against Citrus Huanglongbing. PLANTS 2021; 10:plants10020261. [PMID: 33572917 PMCID: PMC7910844 DOI: 10.3390/plants10020261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/13/2023]
Abstract
Citrus huanglongbing (HLB) is a destructive disease caused by Candidatus Liberibacter species and is a serious global concern for the citrus industry. To date, there is no established strategy for control of this disease. Previously, Bacillus amyloliquefaciens GJ1 was screened as the biocontrol agent against HLB. In this study, two-year-old citrus infected by Ca. L. asiaticus were treated with B. amyloliquefaciens GJ1 solution via root irrigation. In these plants, after seven irrigation treatments, the results indicated that the photosynthetic parameters, chlorophyll content, resistance-associated enzyme content and the expression of defense-related genes were significantly higher than for the plants treated with the same volume water. The content of starch and soluble sugar were significantly lower, compared to the control treatment. The parallel reaction monitoring (PRM) results revealed that treatment with B. amyloliquefaciens GJ1 solution, the expression levels of 3 proteins with photosynthetic function were upregulated in citrus leaves. The accumulation of reactive oxygen species (ROS) in citrus leaves treated with B. amyloliquefaciens GJ1 flag22 was significantly higher than untreated plants and induced the defense-related gene expression in citrus. Finally, surfactin was identified from the fermentation broth of B. amyloliquefaciens GJ1 by high-performance liquid chromatography. These results indicate that B. amyloliquefaciens GJ1 may improve the immunity of citrus by increasing the photosynthesis and enhancing the expression of the resistance-related genes.
Collapse
Affiliation(s)
- Jing Nan
- College of Horticulture and Forestry, Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Shaoran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ling Jiang
- College of Horticulture and Forestry, Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence:
| |
Collapse
|
62
|
De Novo Transcriptome Sequencing of Rough Lemon Leaves ( Citrus jambhiri Lush.) in Response to Plenodomus tracheiphilus Infection. Int J Mol Sci 2021; 22:ijms22020882. [PMID: 33477297 PMCID: PMC7830309 DOI: 10.3390/ijms22020882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Mal secco is one of the most severe diseases of citrus, caused by the necrotrophic fungus Plenodomus tracheiphilus. With the main aim of identifying candidate genes involved in the response of citrus plants to "Mal secco", we performed a de novo transcriptome analysis of rough lemon seedlings subjected to inoculation of P. tracheiphilus. The analysis of differential expressed genes (DEGs) highlighted a sharp response triggered by the pathogen as a total of 4986 significant DEGs (2865 genes up-regulated and 2121 down-regulated) have been revealed. The analysis of the most significantly enriched KEGG pathways indicated that a crucial role is played by genes involved in "Plant hormone signal transduction", "Phenylpropanoid biosynthesis", and "Carbon metabolism". The main findings of this work are that under fungus challenge, the rough lemon genes involved both in the light harvesting and the photosynthetic electron flow were significantly down-regulated, thus probably inducing a shortage of energy for cellular functions. Moreover, the systemic acquired resistance (SAR) was activated through the induced salicylic acid cascade. Interestingly, RPM1 interacting protein 4, an essential positive regulator of plant defense, and BIR2, which is a negative regulator of basal level of immunity, have been identified thus representing useful targets for molecular breeding.
Collapse
|
63
|
Devireddy AR, Zandalinas SI, Fichman Y, Mittler R. Integration of reactive oxygen species and hormone signaling during abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:459-476. [PMID: 33015917 DOI: 10.1111/tpj.15010] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Each year, abiotic stress conditions such as drought, heat, salinity, cold and particularly their different combinations, inflict a heavy toll on crop productivity worldwide. The effects of these adverse conditions on plant productivity are becoming ever more alarming in recent years in light of the increased rate and intensity of global climatic changes. Improving crop tolerance to abiotic stress conditions requires a deep understanding of the response of plants to changes in their environment. This response is dependent on early and late signal transduction events that involve important signaling molecules such as reactive oxygen species (ROS), different plant hormones and other signaling molecules. It is the integration of these signaling events, mediated by an interplay between ROS and different plant hormones that orchestrates the plant response to abiotic stress and drive changes in transcriptomic, metabolic and proteomic networks that lead to plant acclimation and survival. Here we review some of the different studies that address hormone and ROS integration during the response of plants to abiotic stress. We further highlight the integration of ROS and hormone signaling during early and late phases of the plant response to abiotic stress, the key role of respiratory burst oxidase homologs in the integration of ROS and hormone signaling during these phases, and the involvement of hormone and ROS in systemic signaling events that lead to systemic acquired acclimation. Lastly, we underscore the need to understand the complex interactions that occur between ROS and different plant hormones during stress combinations.
Collapse
Affiliation(s)
- Amith R Devireddy
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| |
Collapse
|
64
|
Song W, Forderer A, Yu D, Chai J. Structural biology of plant defence. THE NEW PHYTOLOGIST 2021; 229:692-711. [PMID: 32880948 DOI: 10.1111/nph.16906] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plants employ the innate immune system to discriminate between self and invaders through two types of immune receptors, one on the plasma membrane and the other in the intracellular space. The immune receptors on the plasma membrane are pattern recognition receptors (PRRs) that can perceive pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) leading to pattern-triggered immunity (PTI). Particular pathogens are capable of overcoming PTI by secreting specific effectors into plant cells to perturb different components of PTI signalling through various mechanisms. Most of the immune receptors from the intracellular space are the nucleotide-binding leucine-rich repeat receptors (NLRs), which specifically recognize pathogen-secreted effectors to mediate effector-triggered immunity (ETI). In this review, we will summarize recent progress in structural studies of PRRs, NLRs, and effectors, and discuss how these studies shed light on ligand recognition and activation mechanisms of the two types of immune receptors and the diversified mechanisms used by effectors to manipulate plant immune signalling.
Collapse
Affiliation(s)
- Wen Song
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Alexander Forderer
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Dongli Yu
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Jijie Chai
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| |
Collapse
|
65
|
David L, Kang J, Dufresne D, Zhu D, Chen S. Multi-Omics Revealed Molecular Mechanisms Underlying Guard Cell Systemic Acquired Resistance. Int J Mol Sci 2020; 22:ijms22010191. [PMID: 33375472 PMCID: PMC7795379 DOI: 10.3390/ijms22010191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 01/09/2023] Open
Abstract
Systemic Acquired Resistance (SAR) improves immunity of plant systemic tissue after local exposure to a pathogen. Guard cells that form stomatal pores on leaf surfaces recognize bacterial pathogens via pattern recognition receptors, such as Flagellin Sensitive 2 (FLS2). However, how SAR affects stomatal immunity is not known. In this study, we aim to reveal molecular mechanisms underlying the guard cell response to SAR using multi-omics of proteins, metabolites and lipids. Arabidopsis plants previously exposed to pathogenic bacteria Pseudomonas syringae pv. tomato DC3000 (Pst) exhibit an altered stomatal response compared to control plants when they are later exposed to the bacteria. Reduced stomatal apertures of SAR primed plants lead to decreased number of bacteria in leaves. Multi-omics has revealed molecular components of SAR response specific to guard cells functions, including potential roles of reactive oxygen species (ROS) and fatty acid signaling. Our results show an increase in palmitic acid and its derivative in the primed guard cells. Palmitic acid may play a role as an activator of FLS2, which initiates stomatal immune response. Improved understanding of how SAR signals affect stomatal immunity can aid biotechnology and marker-based breeding of crops for enhanced disease resistance.
Collapse
Affiliation(s)
- Lisa David
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (L.D.); (J.K.); (D.Z.)
- Genetics Institute (UFGI), University of Florida, Gainesville, FL 32610, USA
| | - Jianing Kang
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (L.D.); (J.K.); (D.Z.)
- Genetics Institute (UFGI), University of Florida, Gainesville, FL 32610, USA
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Daniel Dufresne
- Department of Chemistry, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Dan Zhu
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (L.D.); (J.K.); (D.Z.)
- Genetics Institute (UFGI), University of Florida, Gainesville, FL 32610, USA
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (L.D.); (J.K.); (D.Z.)
- Genetics Institute (UFGI), University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL 32610, USA
- Correspondence: ; Tel.: +1-352-273-8330
| |
Collapse
|
66
|
Kachroo A, Kachroo P. Mobile signals in systemic acquired resistance. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:41-47. [PMID: 33202317 DOI: 10.1016/j.pbi.2020.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 05/20/2023]
Abstract
Plants possess a unique form of broad-spectrum long-distance immunity termed systemic acquired resistance (SAR). SAR involves the rapid generation of mobile signal(s) in response to localized microbial infection, which transport to the distal tissue and 'prime' them against future infections by related and unrelated pathogens. Several SAR-inducing chemicals that could be classified as the potential mobile signal have been identified. Many of these function in a bifurcate pathway with both branches being equally essential for SAR induction. This review reflects on the potential candidacy of the known SAR inducers as mobile signal(s) based on historical knowledge of the SAR signal and recent advances in the SAR signaling pathway.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
67
|
Liu C, Atanasov KE, Arafaty N, Murillo E, Tiburcio AF, Zeier J, Alcázar R. Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2020; 43:2755-2768. [PMID: 32839979 DOI: 10.1111/pce.13874] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 05/20/2023]
Abstract
Polyamines are small amines that accumulate during stress and contribute to disease resistance through as yet unknown signaling pathways. Using a comprehensive RNA-sequencing analysis, we show that early transcriptional responses triggered by each of the most abundant polyamines (putrescine, spermidine, spermine, thermospermine and cadaverine) exhibit specific quantitative differences, suggesting that polyamines (rather than downstream metabolites) elicit defense responses. Signaling by putrescine, which accumulates in response to bacteria that trigger effector triggered immunity (ETI) and systemic acquired resistance (SAR), is largely dependent on the accumulation of hydrogen peroxide, and is partly dependent on salicylic acid (SA), the expression of ENHANCED DISEASE SUSCEPTIBILITY (EDS1) and NONEXPRESSOR of PR GENES1 (NPR1). Putrescine elicits local SA accumulation as well as local and systemic transcriptional reprogramming that overlaps with SAR. Loss-of-function mutations in arginine decarboxylase 2 (ADC2), which is required for putrescine synthesis and copper amine oxidase (CuAO), which is involved in putrescine oxidation, compromise basal defenses, as well as putrescine and pathogen-triggered systemic resistance. These findings confirm that putrescine elicits ROS-dependent SA pathways in the activation of plant defenses.
Collapse
Affiliation(s)
- Changxin Liu
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Kostadin E Atanasov
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Nazanin Arafaty
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ester Murillo
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Antonio F Tiburcio
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
68
|
Cai L, Zhang W, Jia H, Feng H, Wei X, Chen H, Wang D, Xue Y, Sun X. Plant-derived compounds: A potential source of drugs against Tobacco mosaic virus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104589. [PMID: 32828361 DOI: 10.1016/j.pestbp.2020.104589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/16/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Tobacco mosaic virus (TMV) is an important plant virus that led to significant losses in the crops worldwide. In this study, the antiviral activities of Ursolic Acid (UA) and 4-methoxycoumarin against TMV and their underlying mechanisms were initially investigated for the first time. The results demonstrated that the antiviral effects of UA and 4-methoxycoumarin were as effective as those of the commercial agent lentinan, in either the protective effect, inactivation effect or curative effect. In addition, both plant-derived compounds could induce the resistance responses of tobacco plants against TMV, showing increased antioxidant enzyme activities (SOD and POD) and H2O2 accumulation in tobacco leaves after treatment with UA or 4-methoxycoumarin, along with highly expressed regulatory and defence genes in the salicylic acid signaling pathway. Meanwhile, electrolyte leakage and malondialdehyde experiments indicated that these effects did not result in phytotoxicity or damage to the leaf plasma membrane of tobacco plants. Collectively, the results demonstrate that UA and 4-methoxycoumarin have potential as eco-friendly and safe strategies to control TMV in the future.
Collapse
Affiliation(s)
- Lin Cai
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wang Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Huanyu Jia
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Hui Feng
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xuefeng Wei
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Haitao Chen
- Chongqing Tobacco Science Research Institute, Chongqing 400715, China
| | - Daibin Wang
- Chongqing Tobacco Science Research Institute, Chongqing 400715, China.
| | - Yang Xue
- Citrus Research Institute, Southwest University, Chongqing 400712, China; School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
69
|
Sun LM, Fang JB, Zhang M, Qi XJ, Lin MM, Chen JY. Molecular Cloning and Functional Analysis of the NPR1 Homolog in Kiwifruit ( Actinidia eriantha). FRONTIERS IN PLANT SCIENCE 2020; 11:551201. [PMID: 33042179 PMCID: PMC7524898 DOI: 10.3389/fpls.2020.551201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/01/2020] [Indexed: 05/23/2023]
Abstract
Kiwifruit bacterial canker, caused by the bacterial pathogen Pseudomonas syringae pv. actinidiae (Psa), is a destructive disease in the kiwifruit industry globally. Consequently, understanding the mechanism of defense against pathogens in kiwifruit could facilitate the development of effective novel protection strategies. The Non-expressor of Pathogenesis-Related genes 1 (NPR1) is a critical component of the salicylic acid (SA)-dependent signaling pathway. Here, a novel kiwifruit NPR1-like gene, designated AeNPR1a, was isolated by using PCR and rapid amplification of cDNA ends techniques. The full-length cDNA consisted of 1952 base pairs with a 1,746-bp open-reading frame encoding a 582 amino acid protein. Homology analysis showed that the AeNPR1a protein is significantly similar to the VvNPR1 of grape. A 2.0 Kb 5'-flanking region of AeNPR1a was isolated, and sequence identification revealed the presence of several putative cis-regulatory elements, including basic elements, defense and stress response elements, and binding sites for WRKY transcription factors. Real-time quantitative PCR results demonstrated that AeNPR1a had different expression patterns in various tissues, and its transcription could be induced by phytohormone treatment and Psa inoculation. The yeast two-hybrid assay revealed that AeNPR1a interacts with AeTGA2. Constitutive expression of AeNPR1a induced the expression of pathogenesis-related gene in transgenic tobacco plants and enhanced tolerance to bacterial pathogens. In addition, AeNPR1a expression could restore basal resistance to Pseudomonas syringae pv. tomato DC3000 (Pst) in Arabidopsis npr1-1 mutant. Our data suggest that AeNPR1a gene is likely to play a pivotal role in defense responses in kiwifruit.
Collapse
|
70
|
Thomas G, Withall D, Birkett M. Harnessing microbial volatiles to replace pesticides and fertilizers. Microb Biotechnol 2020; 13:1366-1376. [PMID: 32767638 PMCID: PMC7415372 DOI: 10.1111/1751-7915.13645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Global agricultural systems are under increasing pressure to deliver sufficient, healthy food for a growing population. Seasonal inputs, including synthetic pesticides and fertilizers, are applied to crops to reduce losses by pathogens, and enhance crop biomass, although their production and application can also incur several economic and environmental penalties. New solutions are therefore urgently required to enhance crop yield whilst reducing dependence on these seasonal inputs. Volatile Organic Compounds (VOCs) produced by soil microorganisms may provide alternative, sustainable solutions, due to their ability to inhibit plant pathogens, induce plant resistance against pathogens and enhance plant growth promotion. This review will highlight recent advances in our understanding of the biological activities of microbial VOCs (mVOCs), providing perspectives on research required to develop them into viable alternatives to current unsustainable seasonal inputs. This can identify potential new avenues for mVOC research and stimulate discussion across the academic community and agri-business sector.
Collapse
Affiliation(s)
- Gareth Thomas
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - David Withall
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Michael Birkett
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
71
|
Wang X, Kong L, Zhi P, Chang C. Update on Cuticular Wax Biosynthesis and Its Roles in Plant Disease Resistance. Int J Mol Sci 2020; 21:ijms21155514. [PMID: 32752176 PMCID: PMC7432125 DOI: 10.3390/ijms21155514] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
The aerial surface of higher plants is covered by a hydrophobic layer of cuticular waxes to protect plant tissues against enormous environmental challenges including the infection of various pathogens. As the first contact site between plants and pathogens, the layer of cuticular waxes could function as a plant physical barrier that limits the entry of pathogens, acts as a reservoir of signals to trigger plant defense responses, and even gives cues exploited by pathogens to initiate their infection processes. Past decades have seen unprecedented proceedings in understanding the molecular mechanisms underlying the biosynthesis of plant cuticular waxes and their functions regulating plant–pathogen interactions. In this review, we summarized the recent progress in the molecular biology of cuticular wax biosynthesis and highlighted its multiple roles in plant disease resistance against bacterial, fungal, and insect pathogens.
Collapse
|
72
|
Aarrouf J, Urban L. Flashes of UV-C light: An innovative method for stimulating plant defences. PLoS One 2020; 15:e0235918. [PMID: 32645090 PMCID: PMC7347194 DOI: 10.1371/journal.pone.0235918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/04/2022] Open
Abstract
Leaves of lettuce, pepper, tomato and grapevine plants grown in greenhouse conditions were exposed to UV-C light for either 60 s or 1 s, using a specific LEDs-based device, and wavelengths and energy were the same among different light treatments. Doses of UV-C light that both effectively stimulated plant defences and were innocuous were determined beforehand. Tomato plants and lettuce plants were inoculated with Botrytis cinerea, pepper plants with Phytophthora capsici, and grapevine with Plasmopara viticola. In some experiments we investigated the effect of a repetition of treatments over periods of several days. All plants were inoculated 48 h after exposure to the last UV-C treatment. Lesions on surfaces were measured up to 12 days after inoculation, depending on the experiment and the pathogen. The results confirmed that UV-C light stimulates plant resistance; they show that irradiation for one second is more effective than irradiation for 60 s, and that repetition of treatments is more effective than single light treatments. Moreover a systemic effect was observed in unexposed leaves that were close to exposed leaves. The mechanisms of perception and of the signalling and metabolic pathways triggered by flashes of UV-C light vs. 60 s irradiation exposures are briefly discussed, as well as the prospects for field use of UV-C flashes in viticulture and horticulture.
Collapse
|
73
|
Kachroo P, Liu H, Kachroo A. Salicylic acid: transport and long-distance immune signaling. Curr Opin Virol 2020; 42:53-57. [PMID: 32544865 DOI: 10.1016/j.coviro.2020.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
Abstract
The small phenolic compound salicylic acid (SA) is a phytohormone that regulates many biological processes, although it is most well-known for its role in plant defense. SA is an important regulator of systemic acquired resistance (SAR), a type of systemic immunity that protects uninfected parts of the plant against secondary infections by a broad spectrum of pathogens. SAR involves the generation of mobile signal(s) at the primary infection site, which translocate to distal uninfected portions and activate systemic disease resistance. Although, SA was considered to not constitute the mobile SAR signal, it is preferentially transported from pathogen-infected to uninfected parts via the apoplast. Further investigations have revealed that distal transport of SA is indeed essential for SAR. The apoplastic SA transport is regulated by the transpirational pull and partitioning of SA between the symplast and cuticle.
Collapse
Affiliation(s)
- Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States.
| | - Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| |
Collapse
|
74
|
Abstract
Pathogen recognition by the plant immune system leads to defense responses that are often accompanied by a form of regulated cell death known as the hypersensitive response (HR). HR shares some features with regulated necrosis observed in animals. Genetically, HR can be uncoupled from local defense responses at the site of infection and its role in immunity may be to activate systemic responses in distal parts of the organism. Recent advances in the field reveal conserved cell death-specific signaling modules that are assembled by immune receptors in response to pathogen-derived effectors. The structural elucidation of the plant resistosome-an inflammasome-like structure that may attach to the plasma membrane on activation-opens the possibility that HR cell death is mediated by the formation of pores at the plasma membrane. Necrotrophic pathogens that feed on dead tissue have evolved strategies to trigger the HR cell death pathway as a survival strategy. Ectopic activation of immunomodulators during autoimmune reactions can also promote HR cell death. In this perspective, we discuss the role and regulation of HR in these different contexts.
Collapse
Affiliation(s)
- Eugenia Pitsili
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| | - Ujjal J Phukan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
75
|
Mareya CR, Tugizimana F, Di Lorenzo F, Silipo A, Piater LA, Molinaro A, Dubery IA. Adaptive defence-related changes in the metabolome of Sorghum bicolor cells in response to lipopolysaccharides of the pathogen Burkholderia andropogonis. Sci Rep 2020; 10:7626. [PMID: 32376849 PMCID: PMC7203242 DOI: 10.1038/s41598-020-64186-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Plant cell suspension culture systems are valuable for the study of complex biological systems such as inducible defence responses and aspects of plant innate immunity. Perturbations to the cellular metabolome can be investigated using metabolomic approaches in order to reveal the underlying metabolic mechanism of cellular responses. Lipopolysaccharides from the sorghum pathogen, Burkholderia andropogonis (LPSB.a.), were purified, chemically characterised and structurally elucidated. The lipid A moiety consists of tetra- and penta-acylated 1,4'-bis-phosphorylated disaccharide backbone decorated by aminoarabinose residues, while the O-polysaccharide chain consists of linear trisaccharide repeating units of [→2)-α-Rha3CMe-(1 → 3)-α-Rha-(1 → 3)-α-Rha-(1 → ]. The effect of LPSB.a. in triggering metabolic reprogramming in Sorghum bicolor cells were investigated using untargeted metabolomics with liquid chromatography coupled to mass spectrometry detection. Cells were treated with LPSB.a. and the metabolic changes monitored over a 30 h time period. Alterations in the levels of phytohormones (jasmonates, zeatins, traumatic-, azelaic- and abscisic acid), which marked the onset of defence responses and accumulation of defence-related metabolites, were observed. Phenylpropanoids and indole alkaloids as well as oxylipins that included di- and trihydroxyoctadecedienoic acids were identified as signatory biomarkers, with marked secretion into the extracellular milieu. The study demonstrated that sorghum cells recognise LPSB.a. as a 'microbe-associated molecular pattern', perturbing normal cellular homeostasis. The molecular features of the altered metabolome were associated with phytohormone-responsive metabolomic reconfiguration of primary and secondary metabolites originating from various metabolic pathways, in support of defence and immunity.
Collapse
Affiliation(s)
- Charity R Mareya
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Lizelle A Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Ian A Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa.
| |
Collapse
|
76
|
Lim GH, Liu H, Yu K, Liu R, Shine MB, Fernandez J, Burch-Smith T, Mobley JK, McLetchie N, Kachroo A, Kachroo P. The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. SCIENCE ADVANCES 2020; 6:eaaz0478. [PMID: 32494705 PMCID: PMC7202870 DOI: 10.1126/sciadv.aaz0478] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/21/2020] [Indexed: 05/18/2023]
Abstract
The plant cuticle is often considered a passive barrier from the environment. We show that the cuticle regulates active transport of the defense hormone salicylic acid (SA). SA, an important regulator of systemic acquired resistance (SAR), is preferentially transported from pathogen-infected to uninfected parts via the apoplast. Apoplastic accumulation of SA, which precedes its accumulation in the cytosol, is driven by the pH gradient and deprotonation of SA. In cuticle-defective mutants, increased transpiration and reduced water potential preferentially routes SA to cuticle wax rather than to the apoplast. This results in defective long-distance transport of SA, which in turn impairs distal accumulation of the SAR-inducer pipecolic acid. High humidity reduces transpiration to restore systemic SA transport and, thereby, SAR in cuticle-defective mutants. Together, our results demonstrate that long-distance mobility of SA is essential for SAR and that partitioning of SA between the symplast and cuticle is regulated by transpiration.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Ruiying Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - M. B. Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, TN 37996, USA
| | - Tessa Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, TN 37996, USA
| | - Justin K. Mobley
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
- Corresponding author.
| |
Collapse
|
77
|
Noman A, Aqeel M, Qari SH, Al Surhanee AA, Yasin G, Alamri S, Hashem M, M Al-Saadi A. Plant hypersensitive response vs pathogen ingression: Death of few gives life to others. Microb Pathog 2020; 145:104224. [PMID: 32360524 DOI: 10.1016/j.micpath.2020.104224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
The hypersensitive response (HR) is a defense action against pathogen ingression. Typically, HR is predictable with the appearance of the dead, brown cells along with visible lesions. Although death during HR can be limited to the cells in direct contact with pathogens, yet cell death can also spread away from the infection site. The variety in morphologies of plant cell death proposes involvement of different pathways for triggering HR. It is considered that, despite the differences, HR in plants performs the resembling functions like that of animal programmed cell death (PCD) for confining pathogen progression. HR, in fact, crucially initiates systemic signals for activation of defense in distal plant parts that ultimately results in systemic acquired resistance (SAR). Therefore, HR can be separated from other local immune actions/responses at the infection site. HR comprises of serial events inclusive of transcriptional reprograming, Ca2+ influx, oxidative bursts and phyto-hormonal signaling. Although a lot of work has been done on HR in plants but many questions regarding mechanisms and consequences of HRs remain unaddressed.We have summarized the mechanistic roles and cellular events of plant cells during HR in defense regulation. Roles of different genes during HR have been discussed to clarify genetic control of HR in plants. Generally existing ambiguities about HR and programmed cell death at the reader level has been addressed.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan.
| | - Muhammad Aqeel
- School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Sameer Hasan Qari
- Biology Department, Al-jumum University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Ameena A Al Surhanee
- Biology Department, College of Science, Jouf University, Sakaka, 2014, Saudi Arabia
| | - Ghulam Yasin
- Institute of Pure and Applied Biology, Bahau ud din Zakria University, Multan, Pakistan
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research center for advance materials science (RCAMS), King Khalid University, PO Box 9004 Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assuit University, Botany and Microbiology department, Assuit. 71516, Egypt
| | | |
Collapse
|
78
|
Liu X, Guan H, Wang T, Meng D, Yang Y, Dai J, Fan N, Guo B, Fu Y, He W, Wei Y. ScPNP-A, a plant natriuretic peptide from Stellera chamaejasme, confers multiple stress tolerances in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:132-143. [PMID: 32062590 DOI: 10.1016/j.plaphy.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
As a class of peptide hormone, plant natriuretic peptides (PNPs) play an important role in maintaining water and salt balance in plants, as well as in the physiological processes of biotic stress and pathogen resistance. However, in plants, except for some PNPs, such as the Arabidopsis thaliana PNP-A (AtPNP-A), of which the function has not yet been thoroughly revealed, few PNPs in other plants have been reported. In this study, a PNP-A (ScPNP-A) has been identified and characterized in Stellera chamaejasme for the first time. ScPNP-A is a double-psi beta-barrel (DPBB) fold containing protein and is localized in the extracellular (secreted) space. In S. chamaejasme, the expression of ScPNP-A was significantly up-regulated by salt, drought and cold stress. Changes at the physiological and biochemical levels and the expression of resistance-related genes indicated that overexpression of ScPNP-A can significantly improve salt, drought and freezing tolerance in Arabidopsis. ScPNP-A could stimulate the opening, not the closing of stomata, and its expression was not enhanced by external application of ABA. Furthermore, overexpression of ScPNP-A resulted in the elevated expression of genes in the ABA biosynthesis and reception pathway. These suggested that there may be some cross-talk between ScPNP-A and the ABA-dependent signaling pathways to regulate water related stress, however further experimentation is required to understand this relationship. In addition, overexpression of ScPNP-A can enhance the resistance to pathogens by enhancing SAR in Arabidopsis. These results indicate that ScPNP-A could function as a positive regulator in plant response to biotic stress and abiotic stress.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Huirui Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Tianshu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Dian Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Youfeng Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Jiakun Dai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China; Bio-Agriculture Institute of Shaanxi, Chinese Academy of Science, No. 125, Xianning Middle Road, Xi'an, 710043, Shaanxi, China.
| | - Na Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China; College of Healthy Management, Shangluo University, Shangluo, 726000, Shaanxi, China.
| | - Bin Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Yanping Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Wei He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| | - Yahui Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
79
|
Li D, Liu R, Singh D, Yuan X, Kachroo P, Raina R. JMJ14 encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels. THE NEW PHYTOLOGIST 2020; 225:2108-2121. [PMID: 31622519 DOI: 10.1111/nph.16270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Epigenetic modifications have emerged as an important mechanism underlying plant defence against pathogens. We examined the role of JMJ14, a Jumonji (JMJ) domain-containing H3K4 demethylase, in local and systemic plant immune responses in Arabidopsis. The function of JMJ14 in local or systemic defence response was investigated by pathogen growth assays and by analysing expression and H3K4me3 enrichments of key defence genes using qPCR and ChIP-qPCR. Salicylic acid (SA) and pipecolic acid (Pip) levels were quantified and function of JMJ14 in SA- and Pip-mediated defences was analysed in Col-0 and jmj14 plants. jmj14 mutants were compromised in both local and systemic defences. JMJ14 positively regulates pathogen-induced H3K4me3 enrichment and expression of defence genes involved in SA- and Pip-mediated defence pathways. Consequently, loss of JMJ14 results in attenuated defence gene expression and reduced Pip accumulation during establishment of systemic acquired resistance (SAR). Exogenous Pip partially restored SAR in jmj14 plants, suggesting that JMJ14 regulated Pip biosynthesis and other downstream factors regulate SAR in jmj14 plants. JMJ14 positively modulates defence gene expressions and Pip levels in Arabidopsis.
Collapse
Affiliation(s)
- Dan Li
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Ruiying Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Deepjyoti Singh
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Xinyu Yuan
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Ramesh Raina
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
80
|
Agathokleous E, Calabrese EJ. A global environmental health perspective and optimisation of stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135263. [PMID: 31836236 DOI: 10.1016/j.scitotenv.2019.135263] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 05/17/2023]
Abstract
The phrase "what doesn't kill us makes us stronger" suggests the possibility that living systems have evolved a spectrum of adaptive mechanisms resulting in a biological stress response strategy that enhances resilience in a targeted quantifiable manner for amplitude and duration. If so, what are its evolutionary foundations and impact on biological diversity? Substantial research demonstrates that numerous agents enhance biological performance and resilience at low doses in a manner described by the hormetic dose response, being inhibitory and/or harmful at higher doses. This Review assesses how environmental changes impact the spectrum and intensity of biological stresses, how they affect health, and how such knowledge may improve strategies in confronting global environmental change.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Edward J Calabrese
- Professor of Toxicology, Department of Environmental Health Sciences, Morrill I, N344; University of Massachusetts, Amherst, MA 01003 USA
| |
Collapse
|
81
|
Li P, Lu YJ, Chen H, Day B. The Lifecycle of the Plant Immune System. CRITICAL REVIEWS IN PLANT SCIENCES 2020; 39:72-100. [PMID: 33343063 PMCID: PMC7748258 DOI: 10.1080/07352689.2020.1757829] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Throughout their life span, plants confront an endless barrage of pathogens and pests. To successfully defend against biotic threats, plants have evolved a complex immune system responsible for surveillance, perception, and the activation of defense. Plant immunity requires multiple signaling processes, the outcome of which vary according to the lifestyle of the invading pathogen(s). In short, these processes require the activation of host perception, the regulation of numerous signaling cascades, and transcriptome reprograming, all of which are highly dynamic in terms of temporal and spatial scales. At the same time, the development of a single immune event is subjective to the development of plant immune system, which is co-regulated by numerous processes, including plant ontogenesis and the host microbiome. In total, insight into each of these processes provides a fuller understanding of the mechanisms that govern plant-pathogen interactions. In this review, we will discuss the "lifecycle" of plant immunity: the development of individual events of defense, including both local and distal processes, as well as the development and regulation of the overall immune system by ontogenesis regulatory genes and environmental microbiota. In total, we will integrate the output of recent discoveries and theories, together with several hypothetical models, to present a dynamic portrait of plant immunity.
Collapse
Affiliation(s)
- Pai Li
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Huan Chen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
82
|
Plant Growth-Promoting Rhizobacteria in Management of Soil-Borne Fungal Pathogens. Fungal Biol 2020. [DOI: 10.1007/978-3-030-35947-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
83
|
Verly C, Djoman ACR, Rigault M, Giraud F, Rajjou L, Saint-Macary ME, Dellagi A. Plant Defense Stimulator Mediated Defense Activation Is Affected by Nitrate Fertilization and Developmental Stage in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:583. [PMID: 32528493 PMCID: PMC7264385 DOI: 10.3389/fpls.2020.00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/17/2020] [Indexed: 05/20/2023]
Abstract
Plant defense stimulators, used in crop protection, are an attractive option to reduce the use of conventional crop protection products and optimize biocontrol strategies. These products are able to activate plant defenses and thus limit infection by pathogens. However, the effectiveness of these plant defense stimulators remains erratic and is potentially dependent on many agronomic and environmental parameters still unknown or poorly controlled. The developmental stage of the plant as well as its fertilization, and essentially nitrogen nutrition, play major roles in defense establishment in the presence of pathogens or plant defense stimulators. The major nitrogen source used by plants is nitrate. In this study, we investigated the impact of Arabidopsis thaliana plant developmental stage and nitrate nutrition on its capacity to mount immune reactions in response to two plant defense stimulators triggering two major defense pathways, the salicylic acid and the jasmonic acid pathways. We show that optimal nitrate nutrition is needed for effective defense activation and protection against the pathogenic bacteria Dickeya dadantii and Pseudomonas syringae pv. tomato. Using an npr1 defense signaling mutant, we showed that nitrate dependent protection against D. dadantii requires a functional NPR1 gene. Our results indicate that the efficacy of plant defense stimulators is strongly affected by nitrate nutrition and the developmental stage. The nitrate dependent efficacy of plant defense stimulators is not only due to a metabolic effect but also invloves NPR1 mediated defense signaling. Plant defense stimulators may have opposite effects on plant resistance to a pathogen. Together, our results indicate that agronomic use of plant defense stimulators must be optimized according to nitrate fertilization and developmental stage.
Collapse
Affiliation(s)
- Camille Verly
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Staphyt-Service L&G/BIOTEAM, Martillac, France
| | - Atsin Claude Roméo Djoman
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Staphyt-Service L&G/BIOTEAM, Martillac, France
| | - Martine Rigault
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Alia Dellagi
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- *Correspondence: Alia Dellagi,
| |
Collapse
|
84
|
Shine MB, Gao QM, Chowda-Reddy RV, Singh AK, Kachroo P, Kachroo A. Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean. Nat Commun 2019; 10:5303. [PMID: 31757957 PMCID: PMC6876567 DOI: 10.1038/s41467-019-13318-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Glycerol-3-phosphate (G3P) is a well-known mobile regulator of systemic acquired resistance (SAR), which provides broad spectrum systemic immunity in response to localized foliar pathogenic infections. We show that G3P-derived foliar immunity is also activated in response to genetically-regulated incompatible interactions with nitrogen-fixing bacteria. Using gene knock-down we show that G3P is essential for strain-specific exclusion of non-desirable root-nodulating bacteria and the associated foliar pathogen immunity in soybean. Grafting studies show that while recognition of rhizobium incompatibility is root driven, bacterial exclusion requires G3P biosynthesis in the shoot. Biochemical analyses support shoot-to-root transport of G3P during incompatible rhizobia interaction. We describe a root-shoot-root signaling mechanism which simultaneously enables the plant to exclude non-desirable nitrogen-fixing rhizobia in the root and pathogenic microbes in the shoot.
Collapse
Affiliation(s)
- M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - R V Chowda-Reddy
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Asheesh K Singh
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
85
|
Bez C, Javvadi SG, Bertani I, Devescovi G, Guarnaccia C, Studholme DJ, Geller AM, Levy A, Venturi V. AzeR, a transcriptional regulator that responds to azelaic acid in Pseudomonas nitroreducens. MICROBIOLOGY-SGM 2019; 166:73-84. [PMID: 31621557 PMCID: PMC7398562 DOI: 10.1099/mic.0.000865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Azelaic acid is a dicarboxylic acid that has recently been shown to play a role in plant-bacteria signalling and also occurs naturally in several cereals. Several bacteria have been reported to be able to utilize azelaic acid as a unique source of carbon and energy, including Pseudomonas nitroreducens. In this study, we utilize P. nitroreducens as a model organism to study bacterial degradation of and response to azelaic acid. We report genetic evidence of azelaic acid degradation and the identification of a transcriptional regulator that responds to azelaic acid in P. nitroreducens DSM 9128. Three mutants possessing transposons in genes of an acyl-CoA ligase, an acyl-CoA dehydrogenase and an isocitrate lyase display a deficient ability in growing in azelaic acid. Studies on transcriptional regulation of these genes resulted in the identification of an IclR family repressor that we designated as AzeR, which specifically responds to azelaic acid. A bioinformatics survey reveals that AzeR is confined to a few proteobacterial genera that are likely to be able to degrade and utilize azelaic acid as the sole source of carbon and energy.
Collapse
Affiliation(s)
- Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Sree Gowrinadh Javvadi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Giulia Devescovi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Corrado Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | | - Alexander M Geller
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, POB 12 Rehovot 761001, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, POB 12 Rehovot 761001, Israel
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
86
|
Kufer TA, Creagh EM, Bryant CE. Guardians of the Cell: Effector-Triggered Immunity Steers Mammalian Immune Defense. Trends Immunol 2019; 40:939-951. [PMID: 31500957 DOI: 10.1016/j.it.2019.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
The mammalian innate immune system deals with invading pathogens and stress by activating pattern-recognition receptors (PRRs) in the host. Initially proposed to be triggered by the discrimination of defined molecular signatures from pathogens rather than from self, it is now clear that PRRs can also be activated by endogenous ligands, bacterial metabolites and, following pathogen-induced alterations of cellular processes, changes in the F-actin cytoskeleton. These processes are collectively referred to as effector-triggered immunity (ETI). Here, we summarize the molecular and conceptual advances in our understanding of cell autonomous innate immune responses against bacterial pathogens, and discuss how classical activation of PRRs and ETI interplay to drive inflammatory responses.
Collapse
Affiliation(s)
- Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Stuttgart, Germany.
| | - Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
87
|
Hartmann M, Zeier J. N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:44-57. [PMID: 30927665 DOI: 10.1016/j.pbi.2019.02.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
Recent research has established that the pipecolate pathway, a three-step biochemical sequence from l-lysine to N-hydroxypipecolic acid (NHP), is central for plant systemic acquired resistance (SAR). NHP orchestrates SAR establishment in concert with the immune signal salicylic acid (SA). Here, we outline the biochemistry of NHP formation from l-Lys and address novel progress on SA biosynthesis in Arabidopsis and other plant species. In Arabidopsis, the pathogen-inducible pipecolate and salicylate pathways are activated by common and distinct regulatory elements and mutual interactions between both metabolic branches exist. The mode of action of NHP in SAR involves direct induction of SAR gene expression, signal amplification, priming for enhanced defense activation and positive interplay with SA signaling to ensure elevated plant immunity.
Collapse
Affiliation(s)
- Michael Hartmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
88
|
Gillmeister M, Ballert S, Raschke A, Geistlinger J, Kabrodt K, Baltruschat H, Deising HB, Schellenberg I. Polyphenols from Rheum Roots Inhibit Growth of Fungal and Oomycete Phytopathogens and Induce Plant Disease Resistance. PLANT DISEASE 2019; 103:1674-1684. [PMID: 31095470 DOI: 10.1094/pdis-07-18-1168-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A growing world population requires an increase in the quality and quantity of food production. However, field losses due to biotic stresses are currently estimated to be between 10 and 20% worldwide. The risk of resistance and strict pesticide legislation necessitate innovative agronomical practices to adequately protect crops in the future, such as the identification of new substances with novel modes of action. In the present study, liquid chromatography mass spectrometry was used to characterize Rheum rhabarbarum root extracts that were primarily composed of the stilbenes rhaponticin, desoxyrhaponticin, and resveratrol. Minor components were the flavonoids catechin, epicatechin gallate, and procyanidin B1. Specific polyphenolic mixtures inhibited mycelial growth of several phytopathogenic fungi and oomycetes. Foliar spray applications with fractions containing stilbenes and flavonoids inhibited spore germination of powdery mildew in Hordeum vulgare with indications of synergistic interactions. Formulated extracts led to a significant reduction in the incidence of brown rust in Triticum aestivum under field conditions. Arabidopsis thaliana mutant and quantitative reverse-transcription polymerase chain reaction studies suggested that the stilbenes induce salicylic acid-mediated resistance. Thus, the identified substances of Rheum roots represent an excellent source of antifungal agents that can be used in horticulture and agriculture.
Collapse
Affiliation(s)
- Marit Gillmeister
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Silvia Ballert
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Anja Raschke
- 2 Institute for Agricultural and Nutritional Sciences - Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Joerg Geistlinger
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Kathrin Kabrodt
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Helmut Baltruschat
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Holger B Deising
- 2 Institute for Agricultural and Nutritional Sciences - Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ingo Schellenberg
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| |
Collapse
|
89
|
Targeted transcriptional and proteomic studies explicate specific roles of Bacillus subtilis iturin A, fengycin, and surfactin on elicitation of defensive systems in mandarin fruit during stress. PLoS One 2019; 14:e0217202. [PMID: 31120923 PMCID: PMC6532888 DOI: 10.1371/journal.pone.0217202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Application of Bacillus cyclic lipopeptides (CLPs); fengycin, iturin A and surfactin has shown a great potential in controlling the spread of green mold pathogen invasion (Penicillium digitatum) in wounded mandarin fruit during postharvest period. The limited defensive protein profiles followed specific expression of pivotal genes relating to plant hormone mediating signaling pathways of the CLPs’ action on stimulating host plant resistance have been exhibited. The present study aimed to elucidate the specific effect of individual CLP obtained from Bacillus subtilis ABS-S14 as elicitor role on activation of plant defensive system at transcriptional and proteomic levels with and without P. digitatum co-application in mandarin fruit. Fengycin and iturin A elevated the gene expression of PAL, ACS1, ACO, CHI, and GLU while significantly stimulating plant POD transcription was only detected in the treatments of surfactin both with and without following P. digitatum. An increase of LOX and PR1 gene transcripts was determined in the treatments of individual CLP with fungal pathogen co-application. Fengycin activated production of unique defensive proteins such as protein involved in ubiquinone biosynthetic process in treated flavedo without P. digitatum infection. Proteins involved in the auxin modulating pathway were present in the iturin A and surfactin treatments. CLP-protein binding assay following proteome analysis reveals that iturin A attached to 12-oxophytodienoate reductase 2 involved in the oxylipin biosynthetic process required for jasmonic acid production which is implicated in induced systemic resistance (ISR). This study suggests specific elicitor action of individual CLP, particularly iturin A showed the most powerful in stimulating the ISR system in response to stresses in postharvest mandarins.
Collapse
|
90
|
Tunsagool P, Jutidamrongphan W, Phaonakrop N, Jaresitthikunchai J, Roytrakul S, Leelasuphakul W. Insights into stress responses in mandarins triggered by Bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon Penicillium digitatum infection. PLANT CELL REPORTS 2019; 38:559-575. [PMID: 30715581 DOI: 10.1007/s00299-019-02386-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/25/2019] [Indexed: 05/11/2023]
Abstract
Bacillus subtilis CLP extract activates defense gene expression and increases the unique protein production involving in pathways of ISR, SAR, ubiquitin-proteasome system, and glycolysis for stress responses in flavedo tissues. Cyclic lipopeptides (CLPs) of Bacillus subtilis ABS-S14 had ability to activate plant defensive pathways, increase resistance and control green mold rot caused by Penicillium digitatum in mandarin fruit. The current study investigated transcriptional and proteomic data to highlight the unique induction effect of CLPs produced by B. subtilis ABS-S14 on the defense mechanism of mandarins in response to P. digitatum attack, and their differences from those following the exogenous plant hormone application. The proteomic patterns of the flavedo tissues as affected by Bacillus CLP extract, salicylic acid (SA), methyl jasmonate (MeJA), and ethephon (Et) were explored. qPCR analysis revealed the great effects of CLP extract in enhancing the transcription of PAL, ACS1, GLU, POD, and PR1. Tryptic peptides by LC-MS analysis between treatments with and without fungal infection were compared. B. subtilis CLP extract empowered the plant's immune response to wound stress by the significant production of calmodulin-binding receptor-like cytoplasmic kinase 2, molybdenum cofactor sulfurase, and NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase. Ubiquitin carrier protein abundance was developed only in the treated flavedo with CLP extract coupled with P. digitatum infection. The gene expression and overall proteome findings involving pathways of ubiquitin proteasome system, ISR, SAR, and energy production provide a new insight into the molecular mechanisms of the antagonist B. subtilis ABS-S14 inducing resistance against green mold in mandarins.
Collapse
Affiliation(s)
- Paiboon Tunsagool
- Department of Biochemistry, Prince of Songkla University, Songkhla, 90112, Thailand
| | | | - Narumon Phaonakrop
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | | |
Collapse
|
91
|
Frąckowiak P, Pospieszny H, Smiglak M, Obrępalska-Stęplowska A. Assessment of the Efficacy and Mode of Action of Benzo(1,2,3)-Thiadiazole-7-Carbothioic Acid S-Methyl Ester (BTH) and Its Derivatives in Plant Protection Against Viral Disease. Int J Mol Sci 2019; 20:E1598. [PMID: 30935036 PMCID: PMC6480033 DOI: 10.3390/ijms20071598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/17/2022] Open
Abstract
Systemic acquired resistance (SAR) induction is one of the primary defence mechanisms of plants against a broad range of pathogens. It can be induced by infectious agents or by synthetic molecules, such as benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH). SAR induction is associated with increases in salicylic acid (SA) accumulation and expression of defence marker genes (e.g., phenylalanine ammonia-lyase (PAL), the pathogenesis-related (PR) protein family, and non-expressor of PR genes (NPR1)). Various types of pathogens and pests induce plant responses by activating signalling pathways associated with SA, jasmonic acid (JA) and ethylene (ET). This work presents an analysis of the influence of BTH and its derivatives as resistance inducers in healthy and virus-infected plants by determining the expression levels of selected resistance markers associated with the SA, JA, and ET pathways. The phytotoxic effects of these compounds and their influence on the course of viral infection were also studied. Based on the results obtained, the best-performing BTH derivatives and their optimal concentration for plant performance were selected, and their mode of action was suggested. It was shown that application of BTH and its derivatives induces increased expression of marker genes of both the SA- and JA-mediated pathways.
Collapse
Affiliation(s)
- Patryk Frąckowiak
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection, National Research Institute, ul. Władysława Węgorka 20, 60-318 Poznań, Poland.
| | - Henryk Pospieszny
- Department of Virology and Bacteriology, Institute of Plant Protection, National Research Institute, ul. Władysława Węgorka 20, 60-318 Poznań, Poland.
| | - Marcin Smiglak
- Poznań Science and Technology Park, Adam Mickiewicz University Foundation, ul. Rubież 46, 61-612 Poznań, Poland.
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection, National Research Institute, ul. Władysława Węgorka 20, 60-318 Poznań, Poland.
| |
Collapse
|
92
|
Kachroo P, Kachroo A. Plant Immunity: a bird's-eye view. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:1-2. [PMID: 30709486 DOI: 10.1016/j.plantsci.2018.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
93
|
Enebe MC, Babalola OO. The impact of microbes in the orchestration of plants' resistance to biotic stress: a disease management approach. Appl Microbiol Biotechnol 2019; 103:9-25. [PMID: 30315353 PMCID: PMC6311197 DOI: 10.1007/s00253-018-9433-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
The struggle for survival is a natural and a continuous process. Microbes are struggling to survive by depending on plants for their nutrition while plants on the other hand are resisting the attack of microbes in order to survive. This interaction is a tug of war and the knowledge of microbe-plant relationship will enable farmers/agriculturists improve crop health, yield, sustain regular food supply, and minimize the use of agrochemicals such as fungicides and pesticides in the fight against plant pathogens. Although, these chemicals are capable of inhibiting pathogens, they also constitute an environmental hazard. However, certain microbes known as plant growth-promoting microbes (PGPM) aid in the sensitization and priming of the plant immune defense arsenal for it to conquer invading pathogens. PGPM perform this function by the production of elicitors such as volatile organic compounds, antimicrobials, and/or through competition. These elicitors are capable of inducing the expression of pathogenesis-related genes in plants through induced systemic resistance or acquired systemic resistance channels. This review discusses the current findings on the influence and participation of microbes in plants' resistance to biotic stress and to suggest integrative approach as a better practice in disease management and control for the achievement of sustainable environment, agriculture, and increasing food production.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
94
|
Hartmann M, Zeier J. l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:5-21. [PMID: 30035374 DOI: 10.1111/tpj.14037] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 05/03/2023]
Abstract
l-lysine catabolic routes in plants include the saccharopine pathway to α-aminoadipate and decarboxylation of lysine to cadaverine. The current review will cover a third l-lysine metabolic pathway having a major role in plant systemic acquired resistance (SAR) to pathogen infection that was recently discovered in Arabidopsis thaliana. In this pathway, the aminotransferase AGD2-like defense response protein (ALD1) α-transaminates l-lysine and generates cyclic dehydropipecolic (DP) intermediates that are subsequently reduced to pipecolic acid (Pip) by the reductase SAR-deficient 4 (SARD4). l-pipecolic acid, which occurs ubiquitously in the plant kingdom, is further N-hydroxylated to the systemic acquired resistance (SAR)-activating metabolite N-hydroxypipecolic acid (NHP) by flavin-dependent monooxygenase1 (FMO1). N-hydroxypipecolic acid induces the expression of a set of major plant immune genes to enhance defense readiness, amplifies resistance responses, acts synergistically with the defense hormone salicylic acid, promotes the hypersensitive cell death response and primes plants for effective immune mobilization in cases of future pathogen challenge. This pathogen-inducible NHP biosynthetic pathway is activated at the transcriptional level and involves feedback amplification. Apart from FMO1, some cytochrome P450 monooxygenases involved in secondary metabolism catalyze N-hydroxylation reactions in plants. In specific taxa, pipecolic acid might also serve as a precursor in the biosynthesis of specialized natural products, leading to C-hydroxylated and otherwise modified piperidine derivatives, including indolizidine alkaloids. Finally, we show that NHP is glycosylated in Arabidopsis to form a hexose-conjugate, and then discuss open questions in Pip/NHP-related research.
Collapse
Affiliation(s)
- Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|