51
|
Yang SY, Ahmed S, Satheesh SV, Matthews J. Genome-wide mapping and analysis of aryl hydrocarbon receptor (AHR)- and aryl hydrocarbon receptor repressor (AHRR)-binding sites in human breast cancer cells. Arch Toxicol 2017; 92:225-240. [PMID: 28681081 PMCID: PMC5773648 DOI: 10.1007/s00204-017-2022-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
The aryl hydrocarbon receptor (AHR) mediates the toxic actions of environmental contaminants, such as 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), and also plays roles in vascular development, the immune response, and cell cycle regulation. The AHR repressor (AHRR) is an AHR-regulated gene and a negative regulator of AHR; however, the mechanisms of AHRR-dependent repression of AHR are unclear. In this study, we compared the genome-wide binding profiles of AHR and AHRR in MCF-7 human breast cancer cells treated for 24 h with TCDD using chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq). We identified 3915 AHR- and 2811 AHRR-bound regions, of which 974 (35%) were common to both datasets. When these 24-h datasets were also compared with AHR-bound regions identified after 45 min of TCDD treatment, 67% (1884) of AHRR-bound regions overlapped with those of AHR. This analysis identified 994 unique AHRR-bound regions. AHRR-bound regions mapped closer to promoter regions when compared with AHR-bound regions. The AHRE was identified and overrepresented in AHR:AHRR-co-bound regions, AHR-only regions, and AHRR-only regions. Candidate unique AHR- and AHRR-bound regions were validated by ChIP–qPCR and their ability to regulate gene expression was confirmed by luciferase reporter gene assays. Overall, this study reveals that AHR and AHRR exhibit similar but also distinct genome-wide binding profiles, supporting the notion that AHRR is a context- and gene-specific repressor of AHR activity.
Collapse
Affiliation(s)
- Sunny Y. Yang
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Present Address: Department of Pharmaceutical Sciences, University of British Columbia, Wesbrook Mall, Vancouver, V6T 1Z3 Canada
| | - Shaimaa Ahmed
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Somisetty V. Satheesh
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, 1046, 0317 Oslo, Norway
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, 1046, 0317 Oslo, Norway
| |
Collapse
|
52
|
Kim JB, Pjanic M, Nguyen T, Miller CL, Iyer D, Liu B, Wang T, Sazonova O, Carcamo-Orive I, Matic LP, Maegdefessel L, Hedin U, Quertermous T. TCF21 and the environmental sensor aryl-hydrocarbon receptor cooperate to activate a pro-inflammatory gene expression program in coronary artery smooth muscle cells. PLoS Genet 2017; 13:e1006750. [PMID: 28481916 PMCID: PMC5439967 DOI: 10.1371/journal.pgen.1006750] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/22/2017] [Accepted: 04/07/2017] [Indexed: 01/31/2023] Open
Abstract
Both environmental factors and genetic loci have been associated with coronary artery disease (CAD), however gene-gene and gene-environment interactions that might identify molecular mechanisms of risk are not easily studied by human genetic approaches. We have previously identified the transcription factor TCF21 as the causal CAD gene at 6q23.2 and characterized its downstream transcriptional network that is enriched for CAD GWAS genes. Here we investigate the hypothesis that TCF21 interacts with a downstream target gene, the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that mediates the cellular response to environmental contaminants, including dioxin and polycyclic aromatic hydrocarbons (e.g., tobacco smoke). Perturbation of TCF21 expression in human coronary artery smooth muscle cells (HCASMC) revealed that TCF21 promotes expression of AHR, its heterodimerization partner ARNT, and cooperates with these factors to upregulate a number of inflammatory downstream disease related genes including IL1A, MMP1, and CYP1A1. TCF21 was shown to bind in AHR, ARNT and downstream target gene loci, and co-localization was noted for AHR-ARNT and TCF21 binding sites genome-wide in regions of HCASMC open chromatin. These regions of co-localization were found to be enriched for GWAS signals associated with cardio-metabolic as well as chronic inflammatory disease phenotypes. Finally, we show that similar to TCF21, AHR gene expression is increased in atherosclerotic lesions in mice in vivo using laser capture microdissection, and AHR protein is localized in human carotid atherosclerotic lesions where it is associated with protein kinases with a critical role in innate immune response. These data suggest that TCF21 can cooperate with AHR to activate an inflammatory gene expression program that is exacerbated by environmental stimuli, and may contribute to the overall risk for CAD.
Collapse
Affiliation(s)
- Juyong Brian Kim
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
| | - Milos Pjanic
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
| | - Trieu Nguyen
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
| | - Clint L. Miller
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
| | - Dharini Iyer
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
| | - Boxiang Liu
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Ting Wang
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
| | - Olga Sazonova
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
| | - Ivan Carcamo-Orive
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
| | | | - Lars Maegdefessel
- Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Sweden
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
| |
Collapse
|
53
|
Abdelmegeid M, Vailati-Riboni M, Alharthi A, Batistel F, Loor J. Supplemental methionine, choline, or taurine alter in vitro gene network expression of polymorphonuclear leukocytes from neonatal Holstein calves. J Dairy Sci 2017; 100:3155-3165. [DOI: 10.3168/jds.2016-12025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/10/2016] [Indexed: 12/12/2022]
|
54
|
Bhaumik S, Basu R. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response. Front Immunol 2017; 8:254. [PMID: 28408906 PMCID: PMC5374155 DOI: 10.3389/fimmu.2017.00254] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/21/2017] [Indexed: 01/15/2023] Open
Abstract
After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared developmental axes with related cellular subsets such as Th22, Th1, and iTreg in the context of intestinal inflammation and also examine the molecular and epigenetic features of Th17 cells that mediate these overlapping developmental programs.
Collapse
Affiliation(s)
- Suniti Bhaumik
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Rajatava Basu
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| |
Collapse
|
55
|
Bisig C, Roth M, Müller L, Comte P, Heeb N, Mayer A, Czerwinski J, Petri-Fink A, Rothen-Rutishauser B. Hazard identification of exhausts from gasoline-ethanol fuel blends using a multi-cellular human lung model. ENVIRONMENTAL RESEARCH 2016; 151:789-796. [PMID: 27670152 DOI: 10.1016/j.envres.2016.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Ethanol can be produced from biomass and as such is renewable, unlike petroleum-based fuel. Almost all gasoline cars can drive with fuel containing 10% ethanol (E10), flex-fuel cars can even use 85% ethanol (E85). Brazil and the USA already include 10-27% ethanol in their standard fuel by law. Most health effect studies on car emissions are however performed with diesel exhausts, and only few data exists for other fuels. In this work we investigated possible toxic effects of exhaust aerosols from ethanol-gasoline blends using a multi-cellular model of the human lung. A flex-fuel passenger car was driven on a chassis dynamometer and fueled with E10, E85, or pure gasoline (E0). Exhausts obtained from a steady state cycle were directly applied for 6h at a dilution of 1:10 onto a multi-cellular human lung model mimicking the bronchial compartment composed of human bronchial cells (16HBE14o-), supplemented with human monocyte-derived dendritic cells and monocyte-derived macrophages, cultured at the air-liquid interface. Biological endpoints were assessed after 6h post incubation and included cytotoxicity, pro-inflammation, oxidative stress, and DNA damage. Filtered air was applied to control cells in parallel to the different exhausts; for comparison an exposure to diesel exhaust was also included in the study. No differences were measured for the volatile compounds, i.e. CO, NOx, and T.HC for the different ethanol supplemented exhausts. Average particle number were 6×102 #/cm3 (E0), 1×105 #/cm3 (E10), 3×103 #/cm3 (E85), and 2.8×106 #/cm3 (diesel). In ethanol-gasoline exposure conditions no cytotoxicity and no morphological changes were observed in the lung cell cultures, in addition no oxidative stress - as analyzed with the glutathione assay - was measured. Gene expression analysis also shows no induction in any of the tested genes, including mRNA levels of genes related to oxidative stress and pro-inflammation, as well as indoleamine 2,3-dioxygenase 1 (IDO-1), transcription factor NFE2-related factor 2 (NFE2L2), and NAD(P)H dehydrogenase [quinone] 1 (NQO1). Finally, no DNA damage was observed with the OxyDNA assay. On the other hand, cell death, oxidative stress, as well as an increase in pro-inflammatory cytokines was observed for cells exposed to diesel exhaust, confirming the results of other studies and the applicability of our exposure system. In conclusion, the tested exhausts from a flex-fuel gasoline vehicle using different ethanol-gasoline blends did not induce adverse cell responses in this acute exposure. So far ethanol-gasoline blends can promptly be used, though further studies, e.g. chronic and in vivo studies, are needed.
Collapse
Affiliation(s)
- Christoph Bisig
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Michèle Roth
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4031 Basel, Switzerland
| | - Loretta Müller
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4031 Basel, Switzerland
| | - Pierre Comte
- Bern University for Applied Sciences (UASB), Gwerdtstrasse 25, 2560 Nidau, Switzerland
| | - Norbert Heeb
- Swiss Federal Laboratories for Materials Testing and Research (EMPA), Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Andreas Mayer
- Technik Thermischer Maschinen (TTM), Fohrhölzlistrasse 14B, 5443 Niederrohrdorf, Switzerland
| | - Jan Czerwinski
- Bern University for Applied Sciences (UASB), Gwerdtstrasse 25, 2560 Nidau, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| |
Collapse
|
56
|
Uchi H, Yasumatsu M, Morino-Koga S, Mitoma C, Furue M. Inhibition of aryl hydrocarbon receptor signaling and induction of NRF2-mediated antioxidant activity by cinnamaldehyde in human keratinocytes. J Dermatol Sci 2016; 85:36-43. [PMID: 27720465 DOI: 10.1016/j.jdermsci.2016.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/17/2016] [Accepted: 10/04/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dioxins and other environmental pollutants are toxic and remain in biological tissues for a long time leading to various levels of oxidative stress. Although the toxicity of these agents has been linked to activation of the aryl hydrocarbon receptor (AHR), no effective treatment has been developed. OBJECTIVE To explore novel phytochemicals that inhibit AHR activation in keratinocytes. METHODS Keratinocytes were used in this study because the skin is one of the organs most affected by dioxin and other environmental pollutants. HaCaT cells, which are a human keratinocyte cell line, and normal human epidermal keratinocytes were stimulated with benzo[a]pyrene to induce AHR activation, and the effects of traditional Japanese Kampo herbal formulae were analyzed. Quantification of mRNA, western blotting, immunofluorescence localization of molecules, siRNA silencing, and visualization of oxidative stress were performed. RESULTS Cinnamomum cassia extract and its major constituent cinnamaldehyde significantly inhibited the activation of AHR. Cinnamaldehyde also activated the NRF2/HO1 pathway and significantly alleviated the production of reactive oxygen species in keratinocytes. The inhibition of AHR signaling and the activation of antioxidant activity by cinnamaldehyde operated in a mutually independent manner as assessed by siRNA methods In addition, AHR signaling was effectively inhibited by traditional Kampo formulae containing C. cassia. CONCLUSION Cinnamaldehyde has two independent biological activities; namely, an inhibitory action on AHR activation and an antioxidant effect mediated by NRF2/HO1 signaling. Through these dual functions, cinnamaldehyde may be beneficial for the treatment of disorders related to oxidative stress such as dioxin intoxication, acne, and vitiligo.
Collapse
Affiliation(s)
- Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Mao Yasumatsu
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Saori Morino-Koga
- Division of Statistics, Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chikage Mitoma
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
57
|
Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice. Sci Rep 2016; 6:33969. [PMID: 27659481 PMCID: PMC5034278 DOI: 10.1038/srep33969] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022] Open
Abstract
Environmental and genetic factors represent key components in the establishment/maintenance of the intestinal microbiota. The aryl hydrocarbon receptor (AHR) is emerging as a pleiotropic factor, modulating pathways beyond its established role as a xenobiotic sensor. The AHR is known to regulate immune surveillance within the intestine through retention of intraepithelial lymphocytes, functional redistribution of Th17/Treg balance. Consequently, environmental/genetic manipulation of AHR activity likely influences host-microbe homeostasis. Utilizing C57BL6/J Ahr−/+ and Ahr−/− co-housed littermates followed by 18 days of genotypic segregation, we examined the influence of AHR expression upon intestinal microbe composition/functionality and host physiology. 16S sequencing/quantitative PCR (qPCR) revealed significant changes in phyla abundance, particularly Verrucomicrobia together with segmented filamentous bacteria, and an increase in species diversity in Ahr−/− mice following genotypic segregation. Metagenomics/metabolomics indicate microbial composition is associated with functional shifts in bacterial metabolism. Analysis identified Ahr−/−-dependent increases in ileal gene expression, indicating increased inflammatory tone. Transfer of Ahr−/− microbiota to wild-type germ-free mice recapitulated the increase Verrucomicrobia and inflammatory tone, indicating Ahr−/−-microbial dependence. These data suggest a role for the AHR in influencing the community structure of the intestinal microbiota.
Collapse
|
58
|
Mariuzzi L, Domenis R, Orsaria M, Marzinotto S, Londero AP, Bulfoni M, Candotti V, Zanello A, Ballico M, Mimmi MC, Calcagno A, Marchesoni D, Di Loreto C, Beltrami AP, Cesselli D, Gri G. Functional expression of aryl hydrocarbon receptor on mast cells populating human endometriotic tissues. J Transl Med 2016; 96:959-971. [PMID: 27348627 PMCID: PMC5008463 DOI: 10.1038/labinvest.2016.74] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/24/2022] Open
Abstract
Endometriosis is an inflammatory disease characterized by the presence of ectopic endometrial tissue outside the uterus. A diffuse infiltration of mast cells (MCs) is observed throughout endometriotic lesions, but little is known about how these cells contribute to the network of molecules that modulate the growth of ectopic endometrial implants and promote endometriosis-associated inflammation. The aryl hydrocarbon receptor (AhR), a transcription factor known to respond to environmental toxins and endogenous compounds, is present in MCs. In response to AhR activation, MCs produce IL-17 and reactive oxygen species, highlighting the potential impact of AhR ligands on inflammation via MCs. Here, we investigated the possibility that endometrial MCs promote an inflammatory microenvironment by sensing AhR ligands, thus sustaining endometriosis development. Using human endometriotic tissue (ET) samples, we performed the following experiments: (i) examined the cytokine expression profile; (ii) counted AhR-expressing MCs; (iii) verified the phenotype of AhR-expressing MCs to establish whether MCs have a tolerogenic (IL-10-positive) or inflammatory (IL-17-positive) phenotype; (iv) measured the presence of AhR ligands (tryptophan-derived kynurenine) and tryptophan-metabolizing enzymes (indoleamine 2,3-dioxygenase 1 (IDO1)); (v) treated ET organ cultures with an AhR antagonist in vitro to measure changes in the cytokine milieu; and (vi) measured the growth of endometrial stromal cells cultured with AhR-activated MC-conditioned medium. We found that ET tissue was conducive to cytokine production, orchestrating chronic inflammation and a population of AhR-expressing MCs that are both IL-17 and IL-10-positive. ET was rich in IDO1 and the AhR-ligand kynurenine compared with control tissue, possibly promoting MC activation through AhR. ET was susceptible to treatment with an AhR antagonist, and endometrial stromal cell growth was improved in the presence of soluble factors released by MCs on AhR activation. These results suggest a new mechanistic role of MCs in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Laura Mariuzzi
- Section of Surgical Pathology, Department of Medical and Biological Sciences, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Rossana Domenis
- Section of Surgical Pathology, Department of Medical and Biological Sciences, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Maria Orsaria
- Section of Surgical Pathology, Department of Medical and Biological Sciences, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Stefania Marzinotto
- Section of Surgical Pathology, Department of Medical and Biological Sciences, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Ambrogio P Londero
- Clinic of Obstetrics and Gynecology, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Michela Bulfoni
- Section of Surgical Pathology, Department of Medical and Biological Sciences, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Veronica Candotti
- Section of Surgical Pathology, Department of Medical and Biological Sciences, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Andrea Zanello
- Section of Surgical Pathology, Department of Medical and Biological Sciences, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Maurizio Ballico
- Section of Applied Physics, Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Maria C Mimmi
- Section of Applied Physics, Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Angelo Calcagno
- Clinic of Obstetrics and Gynecology, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Diego Marchesoni
- Clinic of Obstetrics and Gynecology, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Carla Di Loreto
- Section of Surgical Pathology, Department of Medical and Biological Sciences, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Antonio P Beltrami
- Section of Surgical Pathology, Department of Medical and Biological Sciences, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Daniela Cesselli
- Section of Surgical Pathology, Department of Medical and Biological Sciences, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| | - Giorgia Gri
- Section of Surgical Pathology, Department of Medical and Biological Sciences, University Hospital of Udine, P.le S.Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
59
|
Kreitinger JM, Beamer CA, Shepherd DM. Environmental Immunology: Lessons Learned from Exposure to a Select Panel of Immunotoxicants. THE JOURNAL OF IMMUNOLOGY 2016; 196:3217-25. [PMID: 27044635 DOI: 10.4049/jimmunol.1502149] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/16/2016] [Indexed: 12/30/2022]
Abstract
Exposure to environmental contaminants can produce profound effects on the immune system. Many classes of xenobiotics can significantly suppress or enhance immune responsiveness depending on the levels (i.e., dose) and context (i.e., timing, route) of exposure. Although defining the effects that toxicants can have on the immune system is a valuable component to improving public health, environmental immunology has greatly enhanced our understanding of how the immune system functions and has provided innovative avenues to explore new immunotherapies. This Brief Review focuses on three examples of how immunotoxicology has benefitted the field of immunology, presenting information on the aryl hydrocarbon receptor signaling pathway, the immunomodulatory effects of nanomaterials, and the impact of xenobiotic exposure on the developing immune system. Collectively, contributions from immunotoxicology have significantly enhanced public health and spurred seminal advances in both basic and applied immunology.
Collapse
Affiliation(s)
- Joanna M Kreitinger
- Cellular, Molecular, and Microbial Biology Graduate Program, Division of Biological Sciences, University of Montana, Missoula, MT 59812; and
| | - Celine A Beamer
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812
| | - David M Shepherd
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812
| |
Collapse
|
60
|
Steiner S, Bisig C, Petri-Fink A, Rothen-Rutishauser B. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Arch Toxicol 2016; 90:1541-53. [PMID: 27165416 PMCID: PMC4894930 DOI: 10.1007/s00204-016-1736-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 04/28/2016] [Indexed: 12/03/2022]
Abstract
Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters.
Collapse
Affiliation(s)
- Sandro Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Christoph Bisig
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | |
Collapse
|
61
|
Koues OI, Collins PL, Cella M, Robinette ML, Porter SI, Pyfrom SC, Payton JE, Colonna M, Oltz EM. Distinct Gene Regulatory Pathways for Human Innate versus Adaptive Lymphoid Cells. Cell 2016; 165:1134-1146. [PMID: 27156452 DOI: 10.1016/j.cell.2016.04.014] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/11/2016] [Accepted: 04/01/2016] [Indexed: 01/08/2023]
Abstract
Innate lymphoid cells (ILCs) serve as sentinels in mucosal tissues, sensing release of soluble inflammatory mediators, rapidly communicating danger via cytokine secretion, and functioning as guardians of tissue homeostasis. Although ILCs have been extensively studied in model organisms, little is known about these "first responders" in humans, especially their lineage and functional kinships to cytokine-secreting T helper (Th) cell counterparts. Here, we report gene regulatory circuitries for four human ILC-Th counterparts derived from mucosal environments, revealing that each ILC subset diverges as a distinct lineage from Th and circulating natural killer cells but shares circuitry devoted to functional polarization with their Th counterparts. Super-enhancers demarcate cohorts of cell-identity genes in each lineage, uncovering new modes of regulation for signature cytokines, new molecules that likely impart important functions to ILCs, and potential mechanisms for autoimmune disease SNP associations within ILC-Th subsets.
Collapse
Affiliation(s)
- Olivia I Koues
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Patrick L Collins
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michelle L Robinette
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sofia I Porter
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sarah C Pyfrom
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
62
|
Hong CH, Lee CH, Yu HS, Huang SK. Benzopyrene, a major polyaromatic hydrocarbon in smoke fume, mobilizes Langerhans cells and polarizes Th2/17 responses in epicutaneous protein sensitization through the aryl hydrocarbon receptor. Int Immunopharmacol 2016; 36:111-117. [PMID: 27129092 DOI: 10.1016/j.intimp.2016.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 01/27/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common disease with genetic and environmental interactions. We previously reported lifetime exposure to cigarette smoke is associated with adult-onset AD. Aryl hydrocarbon receptor (AhR) is important in regulating environmental exposure to xenobiotics, including benzopyrenes (BP), a major polycyclic aromatic hydrocarbon (PAH) present in cigarette smoke. However, how AhR regulates immune responses in sensitization phase of AD remained elusive. METHODS We investigated how BP affects epicutaneous sensitization response through AhR axis. We compared AhR expression in skin from AD patients and healthy controls. We measured immune responses (Langerhans cell migration and T cell polarization in epicutaneous Ova sensitization in mice with or without AhR defect. RESULTS We found AhR and ARNT (AhR nuclear translocator) are upregulated in AD skin. BP exposure increases Langerhans cell migration, and increases IL-5, IL-13, and IL-17 levels when lymph node cells were re-challenged with Ova. The increased cytokine levels were attenuated in AhR defected mice. AhR agonists (BP and ITE) decreased E-cadherin expression, while AhR antagonist (CH223191) increased it in human primary keratinocytes. CONCLUSIONS These results suggested AhR interacts with BP to polarize T cell responses, along with Langerhans cell migration. This study revealed a regulatory mechanism how cigarette smoking affects atopic sensitization through the benzopyrene-AhR interaction.
Collapse
Affiliation(s)
- Chien-Hui Hong
- Department of Dermatology, National Yang Ming University, Taipei, Taiwan; Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung, Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Dermatology, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung, Taiwan; National Health Research Institute, Miao-Li, Taiwan
| | - Shau-Ku Huang
- National Health Research Institute, Miao-Li, Taiwan.
| |
Collapse
|
63
|
Ogando J, Tardáguila M, Díaz-Alderete A, Usategui A, Miranda-Ramos V, Martínez-Herrera DJ, de la Fuente L, García-León MJ, Moreno MC, Escudero S, Cañete JD, Toribio ML, Cases I, Pascual-Montano A, Pablos JL, Mañes S. Notch-regulated miR-223 targets the aryl hydrocarbon receptor pathway and increases cytokine production in macrophages from rheumatoid arthritis patients. Sci Rep 2016; 6:20223. [PMID: 26838552 PMCID: PMC4738320 DOI: 10.1038/srep20223] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/23/2015] [Indexed: 12/28/2022] Open
Abstract
Evidence links aryl hydrocarbon receptor (AHR) activation to rheumatoid arthritis (RA) pathogenesis, although results are inconsistent. AHR agonists inhibit pro-inflammatory cytokine expression in macrophages, pivotal cells in RA aetiopathogenesis, which hints at specific circuits that regulate the AHR pathway in RA macrophages. We compared microRNA (miR) expression in CD14+ cells from patients with active RA or with osteoarthritis (OA). Seven miR were downregulated and one (miR-223) upregulated in RA compared to OA cells. miR-223 upregulation correlated with reduced Notch3 and Notch effector expression in RA patients. Overexpression of the Notch-induced repressor HEY-1 and co-culture of healthy donor monocytes with Notch ligand-expressing cells showed direct Notch-mediated downregulation of miR-223. Bioinformatics predicted the AHR regulator ARNT (AHR nuclear translocator) as a miR-223 target. Pre-miR-223 overexpression silenced ARNT 3’UTR-driven reporter expression, reduced ARNT (but not AHR) protein levels and prevented AHR/ARNT-mediated inhibition of pro-inflammatory cytokine expression. miR-223 counteracted AHR/ARNT-induced Notch3 upregulation in monocytes. Levels of ARNT and of CYP1B1, an AHR/ARNT signalling effector, were reduced in RA compared to OA synovial tissue, which correlated with miR-223 levels. Our results associate Notch signalling to miR-223 downregulation in RA macrophages, and identify miR-223 as a negative regulator of the AHR/ARNT pathway through ARNT targeting.
Collapse
Affiliation(s)
- Jesús Ogando
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid
| | - Manuel Tardáguila
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid
| | - Andrea Díaz-Alderete
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid
| | - Alicia Usategui
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre, Madrid
| | | | | | | | | | - María C Moreno
- Flow Cytometry Unit, Centro Nacional de Biotecnología/CSIC, Madrid
| | - Sara Escudero
- Flow Cytometry Unit, Centro Nacional de Biotecnología/CSIC, Madrid
| | - Juan D Cañete
- Unitat d'Artritis, Hospital Clínic de Barcelona and Institut d'Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS), Barcelona
| | | | - Ildefonso Cases
- Institut de Medicina Predictiva i Personalitzada del Càncer, Badalona, Barcelona, Spain
| | | | - José Luis Pablos
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre, Madrid
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid
| |
Collapse
|
64
|
Pleil JD, Angrish MM, Madden MC. Immunochemistry for high-throughput screening of human exhaled breath condensate (EBC) media: implementation of automated quanterix SIMOA instrumentation. J Breath Res 2015; 9:047108. [DOI: 10.1088/1752-7155/9/4/047108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
65
|
Dittmann KH, Rothmund MC, Paasch A, Mayer C, Fehrenbacher B, Schaller M, Frauenstein K, Fritsche E, Haarmann-Stemmann T, Braeuning A, Rodemann HP. The nuclear aryl hydocarbon receptor is involved in regulation of DNA repair and cell survival following treatment with ionizing radiation. Toxicol Lett 2015; 240:122-9. [PMID: 26520184 DOI: 10.1016/j.toxlet.2015.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 01/15/2023]
Abstract
In the present study, we explored the role of the aryl hydrocarbon receptor (AhR) for γ-H2AX associated DNA repair in response to treatment with ionizing radiation. Ionizing radiation was able to stabilize AhR protein and to induce a nuclear translocation in a similar way as described for exposure to aromatic hydrocarbons. A comparable AhR protein stabilization was obtained by treatment with hydroxyl-nonenal-generated by radiation-induced lipid peroxidation. AhR knockdown resulted in significant radio-sensitization of both A549- and HaCaT cells. Under these conditions an increased amount of residual γ-H2AX foci and a delayed decline of γ-H2AX foci was observed. Knockdown of the co-activator ARNT, which is essential for transcriptional activation of AhR target genes, reduced AhR-dependent CYP1A expression in response to irradiation, but was without effect on the amount of residual γ-H2AX foci. Nuclear AhR was found in complex with γ-H2AX, DNA-PK, ATM and Lamin A. AhR and γ-H2AX form together nuclear foci, which disappear during DNA repair. Presence of nuclear AhR protein is associated with ATM activation and chromatin relaxation indicated by acetylation of histone H3. Taken together, we could show, that beyond the function as a transcription factor the nuclear AhR is involved in the regulation of DNA repair. Reduction of nuclear AhR inhibits DNA-double stand repair and radiosensitizes cells. First hints for its molecular mechanism suggest a role during ATM activation and chromatin relaxation, both essential for DNA repair.
Collapse
Affiliation(s)
- K H Dittmann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany.
| | - M C Rothmund
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - A Paasch
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - C Mayer
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - B Fehrenbacher
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - M Schaller
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - K Frauenstein
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - E Fritsche
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - T Haarmann-Stemmann
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - A Braeuning
- Federal Institute for Risk Assessment, Deptartment of Food Safety, Berlin, Germany
| | - H P Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| |
Collapse
|
66
|
Dorgham K, Amoura Z, Parizot C, Arnaud L, Frances C, Pionneau C, Devilliers H, Pinto S, Zoorob R, Miyara M, Larsen M, Yssel H, Gorochov G, Mathian A. Ultraviolet light converts propranolol, a nonselective β-blocker and potential lupus-inducing drug, into a proinflammatory AhR ligand. Eur J Immunol 2015; 45:3174-87. [DOI: 10.1002/eji.201445144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 06/30/2015] [Accepted: 09/07/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Karim Dorgham
- Sorbonne Universités; UPMC Univ Paris 06, Inserm UMRS1135; Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 83 Bd de l'hôpital; F-75013, Paris France
| | - Zahir Amoura
- Sorbonne Universités; UPMC Univ Paris 06, Inserm UMRS1135; Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 83 Bd de l'hôpital; F-75013, Paris France
- AP-HP; Groupement Hospitalier Pitié-Salpêtrière; institut E3M; Service de médecine interne 2; Centre de Référence National pour le Lupus et le Syndrome des Antiphospholipides; Paris France
| | - Christophe Parizot
- AP-HP; Groupement Hospitalier Pitié-Salpêtrière; Département d'immunologie; Paris France
| | - Laurent Arnaud
- Sorbonne Universités; UPMC Univ Paris 06, Inserm UMRS1135; Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 83 Bd de l'hôpital; F-75013, Paris France
- AP-HP; Groupement Hospitalier Pitié-Salpêtrière; institut E3M; Service de médecine interne 2; Centre de Référence National pour le Lupus et le Syndrome des Antiphospholipides; Paris France
| | | | - Cédric Pionneau
- Sorbonne Universités, UPMC, Inserm UMS-29 Omique, Plateforme P3S, F-75013; Paris France
- Centre Hospitalier Universitaire de Dijon; Service de médecine interne 2 et centre d'investigation clinique; Dijon France
| | - Hervé Devilliers
- Centre Hospitalier Universitaire de Dijon; Service de médecine interne 2 et centre d'investigation clinique; Dijon France
| | - Sandra Pinto
- Sorbonne Universités; UPMC Univ Paris 06, Inserm UMRS1135; Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 83 Bd de l'hôpital; F-75013, Paris France
| | - Rima Zoorob
- Sorbonne Universités; UPMC Univ Paris 06, Inserm UMRS1135; Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 83 Bd de l'hôpital; F-75013, Paris France
| | - Makoto Miyara
- Sorbonne Universités; UPMC Univ Paris 06, Inserm UMRS1135; Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 83 Bd de l'hôpital; F-75013, Paris France
- AP-HP; Groupement Hospitalier Pitié-Salpêtrière; institut E3M; Service de médecine interne 2; Centre de Référence National pour le Lupus et le Syndrome des Antiphospholipides; Paris France
- AP-HP; Groupement Hospitalier Pitié-Salpêtrière; Département d'immunologie; Paris France
| | - Martin Larsen
- Sorbonne Universités; UPMC Univ Paris 06, Inserm UMRS1135; Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 83 Bd de l'hôpital; F-75013, Paris France
| | - Hans Yssel
- Sorbonne Universités; UPMC Univ Paris 06, Inserm UMRS1135; Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 83 Bd de l'hôpital; F-75013, Paris France
| | - Guy Gorochov
- Sorbonne Universités; UPMC Univ Paris 06, Inserm UMRS1135; Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 83 Bd de l'hôpital; F-75013, Paris France
- AP-HP; Groupement Hospitalier Pitié-Salpêtrière; Département d'immunologie; Paris France
| | - Alexis Mathian
- Sorbonne Universités; UPMC Univ Paris 06, Inserm UMRS1135; Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 83 Bd de l'hôpital; F-75013, Paris France
- AP-HP; Groupement Hospitalier Pitié-Salpêtrière; institut E3M; Service de médecine interne 2; Centre de Référence National pour le Lupus et le Syndrome des Antiphospholipides; Paris France
| |
Collapse
|
67
|
Klaassen CD, Cui JY. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids. Drug Metab Dispos 2015; 43:1505-21. [PMID: 26261286 PMCID: PMC4576672 DOI: 10.1124/dmd.115.065698] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022] Open
Abstract
Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
68
|
Haag LM, Siegmund B. Intestinal Microbiota and the Innate Immune System - A Crosstalk in Crohn's Disease Pathogenesis. Front Immunol 2015; 6:489. [PMID: 26441993 PMCID: PMC4585200 DOI: 10.3389/fimmu.2015.00489] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022] Open
Abstract
Crohn's disease (CD) is a chronic, relapsing inflammatory disorder that can occur anywhere along the gastrointestinal tract. The precise etiology of CD is still unclear but it is widely accepted that a complex series of interactions between susceptibility genes, the immune system and environmental factors are implicated in the onset and perpetuation of the disease. Increasing evidence from experimental and clinical studies implies the intestinal microbiota in disease pathogenesis, thereby supporting the hypothesis that chronic intestinal inflammation arises from an abnormal immune response against the microorganisms of the intestinal flora in genetically susceptible individuals. Given that CD patients display changes in their gut microbiota composition, collectively termed "dysbiosis," the question raises whether the altered microbiota composition is a cause of disease or rather a consequence of the inflammatory state of the intestinal environment. This review will focus on the crosstalk between the gut microbiota and the innate immune system during intestinal inflammation, thereby unraveling the role of the microbiota in CD pathogenesis.
Collapse
Affiliation(s)
- Lea-Maxie Haag
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Medical Department 1, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Britta Siegmund
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Medical Department 1, Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
69
|
Abstract
Carcinogenesis is a multifactorial process, frequently encompassing 3 stages: initiation, promotion and progression. It is characterized by multiple deviations from normal both at the cell and organism levels. Although most people have a small number of cells that present deviations from normal, most of those cells will not cause cancer. However, some will. What tips the balance between normal and abnormal is the subject of intense scientific research as well as unfounded speculations. Chronic inflammation is one of the risk factors for cancer. Resveratrol is consumed by the population as a dietary supplement in the hope of decreasing the risk of inflammation and cancer and other chronic diseases such as diabetes and vascular diseases. There is a discrepancy between the doses used in the animal studies showing that resveratrol decreases all three stages of carcinogenesis, and the doses ingested by the population either as supplements or in the diet. While there is health benefit from using high resveratrol doses, it might be also of practical and scientific benefit to focus future effort in understanding the effects of normal dietary resveratrol levels.
Collapse
Affiliation(s)
- Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
70
|
Ishida M, Mikami S, Shinojima T, Kosaka T, Mizuno R, Kikuchi E, Miyajima A, Okada Y, Oya M. Activation of aryl hydrocarbon receptor promotes invasion of clear cell renal cell carcinoma and is associated with poor prognosis and cigarette smoke. Int J Cancer 2015; 137:299-310. [PMID: 25523818 DOI: 10.1002/ijc.29398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/02/2014] [Indexed: 12/16/2023]
Abstract
Although exposure to environmental pollutants is one of the risk factors for renal cell carcinoma (RCC), its relationship with carcinogenesis and the progression of RCC remains unknown. The present study was designed to elucidate the role of the aryl hydrocarbon receptor (AhR), a major mediator of carcinogenesis caused by environmental pollutants, in the progression of RCC. The expression of AhR was investigated in 120 patients with RCC using immunohistochemistry, and its relationship with clinicopathological parameters and prognoses was statistically analyzed. RCC cell lines were exposed to indirubin or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), AhR ligands, to activate the AhR pathway, or were transfected with small interfering RNA (siRNA) for AhR. The expression of the AhR target genes CYP1A1 and CYP1B1, matrix metalloproteinases (MMPs), and invasion through Matrigel(TM) were then examined. AhR was predominantly expressed in the nuclei of high-grade clear cell RCC (ccRCC) and tumor-infiltrating lymphocytes (TILs), and its expression levels in cancer cells and TILs correlated with the pathological tumor stage and histological grade. A multivariate Cox analysis revealed that the strong expression of AhR in cancer cells was a significant and independent predictor of disease-specific survival. AhR ligands up-regulated the expression of AhR and CYPs and promoted invasion by up-regulating MMPs. Furthermore, siRNA for AhR down-regulated CYPs, and inhibited cancer cell invasion together with the down-regulation of MMPs. These results suggest that AhR regulates the invasion of ccRCC and may be involved in tumor immunity. Therefore, inhibiting the activation of AhR may represent a potentially attractive therapeutic target for ccRCC patients.
Collapse
Affiliation(s)
- Masaru Ishida
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
- Department of Urology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Shuji Mikami
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | | | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kikuchi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Miyajima
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
71
|
Rosińczuk J, Całkosiński I. Effect of tocopherol and acetylsalicylic acid on the biochemical indices of blood in dioxin-exposed rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:1-11. [PMID: 26056971 DOI: 10.1016/j.etap.2015.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
New sources of dioxins and increased dioxin concentrations in the environment, coupled with their increased bioavailability along the food chain and accumulation in adipose tissues, contribute to various adverse long-term biological effects. The purpose of the study was to determine whether tocopherol protects the CNS by decreasing the pro-inflammatory influence of free radicals generated by TCDD; whether acetylsalicylic acid inhibits the production of inflammatory mediators; and whether the combined administration of tocopherol and acetylsalicylic acid to TCDD-exposed rats has a potential CNS-protective effect. The study included 117 rats divided into 8 groups: 75 female and 12 male Buffalo rats aged 8-10 weeks, weighing 140-160 g; as well as 30 female rats aged 6 weeks and weighing 120 g, which were the offspring of females from each study group. In the experiment, the following substances were used: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dosed at 5 μg/kg BW and 12.5 μg/kg BW, diluted in a 1% DMSO solution at the concentration of 1 μg/ml; α-tocopherol acetate, dosed at 30 mg/kg BW, in 0.2 ml of oil solution; and acetylsalicylic acid, 50mg/kg BW, suspended in 0.5 ml of starch solution, administered orally using a feeding tube. Pleurisy was induced by an injection of 0.15 ml of 1% carrageenin solution. The use of tocopherol reduces the adverse effects of the inflammatory reaction induced by TCDD. Administering tocopherol improves protein metabolism by reducing protein catabolism, and raises γ-globulin fraction levels. Combined acetylsalicylic acid and tocopherol suppress catabolic processes accompanying inflammation.
Collapse
Affiliation(s)
- Joanna Rosińczuk
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, Bartla 5 Street, 51-618 Wrocław, Poland.
| | - Ireneusz Całkosiński
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, Bartla 5 Street, 51-618 Wrocław, Poland.
| |
Collapse
|
72
|
Küpers LK, Xu X, Jankipersadsing SA, Vaez A, la Bastide-van Gemert S, Scholtens S, Nolte IM, Richmond RC, Relton CL, Felix JF, Duijts L, van Meurs JB, Tiemeier H, Jaddoe VW, Wang X, Corpeleijn E, Snieder H. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol 2015; 44:1224-37. [PMID: 25862628 PMCID: PMC4588868 DOI: 10.1093/ije/dyv048] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2015] [Indexed: 01/06/2023] Open
Abstract
Background: We examined whether the effect of maternal smoking during pregnancy on birthweight of the offspring was mediated by smoking-induced changes to DNA methylation in cord blood. Methods: First, we used cord blood of 129 Dutch children exposed to maternal smoking vs 126 unexposed to maternal and paternal smoking (53% male) participating in the GECKO Drenthe birth cohort. DNA methylation was measured using the Illumina HumanMethylation450 Beadchip. We performed an epigenome-wide association study for the association between maternal smoking and methylation followed by a mediation analysis of the top signals [false-discovery rate (FDR) < 0.05]. We adjusted both analyses for maternal age, education, pre-pregnancy BMI, offspring’s sex, gestational age and white blood cell composition. Secondly, in 175 exposed and 1248 unexposed newborns from two independent birth cohorts, we replicated and meta-analysed results of eight cytosine-phosphate-guanine (CpG) sites in the GFI1 gene, which showed the most robust mediation. Finally, we performed functional network and enrichment analysis. Results: We found 35 differentially methylated CpGs (FDR < 0.05) in newborns exposed vs unexposed to smoking, of which 23 survived Bonferroni correction (P < 1 × 10-7). These 23 CpGs mapped to eight genes: AHRR, GFI1, MYO1G, CYP1A1, NEUROG1, CNTNAP2, FRMD4A and LRP5. We observed partial confirmation as three of the eight CpGs in GFI1 replicated. These CpGs partly mediated the effect of maternal smoking on birthweight (Sobel P < 0.05) in meta-analysis of GECKO and the two replication cohorts. Differential methylation of these three GFI1 CpGs explained 12–19% of the 202 g lower birthweight in smoking mothers. Functional enrichment analysis pointed towards activation of cell-mediated immunity. Conclusions: Maternal smoking during pregnancy was associated with cord blood methylation differences. We observed a potentially mediating role of methylation in the association between maternal smoking during pregnancy and birthweight of the offspring. Functional network analysis suggested a role in activating the immune system.
Collapse
Affiliation(s)
| | - Xiaojing Xu
- Georgia Regents University, Augusta, Georgia, USA
| | | | | | | | - Salome Scholtens
- Departments of Epidemiology, LifeLines Cohort Study, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Janine F Felix
- Departments of Epidemiology, Pediatrics, The Generation R Study Group and
| | | | - Joyce B van Meurs
- Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Vincent W Jaddoe
- Departments of Epidemiology, Pediatrics, The Generation R Study Group and
| | | | | | | |
Collapse
|
73
|
Plé C, Fan Y, Ait Yahia S, Vorng H, Everaere L, Chenivesse C, Balsamelli J, Azzaoui I, de Nadai P, Wallaert B, Lazennec G, Tsicopoulos A. Polycyclic aromatic hydrocarbons reciprocally regulate IL-22 and IL-17 cytokines in peripheral blood mononuclear cells from both healthy and asthmatic subjects. PLoS One 2015; 10:e0122372. [PMID: 25860963 PMCID: PMC4393221 DOI: 10.1371/journal.pone.0122372] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 01/12/2023] Open
Abstract
Pollution, including polycyclic aromatic hydrocarbons (PAH), may contribute to increased prevalence of asthma. PAH can bind to the Aryl hydrocarbon Receptor (AhR), a transcription factor involved in Th17/Th22 type polarization. These cells produce IL17A and IL-22, which allow neutrophil recruitment, airway smooth muscle proliferation and tissue repair and remodeling. Increased IL-17 and IL-22 productions have been associated with asthma. We hypothesized that PAH might affect, through their effects on AhR, IL-17 and IL-22 production in allergic asthmatics. Activated peripheral blood mononuclear cells (PBMCs) from 16 nonallergic nonasthmatic (NA) and 16 intermittent allergic asthmatic (AA) subjects were incubated with PAH, and IL-17 and IL-22 productions were assessed. At baseline, activated PBMCs from AA exhibited an increased IL-17/IL-22 profile compared with NA subjects. Diesel exhaust particle (DEP)-PAH and Benzo[a]Pyrene (B[a]P) stimulation further increased IL-22 but decreased IL-17A production in both groups. The PAH-induced IL-22 levels in asthmatic patients were significantly higher than in healthy subjects. Among PBMCs, PAH-induced IL-22 expression originated principally from single IL-22- but not from IL-17- expressing CD4 T cells. The Th17 transcription factors RORA and RORC were down regulated, whereas AhR target gene CYP1A1 was upregulated. IL-22 induction by DEP-PAH was mainly dependent upon AhR whereas IL-22 induction by B[a]P was dependent upon activation of PI3K and JNK. Altogether, these data suggest that DEP-PAH and B[a]P may contribute to increased IL22 production in both healthy and asthmatic subjects through mechanisms involving both AhR -dependent and -independent pathways.
Collapse
MESH Headings
- Adult
- Asthma/etiology
- Asthma/metabolism
- Benzo(a)pyrene/toxicity
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Cytochrome P-450 CYP1A1/metabolism
- Down-Regulation
- Female
- Humans
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukins/genetics
- Interleukins/metabolism
- JNK Mitogen-Activated Protein Kinases/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Male
- Middle Aged
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Polycyclic Aromatic Hydrocarbons/toxicity
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/chemistry
- Receptors, Aryl Hydrocarbon/metabolism
- Th17 Cells/cytology
- Th17 Cells/metabolism
- Up-Regulation
- Vehicle Emissions/analysis
- Interleukin-22
Collapse
Affiliation(s)
- Coline Plé
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- CNRS UMR 8204, F-59000, Lille, France
- Univ Lille Nord de France, F-59000, Lille, France
| | - Ying Fan
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- CNRS UMR 8204, F-59000, Lille, France
- Univ Lille Nord de France, F-59000, Lille, France
| | - Saliha Ait Yahia
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- CNRS UMR 8204, F-59000, Lille, France
- Univ Lille Nord de France, F-59000, Lille, France
| | - Han Vorng
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- CNRS UMR 8204, F-59000, Lille, France
- Univ Lille Nord de France, F-59000, Lille, France
| | - Laetitia Everaere
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- CNRS UMR 8204, F-59000, Lille, France
- Univ Lille Nord de France, F-59000, Lille, France
| | - Cécile Chenivesse
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- CNRS UMR 8204, F-59000, Lille, France
- Univ Lille Nord de France, F-59000, Lille, France
| | - Joanne Balsamelli
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- CNRS UMR 8204, F-59000, Lille, France
- Univ Lille Nord de France, F-59000, Lille, France
| | - Imane Azzaoui
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- CNRS UMR 8204, F-59000, Lille, France
- Univ Lille Nord de France, F-59000, Lille, France
| | - Patricia de Nadai
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- CNRS UMR 8204, F-59000, Lille, France
- Univ Lille Nord de France, F-59000, Lille, France
| | - Benoit Wallaert
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- CNRS UMR 8204, F-59000, Lille, France
- Univ Lille Nord de France, F-59000, Lille, France
- Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, F-59037, Lille, France
| | - Gwendal Lazennec
- CNRS SysDiag—UMR3145 Cap delta, 1682 rue de la Valsière, F-34184, Montpellier Cedex 4, France
| | - Anne Tsicopoulos
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019, Lille, France
- CNRS UMR 8204, F-59000, Lille, France
- Univ Lille Nord de France, F-59000, Lille, France
- Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, F-59037, Lille, France
| |
Collapse
|
74
|
Platten M, Weller M, Wick W. Shaping the glioma immune microenvironment through tryptophan metabolism. CNS Oncol 2015; 1:99-106. [PMID: 25054303 DOI: 10.2217/cns.12.6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The metabolism of the essential amino acid tryptophan is a key microenvironmental factor shaping the immunobiology of many tumor types. The current concept suggests that in the tumor microenvironment, tryptophan is metabolized by specialized dioxygenases, chiefly indoleamine-2,3-dioxygenase (IDO), which is expressed by tumor cells and antigen-presenting cells. High IDO activity leads to the depletion of tryptophan from the local microenvironment, while immediate tryptophan metabolites, particularly kynurenine, accumulate to high micromolar levels. Both the depletion of tryptophan and the accumulation of kynurenine lead to profound suppression of T-cell responses. Orally active IDO inhibitors are currently being explored in clinical trials for their efficacy in enhancing antitumor immune responses. Recent evidence points at alternative routes of tryptophan catabolism via tryptophan-2,3-dioxygenase, which is particularly expressed in malignant gliomas resulting in the production of high amounts of kynurenine. Tryptophan-2,3-dioxygenase-derived kynurenine in turn leads to the promotion of glioma growth and invasiveness and the suppression of antitumor immune responses by binding to the aryl hydrocarbon receptor expressed in glioma cells and glioma-infiltrating T cells. These new data open up novel therapeutic approaches to alleviate glioma-mediated immunosuppression. This review summarizes the current view on the relevance of tryptophan metabolism as an important immunosuppressive, proinvasive and growth-promoting metabolic pathway in malignant glioma.
Collapse
Affiliation(s)
- Michael Platten
- Department of Neurooncology, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
75
|
Colonna M, Fuchs A, Cella M. Innate Lymphoid Cells in Mucosal Homeostasis, Infections, Autoimmune Disorders, and Tumors. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00052-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
76
|
Hanson EP, Schwartz DM, Bonelli M, O'Shea JJ, Aringer M. Signal transduction in immune cells. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
77
|
Mary VS, Valdehita A, Navas JM, Rubinstein HR, Fernández-Cruz ML. Effects of aflatoxin B1, fumonisin B1 and their mixture on the aryl hydrocarbon receptor and cytochrome P450 1A induction. Food Chem Toxicol 2015; 75:104-11. [DOI: 10.1016/j.fct.2014.10.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 11/30/2022]
|
78
|
Sridharan GV, Choi K, Klemashevich C, Wu C, Prabakaran D, Pan LB, Steinmeyer S, Mueller C, Yousofshahi M, Alaniz RC, Lee K, Jayaraman A. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nat Commun 2014; 5:5492. [DOI: 10.1038/ncomms6492] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/07/2014] [Indexed: 12/22/2022] Open
|
79
|
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 2014; 32:403-32. [PMID: 24655296 DOI: 10.1146/annurev-immunol-032713-120245] [Citation(s) in RCA: 680] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; , , ,
| | | | | | | |
Collapse
|
80
|
Eby JM, Kang HK, Klarquist J, Chatterjee S, Mosenson JA, Nishimura MI, Garrett-Mayer E, Longley BJ, Engelhard VH, Mehrotra S, Le Poole IC. Immune responses in a mouse model of vitiligo with spontaneous epidermal de- and repigmentation. Pigment Cell Melanoma Res 2014; 27:1075-85. [PMID: 24935676 PMCID: PMC4470702 DOI: 10.1111/pcmr.12284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/13/2014] [Indexed: 12/27/2022]
Abstract
To generate a mouse model of spontaneous epidermal depigmentation, parental h3TA2 mice, expressing both a human-derived, tyrosinase-reactive T-cell receptor on T cells and the matching HLA-A2 transgene, were crossed to keratin 14-promoter driven, stem cell factor transgenic (K14-SCF) mice with intra-epidermal melanocytes. In resulting Vitesse mice, spontaneous skin depigmentation precedes symmetrical and sharply demarcated patches of graying hair. Whereas the SCF transgene alone dictates a greater retinoic acid receptor-related orphan receptor gamma (RORγt)(+) T-cell compartment, these cells displayed markedly increased IL-17 expression within Vitesse mice. Similar to patient skin, regulatory T cells were less abundant compared with K14-SCF mice, with the exception of gradually appearing patches of repigmenting skin. The subtle repigmentation observed likely reflects resilient melanocytes that coexist with skin-infiltrating, melanocyte-reactive T cells. Similar repigmenting lesions were found in a different TCR transgenic model of vitiligo developed on an SCF transgenic background, supporting a role for SCF in repigmentation.
Collapse
Affiliation(s)
- Jonathan M Eby
- Oncology Research Institute, Loyola University Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Genestet C, Le Gouellec A, Chaker H, Polack B, Guery B, Toussaint B, Stasia MJ. Scavenging of reactive oxygen species by tryptophan metabolites helps Pseudomonas aeruginosa escape neutrophil killing. Free Radic Biol Med 2014; 73:400-10. [PMID: 24929180 DOI: 10.1016/j.freeradbiomed.2014.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa is responsible for persistent infections in cystic fibrosis patients, suggesting an ability to circumvent innate immune defenses. This bacterium uses the kynurenine pathway to catabolize tryptophan. Interestingly, many host cells also produce kynurenine, which is known to control immune system homeostasis. We showed that most strains of P. aeruginosa isolated from cystic fibrosis patients produce a high level of kynurenine. Moreover, a strong transcriptional activation of kynA (the first gene involved in the kynurenine pathway) was observed upon contact with immune cells and particularly with neutrophils. In addition, using coculture of human neutrophils with various strains of P. aeruginosa producing no (ΔkynA) or a high level of kynurenine (ΔkynU or ΔkynA pkynA), we demonstrated that kynurenine promotes bacterial survival. In addition, increasing the amount kynurenine inhibits reactive oxygen species production by activated neutrophils, as evaluated by chemiluminescence with luminol or isoluminol or SOD-sensitive cytochrome c reduction assay. This inhibition is due neither to a phagocytosis defect nor to direct NADPH oxidase inhibition. Indeed, kynurenine has no effect on oxygen consumption by neutrophils activated by PMA or opsonized zymosan. Using in vitro reactive oxygen species-producing systems, we showed that kynurenine scavenges hydrogen peroxide and, to a lesser extent, superoxide. Kynurenine׳s scavenging effect occurs mainly intracellularly after bacterial stimulation, probably in the phagosome. In conclusion, the kynurenine pathway allows P. aeruginosa to circumvent the innate immune response by scavenging neutrophil reactive oxygen species production.
Collapse
Affiliation(s)
- Charlotte Genestet
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Audrey Le Gouellec
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Hichem Chaker
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Benoit Polack
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Benoit Guery
- Recherche translationnelle hôte pathogène, Université Lille 2, Faculté de Médecine, CHRU, Lille, France
| | - Bertrand Toussaint
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Marie José Stasia
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France; Chronic Granulomatous Disease Diagnosis and Research Center, Pôle Biologie, CHU de Grenoble, Grenoble F-38043, France.
| |
Collapse
|
82
|
Zhu C, Xie Q, Zhao B. The role of AhR in autoimmune regulation and its potential as a therapeutic target against CD4 T cell mediated inflammatory disorder. Int J Mol Sci 2014; 15:10116-35. [PMID: 24905409 PMCID: PMC4100143 DOI: 10.3390/ijms150610116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 02/07/2023] Open
Abstract
AhR has recently emerged as a critical physiological regulator of immune responses affecting both innate and adaptive systems. Since the AhR signaling pathway represents an important link between environmental stimulators and immune-mediated inflammatory disorder, it has become the object of great interest among researchers recently. The current review discusses new insights into the mechanisms of action of a select group of inflammatory autoimmune diseases and the ligand-activated AhR signaling pathway. Representative ligands of AhR, both exogenous and endogenous, are also reviewed relative to their potential use as tools for understanding the role of AhR and as potential therapeutics for the treatment of various inflammatory autoimmune diseases, with a focus on CD4 helper T cells, which play important roles both in self-immune tolerance and in inflammatory autoimmune diseases. Evidence indicating the potential use of these ligands in regulating inflammation in various diseases is highlighted, and potential mechanisms of action causing immune system effects mediated by AhR signaling are also discussed. The current review will contribute to a better understanding of the role of AhR and its signaling pathway in CD4 helper T cell mediated inflammatory disorder. Considering the established importance of AhR in immune regulation and its potential as a therapeutic target, we also think that both further investigation into the molecular mechanisms of immune regulation that are mediated by the ligand-specific AhR signaling pathway, and integrated research and development of new therapeutic drug candidates targeting the AhR signaling pathway should be pursued urgently.
Collapse
Affiliation(s)
- Conghui Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
83
|
Mehrzad J, Devriendt B, Baert K, Cox E. Aflatoxin B1 interferes with the antigen-presenting capacity of porcine dendritic cells. Toxicol In Vitro 2014; 28:531-7. [DOI: 10.1016/j.tiv.2013.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022]
|
84
|
Role of the aryl hydrocarbon receptor in the immune response profile and development of pathology during Plasmodium berghei Anka infection. Infect Immun 2014; 82:3127-40. [PMID: 24818665 DOI: 10.1128/iai.01733-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Infection with Plasmodium falciparum may result in severe disease affecting various organs, including liver, spleen, and brain, resulting in high morbidity and mortality. Plasmodium berghei Anka infection of mice recapitulates many features of severe human malaria. The aryl hydrocarbon receptor (AhR) is an intracellular receptor activated by ligands important in the modulation of the inflammatory response. We found that AhR-knockout (KO) mice infected with P. berghei Anka displayed increased parasitemia, earlier mortality, enhanced leukocyte-endothelial cell interactions in the brain microvasculature, and increased inflammation in brain (interleukin-17 [IL-17] and IL-6) and liver (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]) compared to infected wild-type (WT) mice. Infected AhR-KO mice also displayed a reduction in cytokines required for host resistance, including TNF-α, IL-1β, and IFN-γ, in the brain and spleen. Infection of AhR-KO mice resulted in an increase in T regulatory cells and transforming growth factor β, IL-6, and IL-17 in the brain. AhR modulated the basal expression of SOCS3 in spleen and brain, and P. berghei Anka infection resulted in enhanced expression of SOCS3 in brain, which was absent in infected AhR-KO mice. These data suggest that AhR-mediated control of SOCS3 expression is probably involved in the phenotype seen in infected AhR-KO mice. This is, to our knowledge, the first demonstration of a role for AhR in the pathogenesis of malaria.
Collapse
|
85
|
Sibilano R, Pucillo CE, Gri G. Allergic responses and aryl hydrocarbon receptor novel pathway of mast cell activation. Mol Immunol 2014; 63:69-73. [PMID: 24656327 DOI: 10.1016/j.molimm.2014.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/20/2014] [Accepted: 02/25/2014] [Indexed: 12/21/2022]
Abstract
The activation of the transcription factor aryl hydrocarbon receptor (AhR) is modulated by a wide variety of xenobiotics and ligands deriving from products of metabolism. The study of the contribution of AhR to allergic diseases has gained much interest in recent years. Here we discuss the role that environmental factors and metabolic products, particularly acting on AhR-expressing mast cells (MCs), could have in the development of local allergic/atopic response. Thus, this review will cover: a brief overview of the AhR mechanism of action in the immune system; a description of different AhR ligands and their effects to IgE-mediated MC activation in the allergic response, with particular attention to the role of IL-17; a discussion about the potential involvement of AhR in immune tolerance; and a conclusion on human diseases in which direct AhR activation of MC might have a major impact.
Collapse
Affiliation(s)
- Riccardo Sibilano
- Department of Pathology, CCSR 3255, 269 Campus Drive, Stanford, CA 94305, USA
| | - Carlo E Pucillo
- Department of Medical and Biological Sciences, University of Udine, P.le M. Kolbe 4, 33100 Udine, Italy
| | - Giorgia Gri
- Department of Medical and Biological Sciences, Section of Surgical Pathology, University of Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy.
| |
Collapse
|
86
|
Mohammadi A, Mehrzad J, Mahmoudi M, Schneider M. Environmentally Relevant Level of Aflatoxin B1 Dysregulates Human Dendritic Cells Through Signaling on Key Toll-Like Receptors. Int J Toxicol 2014; 33:175-186. [DOI: 10.1177/1091581814526890] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aflatoxins (AFs) are highly hazardous fungal biometabolites usually present in feeds and foods. Aflatoxin B1 (AFB1) is the most toxic and a known carcinogen. Toll-like receptors (TLRs), highly expressed by myeloid dendritic cells (DC), are key innate immune-surveillance molecules. Toll-like receptors not only sense pathogen-associated molecular patterns but also contribute to infections and cancer. To assess AFB1–TLR interactions on human myeloid DC, pure CD11c+ DC were generated from monocytes isolated from healthy individuals and then exposed to relevant level of AFB1 for 2 hours. Both quantitative polymerase chain reaction and flow cytometric assays were used to quantify, respectively, expression of TLR2 and TLR4 at the messenger RNA (mRNA) and protein levels in these DC. Levels of interleukin (IL) 1β, IL-6, and IL-10 were also analyzed in AFB1- and mock-treated DC. Compared to nontreated CD11c+ DC, expression levels of both TLR2 and TLR4 mRNA and proteins were significantly upregulated in AFB1-treated cells. Further, although IL-10 levels in AFB1-treated DC were similar to those in the mock-treated DC, the AFB1-exposed DC secreted higher amounts of IL-1β and IL-6. Dendritic cells are sensitive to environmentally relevant level of AFB1, and TLR2 and TLR4 are involved in sensing AFB1. Considering the broad roles of TLR2, TLR4, and DC in immunity and infections, our novel findings open a new door to understanding the molecular mechanisms and functional consequences of AFB1 in inducing immunodysregulation, immunotoxicity, and thus (non)infectious diseases in humans.
Collapse
Affiliation(s)
- Azam Mohammadi
- Department of Pathobiology, Sections Immunology and Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Veterinary Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jalil Mehrzad
- Department of Pathobiology, Sections Immunology and Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Veterinary Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marion Schneider
- Sektion Experimentelle Anästhesiologie, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
87
|
Generation of IL-8 and IL-9 producing CD4⁺ T cells is affected by Th17 polarizing conditions and AHR ligands. Mediators Inflamm 2014; 2014:182549. [PMID: 24692846 PMCID: PMC3945483 DOI: 10.1155/2014/182549] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/03/2014] [Indexed: 12/20/2022] Open
Abstract
The T helper cell subsets Th1, Th2, Th17, and Treg play an important role in immune cell homeostasis, in host defense, and in immunological disorders. Recently, much attention has been paid to Th17 cells which seem to play an important role in the early phase of the adoptive immune response and autoimmune disease. When generating Th17 cells under in vitro conditions the amount of IL-17A producing cells hardly exceeds 20% while the nature of the remaining T cells is poorly characterized. As engagement of the aryl hydrocarbon receptor (AHR) has also been postulated to modulate the differentiation of T helper cells into Th17 cells with regard to the IL-17A expression we ask how far do Th17 polarizing conditions in combination with ligand induced AHR activation have an effect on the production of other T helper cell cytokines. We found that a high proportion of T helper cells cultured under Th17 polarizing conditions are IL-8 and IL-9 single producing cells and that AHR activation results in an upregulation of IL-8 and a downregulation of IL-9 production. Thus, we have identified IL-8 and IL-9 producing T helper cells which are subject to regulation by the engagement of the AHR.
Collapse
|
88
|
Abstract
The Th17 pathway has recently been shown to play a critical role in host defense, allergic responses and autoimmune inflammation. Th17 cells predominantly produce IL-17 and IL-22, which are two cytokines with broad effects in the lung and other tissues. This review summarizes not only what is currently known about the molecular regulation of this pathway and Th17-related cytokine signaling, but also the roles of these cytokines in pathogen immunity and asthma. In the last 5 years, the Th17 field has rapidly grown and research has revealed that the Th17 pathway is essential in lung pathogenesis in response to exogenous stimuli. As work in the field continues, it is expected that many exciting therapeutic advances will be made for a broad range of diseases.
Collapse
Affiliation(s)
- Michelle L Manni
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| | - Keven M Robinson
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John F Alcorn
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| |
Collapse
|
89
|
Toward understanding the role of aryl hydrocarbon receptor in the immune system: current progress and future trends. BIOMED RESEARCH INTERNATIONAL 2014; 2014:520763. [PMID: 24527450 PMCID: PMC3914515 DOI: 10.1155/2014/520763] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/14/2013] [Indexed: 01/03/2023]
Abstract
The immune system is regulated by distinct signaling pathways that control the development and function of the immune cells. Accumulating evidence suggest that ligation of aryl hydrocarbon receptor (Ahr), an environmentally responsive transcription factor, results in multiple cross talks that are capable of modulating these pathways and their downstream responsive genes. Most of the immune cells respond to such modulation, and many inflammatory response-related genes contain multiple xenobiotic-responsive elements (XREs) boxes upstream. Active research efforts have investigated the physiological role of Ahr in inflammation and autoimmunity using different animal models. Recently formed paradigm has shown that activation of Ahr by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3,3′-diindolylmethane (DIM) prompts the differentiation of CD4+Foxp3+ regulatory T cells (Tregs) and inhibits T helper (Th)-17 suggesting that Ahr is an innovative therapeutic strategy for autoimmune inflammation. These promising findings generate a basis for future clinical practices in humans. This review addresses the current knowledge on the role of Ahr in different immune cell compartments, with a particular focus on inflammation and autoimmunity.
Collapse
|
90
|
Duarte JH, Di Meglio P, Hirota K, Ahlfors H, Stockinger B. Differential influences of the aryl hydrocarbon receptor on Th17 mediated responses in vitro and in vivo. PLoS One 2013; 8:e79819. [PMID: 24244565 PMCID: PMC3828240 DOI: 10.1371/journal.pone.0079819] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has been attributed with anti-inflammatory effects in the development of pathological immune responses leading to experimental autoimmune encephalomyelitis (EAE) via the induction of regulatory T cells. In agreement with previously published findings, we find that TCDD administration confers protection from EAE, however, this immuno-modulatory effect was not the consequence of de novo Treg generation, but the inhibition of Th17 cell differentiation. Systemic application of FICZ at the time of immunization also reduced EAE pathology albeit to a lesser degree than TCDD. In vitro Th17 differentiation in the presence of AhR agonists, including TCDD, promoted IL-17 and IL-22 expression, but did not induce Treg differentiation. AhR affinity influenced the amounts of IL-17 and IL-22 protein that was secreted by Th17 cells, but did not seem to affect susceptibility to EAE in vivo. Making use of conditional AhR-deficient mice, we show that the anti-inflammatory effect of TCDD depends on AhR activation in both T cells and dendritic cells, further emphasising the ability of TCDD to interfere with T effector cell differentiation in vivo. The dichotomy between the in vivo and in vitro effects of AhR reveals the complexity of the AhR pathway, which has the capacity of affecting different AhR-expressing cell types involved in mounting immune responses, thus participating in defining their outcome.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/deficiency
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Carbazoles/pharmacology
- Cell Differentiation/drug effects
- Cells, Cultured
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Environmental Pollutants/pharmacology
- Gene Expression Regulation
- Immunity, Cellular/drug effects
- Immunologic Factors/pharmacology
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukins/genetics
- Interleukins/immunology
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments
- Polychlorinated Dibenzodioxins/analogs & derivatives
- Polychlorinated Dibenzodioxins/pharmacology
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/immunology
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/pathology
- Interleukin-22
Collapse
Affiliation(s)
- João H. Duarte
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Paola Di Meglio
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Keiji Hirota
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Helena Ahlfors
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
91
|
Innate lymphoid cells in homeostasis, infection, chronic inflammation and tumors of the gastrointestinal tract. Curr Opin Gastroenterol 2013; 29:581-7. [PMID: 24100718 DOI: 10.1097/mog.0b013e328365d339] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW To highlight the functions of a recently discovered group of immune cells known as innate lymphoid cells (ILCs) during homeostasis and infections of the gastrointestinal tract. RECENT FINDINGS ILCs are lymphocytes that lack specific antigen receptors. They are found in the mucosae and mucosal-associated lymphoid tissues, where they promptly initiate cytokine responses to pathogens upon initial exposure. ILCs have been classified into distinct groups based on their cytokine secretion: ILC1 produce IFN-γ, ILC2 secrete IL-5 and IL-13, and ILC3 produce IL-22 and IL-17. Recent studies have discovered the heterogeneity of ILC1 and ILC3 in the gastrointestinal tract. ILC1 subsets may contribute to the inflammatory bowel disease. ILC3 subsets may be beneficial in the defense against gastrointestinal infections, but their sustained activation may lead to cancer. SUMMARY ILCs may provide a target for new avenues of therapeutic intervention in inflammatory bowel disease and gastrointestinal cancer.
Collapse
|
92
|
Beamer CA, Shepherd DM. Role of the aryl hydrocarbon receptor (AhR) in lung inflammation. Semin Immunopathol 2013; 35:693-704. [PMID: 23963493 PMCID: PMC3821999 DOI: 10.1007/s00281-013-0391-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/01/2013] [Indexed: 12/23/2022]
Abstract
Millions of individuals worldwide are afflicted with acute and chronic respiratory diseases, causing temporary and permanent disabilities and even death. Oftentimes, these diseases occur as a result of altered immune responses. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, acts as a regulator of mucosal barrier function and may influence immune responsiveness in the lungs through changes in gene expression, cell-cell adhesion, mucin production, and cytokine expression. This review updates the basic immunobiology of the AhR signaling pathway with regards to inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease, and silicosis following data in rodent models and humans. Finally, we address the therapeutic potential of targeting the AhR in regulating inflammation during acute and chronic respiratory diseases.
Collapse
Affiliation(s)
- Celine A Beamer
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, Skaggs School of Pharmacy and Allied Health Sciences, The University of Montana, 32 Campus Drive, Skaggs Building Room 284, Missoula, MT, 59812, USA
| | | |
Collapse
|
93
|
Abstract
Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability and translation contribute to the rapid and flexible control of gene expression in immune effector cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes (e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3'-untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-transcriptional control mechanisms that contribute to gene expression in the immune system and discuss how defects in these pathways can contribute to autoimmune disease.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
94
|
Qiu J, Guo X, Chen ZME, He L, Sonnenberg GF, Artis D, Fu YX, Zhou L. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 2013; 39:386-99. [PMID: 23954130 PMCID: PMC3884586 DOI: 10.1016/j.immuni.2013.08.002] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/17/2013] [Indexed: 12/20/2022]
Abstract
Aryl hydrocarbon receptor (Ahr) is crucial for the maintenance and function of group 3 innate lymphoid cells (ILCs), which are important in gut immunity. Because Ahr promotes T helper 17 (Th17) cell differentiation in vitro, it is reasonable to expect that Ahr would enhance Th17 cells in vivo. Instead, we show that Ahr deficiency caused increased intestinal Th17 cells, raising the possibility that group 3 ILCs could negatively regulate Th17 cells. Reduced innate interleukin-22 (IL-22) in Ahr-deficient mice allowed expansion of commensal segmented filamentous bacteria (SFB), known to promote Th17 cells. Compared to Rorc(+/+)Ahr(-/-) mice, Rorc(gfp/+)Ahr(-/-) mice had further reduced group 3 ILCs and were prone to spontaneous colitis with increased SFB and Th17 cells. Innate expression of Ahr played a protective role in T-cell-mediated experimental colitis by suppressing pathogenic Th17 cells. Our data reveal an intricate balance between ILCs and Th17 cells regulated by Ahr and commensal flora.
Collapse
Affiliation(s)
- Ju Qiu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xiaohuan Guo
- Department of Pathology, Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Zong-ming E. Chen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lei He
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gregory F. Sonnenberg
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - David Artis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Yang-Xin Fu
- Department of Pathology, Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Liang Zhou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
95
|
Abstract
Discovery of the T-helper 17 (Th17) subset heralded a major shift in T-cell biology and immune regulation. In addition to defining a new arm of the adaptive immune response, studies of the Th17 pathway have led to a greater appreciation of the developmental flexibility, or plasticity, that is a feature of T-cell developmental programs. Since the initial finding that differentiation of Th17 cells is promoted by transforming growth factor-β (TGFβ), it became clear that Th17 cell development overlapped that of induced regulatory T (iTreg) cells. Subsequent findings established that Th17 cells are also unusually flexible in their late developmental programming, demonstrating substantial overlap with conventional Th1 cells through mechanisms that are just beginning to be understood but would appear to have important implications for immunoregulation at homeostasis and in immune-mediated diseases. Herein we examine the developmental and functional features of Th17 cells in relation to iTreg cells, Th1 cells, and Th22 cells, as a basis for understanding the contributions of this pathway to host defense, immune homeostasis, and immune-mediated disease.
Collapse
Affiliation(s)
- Rajatava Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
96
|
Hao N, Whitelaw ML. The emerging roles of AhR in physiology and immunity. Biochem Pharmacol 2013; 86:561-70. [PMID: 23856287 DOI: 10.1016/j.bcp.2013.07.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is traditionally defined as a transcriptional regulator involved in adaptive xenobiotic response, however, emerging evidence supports physiological functions of AhR in normal cell development and immune response. The role of AhR in immunomodulation is multi-dimensional. On the one hand, activation of AhR by TCDD and other ligands leads to profound immunosuppression, potentially via skewed Th1/Th2 cell balance toward Th1 dominance, and boosted Treg cell differentiation. On the other hand, activation of AhR can also induce Th17 cell polarization and increase the severity of autoimmune disease. In addition to T lymphocytes, the AhR also appears to play a vital role in B cell maturation, and regulates the activity of macrophages, dendritic cells and neutrophils following lipopolysaccharide challenge or influenza virus infection. In these scenarios, activation of AhR is associated with decreased host response and reduced survival. Furthermore, gene knock out studies suggest that AhR is indispensable for the postnatal maintenance of intestinal intraepithelial lymphocytes and skin-resident dendritic epidermal gamma delta T cells, providing a potential link between AhR and gut immunity and wound healing. It is well accepted that the magnitude and the type of immune response is dependent on the local cytokine milieu and the AhR appears to be one of the key factors involved in the fine turning of this cytokine balance.
Collapse
Affiliation(s)
- Nan Hao
- School of Molecular and Biomedical Science (Biochemistry), The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
97
|
Morino-Koga S, Uchi H, Tsuji G, Takahara M, Kajiwara J, Hirata T, Furue M. Reduction of CC-chemokine ligand 5 by aryl hydrocarbon receptor ligands. J Dermatol Sci 2013; 72:9-15. [PMID: 23810773 DOI: 10.1016/j.jdermsci.2013.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/09/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that recognizes a large number of xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), dioxins, and some endogenous ligands. Despite numerous investigations targeting AhR ligands, the precise physiological role of AhR remains unknown. OBJECTIVE We explored novel AhR target genes, especially focused on inflammatory chemokine. METHODS We treated (1) HaCaT, a human keratinocyte cell line, (2) normal human epidermal keratinocytes (NHEKs), and (3) mouse primary keratinocytes with AhR ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ; endogenous ligand) and benzo[a]pyrene (BaP; exogenous ligand). Then, we detected mRNA and protein of chemokine using quantitative RT-PCR and ELISA. We next clarified the relationship between AhR and chemokine expression using AhR siRNA. In addition, we measured serum chemokine levels in patients with Yusho disease (oil disease), who were accidentally exposed to dioxins in the past. RESULTS We identified CC-chemokine ligand 5 (CCL5), a key mediator in the development of inflammatory responses, as the AhR target gene. AhR ligands (FICZ and BaP) significantly reduced CCL5 mRNA and protein expression in HaCaT cells. These effects were observed in NHEKs and mouse primary keratinocytes. AhR knockdown with siRNA restored CCL5 inhibition by AhR ligands. In addition, AhR ligands exhibited a dose-dependent suppression of CCL5 production induced by Th1-derived cytokines. Finally, serum levels of CCL5 in patients with Yusho disease, were significantly lower than in controls. CONCLUSION Our findings indicate that CCL5 is a target gene for AhR, and might be associated with the pathology of dioxin exposure.
Collapse
Affiliation(s)
- Saori Morino-Koga
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
98
|
Murugaiyan J, Rockstroh M, Wagner J, Baumann S, Schorsch K, Trump S, Lehmann I, Bergen MV, Tomm JM. Benzo[a]pyrene affects Jurkat T cells in the activated state via the antioxidant response element dependent Nrf2 pathway leading to decreased IL-2 secretion and redirecting glutamine metabolism. Toxicol Appl Pharmacol 2013; 269:307-16. [DOI: 10.1016/j.taap.2013.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 02/01/2023]
|
99
|
Canny GO, Lessey BA. The role of lipoxin A4 in endometrial biology and endometriosis. Mucosal Immunol 2013; 6:439-50. [PMID: 23485944 PMCID: PMC4062302 DOI: 10.1038/mi.2013.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipoxin A4 (LXA4), an endogenous anti-inflammatory and immunomodulatory mediator studied in many disease states, is recently appreciated as a potentially significant player in the endometrium. This eicosanoid, synthesized from arachidonic acid via the action of lipoxygenase enzymes, is likely regulated in endometrial tissue during the menstrual cycle. Recent studies revealed that LXA4 acts as an estrogen receptor agonist in endometrial epithelial cells, antagonizing some estrogen-mediated activities in a manner similar to the weak estrogen estriol, with which it shares structural similarity. LXA4 may also be an anti-inflammatory molecule in the endometrium, though its precise function in various physiological and pathological scenarios remains to be determined. The expression patterns for LXA4 and its receptor in the female reproductive tract suggest a role in pregnancy. The present review provides an oversight of its known and putative roles in the context of immuno-endocrine crosstalk. Endometriosis, a common inflammatory condition and a major cause of infertility and pain, is currently treated by surgery or anti-hormone therapies that are contraceptive and associated with undesirable side effects. LXA4 may represent a potential therapeutic and further research to elucidate its function in endometrial tissue and the peritoneal cavity will undoubtedly provide valuable insights.
Collapse
Affiliation(s)
- GO Canny
- Geneva Foundation for Medical Education and Research, Versoix, Switzerland
| | - BA Lessey
- University of South Carolina School of Medicine—Greenville, Greenville, SC, USA
| |
Collapse
|
100
|
Rogers JA, Metz L, Yong VW. Review: Endocrine disrupting chemicals and immune responses: A focus on bisphenol-A and its potential mechanisms. Mol Immunol 2013; 53:421-30. [DOI: 10.1016/j.molimm.2012.09.013] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/30/2012] [Indexed: 01/08/2023]
|