51
|
Panting M, Holme IB, Björnsson JM, Brinch-Pedersen H. Modulation of Barley (Hordeum vulgare L.) Grain Protein Sink-Source Relations Towards Human Epidermal Growth Factor Instead of B-hordein Storage Protein. Mol Biotechnol 2020; 63:13-23. [PMID: 33051823 DOI: 10.1007/s12033-020-00279-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Seeds have evolutionarily developed to store protein without immediately degrading it and constitute ideal tissues for recombinant protein storage. Unfortunately, the production of recombinant protein in seeds is compromised by low yield as compared to other heterologous expression systems. In order to improve the yield of the human epidermal growth factor (EGF) in barley, protein sink-source relations in the developing grain were modulated towards EGF instead of the barley storage protein. The EGF gene, under the control of a B-hordein and a seed-specific oat globulin promoter, was introduced by crossing EGF lines into the Risø 56 mutant deficient in B-hordein storage protein synthesis. Offspring plants were analysed for EGF and Hordein expression and for expression of the unfolded protein response (UPR) genes PDI and CRT to monitor changes in ER stress levels. EGF content was increased significantly in the mature grain of homozygous offspring and PDI and CRT gene expressions were upregulated. We demonstrate, for the first time in barley, that replacement of an abundant seed storage protein with a specific heterologous protein driven by the promoter of the removed gene can accelerate the production of a specific heterologous protein in barley grains.
Collapse
Affiliation(s)
- Michael Panting
- Department of AgroEcology, Research Center Flakkebjerg, Aarhus University, 4200, Slagelse, Denmark
| | - Inger Bæksted Holme
- Department of AgroEcology, Research Center Flakkebjerg, Aarhus University, 4200, Slagelse, Denmark
| | | | - Henrik Brinch-Pedersen
- Department of AgroEcology, Research Center Flakkebjerg, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|
52
|
Damaj MB, Jifon JL, Woodard SL, Vargas-Bautista C, Barros GOF, Molina J, White SG, Damaj BB, Nikolov ZL, Mandadi KK. Unprecedented enhancement of recombinant protein production in sugarcane culms using a combinatorial promoter stacking system. Sci Rep 2020; 10:13713. [PMID: 32792533 PMCID: PMC7426418 DOI: 10.1038/s41598-020-70530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
Plants represent a safe and cost-effective platform for producing high-value proteins with pharmaceutical properties; however, the ability to accumulate these in commercially viable quantities is challenging. Ideal crops to serve as biofactories would include low-input, fast-growing, high-biomass species such as sugarcane. The objective of this study was to develop an efficient expression system to enable large-scale production of high-value recombinant proteins in sugarcane culms. Bovine lysozyme (BvLz) is a potent broad-spectrum antimicrobial enzyme used in the food, cosmetics and agricultural industries. Here, we report a novel strategy to achieve high-level expression of recombinant proteins using a combinatorial stacked promoter system. We demonstrate this by co-expressing BvLz under the control of multiple constitutive and culm-regulated promoters on separate expression vectors and combinatorial plant transformation. BvLz accumulation reached 1.4% of total soluble protein (TSP) (10.0 mg BvLz/kg culm mass) in stacked multiple promoter:BvLz lines, compared to 0.07% of TSP (0.56 mg/kg) in single promoter:BvLz lines. BvLz accumulation was further boosted to 11.5% of TSP (82.5 mg/kg) through event stacking by re-transforming the stacked promoter:BvLz lines with additional BvLz expression vectors. The protein accumulation achieved with the combinatorial promoter stacking expression system was stable in multiple vegetative propagations, demonstrating the feasibility of using sugarcane as a biofactory for producing high-value proteins and bioproducts.
Collapse
Affiliation(s)
- Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
| | - John L Jifon
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843-2133, USA
| | - Susan L Woodard
- National Center for Therapeutics Manufacturing, Texas A&M University, 100 Discovery Drive, College Station, TX, 77843-4482, USA
| | - Carol Vargas-Bautista
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- College of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX, 77807, USA
| | - Georgia O F Barros
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Joe Molina
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
| | - Steven G White
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Bassam B Damaj
- Innovus Pharmaceuticals, Inc., 8845 Rehco Road, San Diego, CA, 92121, USA
| | - Zivko L Nikolov
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA.
| |
Collapse
|
53
|
Hefferon K, Cantero-Tubilla B, Badar U, Wilson DW. Plant-Based Cellulase Assay Systems as Alternatives for Synthetic Substrates. Appl Biochem Biotechnol 2020; 192:1318-1330. [PMID: 32734581 DOI: 10.1007/s12010-020-03395-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/16/2020] [Indexed: 11/25/2022]
Abstract
Dissociative enzymes such as cellulases are greatly desired for a variety of applications in the food, fuel, and fiber industries. Cellulases and other cell wall-degrading enzymes are currently being engineered with improved traits for application in the breakdown of lignocellulosic biomass. Biochemical assays using these "designer" enzymes have traditionally been carried out using synthetic substrates such as crystalline bacterial microcellulose (BMCC). However, the use of synthetic substrates may not reflect the actual action of these cellulases on real plant biomass. We examined the potential of suspension cell walls from several plant species as possible alternatives for synthetic cellulose substrates. Suspension cells grow synchronously; hence, their cell walls are more uniform than those derived from mature plants. This work will help to establish a new assay system that is more genuine than using synthetic substrates. In addition to this, we have demonstrated that it is feasible to produce cellulases inexpensively and at high concentrations and activities in plants using a recombinant plant virus expression system. Our long-term goals are to use this system to develop tailored cocktails of cellulases that have been engineered to function optimally for specific tasks (i.e., the conversion of biomass into biofuel or the enhancement of nutrients available in livestock feed). The broad impact would be to provide a facile and economic system for generating industrial enzymes that offer green solutions to valorize biomass in industrialized communities and specifically in developing countries.
Collapse
Affiliation(s)
- Kathleen Hefferon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| | - Borja Cantero-Tubilla
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Uzma Badar
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - David W Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
54
|
Whitcomb SJ, Rakpenthai A, Brückner F, Fischer A, Parmar S, Erban A, Kopka J, Hawkesford MJ, Hoefgen R. Cysteine and Methionine Biosynthetic Enzymes Have Distinct Effects on Seed Nutritional Quality and on Molecular Phenotypes Associated With Accumulation of a Methionine-Rich Seed Storage Protein in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1118. [PMID: 32793268 PMCID: PMC7387578 DOI: 10.3389/fpls.2020.01118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Staple crops in human and livestock diets suffer from deficiencies in certain "essential" amino acids including methionine. With the goal of increasing methionine in rice seed, we generated a pair of "Push × Pull" double transgenic lines, each containing a methionine-dense seed storage protein (2S albumin from sunflower, HaSSA) and an exogenous enzyme for either methionine (feedback desensitized cystathionine gamma synthase from Arabidopsis, AtD-CGS) or cysteine (serine acetyltransferase from E. coli, EcSAT) biosynthesis. In both double transgenic lines, the total seed methionine content was approximately 50% higher than in their untransformed parental line, Oryza sativa ssp. japonica cv. Taipei 309. HaSSA-containing rice seeds were reported to display an altered seed protein profile, speculatively due to insufficient sulfur amino acid content. However, here we present data suggesting that this may result from an overloaded protein folding machinery in the endoplasmic reticulum rather than primarily from redistribution of limited methionine from endogenous seed proteins to HaSSA. We hypothesize that HaSSA-associated endoplasmic reticulum stress results in redox perturbations that negatively impact sulfate reduction to cysteine, and we speculate that this is mitigated by EcSAT-associated increased sulfur import into the seed, which facilitates additional synthesis of cysteine and glutathione. The data presented here reveal challenges associated with increasing the methionine content in rice seed, including what may be relatively low protein folding capacity in the endoplasmic reticulum and an insufficient pool of sulfate available for additional cysteine and methionine synthesis. We propose that future approaches to further improve the methionine content in rice should focus on increasing seed sulfur loading and avoiding the accumulation of unfolded proteins in the endoplasmic reticulum. Oryza sativa ssp. japonica: urn:lsid:ipni.org:names:60471378-2.
Collapse
Affiliation(s)
- Sarah J. Whitcomb
- Laboratory of Amino Acid and Sulfur Metabolism, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Apidet Rakpenthai
- Laboratory of Amino Acid and Sulfur Metabolism, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Franziska Brückner
- Laboratory of Amino Acid and Sulfur Metabolism, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Axel Fischer
- Bioinformatics Infrastructure Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Saroj Parmar
- Plant Sciences Department, Rothamsted Research, Harpenden, United Kingdom
| | - Alexander Erban
- Applied Metabolome Analysis Infrastructure Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Applied Metabolome Analysis Infrastructure Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Rainer Hoefgen
- Laboratory of Amino Acid and Sulfur Metabolism, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
55
|
Shanmugaraj B, I. Bulaon CJ, Phoolcharoen W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. PLANTS 2020; 9:plants9070842. [PMID: 32635427 PMCID: PMC7411908 DOI: 10.3390/plants9070842] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline. In this review, we consider the importance of a plant- based production system for recombinant protein production, and its potential to produce biopharmaceuticals is discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: ; Tel.: +66-2-218-8359; Fax: +66-2-218-8357
| |
Collapse
|
56
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
57
|
Gomes C, Ferreira D, Carvalho JPF, Barreto CAV, Fernandes J, Gouveia M, Ribeiro F, Duque AS, Vieira SI. Current genetic engineering strategies for the production of antihypertensive ACEI peptides. Biotechnol Bioeng 2020; 117:2610-2628. [PMID: 32369185 DOI: 10.1002/bit.27373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Hypertension is a major and highly prevalent risk factor for various diseases. Among the most frequently prescribed antihypertensive first-line drugs are synthetic angiotensin I-converting enzyme inhibitors (ACEI). However, since their use in hypertension therapy has been linked to various side effects, interest in the application of food-derived ACEI peptides (ACEIp) as antihypertensive agents is rapidly growing. Although promising, the industrial production of ACEIp through conventional methods such as chemical synthesis or enzymatic hydrolysis of food proteins has been proven troublesome. We here provide an overview of current antihypertensive therapeutics, focusing on ACEI, and illustrate how biotechnology and bioengineering can overcome the limitations of ACEIp large-scale production. Latest advances in ACEIp research and current genetic engineering-based strategies for heterologous production of ACEIp (and precursors) are also presented. Cloning approaches include tandem repeats of single ACEIp, ACEIp fusion to proteins/polypeptides, joining multivariate ACEIp into bioactive polypeptides, and producing ACEIp-containing modified plant storage proteins. Although bacteria have been privileged ACEIp heterologous hosts, particularly when testing for new genetic engineering strategies, plants and microalgae-based platforms are now emerging. Besides being generally safer, cost-effective and scalable, these "pharming" platforms can perform therelevant posttranslational modifications and produce (and eventually deliver) biologically active protein/peptide-based antihypertensive medicines.
Collapse
Affiliation(s)
- Carolina Gomes
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland.,Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Green-it Unit, Oeiras, Portugal
| | - Diana Ferreira
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - João P F Carvalho
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Carlos A V Barreto
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Joana Fernandes
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Marisol Gouveia
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Fernando Ribeiro
- School of Health Sciences (ESSUA), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Ana S Duque
- Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Green-it Unit, Oeiras, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
58
|
Menary J, Hobbs M, Mesquita de Albuquerque S, Pacho A, Drake PMW, Prendiville A, Ma JKC, Fuller SS. Shotguns vs Lasers: Identifying barriers and facilitators to scaling-up plant molecular farming for high-value health products. PLoS One 2020; 15:e0229952. [PMID: 32196508 PMCID: PMC7083274 DOI: 10.1371/journal.pone.0229952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
Plant molecular farming (PMF) is a convenient and cost-effective way to produce high-value recombinant proteins that can be used in the production of a range of health products, from pharmaceutical therapeutics to cosmetic products. New plant breeding techniques (NPBTs) provide a means to enhance PMF systems more quickly and with greater precision than ever before. However, the feasibility, regulatory standing and social acceptability of both PMF and NPBTs are in question. This paper explores the perceptions of key stakeholders on two European Union (EU) Horizon 2020 programmes-Pharma-Factory and Newcotiana-towards the barriers and facilitators of PMF and NPBTs in Europe. One-on-one qualitative interviews were undertaken with N = 20 individuals involved in one or both of the two projects at 16 institutions in seven countries (Belgium, France, Germany, Italy, Israel, Spain and the UK). The findings indicate that the current EU regulatory environment and the perception of the public towards biotechnology are seen as the main barriers to scaling-up PMF and NPBTs. Competition from existing systems and the lack of plant-specific regulations likewise present challenges for PMF developing beyond its current niche. However, respondents felt that the communication of the benefits and purpose of NPBT PMF could provide a platform for improving the social acceptance of genetic modification. The importance of the media in this process was highlighted. This article also uses the multi-level perspective to explore the ways in which NPBTs are being legitimated by interested parties and the systemic factors that have shaped and are continuing to shape the development of PMF in Europe.
Collapse
Affiliation(s)
- Jonathan Menary
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Matthew Hobbs
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | | | - Agata Pacho
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Pascal M. W. Drake
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Alison Prendiville
- London College of Communication, University of the Arts, London, United Kingdom
| | - Julian K-C. Ma
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Sebastian S. Fuller
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| |
Collapse
|
59
|
Rosales-Mendoza S, Solís-Andrade KI, Márquez-Escobar VA, González-Ortega O, Bañuelos-Hernandez B. Current advances in the algae-made biopharmaceuticals field. Expert Opin Biol Ther 2020; 20:751-766. [DOI: 10.1080/14712598.2020.1739643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Karla I. Solís-Andrade
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Verónica A. Márquez-Escobar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | |
Collapse
|
60
|
Kim J, Do J, Choi HY, Kim SD, Park H, You S, Kim W, Jang Y, Kim D, Lee J, Ha J, Ji M, Kim DI, Kim HH. Profiles of plant core-fucosylated N-glycans of acid alpha-glucosidases produced in transgenic rice cell suspension cultures treated with eight different conditions. Enzyme Microb Technol 2020; 134:109482. [PMID: 32044029 DOI: 10.1016/j.enzmictec.2019.109482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/15/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
Abstract
Recombinant human acid alpha-glucosidase (rhGAA) from Chinese hamster ovary cells is the only approved treatment for patients with Pompe disease. In this study, rhGAAs were produced in transgenic rice cell suspension cultures under eight different conditions; untreated, 5 μM of 2-fluoro-l-fucose (2-FF), 50 μM of 2-FF, 100 μM of 2-FF, 100 μM of 2-FF + 0.5% Pluronic F-68 (PF-68), 100 μM of 2-FF + 0.05% Tween 20 (Tw 20), 0.5% PF-68, and 0.05% Tw 20. The N-glycans of eight rhGAAs were analyzed using ultra-performance liquid chromatography (UPLC) and tandem mass spectrometry. The relative quantity (%) of each glycan was obtained from the corresponding UPLC peak area per the sum (100%) of individual UPLC peak area. Fifteen N-glycans, comprising seven core-fucosylated glycans (71.5%, sum of each relative quantities) that have immunogenicity-inducing potential, three de-core-fucosylated glycans (15.4%), and five non-core-fucosylated glycans (13.1%), were characterized with high mass accuracy and glycan-generated fragment ions. The increases or decreases of relative quantities of each glycan from seven rhGAAs were compared with those of untreated control. The percentages of the sum of the relative quantities of core-fucosylated glycans divided by the sums of those of de-core- (core-fucose removed) and non-core-fucosylated glycans were calculated, and the lowest percentage was obtained in 100 μM of 2-FF combined with 0.5% PF-68. These results indicate that the relative quantity of each glycan of rhGAA produced in rice cell suspension cultures is significantly affected by their culture condition. This study performed the comparison of the N-glycan profiles of rice cell-derived rhGAA to identify the core-fucosylated glycans using UPLC and tandem mass spectrometry.
Collapse
Affiliation(s)
- Jihye Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jonghye Do
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Hong-Yeol Choi
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Sun-Dal Kim
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Heajin Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Seungkwan You
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Wooseok Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Yeonjoo Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Donghwi Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Junmyoung Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jongkwan Ha
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Minkyoo Ji
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Dong-Il Kim
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea.
| |
Collapse
|
61
|
Transgenic tobacco expressing Medicago sativa Defensin (Msdef1) confers resistance to various phyto-pathogens. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
62
|
Molecular farming - The slope of enlightenment. Biotechnol Adv 2020; 40:107519. [PMID: 31954848 DOI: 10.1016/j.biotechadv.2020.107519] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
Molecular farming can be defined as the use of plants to produce recombinant protein products. The technology is now >30 years old. The early promise of molecular farming was based on three perceived advantages: the low costs of growing plants, the immense scalability of agricultural production, and the inherent safety of plants as hosts for the production of pharmaceuticals. This resulted in a glut of research publications in which diverse proteins were expressed in equally diverse plant-based systems, and numerous companies were founded hoping to commercialize the new technology. There was a moderate degree of success for companies producing non-pharmaceutical proteins, but in the pharmaceutical sector the anticipation raised by promising early research was soon met by the cold hard reality of industrial pragmatism. Plants did not have a track record of success in pharmaceutical protein manufacturing, lacked a regulatory framework, and did not perform as well as established industry platforms. Negative attitudes towards genetically modified plants added to the mix. By the early 2000s, major industry players started to lose interest and pharmaceutical molecular farming fell from a peak of expectation into a trough of disillusionment, just as predicted by the Gartner hype cycle. But many of the pioneers of molecular farming have refocused their activities and have worked to address the limitations that hampered the first generation of technologies. The field has now consolidated around a smaller number of better-characterized platforms and has started to develop standardized methods and best practices, mirroring the evolution of more mature industry sectors. Likewise, attention has turned from proof-of-principle studies to realistic techno-economic modeling to capture significant niche markets, replicating the success of the industrial molecular farming sector. Here we argue that these recent developments signify that pharmaceutical molecular farming is now climbing the slope of enlightenment and will soon emerge as a mature technology.
Collapse
|
63
|
Rebelo BA, Santos RB, Ascenso OS, Nogueira AC, Lousa D, Abranches R, Ventura MR. Synthesis and biological effects of small molecule enhancers for improved recombinant protein production in plant cell cultures. Bioorg Chem 2020; 94:103452. [PMID: 31810755 DOI: 10.1016/j.bioorg.2019.103452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Histone deacetylases are involved in chromatin remodelling and thus play a vital role in the epigenetic regulation of gene expression. HDAC inhibitors alter the acetylation status of histone and non-histone proteins to regulate various cellular events such as transcription. Novel HDAC inhibitors were designed and synthesised to promote higher levels of recombinant protein production in tobacco cell cultures. The effect of these chemical enhancers on the epigenetic profiles in plant cells has been evaluated by molecular docking, in vitro and in vivo studies. The addition of these novel enhancers led to an increase in histone H3 acetylation levels that promoted an increase in the accumulation levels of the recombinant protein in cell culture. These results can pave the way for the application of these enhancers to improve the production of high value products in plant cell based systems.
Collapse
Affiliation(s)
- Bárbara A Rebelo
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Rita B Santos
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Osvaldo S Ascenso
- Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Ana Cláudia Nogueira
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Diana Lousa
- Protein Modelling Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - M Rita Ventura
- Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| |
Collapse
|
64
|
Shanmugaraj B, Rattanapisit K, Manopwisedjaroen S, Thitithanyanont A, Phoolcharoen W. Monoclonal Antibodies B38 and H4 Produced in Nicotiana benthamiana Neutralize SARS-CoV-2 in vitro. FRONTIERS IN PLANT SCIENCE 2020; 11:589995. [PMID: 33329653 PMCID: PMC7728718 DOI: 10.3389/fpls.2020.589995] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) outbreak caused by novel zoonotic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially reported in Wuhan city, Hubei Province of China, in late December 2019. The rapid global spread of the virus calls for the urgent development of vaccines or therapeutics for human applications to combat the coronavirus infection. Monoclonal antibodies (mAbs) have been utilized as effective therapeutics for treating various infectious diseases. In the present study, we evaluated the feasibility of plant expression system for the rapid production of recently identified therapeutically suitable human anti-SARS-CoV-2 mAbs B38 and H4. Transient co-expression of heavy-chain and light-chain sequences of both the antibodies by using plant expression geminiviral vector resulted in rapid accumulation of assembled mAbs in Nicotiana benthamiana leaves within 4 days post-infiltration. Furthermore, both the mAbs were purified from the plant crude extracts with single-step protein A affinity column chromatography. The expression level of mAb B38 and H4 was estimated to be 4 and 35 μg/g leaf fresh weight, respectively. Both plant-produced mAbs demonstrated specific binding to receptor binding domain (RBD) of SARS-CoV-2 and exhibited efficient virus neutralization activity in vitro. To the best of our knowledge, this is the first report of functional anti-SARS-CoV-2 mAbs produced in plants, which demonstrates the ability of using a plant expression system as a suitable platform for the production of effective, safe, and affordable SARS-CoV-2 mAbs to fight against the spread of this highly infectious pathogen.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kaewta Rattanapisit
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Waranyoo Phoolcharoen,
| |
Collapse
|
65
|
Bohlender LL, Parsons J, Hoernstein SNW, Rempfer C, Ruiz-Molina N, Lorenz T, Rodríguez Jahnke F, Figl R, Fode B, Altmann F, Reski R, Decker EL. Stable Protein Sialylation in Physcomitrella. FRONTIERS IN PLANT SCIENCE 2020; 11:610032. [PMID: 33391325 PMCID: PMC7775405 DOI: 10.3389/fpls.2020.610032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 05/07/2023]
Abstract
Recombinantly produced proteins are indispensable tools for medical applications. Since the majority of them are glycoproteins, their N-glycosylation profiles are major determinants for their activity, structural properties and safety. For therapeutical applications, a glycosylation pattern adapted to product and treatment requirements is advantageous. Physcomitrium patens (Physcomitrella, moss) is able to perform highly homogeneous complex-type N-glycosylation. Additionally, it has been glyco-engineered to eliminate plant-specific sugar residues by knock-out of the β1,2-xylosyltransferase and α1,3-fucosyltransferase genes (Δxt/ft). Furthermore, Physcomitrella meets wide-ranging biopharmaceutical requirements such as GMP compliance, product safety, scalability and outstanding possibilities for precise genome engineering. However, all plants, in contrast to mammals, lack the capability to perform N-glycan sialylation. Since sialic acids are a common terminal modification on human N-glycans, the property to perform N-glycan sialylation is highly desired within the plant-based biopharmaceutical sector. In this study, we present the successful achievement of protein N-glycan sialylation in stably transformed Physcomitrella. The sialylation ability was achieved in a Δxt/ft moss line by stable expression of seven mammalian coding sequences combined with targeted organelle-specific localization of the encoded enzymes responsible for the generation of β1,4-galactosylated acceptor N-glycans as well as the synthesis, activation, transport and transfer of sialic acid. Production of free (Neu5Ac) and activated (CMP-Neu5Ac) sialic acid was proven. The glycosidic anchor for the attachment of terminal sialic acid was generated by the introduction of a chimeric human β1,4-galactosyltransferase gene under the simultaneous knock-out of the gene encoding the endogenous β1,3-galactosyltransferase. Functional complex-type N-glycan sialylation was confirmed via mass spectrometric analysis of a stably co-expressed recombinant human protein.
Collapse
Affiliation(s)
- Lennard L. Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Natalia Ruiz-Molina
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Timo Lorenz
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fernando Rodríguez Jahnke
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Rudolf Figl
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- *Correspondence: Eva L. Decker,
| |
Collapse
|
66
|
Hefferon KL. The role of plant expression platforms in biopharmaceutical development: possibilities for the future. Expert Rev Vaccines 2019; 18:1301-1308. [PMID: 31829081 DOI: 10.1080/14760584.2019.1704264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Plant-made vaccines have been in the pipeline for nearly thirty years. Generated stably in transgenic plants or transiently using virus expression systems, pharmaceuticals have been developed to address global pandemics as well as several emerging One Health Diseases.Areas covered: This review describes the generation of plant-made vaccines to address some of the world's most growing health concerns, including both infectious and non-communicable diseases, such as cancer. The review provides an overview of the research taking place in this field over the past three to five years. The PubMed database was searched under the topic of plant-made vaccine between the periods of 2014 and 2019.Expert opinion: While vaccines and other biologics have been shown to be cheap safe and efficacious, they have not yet entered the marketplace largely due to regulatory constraints. The lack of an appropriate regulatory structure to guide plant-made vaccines through to commercial development has stalled efforts to provide life-saving medicines to low- and middle-income families. In my opinion, it is paramount that regulatory hurdles are mitigated to address emerging infectious diseases such as Ebola and Zika in a timely manner.
Collapse
|
67
|
Moon KB, Park JS, Park YI, Song IJ, Lee HJ, Cho HS, Jeon JH, Kim HS. Development of Systems for the Production of Plant-Derived Biopharmaceuticals. PLANTS 2019; 9:plants9010030. [PMID: 31878277 PMCID: PMC7020158 DOI: 10.3390/plants9010030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Over the last several decades, plants have been developed as a platform for the production of useful recombinant proteins due to a number of advantages, including rapid production and scalability, the ability to produce unique glycoforms, and the intrinsic safety of food crops. The expression methods used to produce target proteins are divided into stable and transient systems depending on applications that use whole plants or minimally processed forms. In the early stages of research, stable expression systems were mostly used; however, in recent years, transient expression systems have been preferred. The production of the plant itself, which produces recombinant proteins, is currently divided into two major approaches, open-field cultivation and closed-indoor systems. The latter encompasses such regimes as greenhouses, vertical farming units, cell bioreactors, and hydroponic systems. Various aspects of each system will be discussed in this review, which focuses mainly on practical examples and commercially feasible approaches.
Collapse
Affiliation(s)
- Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - In-Ja Song
- National Research Safety Headquarters, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Chungbuk-do 28116, Korea;
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Correspondence: ; Tel.: +82-42-860-4493
| |
Collapse
|
68
|
Muñoz-Talavera A, Gómez-Lim MÁ, Salazar-Olivo LA, Reinders J, Lim K, Escobedo-Moratilla A, López-Calleja AC, Islas-Carbajal MC, Rincón-Sánchez AR. Expression of the Biologically Active Insulin Analog SCI-57 in Nicotiana Benthamiana. Front Pharmacol 2019; 10:1335. [PMID: 31798448 PMCID: PMC6868099 DOI: 10.3389/fphar.2019.01335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus is a growing problem worldwide; however, only 23% of low-income countries have access to insulin, and ironically it costs higher in such countries than high-income ones. Therefore, new strategies for insulin and insulin analogs production are urgently required to improve low-cost access to therapeutic products, so as to contain the diabetes epidemic. SCI-57 is an insulin analog with a greater affinity for the insulin receptor and lower thermal degradation than native insulin. It also shows native mitogenicity and insulin-like biological activity. In this work, SCI-57 was transiently expressed in the Nicotiana benthamiana (Nb) plant, and we also evaluated some of its relevant biological effects. An expression plasmid was engineered to translate an N-terminal ubiquitin and C-terminal endoplasmic reticulum-targeting signal KDEL, in order to increase protein expression and stability. Likewise, the effect of co-expression of influenza M2 ion channel (M2) on the expression of insulin analog SCI-57 (SCI-57/M2) was evaluated. Although using M2 increases yield, it tends to alter the SCI-57 amino acid sequence, possibly promoting the formation of oligomers. Purification of SCI-57 was achieved by FPLC cation exchange and ultrafiltration of N. benthamiana leaf extract (NLE). SCI-57 exerts its anti-diabetic properties by stimulating glucose uptake in adipocytes, without affecting the lipid accumulation process. Expression of the insulin analog in agroinfiltrated plants was confirmed by SDS-PAGE, RP-HPLC, and MS. Proteome changes related to the expression of heterologous proteins on N. benthamiana were not observed; up-regulated proteins were related to the agroinfiltration process. Our results demonstrate the potential for producing a biologically active insulin analog, SCI-57, by transient expression in Nb.
Collapse
Affiliation(s)
- Adriana Muñoz-Talavera
- Department of Physiology, Institute of Experimental and Clinical Therapeutics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Miguel Ángel Gómez-Lim
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato, Mexico
| | - Luis A Salazar-Olivo
- Division of Molecular Biology, Institute for Scientific and Technological Research of San Luis Potosí, San Luis Potosí, Mexico
| | - Jörg Reinders
- Scientific Support Unit Analytical Chemistry, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Katharina Lim
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Abraham Escobedo-Moratilla
- CONACYT-Consortium for Research, Innovation, and Development of the Drylands (CIIDZA), IPICYT, San Luis Potosí, Mexico
| | - Alberto Cristian López-Calleja
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato, Mexico
| | - María Cristina Islas-Carbajal
- Department of Physiology, Institute of Experimental and Clinical Therapeutics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Ana Rosa Rincón-Sánchez
- Institute of Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomic, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
69
|
A simplified techno‐economic model for the molecular pharming of antibodies. Biotechnol Bioeng 2019; 116:2526-2539. [DOI: 10.1002/bit.27093] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022]
|
70
|
Scott IM, Zhu H, Schieck K, Follick A, Reynolds LB, Menassa R. Non-target Effects of Hyperthermostable α-Amylase Transgenic Nicotiana tabacum in the Laboratory and the Field. FRONTIERS IN PLANT SCIENCE 2019; 10:878. [PMID: 31354758 PMCID: PMC6630089 DOI: 10.3389/fpls.2019.00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Thermostable α-amylases are important enzymes used in many industrial processes. The expression of recombinant Pyrococcus furiosus α-amylase (PFA) in Nicotiana tabacum has led to the accumulation of high levels of recombinant protein in transgenic plants. The initial steps to registering the transgenic tobacco at a commercial production scale and growing it in the field requires a risk assessment of potential non-target effects. The objective of this study was to assess the effect of feeding on transgenic tobacco with 2 indigenous insect species commonly associated with wild and commercial tobacco involving plants grown and evaluated under laboratory and field conditions. The highest levels of PFA ranged from 1.3 to 2.7 g/kg leaf fresh weight produced in the field-grown cultivars Con Havana and Little Crittenden, respectively. These two cultivars also had the highest nicotine (ranging from 4.6 to 10.9 mg/g), but there was little to no negative effect for either tobacco hornworm Manduca sexta L. or aphid Myzus nicotianae (Blackman). Both laboratory and field trials determined no short term (5 days) decrease in the survival or fecundity of the tobacco aphid after feeding on PFA transgenic tobacco compared to non-transgenic plants. In the field, tobacco hornworm larvae showed no differences in survival, final larval weights or development time to adult stage between transgenic lines of four cultivars and their corresponding wild type controls. Laboratory studies confirmed the field trial results indicating the low risk association of PFA expressed in tobacco leaves with tobacco hornworms and aphids that would feed on the transgenic plants.
Collapse
|
71
|
Jin N, Lee JW, Heo W, Ryu MY, So MK, Ko BJ, Kim HY, Yoon SM, Lee J, Kim JY, Kim WT. Low binding affinity and reduced complement-dependent cell death efficacy of ofatumumab produced using a plant system (Nicotiana benthamiana L.). Protein Expr Purif 2019; 159:34-41. [PMID: 30880170 DOI: 10.1016/j.pep.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 01/16/2023]
Abstract
The plant protein production system is a platform that can not only reduce production costs but also produce monoclonal antibodies that do not have the risk of residual proteins from the host. However, due to the difference between post-translational processes in plants and animals, there may be a modification in the Fab region of the monoclonal antibody produced in the plant; thus, it is necessary to compare the antigen affinity of this antibody with that of the prototype. In this study, ofatumumab, a fully human anti-CD20 IgG1κ monoclonal antibody used for its non-cross resistance to rituximab, was expressed in Nicotiana benthamiana, and its affinities and efficacies were compared with those of native ofatumumab produced from CHO cells. Two forms of plant ofatumumab (with or without HDEL-tag) were generated and their production yields were compared. The HDEL-tagged ofatumumab was more expressed in plants than the form without HDEL-tag. The specificity of the target recognition of plant-derived ofatumumab was confirmed by mCherry-CD20-expressing HEK cells via immuno-staining, and the capping of CD20 after ofatumumab binding was also confirmed using Ramos B cells. In the functional equivalence tests, the binding affinities and complement-dependent cell cytotoxicity efficacy of plant-ofatumumab-HDEL and plant-ofatumumab without HDEL were significantly reduced compared to those of CHO-derived ofatumumab. Therefore, we suggest that although ofatumumab is not a good candidate as a template for plant-derived monoclonal antibodies because of its decreased affinity when produced in plants, it is an interesting target to study the differences between post-translational modifications in mammals and plants.
Collapse
Affiliation(s)
- Narae Jin
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jin Won Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Moon Young Ryu
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Min Kyung So
- New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, Republic of Korea.
| | - Byoung Joon Ko
- New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, Republic of Korea.
| | - Hye-Yeon Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Sei Mee Yoon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea; Department of Integrated OMICS for Biomedical Sciences, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
72
|
Schmidt JA, McGrath JM, Hanson MR, Long SP, Ahner BA. Field-grown tobacco plants maintain robust growth while accumulating large quantities of a bacterial cellulase in chloroplasts. NATURE PLANTS 2019; 5:715-721. [PMID: 31285558 DOI: 10.1038/s41477-019-0467-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
High accumulation of heterologous proteins expressed from the plastid genome has sometimes been reported to result in compromised plant phenotypes. Comparisons of transplastomic plants to wild-type (WT) are typically made in environmentally controlled chambers with relatively low light; little is known about the performance of such plants under field conditions. Here, we report on two plastid-engineered tobacco lines expressing the bacterial cellulase Cel6A. Field-grown plants producing Cel6A at ~20% of total soluble protein exhibit no loss in biomass or Rubisco content and only minor reductions in photosynthesis compared to WT. These experiments demonstrate that, when grown in the field, tobacco possesses sufficient metabolic flexibility to accommodate high levels of recombinant protein by increasing total protein synthesis and accumulation and/or by reallocating unneeded endogenous proteins. Based on current tobacco cultivation practices and readily achievable recombinant protein yields, we estimate that specific proteins could be obtained from field-grown transgenic tobacco plants at costs three orders of magnitude less than current cell culture methods.
Collapse
Affiliation(s)
- Jennifer A Schmidt
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Justin M McGrath
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Stephen P Long
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Beth A Ahner
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
73
|
Bundó M, Shi X, Vernet M, Marcos JF, López-García B, Coca M. Rice Seeds as Biofactories of Rationally Designed and Cell-Penetrating Antifungal PAF Peptides. FRONTIERS IN PLANT SCIENCE 2019; 10:731. [PMID: 31231409 PMCID: PMC6566136 DOI: 10.3389/fpls.2019.00731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
PAFs are short cationic and tryptophan-rich synthetic peptides with cell-penetrating antifungal activity. They show potent and selective killing activity against major fungal pathogens and low toxicity to other eukaryotic and bacterial cells. These properties make them a promising alternative to fulfill the need of novel antifungals with potential applications in crop protection, food preservation, and medical therapies. However, the difficulties of cost-effective manufacturing of PAFs by chemical synthesis or biotechnological production in microorganisms have hampered their development for practical use. This work explores the feasibility of using rice seeds as an economical and safe production system of PAFs. The rationally designed PAF102 peptide with improved antifungal properties was selected for assessing PAF biotechnological production. Two different strategies are evaluated: (1) the production as a single peptide targeted to protein bodies and (2) the production as an oleosin fusion protein targeted to oil bodies. Both strategies are designed to offer stability to the PAF peptide in the host plant and to facilitate its downstream purification. Our results demonstrate that PAF does not accumulate to detectable levels in rice seeds when produced as a single peptide, whereas it is successfully produced as fusion protein to the Oleosin18, up to 20 μg of peptide per gram of grain. We show that the expression of the chimeric Ole18-PAF102 gene driven by the Ole18 promoter results in the specific accumulation of the fusion protein in the embryo and aleurone layer of the rice seed. Ole18-PAF102 accumulation has no deleterious effects on seed yield, germination capacity, or seedling growth. We also show that the Oleosin18 protein serves as carrier to target the fusion protein to oil bodies facilitating PAF102 recovery. Importantly, the recovered PAF102 is active against the fungal phytopathogen Fusarium proliferatum. Altogether, our results prove that the oleosin fusion technology allows the production of PAF bioactive peptides to assist the exploitation of these antifungal compounds.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Xiaoqing Shi
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Mar Vernet
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jose F. Marcos
- Institute of Agrochemistry and Food Technology (IATA, CSIC), Paterna, Spain
| | - Belén López-García
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| |
Collapse
|
74
|
Bidarigh Fard A, Dehghan Nayeri F, Habibi Anbuhi M. Transient expression of etanercept therapeutic protein in tobacco (Nicotiana tabacum L.). Int J Biol Macromol 2019; 130:483-490. [PMID: 30825567 DOI: 10.1016/j.ijbiomac.2019.02.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/10/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Etanercept is a recombinant fusion protein of TNFR2 with the Fc portion of human IgG1. Etanercept, an anti-TNF drug, treats autoimmune diseases and improves patients' health. The main goal of the present study was to investigate the possibility of expressing recombinant protein of etanercept in a plant system. For this aim, first a modified version of pCAMBIA1305.1 plasmid with a new multiple cloning site and signal sequence of KDEL for protein secretion was constructed (pCAMBIA1305.1-linker). Then etanercept gene was cloned into the linker fragment of pCAMBIA1305.1-linker vector. Cloning was confirmed by PCR, enzymatic digestion and sequencing techniques. To evaluate the transient expression of the gene, agroinfiltrated tobacco leaves were inoculated with Agrobacterium tumefaciens containing etanercept gene cassette. The recombinant etanercept protein was examined by dot blot and ELISA assays. Our results using anti-human IgG HRP-conjugated antibody confirmed a high level expression of etanercept gene in the tobacco leaves.
Collapse
Affiliation(s)
- Amir Bidarigh Fard
- Agricultural Biotechnology Department, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Fatemeh Dehghan Nayeri
- Agricultural Biotechnology Department, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran.
| | | |
Collapse
|
75
|
Kopertekh L, Schiemann J. Transient Production of Recombinant Pharmaceutical Proteins in Plants: Evolution and Perspectives. Curr Med Chem 2019; 26:365-380. [DOI: 10.2174/0929867324666170718114724] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
Abstract
During the last two decades, the production of pharmaceutical proteins in plants
evolved from proof of concept to established technology adopted by several biotechnological
companies. This progress is particularly based on intensive research starting stable genetic
transformation and moving to transient expression. Due to its advantages in yield and
speed of protein production transient expression platforms became the leading plant-based
manufacturing technology. Current transient expression methods rely on Agrobacteriummediated
delivery of expression vectors into plant cells. In recent years, great advances have
been made in the improvement of expression vectors, host cell engineering as well as in the
development of commercial manufacturing processes. Several GMP-certified large-scale
production facilities exist around the world to utilize agroinfiltration method. A number of
pharmaceutical proteins produced by transient expression are currently in clinical development.
The great potential of transient expression platform in respect to rapid response to
emerging pandemics was demonstrated by the production of experimental ZMapp antibodies
against Ebola virus as well as influenza vaccines. This review is focused on current design,
status and future perspectives of plant transient expression system for the production
of biopharmaceutical proteins.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| | - Joachim Schiemann
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| |
Collapse
|
76
|
Kopertekh L, Meyer T, Freyer C, Hust M. Transient plant production of Salmonella Typhimurium diagnostic antibodies. ACTA ACUST UNITED AC 2019; 21:e00314. [PMID: 30847285 PMCID: PMC6389800 DOI: 10.1016/j.btre.2019.e00314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/16/2022]
Abstract
Salmonella Typhimurium is one of the most important zoonotic pathogens worldwide and a major cause of economic losses in the pig production chain. The emergence of multi-drug resistant strains over the past years has led to considerations about an enhanced surveillance of bacterial food contamination. Currently, ELISA is the method of choice for high throughput identification of S. Typhimurium. The sensitivity and specificity of this assay might be improved by application of new diagnostic antibodies. We focused on plant-based expression of candidate diagnostic TM43-E10 antibodies discovered using as antigen the S. Typhimurium OmpD protein. The scFv-TM43-E10 and scFv-Fc-TM43-E10 antibody derivatives have been successfully produced in N. benthamiana using a deconstructed movement-deficient PVX vector supplemented with the γb silencing suppressor from Poa semilatent virus. The plant-made antibodies showed the same antigen-binding specificity as that of the microbial/mammalian cell-produced counterparts and could recognize the OmpD antigen in S. Typhimurium infected plant samples.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für die Sicherheit biotechnologischer Verfahren bei Pflanzen, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
- Corresponding author.
| | - Torsten Meyer
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Cornelia Freyer
- Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für die Sicherheit biotechnologischer Verfahren bei Pflanzen, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| |
Collapse
|
77
|
Shin C, Kang Y, Kim HS, Shin YK, Ko K. Immune response of heterologous recombinant antigenic protein of viral hemorrhagic septicemia virus (VHSV) in mice. Anim Cells Syst (Seoul) 2019; 23:97-105. [PMID: 30949396 PMCID: PMC6440531 DOI: 10.1080/19768354.2019.1575904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/28/2023] Open
Abstract
Viral hemorrhagic septicemia (VHS) is an important infectious disease in fish worldwide caused by viral hemorrhagic septicemia virus (VHSV). VHSV is the causative agent of serious systemic diseases in fish, affecting a number of teleost fish species. In this study, VHSV glycoprotein (G), including its epitope, as a subunit vaccine candidate, was expressed in tobacco plant (Nicotiana tabacum). The recombinant gene, VHSVG, was fused to the immunoglobulin Fc fragment and extended with the endoplasmic reticulum (ER) retention signal (KDEL) to generate VHSVG-FcK. The recombinant expression vector for VHSVG-FcK was transferred into Agrobacterium tumefaciens (LBA4404), and plant transformation was conducted N. tabacum. Polymerase chain reaction (PCR) was performed to confirm gene insertion and VHSVG-FcK protein expression was confirmed by immunoblot analysis. VHSVG-FcK protein was successfully purified from tobacco plant leaves. Furthermore, ELISA analysis showed that mice serum immunized with the plant-derived VHSVG-FcK (VHSVGP-FcK) had a high absorbance against VHSVG-FcK, indicating that the plant-derived recombinant subunit vaccine protein VHSVG-FcK can induce immune response. Taken together, this recombinant vaccine protein can be expressed in plant expression systems and can be appropriately assembled to be functional in immunogenicity.
Collapse
Affiliation(s)
- Chunha Shin
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Yangjoo Kang
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
78
|
Schillberg S, Raven N, Spiegel H, Rasche S, Buntru M. Critical Analysis of the Commercial Potential of Plants for the Production of Recombinant Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:720. [PMID: 31244868 PMCID: PMC6579924 DOI: 10.3389/fpls.2019.00720] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/16/2019] [Indexed: 05/06/2023]
Abstract
Over the last three decades, the expression of recombinant proteins in plants and plant cells has been promoted as an alternative cost-effective production platform. However, the market is still dominated by prokaryotic and mammalian expression systems, the former offering high production capacity at a low cost, and the latter favored for the production of complex biopharmaceutical products. Although plant systems are now gaining widespread acceptance as a platform for the larger-scale production of recombinant proteins, there is still resistance to commercial uptake. This partly reflects the relatively low yields achieved in plants, as well as inconsistent product quality and difficulties with larger-scale downstream processing. Furthermore, there are only a few cases in which plants have demonstrated economic advantages compared to established and approved commercial processes, so industry is reluctant to switch to plant-based production. Nevertheless, some plant-derived proteins for research or cosmetic/pharmaceutical applications have reached the market, showing that plants can excel as a competitive production platform in some niche areas. Here, we discuss the strengths of plant expression systems for specific applications, but mainly address the bottlenecks that must be overcome before plants can compete with conventional systems, enabling the future commercial utilization of plants for the production of valuable proteins.
Collapse
Affiliation(s)
- Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Phytopathology, Justus-Liebig-University Giessen, Giessen, Germany
- *Correspondence: Stefan Schillberg,
| | - Nicole Raven
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials, Geleen, Netherlands
| | - Matthias Buntru
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
79
|
Modarresi M, Javaran MJ, Shams-bakhsh M, Zeinali S, Behdani M, Mirzaee M. Transient expression of anti-VEFGR2 nanobody in Nicotiana tabacum and N. benthamiana. 3 Biotech 2018; 8:484. [PMID: 30467531 DOI: 10.1007/s13205-018-1500-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
In human, the interaction between vascular endothelial growth factor (VEGF) and its receptor (VEGFR2) is critical for tumor angiogenesis. This is a vital process for cancer tumor growth and metastasis. Blocking VEGF/VEGFR2 conjugation by antibodies inhibits the neovascularization and tumor metastasis. This investigation designed to use a transient expression platform for production of recombinant anti-VEGFR2 nanobody in tobacco plants. At first, anti-VEGFR2-specific nanobody gene was cloned in a Turnip mosaic virus (TuMV)-based vector, and then, it was expressed in Nicotiana benthamiana and Nicotiana tabacum cv. Xanthi transiently. The expression of nanobody in tobacco plants were confirmed by reverse transcription-polymerase chain reaction (RT-PCR), dot blot, enzyme-linked immunosorbent assays (ELISA), and Western blot analysis. It was shown that tobacco plants could accumulate nanobody up to level 0.45% of total soluble protein (8.3 µg/100 mg of fresh leaf). This is the first report of the successful expression of the camelied anti-VEFGR2 nanobody gene in tobacco plants using a plant viral vector. This system provides a fast solution for production of pharmaceutical and commercial proteins such as anti-cancer nanobodies in tobacco plants.
Collapse
|
80
|
Leite ML, Sampaio KB, Costa FF, Franco OL, Dias SC, Cunha NB. Molecular farming of antimicrobial peptides: available platforms and strategies for improving protein biosynthesis using modified virus vectors. AN ACAD BRAS CIENC 2018; 91:e20180124. [PMID: 30365717 DOI: 10.1590/0001-3765201820180124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022] Open
Abstract
The constant demand for new antibiotic drugs has driven efforts by the scientific community to prospect for peptides with a broad spectrum of action. In this context, antimicrobial peptides (AMPs) have acquired great scientific importance in recent years due to their ability to possess antimicrobial and immunomodulatory activity. In the last two decades, plants have attracted the interest of the scientific community and industry as regards their potential as biofactories of heterologous proteins. One of the most promising approaches is the use of viral vectors to maximize the transient expression of drugs in the leaves of the plant Nicotiana benthamiana. Recently, the MagnifectionTM expression system was launched. This sophisticated commercial platform allows the assembly of the viral particle in leaf cells and the systemic spread of heterologous protein biosynthesis in green tissues caused by Agrobacterium tumefaciens "gene delivery method". The system also presents increased gene expression levels mediated by potent viral expression machinery. These characteristics allow the mass recovery of heterologous proteins in the leaves of N. benthamiana in 8 to 10 days. This system was highly efficient for the synthesis of different classes of pharmacological proteins and contains enormous potential for the rapid and abundant biosynthesis of AMPs.
Collapse
Affiliation(s)
- Michel L Leite
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
| | - Kamila B Sampaio
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
| | - Fabrício F Costa
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Cancer Biology and Epigenomics Program, Northwestern University's Feinberg School of Medicine, 60611, Chicago IL, USA
- Genomic Enterprise, 2405 N. Sheffield Av., 14088, 60614, Chicago, IL, USA
- MATTER Chicago, 222 W. Merchandise Mart Plaza, 12th Floor, 60654, Chicago, IL, USA
- The Founder Institute, 3337 El Camino Real, 94306, Palo Alto, CA USA
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Av. Tamandaré, 6000, Jardim Seminário, 79117-010 Campo Grande, MS, Brazil
| | - Simoni C Dias
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
| | - Nicolau B Cunha
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
| |
Collapse
|
81
|
Ruiz V, Baztarrica J, Rybicki EP, Meyers AE, Wigdorovitz A. Minimally processed crude leaf extracts of Nicotiana benthamiana containing recombinant foot and mouth disease virus-like particles are immunogenic in mice. ACTA ACUST UNITED AC 2018; 20:e00283. [PMID: 30319941 PMCID: PMC6180338 DOI: 10.1016/j.btre.2018.e00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/27/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
Foot-and-mouth disease (FMD) remains one of the most feared viral diseases affecting cloven-hoofed animals, and results in severe economic losses. Currently available vaccines are based on inactivated FMD virus (FMDV). The use of recombinant FMDV-like particles (VLPs) as subunit vaccines has gained importance because of their immunogenic properties and safety. We evaluated the production of FMD VLPs, via Agrobacterium-mediated transient expression, and the immunogenicity of these structures in mice. Leaves were infiltrated with pEAQ-HT and pRIC 3.0 vectors encoding the capsid precursor P1-2A and the protease 3C. The recombinant protein yield was 3-4 mg/kg of fresh leaf tissue. Both groups of mice immunized with purified VLPs and mice immunized with the crude leaf extract elicited a specific humoral response with similar antibody titers. Thus, minimally processed plant material containing transiently expressed FMD VLPs could be a scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.
Collapse
Affiliation(s)
- Vanesa Ruiz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Andrés Wigdorovitz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
82
|
Matsuda R, Ueno A, Nakaigawa H, Fujiwara K. Gas Exchange Rates Decrease and Leaf Temperature Increases in Nicotiana benthamiana Leaves Transiently Overexpressing Hemagglutinin in an Agrobacterium-Assisted Viral Vector System. FRONTIERS IN PLANT SCIENCE 2018; 9:1315. [PMID: 30233635 PMCID: PMC6131640 DOI: 10.3389/fpls.2018.01315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/21/2018] [Indexed: 05/30/2023]
Abstract
In this study, gas exchange characteristics and temperature of Nicotiana benthamiana leaves transiently overexpressing hemagglutinin (HA), an influenza vaccine antigen, with an Agrobacterium tumefaciens-assisted viral vector were investigated. Inoculation of leaves with an empty viral vector not containing the HA gene decreased the net photosynthetic rate (Pn) and transpiration rate (T) from 2 to 3 days post-infiltration (DPI) in the A. tumefaciens suspension. Expression of HA with the vector decreased Pn and T to much lower levels until 4 DPI. Such significant decreases were not observed in leaves infiltrated with suspension of A. tumefaciens not carrying the viral vector or in uninfiltrated leaves. Thus, viral vector inoculation itself decreased Pn and T to a certain extent and the HA expression further decreased them. The decreases in Pn and T in empty vector-inoculated and HA expression vector-inoculated leaves were associated with decreases in stomatal conductance, suggesting that the reduction of gas exchange rates was caused at least in part by stomatal closure. More detailed gas exchange and chlorophyll fluorescence analyses revealed that in HA vector-inoculated leaves, the capacity of ribulose-1,5-bisphosphate carboxylase/oxygenase to assimilate CO2 and the capacity of photosynthetic electron transport in planta were downregulated, which contributed also to the decrease in Pn. Leaf temperature (LT) increased in viral vector-inoculated leaves, which was associated with the decrease in T. When HA vector-inoculated leaves were grown at air temperatures (ATs) of 21, 23, and 26°C post-infiltration, HA accumulated earlier in leaves and the days required for HA content to attain its peak became shorter, as AT was higher. The highest LT was found 1-2 days earlier than the highest leaf HA content under all post-infiltration AT conditions. This phenomenon could be applicable in a non-destructive technique to detect the optimum harvesting date for individual plants to determine the day when leaf HA content reaches its maximum level, irrespective of spatiotemporal variation of AT, in a plant growth facility.
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Ueno
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
83
|
Sharma A, Verma P, Mathur A, Mathur AK. Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus. PROTOPLASMA 2018; 255:1281-1294. [PMID: 29508069 DOI: 10.1007/s00709-018-1233-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/26/2018] [Indexed: 05/26/2023]
Abstract
Terpenoid indole alkaloid (TIA) biosynthetic pathway of Catharanthus roseus possesses the major attention in current metabolic engineering efforts being the sole source of highly expensive antineoplastic molecules vinblastine and vincristine. The entire TIA pathway is fairly known at biochemical and genetic levels except the pathway steps leading to biosynthesis of catharanthine and tabersonine. To increase the in-planta yield of these antineoplastic metabolites for the pharmaceutical and drug industry, extensive plant tissue culture-based studies were performed to provide alternative production systems. However, the strict spatiotemporal developmental regulation of TIA biosynthesis has restricted the utility of these cultures for large-scale production. Therefore, the present study was performed to enhance the metabolic flux of TIA pathway towards the biosynthesis of vinblastine by overexpressing two upstream TIA pathway genes, tryptophan decarboxylase (CrTDC) and strictosidine synthase (CrSTR), at whole plant levels in C. roseus. Whole plant transgenic of C. roseus was developed using Agrobacterium tumefaciens LBA1119 strain having CrTDC and CrSTR gene cassette. Developed transgenic lines demonstrated up to twofold enhanced total alkaloid production with maximum ninefold increase in vindoline and catharanthine, and fivefold increased vinblastine production. These lines recorded a maximum of 38-fold and 65-fold enhanced transcript levels of CrTDC and CrSTR genes, respectively.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, India
| | - Priyanka Verma
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, India
- Division of Biochemical Sciences, National Chemical Laboratory (NCL), Council of Scientific and Industrial Research, Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Archana Mathur
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, India
| | - Ajay Kumar Mathur
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, India.
| |
Collapse
|
84
|
Hitzeroth II, Chabeda A, Whitehead MP, Graf M, Rybicki EP. Optimizing a Human Papillomavirus Type 16 L1-Based Chimaeric Gene for Expression in Plants. Front Bioeng Biotechnol 2018; 6:101. [PMID: 30062095 PMCID: PMC6054922 DOI: 10.3389/fbioe.2018.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
Human papillomaviruses (HPVs) are the causative agents of cervical cancer, the fourth most prevalent cancer in women worldwide. The major capsid protein L1 self-assembles into virus-like particles (VLPs), even in the absence of the minor L2 protein: such VLPs have successfully been used as prophylactic vaccines. There remains a need, however, to develop cheaper vaccines that protect against a wider range of HPV types. The use of all or parts of the L2 minor capsid protein can potentially address this issue, as it has sequence regions conserved across several HPV types, which can elicit a wider spectrum of cross-neutralizing antibodies. Production of HPV VLPs in plants is a viable option to reduce costs; the use of a L1/L2 chimera which has previously elicited a cross-protective immune response is an option to broaden cross-protection. The objective of this study was to investigate the effect of codon optimization and of increasing the G+C content of synthetic L1/L2 genes on protein expression in plants. Additionally, we replaced varying portions of the 5' region of the L1 gene with the wild type (wt) viral sequence to determine the effect of several negative regulatory elements on expression. We showed that GC-rich genes resulted in a 10-fold increase of mRNA levels and 3-fold higher accumulation of proteins. However, the highest increase of expression was achieved with a high GC-content human codon-optimized gene, which resulted in a 100-fold increase in mRNA levels and 8- to 9-fold increase in protein levels. Changing the 5' end of the L1 gene back to its wt sequence decreased mRNA and protein expression. Our results suggest that the negative elements in the 5' end of L1 are inadvertently destroyed by changing the codon usage, which enhances protein expression.
Collapse
Affiliation(s)
- Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Mark P Whitehead
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Marcus Graf
- Thermo Fisher Scientific GENEART GmbH, Regensburg, Germany
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa.,Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
85
|
Abstract
Production of monoclonal antibodies and pharmaceutical proteins in transgenic plants has been the focus of many research efforts for close to 30 years. Use of plants as bioreactors reduces large-scale production costs and minimizes risk for human pathogens contamination. Stable nuclear transformation of the plant genome offers a clear advantage in agricultural protein production platforms, limited only by the number of hectares that can be cultivated. We report here, for the first time, successful and stable expression of adalimumab in transgenic Nicotiana tabacum plants. The plant-derived adalimumab proved fully active and was shown to rescue L929 cells from the in vitro lethal effect of rhTNFα just as effectively as commercially available CHO-derived adalimumab (Humira). These results indicate that agricultural biopharming is an efficient alternative to mammalian cell-based expression platforms for the large-scale production of recombinant antibodies.
Collapse
Affiliation(s)
- Tzvi Zvirin
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lena Magrisso
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amit Yaari
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oded Shoseyov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
86
|
Franconi R, Massa S, Illiano E, Muller A, Cirilli A, Accardd L, Bonito PDI, Giorgi C, Venuti A. Exploiting the Plant Secretory Pathway to Improve the Anticancer Activity of a Plant-Derived HPV16 E7 Vaccine. Int J Immunopathol Pharmacol 2018. [DOI: 10.1177/205873920601900119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The human papillomavirus 16 (HPV16) E7 oncoprotein can be considered a ‘tumor-specific antigen’ and, therefore, it represents a promising target for a therapeutic vaccine against HPV-associated tumors. Efficient production of E7 protein with a plant-based transient expression system has been already described and it was demonstrated that E7-containing crude plant extracts confer partial protection against tumor challenge in a mouse model system. Before adopting the plant-based system as a cost-effective method for the production of an E7-based anti-cancer vaccine, some aspects, such as the oncoprotein yield, need further investigation. In the present study, we report the transient expression, mediated by a potato virus X (PVX)-derived vector, of the E7 protein targeted to the secretory system of Nicotiana benthamiana plants by using a plant-derived signal sequence. Targeting the antigen to the secretory pathway enhanced the E7 protein expression levels about five-fold. Mice immunized by s.c. administration with crude foliar extracts containing E7 showed strong stimulation of cell-mediated immune response after five boosters, as detected by ELISPOT. After challenging with the E7-expressing C3 tumor cells, tumor growth was completely inhibited in 80% of the vaccinated animals and a drastic reduction of tumor burden was observed in the remaining tumor-affected mice. These data demonstrate that, by enhancing E7 yield, it is possible to improve the anti-cancer activity of the plant-based experimental vaccine and open the way for a large-scale production of the E7 protein which could be purified or used as ‘in planta’ formulation, also suitable for oral therapeutic vaccination.
Collapse
Affiliation(s)
- R. Franconi
- ENEA, Italian National Agency for New Technologies, Energy and the Environment, BIOTEC, Laboratory of Plant Genetics and Genomics, C.R. Casaccia, P.O. Box 2400 I-00100 Roma, Italy
| | - S. Massa
- ENEA, Italian National Agency for New Technologies, Energy and the Environment, BIOTEC, Laboratory of Plant Genetics and Genomics, C.R. Casaccia, P.O. Box 2400 I-00100 Roma, Italy
| | - E. Illiano
- ENEA, Italian National Agency for New Technologies, Energy and the Environment, BIOTEC, Laboratory of Plant Genetics and Genomics, C.R. Casaccia, P.O. Box 2400 I-00100 Roma, Italy
| | - A. Muller
- Laboratory of Virology, Regina Elena Cancer Institute, Via delle Messi d'Oro 156, Roma, Italy
| | - A. Cirilli
- Laboratory of Virology, Regina Elena Cancer Institute, Via delle Messi d'Oro 156, Roma, Italy
| | - L. Accardd
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - P. DI Bonito
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - C. Giorgi
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - A. Venuti
- Laboratory of Virology, Regina Elena Cancer Institute, Via delle Messi d'Oro 156, Roma, Italy
| |
Collapse
|
87
|
Santos RB, Chandrasekar B, Mandal MK, Kaschani F, Kaiser M, Both L, van der Hoorn RAL, Schiermeyer A, Abranches R. Low Protease Content in Medicago truncatula Cell Cultures Facilitates Recombinant Protein Production. Biotechnol J 2018. [PMID: 29528190 DOI: 10.1002/biot.201800050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Medicago truncatula is an established model for studying legume biology. More recently, it has also been exploited as a Molecular Farming platform for the production of recombinant proteins, with the successful expression of fungal and human proteins in plants and cell suspension cultures of this species. One of the challenges that now must be overcome is the degradation of final products during production and downstream processing stages. In the M. truncatula genome, there are more than 400 putative protease-encoding genes, but to date, the proteolytic content of Medicago cell cultures has not been studied. In this report, the proteolytic activities that can potentially hamper the successful production of recombinant proteins in this system are evaluated. The potential proteases responsible for the degradation of target proteins are identified. Interestingly, the number of proteases found in Medicago spent medium is considerably lower than that of the well-established tobacco bright yellow 2 (BY-2) system. Papain-like cysteine proteases are found to be the major contributors to recombinant protein degradation in Medicago. This knowledge is used to engineer a cell line with reduced endogenous protease activity by expressing a selective protease inhibitor, further improving this expression platform.
Collapse
Affiliation(s)
- Rita B Santos
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Balakumaran Chandrasekar
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Manoj K Mandal
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Farnusch Kaschani
- Chemical Biology, Faculty of Biology, University of Duisburg-Essen, ZMB, Universitätsstraße 2, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Faculty of Biology, University of Duisburg-Essen, ZMB, Universitätsstraße 2, 45117 Essen, Germany
| | - Leonard Both
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Andreas Schiermeyer
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
88
|
Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 2018; 36:506-520. [DOI: 10.1016/j.biotechadv.2018.02.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
|
89
|
Abstract
Plant molecular farming depends on a diversity of plant systems for production of useful recombinant proteins. These proteins include protein biopolymers, industrial proteins and enzymes, and therapeutic proteins. Plant production systems include microalgae, cells, hairy roots, moss, and whole plants with both stable and transient expression. Production processes involve a narrowing diversity of bioreactors for cell, hairy root, microalgae, and moss cultivation. For whole plants, both field and automated greenhouse cultivation methods are used with products expressed and produced either in leaves or seeds. Many successful expression systems now exist for a variety of different products with a list of increasingly successful commercialized products. This chapter provides an overview and examples of the current state of plant-based production systems for different types of recombinant proteins.
Collapse
Affiliation(s)
| | - Thomas Bley
- Bioprocess Engineering, Institute of Food Technology and Bioprocess Engineering, TU Dresden, Dresden, Germany
| |
Collapse
|
90
|
Sheshukova KA, Wilken LR. Analysis of Recombinant Human Serum Albumin Extraction and Degradation in Transgenic Rice Extracts. Biotechnol Prog 2018; 34:681-691. [PMID: 29316385 DOI: 10.1002/btpr.2609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 01/05/2018] [Indexed: 11/12/2022]
Abstract
Transgenic plant systems have successfully been used to express recombinant proteins, including rice seed-expressed recombinant human serum albumin (rHSA), without the risk of contamination of human pathogens. Developing an efficient extraction process is critical as the step determines recombinant protein concentration and purity, quantity of impurities, and process volume. This article evaluates the effect of pH and time on the extraction and stability of rHSA. The amount of rHSA in clarified extract after 60 min of solubilization increased with pH from 0.9 mg/g (pH 3.5) to 9.6 mg/g (pH 6.0), but not over time as 10 min was sufficient for solubilization. Total soluble protein in extracts also increased with pH from 3.9 mg/g (pH 3.5) to 19.7 mg/g (pH 6.0) in clarified extract. Extraction conditions that maximized rHSA purity were not optimal for rHSA stability and yield. Extraction at pH 3.5 resulted in high purity (78%), however, rHSA degraded over time. Similar purities (78%) were observed in pH 4.0 extracts yet rHSA remained stable. rHSA degradation was not observed in pH 4.5 and 6.0 extracts but higher native protein concentrations decreased purity. Strategies such as pH and temperature adjustment were effective for reducing rHSA degradation in pH 3.5 rice extracts. Low temperature pH 3.5 extraction retained high purity (97%) and rHSA stability. While seed-expressed recombinant proteins are known to be stable for up to 3 years, the degradation of rHSA was notably extensive (56% within 60 min) when extracted at low pH. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:681-691, 2018.
Collapse
Affiliation(s)
- Kseniya A Sheshukova
- Dept. of Biological & Agricultural Engineering, Kansas State University, Manhattan, KS, 66506
| | - Lisa R Wilken
- Dept. of Biological & Agricultural Engineering, Kansas State University, Manhattan, KS, 66506
| |
Collapse
|
91
|
Takaiwa F, Wakasa Y, Hayashi S, Kawakatsu T. An overview on the strategies to exploit rice endosperm as production platform for biopharmaceuticals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:201-209. [PMID: 28818376 DOI: 10.1016/j.plantsci.2017.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 05/22/2023]
Abstract
Cereal seed has been utilized as production platform for high-value biopharmaceutical proteins. Especially, protein bodies (PBs) in seeds are not only natural specialized storage organs of seed storage proteins (SSPs), but also suitable intracellular deposition compartment for recombinant proteins. When various recombinant proteins were produced as secretory proteins by attaching N terminal ER signal peptide and C terminal KDEL endoplasmic reticulum (ER) retention signal or as fusion proteins with SSPs, high amounts of recombinant proteins can be predominantly accumulated in the PBs. Recombinant proteins bioencapsulated in PBs exhibit high resistance to digestive enzymes in gastrointestinal tract than other intracellular compartments and are highly stable at ambient temperature, thus allowing oral administration of PBs containing recombinant proteins as oral drugs or functional nutrients in cost-effective minimum processed formulation. In this review, we would like to address key factors determining accumulation levels of recombinant proteins in PBs. Understanding of bottle neck parts and improvement of specific deposition to PBs result in much higher levels of production of high quality recombinant proteins.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan.
| | - Yuhya Wakasa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Shimpei Hayashi
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Taiji Kawakatsu
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
92
|
Matsuda R, Abe T, Fujiuchi N, Matoba N, Fujiwara K. Effect of temperature post viral vector inoculation on the amount of hemagglutinin transiently expressed in Nicotiana benthamiana leaves. J Biosci Bioeng 2017; 124:346-350. [PMID: 28460871 DOI: 10.1016/j.jbiosc.2017.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 12/13/2022]
Abstract
Transient gene expression in whole plants by using viral vectors is promising as a rapid, mass production system for biopharmaceutical proteins. Recent studies have indicated that plant growth conditions such as air temperature markedly influence the accumulation levels of target proteins. Here, we investigated time course of the amount of recombinant hemagglutinin (HA), a vaccine antigen of influenza virus, in leaves of Nicotiana benthamiana plants grown at 20°C or 25°C post viral vector inoculation. The HA content per unit of leaf biomass increased and decreased from 4 to 6 days post inoculation at 20°C and 25°C, respectively, irrespective of the subcellular localization of HA. The overall HA contents were higher when HA was targeted to the endoplasmic reticulum (ER) rather than the apoplast. Necrosis of leaf tissues was specifically observed in plants inoculated with the ER-targeting vector and grown at 25°C. With the ER-targeting vector, the maximum HA contents at 20°C and 25°C were recorded at 6 and 4 days post inoculation, respectively, and were comparable to each other. HA contents thereafter decreased at both temperatures; the rate of reduction appeared faster at 25°C than at 20°C. From a practical point of view, our results indicate that the strategy of targeting HA to the ER, growing plants at a lower temperature of 20°C, and harvesting leaves at around a week after vector inoculation should be implemented to obtain a high HA yield stably and efficiently.
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| | - Tatsuki Abe
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, Center for Predictive Medicine and James Graham Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock Street, Room 615, Louisville, KY 40202, USA
| | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
93
|
Gurusamy PD, Schäfer H, Ramamoorthy S, Wink M. Biologically active recombinant human erythropoietin expressed in hairy root cultures and regenerated plantlets of Nicotiana tabacum L. PLoS One 2017; 12:e0182367. [PMID: 28800637 PMCID: PMC5553650 DOI: 10.1371/journal.pone.0182367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
Hairy root culture is a potential alternative to conventional mammalian cell culture to produce recombinant proteins due to its ease in protein recovery, low costs and absence of potentially human pathogenic contaminants. The current study focussed to develop a new platform of a hairy root culture system from Nicotiana tabacum for the production of recombinant human EPO (rhEPO), which is regularly produced in mammalian cells. The human EPO construct was amplified with C-terminal hexahistidine tag from a cDNA of Caco-2 cells. Two versions of rhEPO clones, with or without the N-terminal calreticulin (cal) fusion sequence, were produced by cloning the amplified construct into gateway binary vector pK7WG2D. Following Agrobacterium rhizogenes mediated transformation of tobacco explants; integration and expression of constructs in hairy roots were confirmed by several tests at DNA, RNA and protein levels. The amount of intracellular rhEPO from hairy root cultures with cal signal peptide was measured up to 66.75 ng g-1 of total soluble protein. The presence of the ER signal peptide (cal) was essential for the secretion of rhEPO into the spent medium; no protein was detected from hairy root cultures without ER signal peptide. The addition of polyvinylpyrrolidone enhanced the stabilization of secreted rhEPO leading to a 5.6 fold increase to a maximum concentration of 185.48 pg rhEPOHR g-1 FW hairy root cultures. The rhizo-secreted rhEPO was separated by HPLC and its biological activity was confirmed by testing distinct parameters for proliferation and survival in retinal pigment epithelial cells (ARPE). In addition, the rhEPO was detected to an amount 14.8 ng g-1 of total soluble leaf protein in transgenic T0 generation plantlets regenerated from hairy root cultures with cal signal peptide.
Collapse
Affiliation(s)
- Poornima Devi Gurusamy
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Holger Schäfer
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Michael Wink
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
94
|
Chatterjee A, Das NC, Raha S, Maiti IB, Shrestha A, Khan A, Acharya S, Dey N. Enrichment of apoplastic fluid with therapeutic recombinant protein for efficient biofarming. Biotechnol Prog 2017; 33:726-736. [PMID: 28371174 DOI: 10.1002/btpr.2461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/19/2017] [Indexed: 11/10/2022]
Abstract
OBJECTIVE For efficient biofarming we attempted to enrich plant interstitial fluid (IF)/apoplastic fluid with targeted recombinant therapeutic protein. We employed a synthetic human Glucocerebrosidase (GCB), a model biopharmaceutical protein gene in this study. RESULTS Twenty one Nicotiana varieties, species and hybrids were initially screened for individual IF recovery and based on the findings, we selected Nicotiana tabacum NN (S-9-6), Nicotiana tabacum nn (S-9-7) and Nicotiana benthamiana (S-6-6) as model plants for raising transgenic expressing GCB via Agrobacterium mediated transformation under the control of M24 promoter; GCB specific activity in each transgenic lines were analyzed and we observed higher concentration of recombinant GCB in IF of these transgenic lines (S-9-6, S-9-7, and S-6-6) in comparison to their concentration in crude leaf extracts. CONCLUSION Recovery of valuable therapeutics in plant IF as shown in the present study holds great promise for promoting plant based biofarming. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:726-736, 2017.
Collapse
Affiliation(s)
- Aparajita Chatterjee
- Dept. of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0236
| | - Narayan C Das
- Dept. of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0236
| | - Sumita Raha
- Dept. of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0236
| | - Indu B Maiti
- Dept. of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0236
| | - Ankita Shrestha
- Dept. of Gene Function and Regulation, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
- Dept. of Biotechnology, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Ahamed Khan
- Dept. of Gene Function and Regulation, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
- Dept. of Biotechnology, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Sefali Acharya
- Dept. of Gene Function and Regulation, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
- Dept. of Biotechnology, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Dept. of Gene Function and Regulation, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
- Dept. of Biotechnology, Institute of Life Sciences, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| |
Collapse
|
95
|
Alimohammadi M, Lahiani MH, McGehee D, Khodakovskaya M. Polyphenolic extract of InsP 5-ptase expressing tomato plants reduce the proliferation of MCF-7 breast cancer cells. PLoS One 2017; 12:e0175778. [PMID: 28448505 PMCID: PMC5407797 DOI: 10.1371/journal.pone.0175778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/09/2017] [Indexed: 01/15/2023] Open
Abstract
In recent years, by extensive achievements in understanding the mechanisms and the pathways affected by cancer, the focus of cancer research is shifting from developing new chemotherapy methods to using natural compounds with therapeutic properties to reduce the adverse effects of synthetic drugs on human health. We used fruit extracts from previously generated human type I InsP 5-ptase gene expressing transgenic tomato plants for assessment of the anti-cancer activity of established genetically modified tomato lines. Cellular assays (MTT, Fluorescent microscopy, Flow Cytometry analysis) were used to confirm that InsP 5-ptase fruit extract was more effective for reducing the proliferation of breast cancer cells compared to wild-type tomato fruit extract. Metabolome analysis of InsP 5-ptase expressing tomato fruits performed by LC-MS identified tomato metabolites that may play a key role in the increased anti-cancer activity observed for the transgenic fruits. Total transcriptome analysis of cancer cells (MCF-7 line) exposed to an extract of transgenic fruits revealed a number of differently regulated genes in the cells treated with transgenic extract compared to untreated cells or cells treated with wild-type tomato extract. Together, this data demonstrate the potential role of the plant derived metabolites in suppressing cell viability of cancer cells and further prove the potential application of plant genetic engineering in the cancer research and drug discovery.
Collapse
Affiliation(s)
- Mohammad Alimohammadi
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Mohamed Hassen Lahiani
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Diamond McGehee
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Mariya Khodakovskaya
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
- Institute of Biology and Soil Sciences, Far-Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
96
|
Jung JW, Huy NX, Kim HB, Kim NS, Van Giap D, Yang MS. Production of recombinant human acid α-glucosidase with high-mannose glycans in gnt1 rice for the treatment of Pompe disease. J Biotechnol 2017; 249:42-50. [PMID: 28363873 DOI: 10.1016/j.jbiotec.2017.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Lysosomal storage diseases are a group of inherited metabolic disorders. Patients are treated with enzyme replacement therapy (ERT), in which the replacement enzymes are required to carry terminal mannose or mannose 6-phosphate residues to allow efficient uptake into target cells and tissues. N-acetylglucosaminyltransferase-I (GnTI) mediates N-glycosylation in the cis cisternae of the Golgi apparatus by adding N-acetylglucosamine to the exposed terminal mannose residue of core N-glycan structures for further processing. Mutant rice lacking GnTI produces only high mannosylated glycoproteins. In this study, we introduced a gene encoding recombinant human acid α-glucosidase (rhGAA), which is used in ERT for Pompe disease, into gnt1 rice callus by particle bombardment. Integration of the target gene into the genome of the gnt1 rice line and its mRNA expression were confirmed by PCR and Northern blot, respectively. Western blot analysis was performed to confirm secretion of the target proteins into the culture media. Using an indirect enzyme linked immunosorbent assay, we determined the maximum expression of rhGAA to be approximately 45mg/L, 13days after induction. To assay the enzymatic activity and determine the N-glycan profile of rhGAA, we purified the protein using a 6×histidine tag. The in vitro α-glucosidase activity of rhGAA from gnt1 rice callus (gnt1-GAA) was 3.092U/mg, similar to the activity of the Chinese hamster ovary cell-derived GAA (3.154U/mg). N-glycan analysis revealed the presence of high-mannose N-glycans on gnt1-GAA. In addition, the production of high-mannose GAA using gnt1 rice calli as an expression host was characterized, which may aid the future development of therapeutic enzymes for the treatment of Pompe disease.
Collapse
Affiliation(s)
- Jae-Wan Jung
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Nguyen-Xuan Huy
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Biology Department, Hue University of Education, 34 Le Loi, Hue, Viet Nam
| | - Hyo-Boon Kim
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Nan-Sun Kim
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Do Van Giap
- Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Research Center of Bioactive Materials, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea.
| |
Collapse
|
97
|
Montesinos L, Bundó M, Badosa E, San Segundo B, Coca M, Montesinos E. Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm. BMC PLANT BIOLOGY 2017; 17:63. [PMID: 28292258 PMCID: PMC5351061 DOI: 10.1186/s12870-017-1011-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/06/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND BP178 peptide is a synthetic BP100-magainin derivative possessing strong inhibitory activity against plant pathogenic bacteria, offering a great potential for future applications in plant protection and other fields. Here we report the production and recovery of a bioactive BP178 peptide using rice seeds as biofactories. RESULTS A synthetic gene encoding the BP178 peptide was prepared and introduced in rice plants. The gene was efficiently expressed in transgenic rice under the control of an endosperm-specific promoter. Among the three endosperm-specific rice promoters (Glutelin B1, Glutelin B4 or Globulin 1), best results were obtained when using the Globulin 1 promoter. The BP178 peptide accumulated in the seed endosperm and was easily recovered from rice seeds using a simple procedure with a yield of 21 μg/g. The transgene was stably inherited for at least three generations, and peptide accumulation remained stable during long term storage of transgenic seeds. The purified peptide showed in vitro activity against the bacterial plant pathogen Dickeya sp., the causal agent of the dark brown sheath rot of rice. Seedlings of transgenic events showed enhanced resistance to the fungal pathogen Fusarium verticillioides, supporting that the in planta produced peptide was biologically active. CONCLUSIONS The strategy developed in this work for the sustainable production of BP178 peptide using rice seeds as biofactories represents a promising system for future production of peptides for plant protection and possibly in other fields.
Collapse
Affiliation(s)
- Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| | - Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| |
Collapse
|
98
|
Dong Y, Li J, Yao N, Wang D, Liu X, Wang N, Li X, Wang F, Li H, Jiang C. Seed-specific expression and analysis of recombinant anti-HER2 single-chain variable fragment (scFv-Fc) in Arabidopsis thaliana. Protein Expr Purif 2017; 133:187-192. [PMID: 28286176 DOI: 10.1016/j.pep.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/20/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
Antibodies to human epidermal growth factor receptor 2 (HER2) are a key element of breast cancer therapy; however, they are expensive to produce and their availability is limited. A seed-specific expression system can be used to produce recombinant proteins. We report a seed-specific expression system for the manufacture of anti-HER2 ScFv-Fc in Arabidopsis thaliana, driven by the Phaseolus vulgaris β-phaseolin promoter. Recombinant anti-HER2 ScFv-Fc was successfully and specifically expressed in seeds, and identified by protein analysis. The highest protein accumulation level, with a maximum of 1.1% of total soluble protein, was observed in mature seeds. We also demonstrated the anti-tumor potency of the plant-derived antibody against SK-BR-3 cells. These results suggest that seed-expression systems could contribute to the manufacture of commercial antibodies such as anti-HER2 ScFv-Fc.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jian Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Na Yao
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Dezhong Wang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xiuming Liu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Nan Wang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xiaowei Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Fawei Wang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Haiyan Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| | - Chao Jiang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
99
|
Jeong H, Seong BL. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J Microbiol 2017; 55:220-230. [PMID: 28243941 PMCID: PMC7090582 DOI: 10.1007/s12275-017-7058-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023]
Abstract
Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.
Collapse
Affiliation(s)
- Hotcherl Jeong
- Department of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Baik Lin Seong
- Department of Biotechnology & Vaccine Translational Research Center, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
100
|
Kang YJ, Kim DS, Myung SC, Ko K. Expression of a Human Prostatic Acid Phosphatase (PAP)-IgM Fc Fusion Protein in Plants Using In vitro Tissue Subculture. FRONTIERS IN PLANT SCIENCE 2017; 8:274. [PMID: 28293250 PMCID: PMC5329016 DOI: 10.3389/fpls.2017.00274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
In this study, prostatic acid phosphatase (PAP), which is overexpressed in human prostate cancer cells, was cloned to be fused to the IgM constant fragment (Fc) for enhancing immunogenicity and expressed in transgenic tobacco plants. Then, the transgenic plants were propagated by in vitro tissue subculture. Gene insertion and expression of the recombinant PAP-IgM Fc fusion protein were confirmed in each tested the first, second, and third subculture generations (SG1, SG2, and SG3, respectively). Transcription levels were constantly maintained in the SG1, SG2, and SG3 leaf section (top, middle, and base). The presence of the PAP-IgM Fc gene was also confirmed in each leaf section in all tested subculture generations. RNA expression was confirmed in all subculture generations using real-time PCR and quantitative real-time PCR. PAP-IgM Fc protein expression was confirmed in all leaves of the SG1, SG2, and SG3 recombinant transgenic plants by using quantitative western blotting and chemiluminescence immunoassays. These results demonstrate that the recombinant protein was stably expressed for several generations of in vitro subculture. Therefore, transgenic plants can be propagated using in vitro tissue subculture for the production of recombinant proteins.
Collapse
Affiliation(s)
- Yang J. Kang
- Therapeutic Protein Engineering Laboratory, Department of Medicine, College of Medicine, Chung-Ang UniversitySeoul, South Korea
| | - Deuk-Su Kim
- Therapeutic Protein Engineering Laboratory, Department of Medicine, College of Medicine, Chung-Ang UniversitySeoul, South Korea
| | - Soon-Chul Myung
- Department of Urology, College of Medicine, Chung-Ang UniversitySeoul, South Korea
| | - Kisung Ko
- Therapeutic Protein Engineering Laboratory, Department of Medicine, College of Medicine, Chung-Ang UniversitySeoul, South Korea
| |
Collapse
|