51
|
Jensen LZ, Glasius M, Gryning SE, Massling A, Finster K, Šantl-Temkiv T. Seasonal Variation of the Atmospheric Bacterial Community in the Greenlandic High Arctic Is Influenced by Weather Events and Local and Distant Sources. Front Microbiol 2022; 13:909980. [PMID: 35879956 PMCID: PMC9307761 DOI: 10.3389/fmicb.2022.909980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Arctic is a hot spot for climate change with potentially large consequences on a global scale. Aerosols, including bioaerosols, are important players in regulating the heat balance through direct interaction with sunlight and indirectly, through inducing cloud formation. Airborne bacteria are the major bioaerosols with some species producing the most potent ice nucleating compounds known, which are implicated in the formation of ice in clouds. Little is known about the numbers and dynamics of airborne bacteria in the Arctic and even less about their seasonal variability. We collected aerosol samples and wet deposition samples in spring 2015 and summer 2016, at the Villum Research Station in Northeast Greenland. We used amplicon sequencing and qPCR targeting the 16S rRNA genes to assess the quantities and composition of the DNA and cDNA-level bacterial community. We found a clear seasonal variation in the atmospheric bacterial community, which is likely due to variable sources and meteorology. In early spring, the atmospheric bacterial community was dominated by taxa originating from temperate and Subarctic regions and arriving at the sampling site through long-range transport. We observed an efficient washout of the aerosolized bacterial cells during a snowstorm, which was followed by very low concentrations of bacteria in the atmosphere during the consecutive 4 weeks. We suggest that this is because in late spring, the long-range transport ceased, and the local sources which comprised only of ice and snow surfaces were weak resulting in low bacterial concentrations. This was supported by observed changes in the chemical composition of aerosols. In summer, the air bacterial community was confined to local sources such as soil, plant material and melting sea-ice. Aerosolized and deposited Cyanobacteria in spring had a high activity potential, implying their activity in the atmosphere or in surface snow. Overall, we show how the composition of bacterial aerosols in the high Arctic varies on a seasonal scale, identify their potential sources, demonstrate how their community sizes varies in time, investigate their diversity and determine their activity potential during and post Arctic haze.
Collapse
Affiliation(s)
- Lasse Z. Jensen
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
- iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change, Roskilde, Denmark
| | | | - Sven-Erik Gryning
- DTU Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
| | - Andreas Massling
- iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change, Roskilde, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Kai Finster
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University, Aarhus, Denmark
| | - Tina Šantl-Temkiv
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
- iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change, Roskilde, Denmark
- Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University, Aarhus, Denmark
- *Correspondence: Tina Šantl-Temkiv,
| |
Collapse
|
52
|
Rodríguez-Fernández A, Oteros J, Vega-Maray AM, Valencia-Barrera RM, Galán C, Fernández-González D. How to select the optimal monitoring locations for an aerobiological network: A case of study in central northwest of Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154370. [PMID: 35276149 DOI: 10.1016/j.scitotenv.2022.154370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Airborne pollen concentration varies depending on several factors, such as local plant biodiversity, geography and climatology. These particles are involved in triggering pollinosis in a share of worldwide human population, and adequate monitoring is, therefore, important. However, the pollen traps in aerobiological monitoring networks are usually installed in cities, and the features of the whole territory are not taken into account. The aim of this study was to analyze what environmental parameters are more suitable as regards setting up monitoring stations throughout a territory in order to obtain an aerobiological network that can represent environmental diversity. The analysis was carried out in 13 locations in Castilla y León over an 8 year period. This is a favorable territory in which to conduct this type of study owing to its climatic features, orography and biodiversity. The ten most abundant pollen types in the region were analyzed, and a clustering analysis was calculated with different distances so as to obtain homogeneous groups of stations. Moreover, the clusters obtained were analyzed in combination with altitudinal and different bioclimatic parameters, which derived from temperature and precipitation. The result here shows that the Castilla y León aerobiological network RACYL represents most of the environmental variability of the territory. Furthermore, it can be divided into two clusters and five sub-clusters for which the start of the main pollen season is different. This corresponds with the division of the territory as regards bioclimatic conditions. The most important bioclimatic parameters were the seasonality of the precipitation and the maximum temperature of the warmest month, although orography must also be taken into account. All of these help discover the optimal places in which to install traps and could reduce the number of monitoring stations. This study additionally provides data for unmonitored areas with similar bioclimatic conditions to those monitored.
Collapse
Affiliation(s)
| | - José Oteros
- Department of Botany, Ecology, Plant Physiology, University of Córdoba, Spain
| | | | | | - Carmen Galán
- Department of Botany, Ecology, Plant Physiology, University of Córdoba, Spain
| | - Delia Fernández-González
- Biodiversity and Environmental Management, University of León, Spain; Institute of Atmospheric Sciences and Climate-CNR, Bologna, Italy
| |
Collapse
|
53
|
Rodríguez-Solà R, Casas-Castillo MC, Zhang JJH, Kirchner R, Alarcón M, Periago C, De Linares C, Belmonte J. A study on correlations between precipitation ETCCDI and airborne pollen/fungal spore parameters in the NE Iberian Peninsula. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1173-1187. [PMID: 35275236 DOI: 10.1007/s00484-022-02267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/21/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Precipitation is one of the meteorological variables usually involved in the aerobiological studies, which presents a complex relationship with atmospheric levels of pollen and fungal spores and the temporal characteristics of their seasons. This complexity is due in a large part to rainfall's twofold impact of having, prior to pollination, a positive influence on subsequent pollen production and of contributing, during pollination, to pollen removal from the air through a wash-out effect. To better explore this impact, we place particular emphasis on extreme rainfall by calculating the correlation between airborne pollen and fungal spore parameters and the precipitation indices that the Expert Team on Climate Change Detection and Indices (ETCCDI) proposed for characterising climate extremes. Parameters for twenty-seven pollen and fungal spore taxa measured in six aerobiological stations in the NE Iberian Peninsula have been considered. We have distinguished between annual and winter ETCCDI in order to compare the correlations between extreme rainfall and airborne pollen concentrations and to avoid the wash-out effect as far as possible. Results show a positive influence from an increase in moderately extreme winter rainfall, specifically on subsequent pollen/fungal spore production: the percentage of all possible significant correlations is higher for winter than for annual rainfall. Furthermore, while annual rainfall in this region has nearly the same number of positive as negative correlations, the positive correlations for winter rainfall are more than twice that of the negative ones. The seasonal consideration on rainfall ETCCDI made with the aim to avoid the confounding overlapping of different rainfall impacts has led to more sharpened observations of its positive and negative effects on airborne pollen and fungal spore concentrations.
Collapse
Affiliation(s)
- R Rodríguez-Solà
- Department of Physics, ETSEIB, Universitat Politècnica de Catalunya·BarcelonaTech, Diagonal 647, 08028, Barcelona, Spain
| | - M C Casas-Castillo
- Department of Physics, ESEIAAT, Universitat Politècnica de Catalunya·BarcelonaTech, Colom 1, 08222, Terrassa, Spain.
| | - J J Ho Zhang
- Department of Physics, EEBE, Universitat Politècnica de Catalunya·BarcelonaTech, Eduard Maristany 16, 08019, Barcelona, Spain
| | - R Kirchner
- Department of Physics, ESEIAAT, Universitat Politècnica de Catalunya·BarcelonaTech, Colom 1, 08222, Terrassa, Spain
| | - M Alarcón
- Department of Physics, EEBE, Universitat Politècnica de Catalunya·BarcelonaTech, Eduard Maristany 16, 08019, Barcelona, Spain
| | - C Periago
- Department of Physics, EEBE, Universitat Politècnica de Catalunya·BarcelonaTech, Eduard Maristany 16, 08019, Barcelona, Spain
| | - C De Linares
- Department of Animal Biology, Plant Biology and Ecology, Faculty of Bioscience, Universitat Autònoma de Bellaterra, 08193, Bellaterra, Spain
- Department of Botany, Faculty of Sciences, Universidad de Granada, Granada, 18071, Spain
| | - J Belmonte
- Department of Animal Biology, Plant Biology and Ecology, Faculty of Bioscience, Universitat Autònoma de Bellaterra, 08193, Bellaterra, Spain
- Institute of Environmental Sciences and Technology (ICTA-UAB), Universitat Autònoma de Bellaterra, 08193, Bellaterra, Spain
| |
Collapse
|
54
|
Development of a Novel Bioaerosol Chamber to Determine Survival Rates of Airborne Staphylococci. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large amounts of microorganisms are emitted from animal houses into the environment via exhaust air. To assess the potential risks, the spread of microorganisms can be simulated with computer models. Such modeling usually does not take into account die-off rates, since there are hardly any reliable data so far on how long microorganisms can survive in outdoor air. Previous studies were conducted almost exclusively in closed chambers and usually only took into account the influence of individual environmental factors such as temperature or humidity. Therefore, a novel bioaerosol chamber was developed to quantify the survival rates of Staphylococci specific to livestock under outdoor air conditions. For evaluation, the survival rates of Staphylococcus xylosus were determined as a function of temperature, relative humidity, ozone concentration, and global radiation. Survival rates decreased with increasing temperature, decreasing relative humidity, increasing global radiation intensity, and increasing ozone concentration. At 12 min in the airborne state, die-off rates of more than 90% were observed, especially at high global radiation levels > 400 W/m2. The novel bioaerosol chamber enabled the investigation of the survival rates of airborne microorganisms over a certain period of time in a quasi-closed system and yet under real outdoor air conditions.
Collapse
|
55
|
Tengan BM, Akoto O. Comprehensive evaluation of the possible impact of roofing materials on the quality of harvested rainwater for human consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152966. [PMID: 35016931 DOI: 10.1016/j.scitotenv.2022.152966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Water is a vital natural resource that influences life and contributes to domestic and industrial activities. Availability and accessibility of safe water sources are crucial for a country's economic growth. Harvesting of roof runoffs is an alternative source of water used for domestic purposes. However, the quality of harvested rainwater can be affected by roofing materials. This research seeks to assess heavy metals concentration, physicochemical and bacteriological parameters in roof runoffs and estimate the water quality index and health risk these metals pose to consumers. Rainwater samples were collected from Aluzinc, Aluminum, Galvanized, and Asbestos roofing materials within the Ejisu municipality. Rainwater collected directly from the sky was used as control. All runoffs from the four roofing materials recorded Cd, Fe, Cr, turbidity, pH, E.coli, total and fecal coliform levels above WHO limit for drinking water. There was a significant variation in pH, EC, Zn, Cd, Cr, Fe, E. coli, total and fecal coliform levels between control samples and roof runoffs (p < 0.05). The estimated water quality index for runoffs from the four roofing materials exceeded 100 indicating their unsuitability for drinking. Cadmium recorded the highest non-cancer health risk to children and adults in all the roof runoffs. Hazard quotients (HQs) above one were recorded for a child (HQ = 40.1) and an adult (HQ = 13.6) via dermal exposure to Cd in runoff from Aluminum roofing material. Hazard quotient of 9.53 and 4.08 were estimated for a child and an adult respectively via oral exposure to Cd in runoffs from Asbestos roofing material. The estimated cancer risks were above 10-3 for a child and an adult via oral and dermal exposure to Cd in all roof runoffs, suggesting a possible cancer health effect. The study concludes that the four roofing materials impact negatively on the quality of runoffs.
Collapse
Affiliation(s)
- Briana Mwinkom Tengan
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
56
|
Zhang Y, Chen H, Du R, Zhang S, Zhao H. Microbial Activity and Community Structure in PM 2 .5 at Different Heights in Ground Boundary Layer of Beijing Atmosphere under Various Air Quality Levels. Environ Microbiol 2022; 24:4013-4029. [PMID: 35466499 DOI: 10.1111/1462-2920.16023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
The outbreak of the COVID-19 epidemic is a reminder that aerosols have important health effects as a potential route for disease transmission. Biological components in aerosols (especially PM2.5 ) may pose potential threats to humans as pathogens and allergens. Research on PM2.5 and biological components currently focuses mainly on polluted conditions, with less emphasis on clean environments. Sampling has also been primarily based on a single point with a lack of data at different positions. In this study, a modified fluorescein diacetate hydrolysis method was used to measure microbial activity in PM2.5 at different altitudes over a year in Beijing, China. A high-throughput sequencing method was used to study the microbial community. Results showed that microbial activity 1.5 m (0.0465 ng m-3 ) above the ground was higher than 31.5 m (0.0348 ng m-3 ). There was higher microbial activity at both heights during spring. Furthermore, a positive correlation was observed between microbial activity and relative abundance of dominant species. Microbial activity increased during autumn and winter increased alongside the pollution level, but in spring higher levels of microbial activity were observed in excellent or good weather conditions. The results from this study are valuable for further research regarding the biological components of atmospheric PM, the prevention of biological pollution, and establishing a comprehensive air quality evaluation system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yongtao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanlin Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sujian Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
57
|
Anees-Hill S, Douglas P, Pashley CH, Hansell A, Marczylo EL. A systematic review of outdoor airborne fungal spore seasonality across Europe and the implications for health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151716. [PMID: 34800445 PMCID: PMC8919338 DOI: 10.1016/j.scitotenv.2021.151716] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 05/08/2023]
Abstract
Fungal spores make up a significant proportion of organic matter within the air. Allergic sensitisation to fungi is associated with conditions including allergic fungal airway disease. This systematic review analyses outdoor fungal spore seasonality across Europe and considers the implications for health. Seventy-four studies met the inclusion criteria, the majority of which (n = 64) were observational sampling studies published between 1978 and 2020. The most commonly reported genera were the known allergens Alternaria and Cladosporium, measured in 52 and 49 studies, respectively. Both displayed statistically significant increased season length in south-westerly (Mediterranean) versus north-easterly (Atlantic and Continental) regions. Although there was a trend for reduced peak or annual Alternaria and Cladosporium spore concentrations in more northernly locations, this was not statistically significant. Peak spore concentrations of Alternaria and Cladosporium exceeded clinical thresholds in nearly all locations, with median peak concentrations of 665 and 18,827 per m3, respectively. Meteorological variables, predominantly temperature, precipitation and relative humidity, were the main factors associated with fungal seasonality. Land-use was identified as another important factor, particularly proximity to agricultural and coastal areas. While correlations of increased season length or decreased annual spore concentrations with increasing average temperatures were reported in multi-decade sampling studies, the number of such studies was too small to make any definitive conclusions. Further, up-to-date studies covering underrepresented geographical regions and fungal taxa (including the use of modern molecular techniques), and the impact of land-use and climate change will help address remaining knowledge gaps. Such knowledge will help to better understand fungal allergy, develop improved fungal spore calendars and forecasts with greater geographical coverage, and promote increased awareness and management strategies for those with allergic fungal disease.
Collapse
Affiliation(s)
- Samuel Anees-Hill
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester LE1 7LW, UK; The National Institute of Health Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester LE1 7LW, UK.
| | - Philippa Douglas
- The National Institute of Health Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester LE1 7LW, UK; Environmental Hazards and Emergencies Department, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire OX11 0RQ, UK.
| | - Catherine H Pashley
- The National Institute of Health Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester LE1 7LW, UK; Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester LE1 7RH, UK.
| | - Anna Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester LE1 7LW, UK; The National Institute of Health Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester LE1 7LW, UK.
| | - Emma L Marczylo
- The National Institute of Health Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester LE1 7LW, UK; Toxicology Department, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire OX11 0RQ, UK.
| |
Collapse
|
58
|
Long-Term Studies of Biological Components of Atmospheric Aerosol: Trends and Variability. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Biological components of atmospheric aerosol affect the quality of atmospheric air. Long-term trends in changes of the concentrations of total protein (a universal marker of the biogenic component of atmospheric aerosol) and culturable microorganisms in the air are studied. Methods: Atmospheric air samples are taken at two locations in the south of Western Siberia and during airborne sounding of the atmosphere. Sample analysis is carried out in the laboratory using standard culture methods (culturable microorganisms) and the fluorescence method (total protein). Results: Negative trends in the average annual concentration of total protein and culturable microorganisms in the air are revealed over more than 20 years of observations. For the concentration of total protein and culturable microorganisms in the air, intra-annual dynamics is revealed. The ratio of the maximum and minimum values of these concentrations reaches an order of magnitude. The variability of concentrations does not exceed, as a rule, two times for total protein and three times for culturable microorganisms. At the same time, for the data obtained in the course of airborne sounding of the atmosphere, a high temporal stability of the vertical profiles of the studied concentrations was found. The detected biodiversity of culturable microorganisms in atmospheric air samples demonstrates a very high variability at all observation sites. Conclusions: The revealed long-term changes in the biological components of atmospheric aerosol result in a decrease in their contribution to the atmospheric air quality index.
Collapse
|
59
|
Niu Z, Huang Z, Wang S, Feng X, Wu S, Zhao H, Lu X. Characteristics and source apportionment of particulate carbon in precipitation based on dual-carbon isotopes ( 13C and 14C) in Xi'an, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118908. [PMID: 35091020 DOI: 10.1016/j.envpol.2022.118908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Wet deposition is a dominant removal pathway of carbonaceous particles from the atmosphere, but few studies have assessed the particulate carbon in precipitation in Chinese cities. To assess the characteristics and sources of particulate carbon, we measured the concentrations, fluxes, stable carbon isotopes, and radiocarbon of particulate carbon, and some cations concentrations in precipitation in Xi'an, China, in 2019. In contrast to rainfall samples, particulate carbon in snowfall samples in Xi'an showed extremely high concentrations and wet deposition fluxes. The concentrations as well as wet deposition fluxes showed no significant (p > 0.05) differences between urban and suburban sites, and they also exhibited low seasonality in rainfall samples. Water-insoluble organic carbon (WIOC) accounted for the majority (∼90%) of the concentrations and wet deposition fluxes of water-insoluble total carbon (WITC) in precipitation. The best estimates of source apportionment of WITC in precipitation showed that biological sources were the main contributor (80.0% ± 10.5%) in summer, and their contributions decreased to 47.3% ± 12.8% in winter. The contribution of vehicle exhaust emissions accounted for 11.7% ± 3.5% in summer and 39.0% ± 4.3% in winter, while the contributions of coal combustion were relatively small in summer (8.3% ± 7.0%) and winter (13.8% ± 8.5%). Biomass burning accounted for 25.7% ± 9.3% and 89.9% ± 0.7% of the biological sources in summer and winter, respectively, with the remainder comprising other sources of contemporary carbon. These results highlight the nonnegligible contributions of biogenic emissions and biomass burning to particulate carbon in precipitation in this city in summer and winter, respectively.
Collapse
Affiliation(s)
- Zhenchuan Niu
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China; Shaanxi Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, China.
| | - Zhipu Huang
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Sen Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Xue Feng
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Shugang Wu
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China
| | - Huiyizhe Zhao
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China
| | - Xuefeng Lu
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
60
|
Liao ZN, Xu HJ, Ma J, Li M, He C, Zhang Q, Xu S. Seasonal and vegetational variations of culturable bacteria concentrations in air from urban forest parks: a case study in Hunan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28933-28945. [PMID: 34988785 DOI: 10.1007/s11356-021-17532-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
It is important to investigate the airborne bacterial air quality in urban forest parks as tree bacteriostasis practices are being increasingly advocated as measures to improve the air quality and public health in urban green spaces around the world. The aim of the study was to quantitatively investigate airborne culturable bacteria (ACB) concentration levels based on field measurements in every season in five selected forest communities and the uncovered space in an urban forest park, as well as the effects of several factors on the culturability of airborne bacteria. Results suggested that the airborne bacterial levels of all the forest communities reached the clean air quality standard with regard to the airborne bacteria content, with the highest concentration of ACB showing in the uncovered space (1658 ± 1298 CFU/m3) and the lowest showing in the mixed community (907 ± 567 CFU/m3). The temporal distribution analysis showed that the airborne bacteria were mostly concentrated in summer, as well as in the morning and afternoon. The bacteriostatic rates of the mixed community were significantly different with seasonal variation (p < 0.05). Spearman's correlations revealed that the concentration of ACB was significantly positively correlated with the season, wind speed (WS), temperature (T), ultraviolet light (UV), negative air ion (NAI), and total suspended particles (TSP) (p<0.05) but significantly negatively correlated with the forest community type (p < 0.05). Overall, the selection of tree species plays a key role in shaping the forest structure and improving air quality, and the urban forest highlights key priorities for future efforts toward a cleaner, healthier, and more diverse regional forest environment.
Collapse
Affiliation(s)
- Zhen-Ni Liao
- School of Geography, South China Normal University, Guangzhou, 510631, China
- Chenzhou Institute of Forestry, Chenzhou, 423000, China
| | - Hui-Juan Xu
- College of National Resources & Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaojiao Ma
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Maojuan Li
- Chenzhou Institute of Forestry, Chenzhou, 423000, China
| | - Caisheng He
- Chenzhou Institute of Forestry, Chenzhou, 423000, China
| | - Qiongrui Zhang
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Songjun Xu
- School of Geography, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
61
|
Effects of Altitude, Plant Communities, and Canopies on the Thermal Comfort, Negative Air Ions, and Airborne Particles of Mountain Forests in Summer. SUSTAINABILITY 2022. [DOI: 10.3390/su14073882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forest bathing is considered an economical, feasible, and sustainable way to solve human sub-health problems caused by urban environmental degradation and to promote physical and mental health. Mountain forests are ideal for providing forest baths because of their large area and ecological environment. The regulatory mechanism of a mountain forest plant community in a microenvironment conducive to forest bathing is the theoretical basis for promoting physical and mental health through forest bathing in mountain forests. Based on field investigations and measurements, differences in the daily universal thermal climate index (UTCI), negative air ion (NAI), and airborne particulate matter (PM2.5 and PM10) levels in nine elevation gradients, six plant community types, and six plant community canopy parameter gradients were quantitatively analyzed. In addition, the correlations between these variables and various canopy parameters were further established. The results showed the following: (1) Altitude had a significant influence on the daily UTCI, NAI, PM2.5, and PM10 levels in the summer. The daily UTCI, NAI, PM2.5, and PM10 levels gradually decreased with the increase in altitude. For every 100 m increase in altitude, the daily UTCI decreased by 0.62 °C, the daily NAI concentration decreased by 108 ions/cm3, and the daily PM2.5 and PM10 concentrations decreased by 0.60 and 3.45 µg/m3, respectively. (2) There were significant differences in the daily UTCI, NAI, PM2.5, and PM10 levels among different plant communities in the summer. Among the six plant communities, the Quercus variabilis forest (QVF) had the lowest daily UTCI and the best thermal comfort evaluation. The QVF and Pinus tabuliformis forest (PTF) had a higher daily NAI concentration and lower daily PM2.5 and PM10 concentrations. (3) The characteristics of the plant community canopy, canopy density (CD), canopy porosity (CP), leaf area index (LAI), and sky view factor (SVF), had significant effects on the daily UTCI and NAI concentration, but had no significant effects on the daily PM2.5 and PM10 concentrations in the summer. The plant community with higher CD and LAI, but lower CP and SVF, showed a higher daily UTCI and a higher daily NAI concentration. In conclusion, the QVF and PTF plant communities with higher CD and LAI but lower CP and SVF at lower elevations are more suitable for forest bathing in the summer in mountainous forests at lower altitudes. The results of this study provide an economical, feasible, and sustainable guide for the location of forest bathing activities and urban greening planning to promote people’s physical and mental health.
Collapse
|
62
|
Lang X, Xu A, Wang Y, Song Z. Seasonal variation of aerosol fungal community structure in reed constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19420-19431. [PMID: 34718950 DOI: 10.1007/s11356-021-17138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the impact of biological aerosols produced by sewage treatment plants on air quality and human health has become a hot spot of concern. Airborne fungi were characterized via KC-1000 large-flow air sampler and Anderson-type six-stage sampler, at free surface flowing reed constructed wetland located in Qingdao City, Shandong Province. The high-throughput sequencing technology and fungal culture-dependent method were selected to analyze the composition and dynamic changes of the fungal community attached to the atmospheric particulate matter in the free surface flow constructed wetland. The results showed that the aerosol concentration of fungi in the constructed wetlands varied from 587 to approximately 3382 CFU m-3, with a peak at the range of 1.10 to 2.10 μm particle size, and the particles (< 4.70 μm) that easily entered the lungs accounted for 57.03 ~ 96.03%. Significant seasonal differences in fungal richness and community diversity were found. The particle size distribution of fungi in atmospheric particles was not obvious. Fungal genera in the atmospheric particulate matter were mainly driven by humidity. However, other factors, i.e., temperature, NO2, SO2, and PM10 contents, also contributed.
Collapse
Affiliation(s)
- Xiulu Lang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Ailing Xu
- School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Yanhua Wang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China.
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| | - Zhiwen Song
- School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| |
Collapse
|
63
|
Liu H, Hu Z, Zhou M, Zhang H, Zhang X, Yue Y, Yao X, Wang J, Xi C, Zheng P, Xu X, Hu B. PM 2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118715. [PMID: 34933062 DOI: 10.1016/j.envpol.2021.118715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Airborne bacteria may absorb the substance from the atmospheric particles and play a role in biogeochemical cycling. However, these studies focused on a few culturable bacteria and the samples were usually collected from one site. The metabolic potential of a majority of airborne bacteria on a regional scale and their driving factors remain unknown. In this study, we collected particulates with aerodynamic diameter ≤2.5 μm (PM2.5) from 8 cities that represent different regions across China and analyzed the samples via high-throughput sequencing of 16S rRNA genes, quantitative polymerase chain reaction (qPCR) analysis, and functional database prediction. Based on the FAPROTAX database, 326 (80.69%), 191 (47.28%) and 45 (11.14%) bacterial genera are possible to conduct the pathways of carbon, nitrogen, and sulfur cycles, respectively. The pathway analysis indicated that airborne bacteria may lead to the decrease in organic carbon while the increase in ammonium and sulfate in PM2.5 samples, all of which are the important components of PM2.5. Among the 19 environmental factors studied including air pollutants, meteorological factors, and geographical conditions, PM2.5 concentration manifested the strongest correlations with the functional genes for the transformation of ammonium and sulfate. Moreover, the PM2.5 concentration rather than the sampling site will drive the distribution of functional genera. Thus, a bi-directional relationship between PM2.5 and bacterial metabolism is suggested. Our findings shed light on the potential bacterial pathway for the biogeochemical cycling in the atmosphere and the important role of PM2.5, offering a new perspective for atmospheric ecology and pollution control.
Collapse
Affiliation(s)
- Huan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; School of Civil Engineering, Chongqing University, Chongqing, 400044, China
| | - Zhichao Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaole Zhang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Yang Yue
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Ping Zheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
64
|
Vlaskin MS. Review of air disinfection approaches and proposal for thermal inactivation of airborne viruses as a life-style and an instrument to fight pandemics. APPLIED THERMAL ENGINEERING 2022; 202:117855. [PMID: 34867067 PMCID: PMC8628600 DOI: 10.1016/j.applthermaleng.2021.117855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 (Coronavirus Disease 2019) pandemic highlighted the importance of air biosecurity because SARS-CoV-2 is mainly transmitted from person to person via airborne droplets. Preventing infectious droplets from entering the body is one of the best ways to protect against infection. This paper reviews the transmission patterns of airborne pathogens and air disinfection methods. A particular emphasis is put on studies devoted to the thermal inactivation of viruses. These reviews reveal that air heat treatment has not been seriously considered as a possible air disinfection approach. Simple calculations show that the energy input required for thermal disinfection of human's air daily consumption is almost the same as for daily water consumption (by heat treatment from room temperature to 100 °C). Moreover, it is possible to organize a continuous heat recovery from the air already heated during disinfection to the inlet air, thus significantly increasing the energy efficiency. Therefore, I propose a solution for the thermal inactivation of airborne pathogens based on air heating and its subsequent cooling in a heat exchanger with heat recovery. Such a solution could be used to create mobile personal and stationary indoor air disinfectors, as well as heating, ventilation, and air conditioning systems. Thermal disinfection of air to breathe might one day be part of people's daily life like thermal disinfection of drinking water. Aside from limiting infectious disease transmission, thermal inactivation might be the basis for developing inhaled vaccines using thermally inactivated whole pathogens.
Collapse
Affiliation(s)
- Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow 125412, Russia
| |
Collapse
|
65
|
Kobziar LN, Vuono D, Moore R, Christner BC, Dean T, Betancourt D, Watts AC, Aurell J, Gullett B. Wildland fire smoke alters the composition, diversity, and potential atmospheric function of microbial life in the aerobiome. ISME COMMUNICATIONS 2022; 2:8. [PMID: 37938277 PMCID: PMC9723787 DOI: 10.1038/s43705-022-00089-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 04/29/2023]
Abstract
The atmosphere contains a diverse reservoir of microbes but the sources and factors contributing to microbial aerosol variability are not well constrained. To advance understanding of microbial emissions in wildfire smoke, we used unmanned aircraft systems to analyze the aerosols above high-intensity forest fires in the western United States. Our results show that samples of the smoke contained ~four-fold higher concentrations of cells (1.02 ± 0.26 × 105 m-3) compared to background air, with 78% of microbes in smoke inferred to be viable. Fivefold higher taxon richness and ~threefold enrichment of ice nucleating particle concentrations in smoke implies that wildfires are an important source of diverse bacteria and fungi as well as meteorologically relevant aerosols. We estimate that such fires emit 3.71 × 1014 microbial cells ha-1 under typical wildfire conditions in western US forests and demonstrate that wildland biomass combustion has a large-scale influence on the local atmospheric microbial assemblages. Given the long-range transport of wildfire smoke emissions, these results expand the concept of a wildfire's perimeter of biological impact and have implications to biogeography, gene flow, the dispersal of plant, animal, and human pathogens, and meteorology.
Collapse
Affiliation(s)
- Leda N Kobziar
- Department of Natural Resources and Society, University of Idaho, Coeur d'Alene, ID, 83814, USA.
| | - David Vuono
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Rachel Moore
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
- Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Brent C Christner
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Timothy Dean
- U. S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27711, USA
| | - Doris Betancourt
- U. S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27711, USA
| | - Adam C Watts
- Pacific Wildland Fire Sciences Laboratory, USDA Forest Service, Seattle, WA, 98103, USA
| | - Johanna Aurell
- University of Dayton Research Institute, 300 College Park, Dayton, OH, 45469, USA
| | - Brian Gullett
- U. S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
66
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN, Baschir LA, Tenciu DV. Assessing the impact of air pollution and climate seasonality on COVID-19 multiwaves in Madrid, Spain. ENVIRONMENTAL RESEARCH 2022; 203:111849. [PMID: 34370990 PMCID: PMC8343379 DOI: 10.1016/j.envres.2021.111849] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 05/17/2023]
Abstract
While the COVID-19 pandemic is still in progress, being under the fifth COVID-19 wave in Madrid, over more than one year, Spain experienced a four wave pattern. The transmission of SARS-CoV-2 pathogens in Madrid metropolitan region was investigated from an urban context associated with seasonal variability of climate and air pollution drivers. Based on descriptive statistics and regression methods of in-situ and geospatial daily time series data, this study provides a comparative analysis between COVID-19 waves incidence and mortality cases in Madrid under different air quality and climate conditions. During analyzed period 1 January 2020-1 July 2021, for each of the four COVID-19 waves in Madrid were recorded anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere and favorable stability conditions for COVID-19 disease fast spreading. As airborne microbial temporal pattern is most affected by seasonal changes, this paper found: 1) a significant negative correlation of air temperature, Planetary Boundary Layer height, and surface solar irradiance with daily new COVID-19 incidence and deaths; 2) a similar mutual seasonality with climate variables of the first and the fourth COVID-waves from spring seasons of 2020 and 2021 years. Such information may help the health decision makers and public plan for the future.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Laurentiu A Baschir
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Daniel V Tenciu
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
67
|
Investigation of Sources, Diversity, and Variability of Bacterial Aerosols in Athens, Greece: A Pilot Study. ATMOSPHERE 2021. [DOI: 10.3390/atmos13010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We characterized the composition, diversity, and potential bacterial aerosol sources in Athens’ urban air by DNA barcoding (analysis of 16S rRNA genes) during three seasons in 2019. Air samples were collected using the recently developed Rutgers Electrostatic Passive Sampler (REPS). It is the first field application of REPS to study bacterial aerosol diversity. REPS samplers captured a sufficient amount of biological material to demonstrate the diversity of airborne bacteria and their variability over time. Overall, in the air of Athens, we detected 793 operational taxonomic units (OTUs), which were fully classified into the six distinct taxonomic categories (Phylum, Class, Order, etc.). These OTUs belonged to Phyla Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, Cyanobacteria, and Fusobacteria. We found a complex community of bacterial aerosols with several opportunistic or potential pathogens in Athens’ urban air. Referring to the available literature, we discuss the likely sources of observed airborne bacteria, including soil, plants, animals, and humans. Our results on bacterial diversity are comparable to earlier studies, even though the sampling sites are different or geographically distant. However, the exact functional and ecological role of bioaerosols and, even more importantly, their impact on public health and the ecosystem requires further air monitoring and analysis.
Collapse
|
68
|
Zhang M, Su H, Li G, Kuhn U, Li S, Klimach T, Hoffmann T, Fu P, Pöschl U, Cheng Y. High-Resolution Fluorescence Spectra of Airborne Biogenic Secondary Organic Aerosols: Comparisons to Primary Biological Aerosol Particles and Implications for Single-Particle Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16747-16756. [PMID: 34699200 PMCID: PMC8697557 DOI: 10.1021/acs.est.1c02536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Aqueous extracts of biogenic secondary organic aerosols (BSOAs) have been found to exhibit fluorescence that may interfere with the laser/light-induced fluorescence (LIF) detection of primary biological aerosol particles (PBAPs). In this study, we quantified the interference of BSOAs to PBAPs by directly measuring airborne BSOA particles, rather than aqueous extracts. BSOAs were generated by the reaction of d-limonene (LIM) or α-pinene (PIN) and ozone (O3) with or without ammonia in a chamber under controlled conditions. With an excitation wavelength of 355 nm, BSOAs exhibited peak emissions at 464-475 nm, while fungal spores exhibited peak emissions at 460-483 nm; the fluorescence intensity of BSOAs with diameters of 0.7 μm was in the same order of magnitude as that of fungal spores with diameters of 3 μm. The number fraction of 0.7 μm BSOAs that exhibited fluorescence above the threshold was in the range of 1.9-15.9%, depending on the species of precursors, relative humidity (RH), and ammonia. Similarly, the number fraction of 3 μm fungal spores that exhibited fluorescence above the threshold was 4.9-36.2%, depending on the species of fungal spores. Normalized fluorescence by particle volumes suggests that BSOAs exhibited fluorescence in the same order of magnitude as pollen and 10-100 times higher than that of fungal spores. A comparison with ambient particles suggests that BSOAs caused significant interference to ambient fine particles (15 of 16 ambient fine particle measurements likely detected BSOAs) and the interference was smaller for ambient coarse particles (4 of 16 ambient coarse particle measurements likely detected BSOAs) when using LIF instruments.
Collapse
Affiliation(s)
- Minghui Zhang
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Hang Su
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Guo Li
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Uwe Kuhn
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Siyang Li
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Thomas Klimach
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Thorsten Hoffmann
- Institute
for Inorganic and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Pingqing Fu
- Institute
of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Minerva
Research Group, Max Planck Institute for
Chemistry, Mainz 55128, Germany
| |
Collapse
|
69
|
Chen H, Du R, Zhang Y, Du P, Zhang S, Ren W, Yang M. Evolution of PM 2.5 bacterial community structure in Beijing's suburban atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149387. [PMID: 34365268 DOI: 10.1016/j.scitotenv.2021.149387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Biosafety has become one of the greatest challenges facing humanity. Outbreaks of infectious diseases caused by bacteria and viruses have had a huge impact on public health. In addition, non-severe polluted air quality has gradually become the norm; however, literature on the impacts of bioaerosols under long-term exposure to low concentrations of PM2.5 in China is limited. This study analyzed the evolution of the PM2.5 bacterial community in the Huairou district of Beijing under different pollution conditions. We used high-throughput sequencing to seasonally analyze samples over a year (from July 2018 to May 2019) and winter samples from different years (2015, 2016, 2018, and 2019). The results showed that the bacterial diversity and community composition of PM2.5 were significantly different in different seasons, whereas under different pollution levels, there were no significant differences. During the observation period, the number of bacterial species decreased with the increase in pollution; however, a high proportion of bacteria can exist as core species under different pollution levels for a long time. Furthermore, bacteria can be relatively stable in the local environment during the same season but in different years. Although the relative abundances of different bacteria change differently with the variation in pollution level, there is no statistical difference. Importantly, there was a higher abundance of opportunistic pathogenic bacteria when the air quality index was 0-100 in winter. This study comprehensively revealed the characteristics of the evolution of bacterial communities under different pollution levels and in different years and emphasized the health effects of non-pollution air quality. This study can provide a theoretical basis for establishing a sound environmental microbial monitoring and defense system.
Collapse
Affiliation(s)
- Hanlin Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongtao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengrui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujian Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weishan Ren
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
70
|
Abstract
The ubiquity and long-range transport of the microorganisms inhabiting dust can pose a serious risk to human, animal, and plant health. The well-recognized importance of dust-associated microorganisms contrasts starkly with our limited understanding of the factors determining the variation in the composition of these communities at the global scale. Here, we provide the first insight into the global determinants of dust-associated microorganisms by quantifying the environmental factors shaping bacterial and fungal community composition in 467 outdoor settled dust samples collected from 33 countries and 6 continents. Our results show that the global variation in dust-associated bacterial and fungal community composition was, to some degree, predictable from mean annual precipitation and temperature. Notably, our results show that the fungal genera Alternaria and Aspergillus, which contain many species that can serve as triggers of allergenic disease in humans and as plant pathogens, were more abundant in drier regions. Collectively, these results highlight the key influence of climate on the global distribution of dust-associated microorganisms and provide the baseline information needed to build a more comprehensive understanding of how microbial exposures vary across the globe and in response to climate change. IMPORTANCE A broad diversity of microorganisms can be found in dust, with some of these microorganisms capable of causing allergenic disease in human via inhalation or affecting plant health by acting as plant pathogens. However, the spatial variation in dust microbiomes and the environmental factors associated with this variation have not been comprehensively assessed at the global scale. Here, we investigated the bacteria and fungi found in outdoor settled dust samples spanning 33 countries and 6 continents. Our results show that dust-associated bacteria and fungi exhibit climate-driven variability in community composition at the global scale. Our results call for the development of strategies to predict the geographic distribution of dust-associated microorganisms and to identify the potential associations between microbial exposures and the health of humans, animals, and plants.
Collapse
|
71
|
Air Pollution Affecting Pollen Concentrations through Radiative Feedback in the Atmosphere. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Episodes with high air pollution and large amounts of aeroallergens expose sensitive individuals to a health damaging cocktail of atmospheric particles. Particulate matter (PM) affects the radiative balance and atmospheric dynamics, hence affecting concentrations of pollutants. The aim of the study is to estimate feedback between meteorology and particles on concentrations of aeroallergens using an extended version of the atmospheric model WRF-Chem. The extension, originally designed for PM and dust, concerns common aeroallergens. We study a birch pollen episode coinciding with an air pollution event containing Saharan dust (late March to early April 2014), using the model results, pollen records from Southern UK and vertical profiles of meteorological observations. During the episode, increased concentrations of birch pollen were calculated over the European continent, causing plumes transported towards the UK. The arrival of these plumes matched well with observations. The lowest parts of the atmospheric boundary layer demonstrate a vertical profile that favours long distance transport, while the pollen record shows pollen types that typically flower at another time. The model calculations show that feedback between meteorology and particles changes pollen concentrations by ±30% and in some cases up to 100%. The atmospheric conditions favoured meteorological feedback mechanisms that changed long distance transport of air pollution and aeroallergens.
Collapse
|
72
|
Can-Güven E. The current status and future needs of global bioaerosol research: a bibliometric analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2021; 19:7857-7868. [PMID: 34630577 PMCID: PMC8487676 DOI: 10.1007/s13762-021-03683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/18/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
A bibliometric analysis was conducted to reveal the global status and highlight significant or promising areas of bioaerosol research based on the Web of Science database from 1989 to 2019. Yearly publications, main subject categories, journals, the performance of countries, and research hot topics were identified. The network of keywords and collaborations of countries was visualized and cross relationships were determined. Results showed that the annual output in the field increased during the related period. The USA, China, and Germany are the leading countries while the USA, Germany, and the UK are the most collaborative countries in bioaerosol research. "Journal of Aerosol Science" is the most productive journal and "Environmental Sciences & Ecology" is the most popular research area. The research hot spots are health effects, sampling, particulate matter, and indoor air quality in the bioaerosol topic. The findings of this research could provide information to understand the development and trends as well as future needs of bioaerosol research.
Collapse
Affiliation(s)
- E. Can-Güven
- Faculty of Civil Engineering, Department of Environmental Engineering, Yıldız Technical University, 34220 İstanbul, Turkey
| |
Collapse
|
73
|
Li L, Ma J, Yang K, Chai F, Liu J, Guo X. Microbial aerosol particles in four seasons of sanitary landfill site: Molecular approaches, traceability and risk assessment. J Environ Sci (China) 2021; 108:120-133. [PMID: 34465426 DOI: 10.1016/j.jes.2021.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/13/2023]
Abstract
Landfill sites are regarded as prominent sources of bioaerosols for the surrounding atmosphere. The present study focused on the emission of airborne bacteria and fungi in four seasons of a sanitary landfill site. The main species found in bioaerosols were assayed using high-throughput sequencing. The SourceTracker method was utilized to identify the sources of the bioaerosols present at the boundary of the landfill site. Furthermore, the health consequences of the exposure to bioaerosols were evaluated based on the average daily dose rates. Results showed that the concentrations of airborne bacteria in the operation area (OPA) and the leakage treatment area (LTA) were in the range of (4684 ± 477)-(10883 ± 1395) CFU/m3 and (3179 ± 453)-(9051 ± 738) CFU/m3, respectively. The average emission levels of fungal aerosols were 4026 CFU/m3 for OPA and 1295 CFU/m3 for LTA. The landfill site received the maximum bioaerosol load during summer and the minimum during winter. Approximately 41.39%- 86.24% of the airborne bacteria had a particle size of 1.1 to 4.7 µm, whereas 48.27%- 66.45% of the airborne fungi had a particle size of more than 4.7 µm. Bacillus sp., Brevibacillus sp., and Paenibacillus sp. were abundant in the bacterial population, whereas Penicillium sp. and Aspergillus sp. dominated the fungal population. Bioaerosols released from the working area and treatment of leachate were the two main sources that emerged in the surrounding air of the landfill site boundary. The exposure risks during summer and autumn were higher than those in spring and winter.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kaixiong Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fengguang Chai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
74
|
Haji Ali B, Shahin MS, Masoumi Sangani MM, Faghihinezhad M, Baghdadi M. Wastewater aerosols produced during flushing toilets, WWTPs, and irrigation with reclaimed municipal wastewater as indirect exposure to SARS-CoV-2. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106201. [PMID: 34405082 PMCID: PMC8361049 DOI: 10.1016/j.jece.2021.106201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 05/07/2023]
Abstract
The detection of SARS-CoV-2 RNA in raw and treated wastewater can open up a fresh perspective to waterborne and aerosolized wastewater as a new transmission route of SARS-CoV-2 RNA during the current pandemic. The aim of this paper is to discuss the potential transmission of SARS-CoV-2 RNA from wastewater aerosols formed during toilet flushing, plumbing failure, wastewater treatment plants, and municipal wastewater reuse for irrigation. Moreover, how these aerosols might increase the risk of exposure to this novel coronavirus (SARS-CoV-2 RNA). This article supplies a review of the literature on the presence of SARS-CoV-2 RNA in untreated wastewater, as well as the fate and stability of SARS-CoV-2 RNA in wastewater. We also reviewed the existing literatures on generation and transmission of aerosolized wastewater through flush a toilet, house's plumbing networks, WWTPs, wastewater reuse for irrigation of agricultural areas. Finally, the article briefly studies the potential risk of infection with exposure to the fecal bioaerosols of SARS-CoV-2 RNA for the people who might be exposed through flushing toilets or faulty building plumbing systems, operators/workers in wastewater treatment plants, and workers of fields irrigated with treated wastewater - based on current knowledge. Although this review highlights the indirect transmission of SARS-CoV-2 RNA through wastewater aerosols, no research has yet clearly demonstrated the role of aerosolized wastewater in disease transmission regarding the continuation of this pandemic. Therefore, there is a need for additional studies on wastewater aerosols in transmission of COVID-19.
Collapse
Affiliation(s)
- Banafsheh Haji Ali
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | | | | | - Mohsen Faghihinezhad
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
75
|
Xie Z, Du S, Ma T, Hou J, Zeng X, Li Y. High time-resolved characterization of airborne microbial community during a typical haze pollution process. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125722. [PMID: 34088212 DOI: 10.1016/j.jhazmat.2021.125722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Variations of bioaerosol characteristics during the process of haze pollution have rarely been explored. In this study, high time-resolved variations of the community structures of bacteria, fungi, and ammonia-oxidizing microorganisms (AOMs) were assessed during a typical haze pollution process. The impacts of meteorological factors, water-soluble inorganic ions (WSII), and organic dicarboxylic acids (DCA) on the airborne microbial community were systematically evaluated. The results showed that the bacterial community varied greatly during the formation stages of haze pollution, and tended to stabilize with the further development of haze pollution. Nevertheless, variations of the fungal community lasted throughout the whole haze pollution process. Furthermore, Nitrososphaera absolutely dominated the ammonia-oxidizing archaea (AOA) and declined as PM2.5 burst. Network analysis identified relatively weak interactions and co-occurrence patterns between dominant fungal genera. Importantly, dust source ions and PM2.5 acidity exerted the most significant impacts on bacterial and fungal communities. These results identify the high time-resolved variations of airborne microbial communities during the formation and development of haze pollution process, and provide valuable data to better understand the interaction between bioaerosols and haze pollution.
Collapse
Affiliation(s)
- Zhengsheng Xie
- School of Water and Environment, Chang'an University, Xi'an 710054, China.
| | - Shengli Du
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Tianfeng Ma
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Junli Hou
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Xuelin Zeng
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Yanpeng Li
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region (Chang'an University), Ministry of Education, Xi'an 710054, China.
| |
Collapse
|
76
|
Nozza E, Valentini S, Melzi G, Vecchi R, Corsini E. Advances on the immunotoxicity of outdoor particulate matter: A focus on physical and chemical properties and respiratory defence mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146391. [PMID: 33774291 DOI: 10.1016/j.scitotenv.2021.146391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Particulate matter (PM) is acknowledged to have multiple detrimental effects on human health. In this review, we report literature results on the possible link between outdoor PM and health outcomes with a focus on pulmonary infections and the mechanisms responsible for observed negative effects. PM physical and chemical properties, such as size and chemical composition, as well as major emission sources are described for a more comprehensive view about the role played by atmospheric PM in the observed adverse health effects; to this aim, major processes leading to the deposition of PM in the respiratory tract and how this can pave the way to the onset of pathologies are also presented. From the literature works here reviewed, two ways in which PM can threaten human health promoting respiratory infectious diseases are mostly taken into account. The first pathway is related to an enhanced susceptibility and here we will also report on molecular mechanisms in the lung immune system responsible for the augmented susceptibility to pathogens, such as the damage of mechanical defensive barriers, the alteration of the innate immune response, and the generation of oxidative stress. The second one deals with the relationship between infectious agents and PM; here we recall that viruses and bacteria (BioPM) are themselves part of atmospheric PM and are collected during sampling together with particles of different origin; so, data should be analysed with caution in order to avoid any false cause-effect relation. To face these issues a multidisciplinary approach is mandatory as also evident from the ongoing research about the mechanisms hypothesized for the SARS-CoV-2 airborne spreading, which is still controversial and claims for further investigation. Therefore, we preferred not to include papers dealing with SARS-CoV-2.
Collapse
Affiliation(s)
- E Nozza
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy
| | - S Valentini
- Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy
| | - G Melzi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - R Vecchi
- Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy.
| | - E Corsini
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
77
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN, Baschir LA, Tenciu DV. Exploring the linkage between seasonality of environmental factors and COVID-19 waves in Madrid, Spain. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2021; 152:583-600. [PMID: 36285289 PMCID: PMC9584827 DOI: 10.1016/j.psep.2021.06.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 05/07/2023]
Abstract
Like several countries, Spain experienced a multi wave pattern of COVID-19 pandemic over more than one year period, between spring 2020 and spring 2021. The transmission of SARS-CoV-2 pandemics is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation.This study aims to quantify the impact of climate and air pollution factors seasonality on incidence and severity of COVID-19 disease waves in Madrid metropolitan region in Spain. We employed descriptive statistics and Spearman rank correlation tests for analysis of daily in-situ and geospatial time-series of air quality and climate data to investigate the associations with COVID-19 incidence and lethality in Madrid under different synoptic meteorological patterns. During the analyzed period (1 January 2020-28 February 2021), with one month before each of three COVID-19 waves were recorded anomalous anticyclonic circulations in the mid-troposphere, with positive anomalies of geopotential heights at 500 mb and favorable stability conditions for SARS-CoV-2 fast diffusion. In addition, the results reveal that air temperature, Planetary Boundary Layer height, ground level ozone have a significant negative relationship with daily new COVID-19 confirmed cases and deaths. The findings of this study provide useful information to the public health authorities and policymakers for optimizing interventions during pandemics.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Laurentiu A Baschir
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Daniel V Tenciu
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
78
|
Kabelitz T, Biniasch O, Ammon C, Nübel U, Thiel N, Janke D, Swaminathan S, Funk R, Münch S, Rösler U, Siller P, Amon B, Aarnink AJA, Amon T. Particulate matter emissions during field application of poultry manure - The influence of moisture content and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146652. [PMID: 34030313 DOI: 10.1016/j.scitotenv.2021.146652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Along with industry and transportation, agriculture is one of the main sources of primary particulate matter (PM) emissions worldwide. Bioaerosol formation and PM release during livestock manure field application and the associated threats to environmental and human health are rarely investigated. In the temperate climate zone, field fertilization with manure seasonally contributes to local PM air pollution regularly twice per year (spring and autumn). Measurements in a wind tunnel, in the field and computational fluid dynamics (CFD) simulations were performed to analyze PM aerosolization during poultry manure application and the influence of manure moisture content and treatment. A positive correlation between manure dry matter content (DM) and PM release was observed. Therefore, treatments strongly increasing the DM of poultry manure should be avoided. However, high manure DM led to reduced microbial abundance and, therefore, to a lower risk of environmental pathogen dispersion. Considering the findings of PM and microbial measurements, the optimal poultry manure DM range for field fertilization was identified as 50-70%. Maximum PM10 concentrations of approx. 10 mg per m3 of air were measured during the spreading of dried manure (DM 80%), a concentration that is classified as strongly harmful. The modeling of PM aerosolization processes indicated a low health risk beyond a distance of 400 m from the manure application source. The detailed knowledge about PM aerosolization during manure field application was improved with this study, enabling manure management optimization for lower PM aerosolization and pathogenic release into the environment.
Collapse
Affiliation(s)
- Tina Kabelitz
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Oliver Biniasch
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Christian Ammon
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Microbial Genome Research, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany; Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Rebenring 56, 38106 Braunschweig, Germany
| | - Nadine Thiel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Microbial Genome Research, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - David Janke
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Senthilathiban Swaminathan
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Roger Funk
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working group Landscape Pedology, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Steffen Münch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working group Landscape Pedology, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Uwe Rösler
- Freie Universität Berlin, Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Paul Siller
- Freie Universität Berlin, Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Barbara Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany; University of Zielona Góra, Faculty of Civil Engineering, Architecture and Environmental Engineering, ul. Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland
| | - André J A Aarnink
- Wageningen University and Research, Department Livestock and Environment, De Elst 1, 6708, WD, Wageningen, the Netherlands
| | - Thomas Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany; Freie Universität Berlin, Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
79
|
Exposure Assessment of Airborne Bacteria Emitted from Swine Manure Composting Plant. Processes (Basel) 2021. [DOI: 10.3390/pr9081283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study was performed to investigate the distribution characteristics of airborne bacteria emitted from swine manure composting plants. The types of swine manure composting plants selected for the survey in this study were as follows: screw type, rotary type, and natural dry type. Mean levels of airborne bacteria in swine manure composting plants were 7428 (±1024) CFU m−3 for the screw type, 3246 (±1407) CFU m−3 for the rotary type, and 5232 (±1217) CFU m−3 for the natural dry type, respectively. Based on the results obtained from this study, the swine manure composting plant operated by screw type showed the highest concentration of airborne bacteria, followed by the natural dry type and rotary type. The monthly concentration of airborne bacteria was the highest in August and the lowest in November, regardless of the type of swine manure composting plant. The respirable size of airborne bacteria accounted for about 50% of the total. The ratio of respirable to the total quantity of airborne bacteria was 50%. The correlation relationships between airborne bacteria and environmental factors (temperature, relative humidity, particulate matters, and odor) were not found to be significant in the swine manure composting plants. The predominant genera of airborne bacteria identified were Micrococcus spp., Staphylococcus spp., Escherichia (E-coli) spp., Enterococcus spp., and Enterobacteriaceae spp.
Collapse
|
80
|
Ye J, Qian H, Zhang J, Sun F, Zhuge Y, Zheng X. Combining culturing and 16S rDNA sequencing to reveal seasonal and room variations of household airborne bacteria and correlative environmental factors in nanjing, southeast china. INDOOR AIR 2021; 31:1095-1108. [PMID: 33655612 DOI: 10.1111/ina.12807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Exposure to bioaerosols poses important health effects on occupants. To elucidate seasonal and room variations of household airborne bacteria, this study investigated 30 residential homes during summer and winter throughout Nanjing, Southeast China, with a humid subtropical climate. Culturing and 16S rDNA sequencing methods were combined in this study. Results showed that the community structure and composition in the same season but different homes show similarity, however, they in the same home but in different seasons show a huge difference, with Sphingomonas (25.3%), Clostridium (14.8%), and Pseudomonas (7.6%) being the dominant bacteria in summer, and Pseudomonas (57.1%) was dominant bacteria in winter. Culturable concentrations of bacteria were also significantly higher in summer (854 ± 425 CFU/m3 ) than in winter (231 ± 175 CFU/m3 ), but difference by home or room was relatively minor. More than 80% of culturable bacteria (<4.7 μm) could penetrate into lower respiratory tract. The seasonal variations of bacterial community and concentrations were closely associated with seasonal variations of temperature, humidity, and PM2.5 . Higher concentrations and larger sizes were observed in the bathroom and kitchen, typically with higher humidity than other rooms.
Collapse
Affiliation(s)
- Jin Ye
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, USA
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Jianshun Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, USA
| | - Fan Sun
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Yang Zhuge
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing, China
| |
Collapse
|
81
|
Ravindra K, Goyal A, Mor S. Does airborne pollen influence COVID-19 outbreak? SUSTAINABLE CITIES AND SOCIETY 2021; 70:102887. [PMID: 33816082 PMCID: PMC7999829 DOI: 10.1016/j.scs.2021.102887] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 05/09/2023]
Abstract
The fast spread of SARS-CoV-2 presented a worldwide challenge to public health, economy, and educational system, affecting wellbeing of human society. With high transmission rates, there are increasing evidences of COVID-19 spread via bioaerosols from an infected person. The current review was conducted to examine airborne pollen impact on COVID-19 transmission and to identify the major gaps for post-pandemic research. The study used all key terms to identify revenant literature and observation were collated for the current research. Based on existing literature, there is a potential association between pollen bioaerosols and COVID-19. There are few studies focusing the impact of airborne pollen on SARS-CoV-2, which could be useful to advance future research. Allergic rhinitis and asthma patients were found to have pre-modified immune activation, which could help to provide protection against COVID-19. However, does airborne pollen acts as a potent carrier for SARS-CoV-2 transport, dispersal and its proliferation still require multidisciplinary research. Further, a clear conclusion cannot be drawn due to limited evidence and hence more research is needed to show how pollen bioaerosols could affect virus survivals. The small but growing literature review focuses on searching for every possible answer to provide additional security layers to overcome near future corona-like infectious diseases.
Collapse
Key Words
- AAAAI, American Academy of Allergy, Asthma & Immunology
- ACE-2, angiotensin-converting enzyme 2
- ARDS, acute respiratory distress syndrome
- Airborne pollen
- Allergic rhinitis
- Asthma
- Bioaerosols
- CCDC, Chinese Centre for Disease Control and Prevention
- CDC, Centers for Disease Control and Prevention
- CESM, Community Earth System Model
- CMAQ, Community Multiscale Air Quality
- COPD, chronic obstructive pulmonary diseases
- COVID-19
- ERS, European Respiratory Society
- FLI, flu-like illnesses
- GINA, Global Initiative for Asthma
- H1N1, Influenza A virus subtype H1N1
- H5N1, avian influenza virus
- IgE, Immunoglobulin E
- LDT, long-distance transport
- MERS, Middle East respiratory syndrome
- NHC, National Health Commission
- RSV, Respiratory Syncytial Virus infection
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus-2
- STaMPS, Simulator of Timing and Magnitude of Pollen Season
- Virus
- WAO, World Allergy Organisation
- WHO, World Health Organization
- WRF, Weather Research Forecasting
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Akshi Goyal
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
82
|
Ice Nucleation Activity of Alpine Bioaerosol Emitted in Vicinity of a Birch Forest. ATMOSPHERE 2021. [DOI: 10.3390/atmos12060779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In alpine environments, many plants, bacteria, and fungi contain ice nuclei (IN) that control freezing events, providing survival benefits. Once airborne, IN could trigger ice nucleation in cloud droplets, influencing the radiation budget and the hydrological cycle. To estimate the atmospheric relevance of alpine IN, investigations near emission sources are inevitable. In this study, we collected 14 aerosol samples over three days in August 2019 at a single site in the Austrian Alps, close to a forest of silver birches, which are known to release IN from their surface. Samples were taken during and after rainfall, as possible trigger of aerosol emission by an impactor and impinger at the ground level. In addition, we collected aerosol samples above the canopy using a rotary wing drone. Samples were analyzed for ice nucleation activity, and bioaerosols were characterized based on morphology and auto-fluorescence using microscopic techniques. We found high concentrations of IN below the canopy, with a freezing behavior similar to birch extracts. Sampled particles showed auto-fluorescent characteristics and the morphology strongly suggested the presence of cellular material. Moreover, some particles appeared to be coated with an organic film. To our knowledge, this is the first investigation of aerosol emission sources in alpine vegetation with a focus on birches.
Collapse
|
83
|
Airborne Dissemination of Bacteria (Enterococci, Staphylococci and Enterobacteriaceae) in a Modern Broiler Farm and Its Environment. Animals (Basel) 2021; 11:ani11061783. [PMID: 34203681 PMCID: PMC8232102 DOI: 10.3390/ani11061783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In this study, the density and diversity of relevant groups of bacteria at a broiler farm have been studied, in the inside and outside air and in litter samples. A high number of bacteria was detected in the litter and in the inside air, but a low emission of bacteria was found in the outside air. Moreover, the bacteria detected in the outside air decreased with the distance to the farm. A total of 544 isolates were identified from all the samples (146 from the litter, 142 from inside air and 256 from outside air). From these, 162 staphylococci, 176 Enterobacteriaceae, and 190 enterococci were detected. E. hirae was the predominant species and the detection of identical DNA profiles in E. hirae isolates from inside and outside samples suggests the role of the air in bacterial dissemination from the inside of the broiler farm to the immediate environment. It is necessary to consider the relevance of air as a vehicle of disseminating bacteria at the farm level, which can involve potentially pathogenic bacteria and bacteria carrying antimicrobial resistance genes. Abstract The role of the air as a vehicle of bacteria dissemination in the farming environment has been previously reported, but still scarcely studied. This study investigated the bacteria density/diversity of the inside and outside air and of litter samples at a broiler farm. Samples were collected considering two seasons, three outside air distances (50/100/150 m) and the four cardinal directions. Selective media was used for staphylococci, enterococci, and Enterobacteriaceae recovery. A high number of bacteria was detected in the litter (2.9 × 105–5.8 × 107 cfu/g) and in the inside air (>105 cfu/m3), but a low emission of bacteria was evidenced in the outside air (<6 cfu/m3). Moreover, the bacteria detected in the farm’s outside air decreased the further from the farm the sample was taken. A total of 544 isolates were identified by MALDI-TOF (146 from the litter, 142 from inside air and 256 from outside air). From these, 162 staphylococci (14 species; S. saprophyticus 40.7%), 176 Enterobacteriaceae (4 species; E. coli 66%) and 190 enterococci (4 species; E. hirae 83%) were detected. E. hirae was the predominant species, and identical PFGE clones were detected in inside and outside samples. The detection of identical DNA profiles in E. hirae isolates from inside and outside samples suggests the role of the air in bacterial dissemination from the inside of the broiler farm to the immediate environment.
Collapse
|
84
|
Timerman D, Barrett SCH. The biomechanics of pollen release: new perspectives on the evolution of wind pollination in angiosperms. Biol Rev Camb Philos Soc 2021; 96:2146-2163. [PMID: 34076950 DOI: 10.1111/brv.12745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
Evolutionary transitions from animal to wind pollination have occurred repeatedly during the history of the angiosperms, but the selective mechanisms remain elusive. Here, we propose that knowledge of pollen release biomechanics is critical for understanding the ecological and evolutionary processes underpinning this shift in pollination mode. Pollen release is the critical first stage of wind pollination (anemophily) and stamen properties are therefore likely to be under strong selection early in the transition. We describe current understanding of pollen release biomechanics to provide insights on the phenotypic and ecological drivers of wind pollination. Pollen release occurs when detachment forces dominate resistive forces retaining pollen within anthers. Detachment forces can be active or passive depending on whether they require energy input from the environment. Passive release is more widespread in anemophilous species and involves processes driven by steady or unsteady aerodynamic forces or turbulence-induced vibrations that shake pollen from anthers. We review empirical and theoretical studies suggesting that stamen vibration is likely to be a key mechanism of pollen release. The vibration response is governed by morphological and biomechanical properties of stamens, which may undergo divergent selection in the presence or absence of pollinators. Resistive forces have rarely been investigated for pollen within anthers, but are probably sensitive to environmental conditions and depend on flower age, varying systematically between animal- and wind-pollinated species. Animal and wind pollination are traditionally viewed as dichotomous alternatives because they are usually associated with strikingly different pollination syndromes. But this perspective has diverted attention from subtler, continuously varying traits which mediate the fluid dynamic process of pollen release. Reinterpreting the flower as a biomechanical entity that responds to fluctuating environmental forces may provide a promising way forward. We conclude by identifying several profitable areas for future research to obtain deeper insight into the evolution of wind pollination.
Collapse
Affiliation(s)
- David Timerman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| |
Collapse
|
85
|
Misiukiewicz-Stepien P, Paplinska-Goryca M. Biological effect of PM 10 on airway epithelium-focus on obstructive lung diseases. Clin Immunol 2021; 227:108754. [PMID: 33964432 DOI: 10.1016/j.clim.2021.108754] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
Recently, a continuous increase in environmental pollution has been observed. Despite wide-scale efforts to reduce air pollutant emissions, the problem is still relevant. Exposure to elevated levels of airborne particles increased the incidence of respiratory diseases. PM10 constitute the largest fraction of air pollutants, containing particles with a diameter of less than 10 μm, metals, pollens, mineral dust and remnant material from anthropogenic activity. The natural airway defensive mechanisms against inhaled material, such as mucus layer, ciliary clearance and macrophage phagocytic activity, may be insufficient for proper respiratory function. The epithelium layer can be disrupted by ongoing oxidative stress and inflammatory processes induced by exposure to large amounts of inhaled particles as well as promote the development and exacerbation of obstructive lung diseases. This review draws attention to the current state of knowledge about the physical features of PM10 and its impact on airway epithelial cells, and obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Paulina Misiukiewicz-Stepien
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Poland.
| | | |
Collapse
|
86
|
Nageen Y, Asemoloye MD, Põlme S, Wang X, Xu S, Ramteke PW, Pecoraro L. Analysis of culturable airborne fungi in outdoor environments in Tianjin, China. BMC Microbiol 2021; 21:134. [PMID: 33932997 PMCID: PMC8088404 DOI: 10.1186/s12866-021-02205-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Background Fungal spores dispersed in the atmosphere may become cause of different pathological conditions and allergies for human beings. A number of studies have been performed to analyze the diversity of airborne fungi in different environments worldwide, and in particular in many urban areas in China. We investigated, for the first time, the diversity, concentration and distribution of airborne fungi in Tianjin city. We sampled 8 outdoor environments, using open plate method, during a whole winter season. Isolated fungi were identified by morphological and molecular analysis. Environmental factors which could influence the airborne fungi concentration (temperature, humidity, wind speed, and air pressure) were monitored and analyzed. The effect of different urban site functions (busy areas with high traffic flow and commercial activities vs. green areas) on airborne fungal diversity was also analyzed. Results A total of 560 fungal strains, belonging to 110 species and 49 genera of Ascomycota (80 %), Basidiomycota (18 %), and Mucoromycota (2 %) were isolated in this study. The dominant fungal genus was Alternaria (22 %), followed by Cladosporium (18.4 %), Naganishia (14.1 %), Fusarium (5.9 %), Phoma (4.11 %), and Didymella (4.8 %). A fungal concentration ranging from 0 to 3224.13 CFU m− 3 was recorded during the whole study. Permutational multivariate analysis showed that the month was the most influential factor for airborne fungal community structure, probably because it can be regarded as a proxy of environmental variables, followed by wind speed. The two analyzed environments (busy vs. green) had no detectable effect on the air fungal community, which could be related to the relatively small size of parks in Tianjin and/or to the study season. Conclusions Our study shed light on the highly diverse community of airborne fungi characterizing the outdoor environments of Tianjin, and clarified the role that different environmental factors played in shaping the analyzed fungal community. The dominant presence of fungi with potential hazardous effect on human health, such as Alternaria, Cladosporium and Naganishia, deserves further attention. Our results may represent a valuable source of information for air quality monitoring, microbial pollution control, and airborne diseases prevention. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02205-2.
Collapse
Affiliation(s)
- Yumna Nageen
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, China
| | - Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, China
| | - Sergei Põlme
- Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411, Tartu, Estonia
| | - Xiao Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, China
| | - Shihan Xu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, China
| | - Pramod W Ramteke
- Faculty of Life Sciences, Mandsaur University, 458001, Mandsaur, India
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, China.
| |
Collapse
|
87
|
Yang L, Shen Z, Wang D, Wei J, Wang X, Sun J, Xu H, Cao J. Diurnal Variations of Size-Resolved Bioaerosols During Autumn and Winter Over a Semi-Arid Megacity in Northwest China. GEOHEALTH 2021; 5:e2021GH000411. [PMID: 34036209 PMCID: PMC8137277 DOI: 10.1029/2021gh000411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Bioaerosols have a major negative effect on air quality and on public health by causing the spread of diseases. This study evaluated the bioaerosol composition and variation in a semi-arid megacity of northwest China from October 2019 to January 2020 using an Andersen six-stage impactor sampler. The size distribution, diurnal variations of the concentrations of airborne bacteria, airborne fungi, and total airborne microbes (TAM) were investigated in autumn and winter. The mean concentrations of airborne bacteria, fungi, and TAM were 523.5 ± 301.1 colony-forming units (CFU)/m3, 1318.9 ± 447.8 CFU/m3, and (7.25 ± 1.90) × 106 cells/m3, respectively, in autumn and 581 ± 305.4 CFU/m3, 1234.4 ± 519.9 CFU/m3, and (5.96 ± 1.65) × 106 cells/m3, respectively, in winter. The mean bioaerosol concentrations were slightly higher on nonhaze days than on haze days, but the difference was not statistically significant. Higher ambient particulate matter levels and atmospheric oxidation capacity inhibited bacteria survival. The diurnal maximum bioaerosol concentration was observed in the morning in autumn, whereas in winter, bioaerosols did not exhibit such a distribution, the impact of human activities on bioaerosols was still uncertain. The size of airborne bacteria exhibited a bimodal distribution, whereas a unimodal pattern was observed for fungi and TAM. Most bacteria, fungi, and TAM were distributed in the respirable ranges from trachea and primary bronchi to alveoli, indicating that bioaerosols have a high risk of being inhaled and causing respiratory diseases in Xi'an.
Collapse
Affiliation(s)
- Liu Yang
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
- Key Lab of Aerosol Chemistry & PhysicsSKLLQGInstitute of Earth EnvironmentChinese Academy of SciencesXi’anChina
| | - Zhenxing Shen
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
- Key Lab of Aerosol Chemistry & PhysicsSKLLQGInstitute of Earth EnvironmentChinese Academy of SciencesXi’anChina
| | - Diwei Wang
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
| | - Junqiang Wei
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
| | - Xin Wang
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Jian Sun
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
| | - Hongmei Xu
- Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
| | - Junji Cao
- Key Lab of Aerosol Chemistry & PhysicsSKLLQGInstitute of Earth EnvironmentChinese Academy of SciencesXi’anChina
| |
Collapse
|
88
|
Núñez A, García AM, Moreno DA, Guantes R. Seasonal changes dominate long-term variability of the urban air microbiome across space and time. ENVIRONMENT INTERNATIONAL 2021; 150:106423. [PMID: 33578068 DOI: 10.1016/j.envint.2021.106423] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 05/24/2023]
Abstract
Compared to soil or aquatic ecosystems, the atmosphere is still an underexplored environment for microbial diversity. In this study, we surveyed the composition, variability and sources of microbes (bacteria and fungi) in the near surface atmosphere of a highly populated area, spanning ~ 4,000 Km2 around the city center of Madrid (Spain), in different seasonal periods along two years. We found a core of abundant bacterial genera robust across space and time, most of soil origin, while fungi were more sensitive to environmental conditions. Microbial communities showed clear seasonal patterns driven by variability of environmental factors, mainly temperature and accumulated rain, while local sources played a minor role. We also identified taxa in both groups characteristic of seasonal periods, but not of specific sampling sites or plant coverage. The present study suggests that the near surface atmosphere of urban environments contains an ecosystem stable across relatively large spatial and temporal scales, with a rather homogenous composition, modulated by climatic variations. As such, it contributes to our understanding of the long-term changes associated to the human exposome in the air of highly populated areas.
Collapse
Affiliation(s)
- Andrés Núñez
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid, Spain; Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ana M García
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid, Spain
| | - Diego A Moreno
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid, Spain; Facultad de Farmacia, Universidad de Castilla-La Mancha (FF-UCLM), Albacete, Spain.
| | - Raúl Guantes
- Department of Condensed Matter Physics and Material Science Institute 'Nicolás Cabrera', Science Faculty, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Condensed Matter Physics (IFIMAC), Science Faculty, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
89
|
Experimental parameters defining ultra-low biomass bioaerosol analysis. NPJ Biofilms Microbiomes 2021; 7:37. [PMID: 33863892 PMCID: PMC8052325 DOI: 10.1038/s41522-021-00209-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
Investigation of the microbial ecology of terrestrial, aquatic and atmospheric ecosystems requires specific sampling and analytical technologies, owing to vastly different biomass densities typically encountered. In particular, the ultra-low biomass nature of air presents an inherent analytical challenge that is confounded by temporal fluctuations in community structure. Our ultra-low biomass pipeline advances the field of bioaerosol research by significantly reducing sampling times from days/weeks/months to minutes/hours, while maintaining the ability to perform species-level identification through direct metagenomic sequencing. The study further addresses all experimental factors contributing to analysis outcome, such as amassment, storage and extraction, as well as factors that impact on nucleic acid analysis. Quantity and quality of nucleic acid extracts from each optimisation step are evaluated using fluorometry, qPCR and sequencing. Both metagenomics and marker gene amplification-based (16S and ITS) sequencing are assessed with regard to their taxonomic resolution and inter-comparability. The pipeline is robust across a wide range of climatic settings, ranging from arctic to desert to tropical environments. Ultimately, the pipeline can be adapted to environmental settings, such as dust and surfaces, which also require ultra-low biomass analytics.
Collapse
|
90
|
Li P, Li L, Yang K, Zheng T, Liu J, Wang Y. Characteristics of microbial aerosol particles dispersed downwind from rural sanitation facilities: Size distribution, source tracking and exposure risk. ENVIRONMENTAL RESEARCH 2021; 195:110798. [PMID: 33529647 DOI: 10.1016/j.envres.2021.110798] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/19/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Bioaerosols containing pathogens released from waste and wastewater treatment facilities pose potential health risks to workers on-site and residents downwind. In this study, sampling sites were set up at rural garbage stations (GS-1 and GS-2) and sewage treatment station (STS) to investigate the emission and diffusion characteristics of bioaerosols. High-throughput sequencing was utilized to assay the intestinal bacteria population, while the health risks associated with bioaerosols exposure were estimated based on average daily dose rates (DD). Traceability analysis was used to determine the percentages of intestinal bacteria from GS-1, GS-2 and STS. The recorded emission levels of bioaerosols in the air surrounding GS-1, GS-2, and STS were 5053, 6299, and 4795 CFU/m3, containing 1599, 2244, and 2233 CFU/m3 of intestinal bacteria, respectively. Most of the bioaerosols were coarse particles with size larger than 4.7 μm. Methylobacterium, Rhizobium, Pseudomonas, Enterobacteriaceae, and Brucella presented in the air were originally in rural waste and wastewater. STS and GS-2 were potential sources of intestinal bacteria. With increasing distance from the sources, the concentration of bioaerosols decreased gradually. On-site workers and residents were predominantly affected by bioaerosols through inhalation. The exposure risks via inhalation and skin contact for children were much higher than that for adults. The purpose of this study was to provide preliminary data for bioaerosols control and their risks reduction released from rural sanitation facilities.
Collapse
Affiliation(s)
- Pengyu Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Kaixiong Yang
- Pilot National Laboratory for Marine Science and Technology (Qingdao), 266237, Qingdao, China.
| | - Tianlong Zheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA14YQ, UK.
| |
Collapse
|
91
|
Cariñanos P, Foyo-Moreno I, Alados I, Guerrero-Rascado JL, Ruiz-Peñuela S, Titos G, Cazorla A, Alados-Arboledas L, Díaz de la Guardia C. Bioaerosols in urban environments: Trends and interactions with pollutants and meteorological variables based on quasi-climatological series. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111963. [PMID: 33465718 DOI: 10.1016/j.jenvman.2021.111963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Pollen grains emitted by urban vegetation are the main primary biological airborne particles (PBAPs) which alter the biological quality of urban air and have a significant impact on human health. This work analyses the interactions which exist between pollen-type PBAPs, meteorological variables, and air pollutants in the urban atmosphere so that the complex relationships and trends in future scenarios of changing environmental conditions can be assessed. For this study, the 1992-2018 pollen data series from the city of Granada (southeast Spain) was used, in which the dynamics of the total pollen as well as the 8 main pollen types (Cupressaceae, Olea, Pinus, Platanus, Poaceae, Populus, Quercus and Urticaceae) were analysed. The trend analysis showed that all except Urticaceae trended upward throughout the series. Spearman's correlations with meteorological variables showed that, in general, the most influential variables on the pollen concentrations were the daily maximum temperature, relative humidity, water vapor pressure, global radiation, and insolation, with different effects on different pollen types. Parallel analysis by neural networks (ANN) confirmed these variables as the predominant ones, especially global radiation. The correlation with atmospheric pollutants revealed that ozone was the pollutant with the highest influence, although some pollen types also showed correlation with NO2, SO2, CO and PM10. The Generalized Linear Models (GLM) between pollen and pollutants also indicated O3 as the most prominent variable. These results highlight the active role that pollen-type PBAPs have on urban air quality by establishing their interactions with meteorological variables and pollutants, thereby providing information on the behaviour of pollen emissions under changing environmental conditions.
Collapse
Affiliation(s)
- Paloma Cariñanos
- Department of Botany. University of Granada, Spain; Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain.
| | - Inmaculada Foyo-Moreno
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | - Inmaculada Alados
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics II, University of Málaga, Spain
| | - Juan Luis Guerrero-Rascado
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | - Soledad Ruiz-Peñuela
- Department of Botany. University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | - Gloria Titos
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | - Alberto Cazorla
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | - Lucas Alados-Arboledas
- Andalusian Institute for Earth System Research (IISTA-CEAMA). University of Granada, Spain; Department of Applied Physics. University of Granada, Spain
| | | |
Collapse
|
92
|
Souza FFC, Mathai PP, Pauliquevis T, Balsanelli E, Pedrosa FO, Souza EM, Baura VA, Monteiro RA, Cruz LM, Souza RAF, Andreae MO, Barbosa CGG, de Angelis IH, Sánchez-Parra B, Pӧhlker C, Weber B, Ruff E, Reis RA, Godoi RHM, Sadowsky MJ, Huergo LF. Influence of seasonality on the aerosol microbiome of the Amazon rainforest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144092. [PMID: 33341626 DOI: 10.1016/j.scitotenv.2020.144092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The Amazon rainforest is the world's largest tropical forest, and this biome may be a significant contributor to primary biological aerosol (PBA) emissions on a global scale. These aerosols also play a pivotal role in modulating ecosystem dynamics, dispersing biological material over geographic barriers and influencing climate through radiation absorption, light scattering, or acting as cloud condensation nuclei. Despite their importance, there are limited studies investigating the effect of environmental variables on the bioaerosol composition in the Amazon rainforest. Here we present a 16S rRNA gene-based amplicon sequencing approach to investigate the bacterial microbiome in aerosols of the Amazon rainforest during distinct seasons and at different heights above the ground. Our data revealed that seasonal changes in temperature, relative humidity, and precipitation are the primary drivers of compositional changes in the Amazon rainforest aerosol microbiome. Interestingly, no significant differences were observed in the bacterial community composition of aerosols collected at ground and canopy levels. The core airborne bacterial families present in Amazon aerosol were Enterobacteriaceae, Beijerinckiaceae, Polyangiaceae, Bacillaceae and Ktedonobacteraceae. By correlating the bacterial taxa identified in the aerosol with literature data, we speculate that the phyllosphere may be one possible source of airborne bacteria in the Amazon rainforest. Results of this study indicate that the aerosol microbiota of the Amazon Rainforest are fairly diverse and principally impacted by seasonal changes in temperature and humidity.
Collapse
Affiliation(s)
| | - Prince P Mathai
- Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| | | | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Fabio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Valter A Baura
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Rose A Monteiro
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Leonardo M Cruz
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Rodrigo A F Souza
- Meteorology Department, State University of Amazonas - UEA, Manaus, AM, Brazil
| | - Meinrat O Andreae
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany; Scripps Institution of Oceanography, University of San Diego, La Jolla, CA, USA
| | - Cybelli G G Barbosa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | | | - Christopher Pӧhlker
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Bettina Weber
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany; Institut für Biologie, University of Graz, Graz, Austria
| | - Emil Ruff
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, USA; J Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, USA
| | | | | | | | | |
Collapse
|
93
|
Siller P, Daehre K, Rosen K, Münch S, Bartel A, Funk R, Nübel U, Amon T, Roesler U. Low airborne tenacity and spread of ESBL-/AmpC-producing Escherichia coli from fertilized soil by wind erosion. Environ Microbiol 2021; 23:7497-7511. [PMID: 33655697 DOI: 10.1111/1462-2920.15437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/12/2021] [Indexed: 01/18/2023]
Abstract
ESBL-/AmpC-producing Escherichia coli from organic fertilizers were previously detected on soil surfaces of arable land and might be emitted by wind erosion. To investigate this potential environmental transmission path, we exposed ESBL-/AmpC-positive chicken litter, incorporated in agricultural soils, to different wind velocities in a wind tunnel and took air samples for microbiological analysis. No data exist concerning the airborne tenacity of ESBL-/AmpC-producing E. coli. Therefore, we explored the tenacity of two ESBL/AmpC E. coli strains and E. coli K12 in aerosol chamber experiments at different environmental conditions. In the wind tunnel, ESBL/AmpC-producing E. coli were detected in none of the air samples (n = 66). Non-resistant E. coli were qualitatively detected in 40.7% of air samples taken at wind velocities exceeding 7.3 m s-1 . Significantly increased emission of total viable bacteria with increasing wind velocity was observed. In the aerosol chamber trials, recovery rates of airborne E. coli ranged from 0.003% to 2.8%, indicating a low airborne tenacity. Concluding, an emission of ESBL/AmpC E. coli by wind erosion in relevant concentrations appears unlikely because of the low concentration in chicken litter compared with non-resistant E. coli and their low airborne tenacity, proven in the aerosol chamber trials.
Collapse
Affiliation(s)
- Paul Siller
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Katrin Daehre
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Kerstin Rosen
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Steffen Münch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working Group Landscape Pedology, Müncheberg, Germany
| | - Alexander Bartel
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Roger Funk
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working Group Landscape Pedology, Müncheberg, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Thomas Amon
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany.,Department of Engineering for Livestock Management, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Potsdam, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
94
|
Dillon CF, Dillon MB. Multi-Scale Airborne Infectious Disease Transmission. Appl Environ Microbiol 2021; 87:AEM.02314-20. [PMID: 33277266 PMCID: PMC7851691 DOI: 10.1128/aem.02314-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Airborne disease transmission is central to many scientific disciplines including agriculture, veterinary biosafety, medicine, and public health. Legal and regulatory standards are in place to prevent agricultural, nosocomial, and community airborne disease transmission. However, the overall importance of the airborne pathway is underappreciated, e.g.,, US National Library of Medicine's Medical Subjects Headings (MESH) thesaurus lacks an airborne disease transmission indexing term. This has practical consequences as airborne precautions to control epidemic disease spread may not be taken when airborne transmission is important, but unrecognized. Publishing clearer practical methodological guidelines for surveillance studies and disease outbreak evaluations could help address this situation.To inform future work, this paper highlights selected, well-established airborne transmission events - largely cases replicated in multiple, independently conducted scientific studies. Methodologies include field experiments, modeling, epidemiology studies, disease outbreak investigations and mitigation studies. Collectively, this literature demonstrates that airborne viruses, bacteria, and fungal pathogens have the capability to cause disease in plants, animals, and humans over multiple distances - from near range (< 5 m) to continental (> 500 km) in scale. The plausibility and implications of undetected airborne disease transmission are discussed, including the notable underreporting of disease burden for several airborne transmitted diseases.
Collapse
Affiliation(s)
| | - Michael B Dillon
- Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory Livermore, California, USA 94551
| |
Collapse
|
95
|
Wu D, Zhang Y, Zhao C, Li A, Hou L, Tian Y, Xiong J, Gao R. Temporal variation of airborne fungi in university library rooms and its relation to environmental parameters and potential confounders. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14068-14079. [PMID: 33205272 DOI: 10.1007/s11356-020-11582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Indoor airborne fungi have been associated with adverse human health effects. Therefore, it is important to understand the causes of underlying variation in airborne fungi in indoor environments. This study consequently aimed to investigate the association between indoor fungi with temporal variation, environmental parameters, and potential confounders over 10 months in four library rooms using Andersen samplers. Indoor fungal concentrations peaked in October and were lowest in March in both stack rooms, whereas the highest concentrations in both reading rooms were observed in September with lowest concentrations in July. Nonparametric analyses revealed higher fungal concentrations in the rooms that were significantly associated with relative humidity ≥ 60%, PM2.5 ≥ 35 μg/m3, number of people ≥ 16, open windows, working air conditioners, and room area < 400 m2. Multiple linear regression modeling for the library building considering only continuous variables revealed that relative humidity, PM2.5, and the number of people were significant predictors of fungal concentrations. Additionally, the model with continuous and categorical variables suggested that relative humidity, PM2.5, the number of people, ceiling fan condition, window state, and air conditioner operating status were significant predictor variables of concentrations. Outdoor fungal concentrations were a significant predictor for the two models of indoor fungal concentrations for each room. Ceiling fan or air conditioner operation was associated with altered fungal particle concentrations. These results provide a deeper understanding of indoor air fungal quality.
Collapse
Affiliation(s)
- Dingmeng Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, People's Republic of China
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, People's Republic of China
| | - Ying Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, People's Republic of China
| | - Chenbo Zhao
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, People's Republic of China
| | - Angui Li
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, People's Republic of China.
| | - Li'an Hou
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, People's Republic of China
| | - Yu Tian
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, People's Republic of China
| | - Jing Xiong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, People's Republic of China
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, People's Republic of China
| | - Ran Gao
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, People's Republic of China
| |
Collapse
|
96
|
Ginn O, Nichols D, Rocha-Melogno L, Bivins A, Berendes D, Soria F, Andrade M, Deshusses MA, Bergin M, Brown J. Antimicrobial resistance genes are enriched in aerosols near impacted urban surface waters in La Paz, Bolivia. ENVIRONMENTAL RESEARCH 2021; 194:110730. [PMID: 33444611 PMCID: PMC10906805 DOI: 10.1016/j.envres.2021.110730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance poses a major global health threat. Understanding emergence and dissemination of antibiotic resistance in environmental media is critical to the design of control strategies. Because antibiotic resistance genes (ARGs) may be aerosolized from contaminated point sources and disseminated more widely in localized environments, we assessed ARGs in aerosols in urban La Paz, Bolivia, where wastewater flows in engineered surface water channels through the densely populated urban core. We quantified key ARGs and a mobile integron (MI) via ddPCR and E. coli spp. as a fecal indicator by culture over two years during both the rainy and dry seasons in sites near wastewater flows. ARG targets represented major antibiotic groups-tetracyclines (tetA), fluoroquinolines (qnrB), and beta-lactams (blaTEM)-and an MI (intI1) represented the potential for mobility of genetic material. Most air samples (82%) had detectable targets above the experimentally determined LOD: most commonly blaTEM and intI1 (68% and 47% respectively) followed by tetA and qnrB (17% and 11% respectively). ARG and MI densities in positive air samples ranged from 1.3 × 101 to 6.6 × 104 gene copies/m3 air. Additionally, we detected culturable E. coli in the air (52% of samples <1 km from impacted surface waters) with an average density of 11 CFU/m3 in positive samples. We observed decreasing density of blaTEM with increasing distance up to 150 m from impacted surface waters. To our knowledge this is the first study conducting absolute quantification and a spatial analysis of ARGs and MIs in ambient urban air of a city with contaminated surface waters. Environments in close proximity to urban wastewater flows in this setting may experience locally elevated concentrations of ARGs, a possible concern for the emergence and dissemination of antimicrobial resistance in cities with poor sanitation.
Collapse
Affiliation(s)
- Olivia Ginn
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States.
| | - Dennis Nichols
- Rollins School of Public Health, Emory University, Atlanta, GA, United States.
| | - Lucas Rocha-Melogno
- Department of Civil and Environmental Engineering, And Duke Global Health Institute, Duke University, Durham, NC, 27708, United States.
| | - Aaron Bivins
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, Notre Dame, IN, 46656, United States.
| | - David Berendes
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Freddy Soria
- Centro de Investigación en Agua, Energía y Sostenibilidad, Universidad Católica Boliviana "San Pablo", La Paz, Bolivia.
| | - Marcos Andrade
- Laboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andres, La Paz, Bolivia; Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD, USA.
| | - Marc A Deshusses
- Department of Civil and Environmental Engineering, And Duke Global Health Institute, Duke University, Durham, NC, 27708, United States.
| | - Mike Bergin
- Department of Civil and Environmental Engineering, And Duke Global Health Institute, Duke University, Durham, NC, 27708, United States.
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
97
|
Chen H, Du R, Zhang Y, Zhang S, Ren W, Du P. Survey of background microbial index in inhalable particles in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143743. [PMID: 33277017 DOI: 10.1016/j.scitotenv.2020.143743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
As a potential transmission route for diseases, aerosols have an important impact on human health. At present, research concerning the biological components of atmospheric particulate matter (PM) is of increasing interest. However, previous research has mainly focused on serious pollution conditions, creating a knowledge gap regarding background atmospheric microbes. In this study, we observed the atmosphere of Huairou in Beijing for one year, analyzed the characteristics of the physiological metabolic activity of the microorganisms as an index to determine the air quality, and further explored the microbial communities. From January 2018 to January 2019, a total of 157 days of microbial activity data for PM2.5 and PM10 were obtained through the use of a modified fluorescein diacetate (FDA) hydrolysis method. Our results showed that there was no significant difference between the microbial activity of PM2.5 and PM10, even though there was significant seasonal variation. At increasing pollution levels, the results showed that the microbial activity decreased at first, and then increased as the conditions worsened. The microbial community of PM2.5 was analyzed using the high-throughput sequencing method. There were significant seasonal differences in species richness and community diversity of bacteria in PM2.5, whereas there was variation only in its fungi species richness. Notably, the microbial community dominated by bacteria has a significant influence on microbial activity. From the perspective of microbial community composition, this study uncovered the possible causes of microbial activity variation and identified the key bacteria and fungi. These results will provide a theoretical basis for both improving air biological pollution predictions and ambient air quality evaluations.
Collapse
Affiliation(s)
- Hanlin Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongtao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujian Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weishan Ren
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengrui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
98
|
Rai S, Singh DK, Kumar A. Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. J Basic Microbiol 2021; 61:267-292. [PMID: 33522603 DOI: 10.1002/jobm.202000575] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/03/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022]
Abstract
A built environment is a human-made environment providing surroundings for human occupancy, activities, and settlement. It is supposed to safeguard humans from all undesirable and harmful pollutants; however, indoor concentrations of some pollutants are much greater than that of the outdoors. Bioaerosols infiltrate from the outdoors in addition to many indoor sources of bioaerosols including the use of various chemicals as well as activities like cooking, smoking, cleaning, or even normal movement. They are also associated with a number of serious health concerns. Various ecological factors associated with the generation, the persistence as well as the dispersal of these microbial components of indoor bioaerosols, are discussed in this review, that have not been considered all together till now. The factors like microbial taxa, environmental factors, and anthropogenic activities (human occupancy, activities, and impact of urbanization) are addressed in the review. Effects of both indoor environmental factors like architectural design, lighting, ventilation, temperature, humidity, indoor/outdoor ratio, particulate matter, indoor chemistry as well as outdoor environmental factors like geography, seasons, and meteorology on the microbial concentrations have been discussed. Efforts are underway to design selective pressures for microbes to create a healthy symbiotic built microbiome as the "right" indoor microbiome is a "healthy" indoor microbiome.
Collapse
Affiliation(s)
- Sandhya Rai
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Dileep K Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Amod Kumar
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi, India
| |
Collapse
|
99
|
Chen NT, Cheong NS, Lin CY, Tseng CC, Su HJ. Ambient viral and bacterial distribution during long-range transport in Northern Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116231. [PMID: 33360070 DOI: 10.1016/j.envpol.2020.116231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Long-range transport (LRT) reportedly carries air pollutants and microorganisms to downwind areas. LRT can be of various types, such as dust storm (DS) and frontal pollution (FP); however, studies comparing their effects on bioaerosols are lacking. This study evaluated the effect of LRT on viral and bacterial concentrations in Northern Taiwan. When LRT occurred and possibly affected Taiwan from August 2013 to April 2014, air samples (before, during, and after LRT) were collected in Cape Fugui (CF, Taiwan's northernmost point) and National Taiwan University (NTU). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was applied to quantify influenza A virus. qPCR and qPCR coupled with propidium monoazide were, respectively, used to quantify total and viable bacteria. Types and occurrence of LRT were confirmed according to the changing patterns of meteorological factors and air pollution, air mass sources (HYSPLIT model), and satellite images. Two Asian DS and three FP cases were included in this study. Influenza A virus was detected only on days before and during FP occurred on January 3-5, 2014, with concentrations of 0.87 and 10.19 copies/m3, respectively. For bacteria, the increase in concentrations of total and viable cells during Asian DSs (17-19 and 25-29 November 2013) was found at CF only (from 3.13 to 3.40 and from 2.62 to 2.85 log copies/m3, respectively). However, bacterial levels at NTU and CF both increased during FP and lasted for 2 days after FP. In conclusion, LRT increased the levels of influenza A virus and bacteria in the ambient air of Northern Taiwan, particularly at CF. During and 2 days (at least) after LRT, people should avoid outdoor activities, especially in case of FP.
Collapse
Affiliation(s)
- Nai-Tzu Chen
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
| | - Ngok-Song Cheong
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chuan-Yao Lin
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Chun-Chieh Tseng
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
100
|
Marcovecchio F, Perrino C. Contribution of Primary Biological Aerosol Particles to airborne particulate matter in indoor and outdoor environments. CHEMOSPHERE 2021; 264:128510. [PMID: 33049501 DOI: 10.1016/j.chemosphere.2020.128510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
The atmospheric concentration of bioparticles was determined in some outdoor and indoor sites by using a commercial low-volume sampler and a detection method based on particle collection on polycarbonate filters, propidium iodide staining, observation by fluorescence microscopy and image analysis. Outdoor sampling was continuously carried out from May 2015 to October 2016 by cumulating monthly samples over individual filters. PBAPs contribution to PM10 concentration was in the range 0.7-13%. Seasonal differences were found in PBAPs concentration, shape and mass distribution. Higher concentrations were recorded during the warm period, when the bioparticles were more numerous, larger and more elongated. Simultaneous indoor and outdoor daily samples were collected during the spring of 2014 and 2017 in domestic environments. In indoor sites PBAPs were much higher in concentration than outdoors and showed a different visual appearance, with very wide polyhedral-shaped particles identifiable as skin flakes. Indoor/outdoor ratio (I/O) of PBAPs was in the range 6-16. Indoors, PBAPs contributed 21-77% to organic matter and 16-68% to PM10. When sampling into a sealed room, I/O was only 0.01 for individual bioparticles heavier than100 ng, while it was in the range 0.24-0.43 for PBAPs below 20 ng. This suggests that the infiltration factor of wide bioparticles was very low and that their concentration increase in indoor environments was due to indoor sources, namely the presence of human beings. Samplings carried out in different rooms of an apartment showed that most of the PBAPs mass was due to particles heavier than 100 ng, particularly in the bedroom.
Collapse
Affiliation(s)
- Francesca Marcovecchio
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria km. 29,300, 00015, Monterotondo St., Rome, Italy
| | - Cinzia Perrino
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria km. 29,300, 00015, Monterotondo St., Rome, Italy.
| |
Collapse
|