51
|
Moretti R, Giuffré M, Caruso P, Gazzin S, Tiribelli C. Homocysteine in Neurology: A Possible Contributing Factor to Small Vessel Disease. Int J Mol Sci 2021; 22:2051. [PMID: 33669577 PMCID: PMC7922986 DOI: 10.3390/ijms22042051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid generated during methionine metabolism, accumulation of which may be caused by genetic defects or the deficit of vitamin B12 and folate. A serum level greater than 15 micro-mols/L is defined as hyperhomocysteinemia (HHcy). Hcy has many roles, the most important being the active participation in the transmethylation reactions, fundamental for the brain. Many studies focused on the role of homocysteine accumulation in vascular or degenerative neurological diseases, but the results are still undefined. More is known in cardiovascular disease. HHcy is a determinant for the development and progression of inflammation, atherosclerotic plaque formation, endothelium, arteriolar damage, smooth muscle cell proliferation, and altered-oxidative stress response. Conversely, few studies focused on the relationship between HHcy and small vessel disease (SVD), despite the evidence that mice with HHcy showed a significant end-feet disruption of astrocytes with a diffuse SVD. A severe reduction of vascular aquaporin-4-water channels, lower levels of high-functioning potassium channels, and higher metalloproteinases are also observed. HHcy modulates the N-homocysteinylation process, promoting a pro-coagulative state and damage of the cellular protein integrity. This altered process could be directly involved in the altered endothelium activation, typical of SVD and protein quality, inhibiting the ubiquitin-proteasome system control. HHcy also promotes a constant enhancement of microglia activation, inducing the sustained pro-inflammatory status observed in SVD. This review article addresses the possible role of HHcy in small-vessel disease and understands its pathogenic impact.
Collapse
Affiliation(s)
- Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Mauro Giuffré
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Paola Caruso
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Silvia Gazzin
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| | - Claudio Tiribelli
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| |
Collapse
|
52
|
Fragoso-Morales LG, Correa-Basurto J, Rosales-Hernández MC. Implication of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Its Inhibitors in Alzheimer's Disease Murine Models. Antioxidants (Basel) 2021; 10:antiox10020218. [PMID: 33540840 PMCID: PMC7912941 DOI: 10.3390/antiox10020218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the main human dementias around the world which is constantly increasing every year due to several factors (age, genetics, environment, etc.) and there are no prevention or treatment options to cure it. AD is characterized by memory loss associated with oxidative stress (OS) in brain cells (neurons, astrocytes, microglia, etc.). OS can be produced by amyloid beta (Aβ) protein aggregation and its interaction with metals, mitochondrial damage and alterations between antioxidants and oxidant enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. NADPH oxidase produces reactive oxygen species (ROS) and it is overexpressed in AD, producing large amounts of superoxide anions and hydrogen peroxide which damage brain cells and the vasculature. In addition, it has been reported that NADPH oxidase causes an imbalance of pH which could also influence in the amyloid beta (Aβ) production. Therefore, NADPH oxidase had been proposed as a therapeutic target in AD. However, there are no drugs for AD treatment such as an NADPH oxidase inhibitor despite great efforts made to stabilize the ROS production using antioxidant molecules. So, in this work, we will focus our attention on NADPH oxidase (NOX2 and NOX4) in AD as well as in AD models and later discuss the use of NADPH oxidase inhibitor compounds in AD.
Collapse
Affiliation(s)
- Leticia Guadalupe Fragoso-Morales
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Mexico City 11340, Mexico;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico;
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Mexico City 11340, Mexico;
- Correspondence: ; Tel.: +(55)-572-960-00 (ext. 62767 & 62809)
| |
Collapse
|
53
|
Lian TH, Guo P, Zhang YN, Li JH, Li LX, Ding DY, Li DN, Zhang WJ, Guan HY, Wang XM, Zhang W. Parkinson's Disease With Depression: The Correlations Between Neuroinflammatory Factors and Neurotransmitters in Cerebrospinal Fluid. Front Aging Neurosci 2020; 12:574776. [PMID: 33192466 PMCID: PMC7645209 DOI: 10.3389/fnagi.2020.574776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Background: To explore the changes of neuroinflammatory factors in cerebrospinal fluid (CSF) and their correlation with monoamine neurotransmitters in Parkinson’s disease (PD) with depression (PD-D) patients. Methods: Neuroinflammatory factors and neurotransmitters in CSF were measured and compared between PD with no depression (PD-ND) and PD-D groups. The relationship between PD-D and neuroinflammatory factors was studied by binary logistic regression equation, and the related factors of PD-D were adjusted. The correlations of the levels of neuroinflammatory factors and neurotransmitters in PD-D group were analyzed. Results: The levels of tumor necrosis factor (TNF)-α in CSF from PD-D group were significantly higher and there were no significant differences in the levels of interleukin-1β, prostaglandin (PG) E2, hydrogen peroxide (H2O2), and nitric oxide (NO). The 24-item Hamilton Depression Scale (HAMD-24) score was positively correlated with the level of TNF-α in CSF. Binary logistic regression showed that the OR of CSF TNF-α level was 1.035 (95% CI 1.002–1.069). The level of dopamine (DA) in CSF of PD-D group was significantly lower than that in PD-ND group. TNF-α level was negatively correlated with DA level in CSF from PD patients (r = −0.320, P = 0.003). Conclusions: Neuroinflammatory factors, especially TNF-α, may play an important role in PD-D. It may cause damage to DA neurons and lead to the depletion of DA, which is related to the occurrence and development of PD-D.
Collapse
Affiliation(s)
- Teng-Hong Lian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-Nan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-Hui Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li-Xia Li
- Department of General Internal Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Du-Yu Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Da-Ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-Ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory on Parkinson Disease, Beijing, China
| |
Collapse
|
54
|
Yang T, Zhang F. Targeting Transcription Factor Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) for the Intervention of Vascular Cognitive Impairment and Dementia. Arterioscler Thromb Vasc Biol 2020; 41:97-116. [PMID: 33054394 DOI: 10.1161/atvbaha.120.314804] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular cognitive impairment and dementia (VCID) is an age-related, mild to severe mental disability due to a broad panel of cerebrovascular disorders. Its pathobiology involves neurovascular dysfunction, blood-brain barrier disruption, white matter damage, microRNAs, oxidative stress, neuroinflammation, and gut microbiota alterations, etc. Nrf2 (Nuclear factor erythroid 2-related factor 2) is the master regulator of redox status and controls the transcription of a panel of antioxidative and anti-inflammatory genes. By interacting with NF-κB (nuclear factor-κB), Nrf2 also fine-tunes the cellular oxidative and inflammatory balance. Aging is associated with Nrf2 dysfunction, and increasing evidence has proved the role of Nrf2 in mitigating the VCID process. Based on VCID pathobiologies and Nrf2 studies from VCID and other brain diseases, we point out several hypothetical Nrf2 targets for VCID management, including restoration of endothelial function and neurovascular coupling, preservation of blood-brain barrier integrity, reduction of amyloidopathy, promoting white matter integrity, and mitigating oxidative stress and neuroinflammation. Collectively, the Nrf2 pathway could be a promising direction for future VCID research. Targeting Nrf2 would shed light on VCID managing strategies.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| |
Collapse
|
55
|
Xu W, Wang Y, Quan H, Liu D, Zhang H, Qi Y, Li Q, Liao J, Gao HM, Zhou H, Huang J. Double-stranded RNA-induced dopaminergic neuronal loss in the substantia nigra in the presence of Mac1 receptor. Biochem Biophys Res Commun 2020; 533:1148-1154. [PMID: 33046245 DOI: 10.1016/j.bbrc.2020.09.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The underlying mechanism of viral infection as a risk factor for Parkinson's disease (PD), the second most common neurodegenerative disease, remains unclear. OBJECTIVE We used Mac-1-/- and gp91phox-/- transgene animal models to investigate the mechanisms by which poly I:C, a mimic of virus double-stranded RNA, induces PD neurodegeneration. METHOD Poly I:C was stereotaxically injected into the substantia nigra (SN) of wild-type (WT), Mac-1-knockout (Mac-1-/-) and gp91 phox-knockout (gp91 phox-/-) mice (10 μg/μl), and nigral dopaminergic neurodegeneration, α-synuclein accumulation and neuroinflammation were evaluated. RESULT Dopaminergic neurons in the nigra and striatum were markedly reduced in WT mice after administration of poly I:C together with abundant microglial activation in the SN, and the expression of α-synuclein was also elevated. However, these pathological changes were greatly dampened in Mac-1-/- and gp91 phox-/- mice. CONCLUSIONS Our findings demonstrated that viral infection could result in the activation of microglia as well as NADPH oxidase, which may lead to neuron loss and the development of Parkinson's-like symptoms. Mac-1 is a key receptor during this process.
Collapse
Affiliation(s)
- Weixing Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Yinxi Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Huihui Quan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Dan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Huifeng Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Yuze Qi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Qingru Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Jieying Liao
- Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361024, China
| | - Hui-Ming Gao
- Model Animal Research Center of Nanjing University, Nanjing, 211800, China
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China.
| |
Collapse
|
56
|
Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM. Brain Renin-Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front Neurosci 2020; 14:586314. [PMID: 33117127 PMCID: PMC7561440 DOI: 10.3389/fnins.2020.586314] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The renin–angiotensin system (RAS) was initially considered to be part of the endocrine system regulating water and electrolyte balance, systemic vascular resistance, blood pressure, and cardiovascular homeostasis. It was later discovered that intracrine and local forms of RAS exist in the brain apart from the endocrine RAS. This brain-specific RAS plays essential roles in brain homeostasis by acting mainly through four angiotensin receptor subtypes; AT1R, AT2R, MasR, and AT4R. These receptors have opposing effects; AT1R promotes vasoconstriction, proliferation, inflammation, and oxidative stress while AT2R and MasR counteract the effects of AT1R. AT4R is critical for dopamine and acetylcholine release and mediates learning and memory consolidation. Consequently, aging-associated dysregulation of the angiotensin receptor subtypes may lead to adverse clinical outcomes such as Alzheimer’s disease and frailty via excessive oxidative stress, neuroinflammation, endothelial dysfunction, microglial polarization, and alterations in neurotransmitter secretion. In this article, we review the brain RAS from this standpoint. After discussing the functions of individual brain RAS components and their intracellular and intracranial locations, we focus on the relationships among brain RAS, aging, frailty, and specific neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and vascular cognitive impairment, through oxidative stress, neuroinflammation, and vascular dysfunction. Finally, we discuss the effects of RAS-modulating drugs on the brain RAS and their use in novel treatment approaches.
Collapse
Affiliation(s)
- Caglar Cosarderelioglu
- Division of Geriatrics, Department of Internal Medicine, Ankara University School of Medicine, Ankara, Turkey.,Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Claudene J George
- Division of Geriatrics, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Esther S Oh
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
57
|
Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther 2020; 218:107684. [PMID: 32956721 DOI: 10.1016/j.pharmthera.2020.107684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in traumatic brain injury (TBI) induced by repeated concussions suffered by athletes in sports, military personnel from combat-and non-combat related activities, and civilian populations who suffer head injuries from accidents and domestic violence. Although the renin-angiotensin system (RAS) is primarily a systemic cardiovascular regulatory system that, when dysregulated, causes hypertension and cardiovascular pathology, the brain contains a local RAS that plays a critical role in the pathophysiology of several neurodegenerative diseases. This local RAS includes receptors for angiotensin (Ang) II within the brain parenchyma, as well as on circumventricular organs outside the blood-brain-barrier. The brain RAS acts primarily via the type 1 Ang II receptor (AT1R), exacerbating insults and pathology. With TBI, the brain RAS may contribute to permanent brain damage, especially when a second TBI occurs before the brain recovers from an initial injury. Agents are needed that minimize the extent of injury from an acute TBI, reducing TBI-mediated permanent brain damage. This review discusses how activation of the brain RAS following TBI contributes to this damage, and how drugs that counteract activation of the AT1R including AT1R blockers (ARBs), renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and agonists at type 2 Ang II receptors (AT2) and at Ang (1-7) receptors (Mas) can potentially ameliorate TBI-induced brain damage.
Collapse
Affiliation(s)
- Jason D Vadhan
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America; School of Medicine, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
58
|
Liu D, Zhao Y, Qi Y, Gao Y, Tu D, Wang Y, Gao HM, Zhou H. Benzo(a)pyrene exposure induced neuronal loss, plaque deposition, and cognitive decline in APP/PS1 mice. J Neuroinflammation 2020; 17:258. [PMID: 32867800 PMCID: PMC7461337 DOI: 10.1186/s12974-020-01925-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background Exposure to benzo(a)pyrene (BaP) was associated with cognitive impairments and some Alzheimer’s disease (AD)-like pathological changes. However, it is largely unknown whether BaP exposure participates in the disease progression of AD. Objectives To investigate the effect of BaP exposure on AD progression and its underlying mechanisms. Methods BaP or vehicle was administered to 4-month-old APPswe/PS1dE9 transgenic (APP/PS1) mice and wildtype (WT) mice for 2 months. Learning and memory ability and exploratory behaviors were evaluated 1 month after the initiation/termination of BaP exposure. AD-like pathological and biochemical alterations were examined 1 month after 2-month BaP exposure. Levels of soluble beta-amyloid (Aβ) oligomers and the number of Aβ plaques in the cortex and the hippocampus were quantified. Gene expression profiling was used to evaluate alternation of genes/pathways associated with AD onset and progression. Immunohistochemistry and Western blot were used to demonstrate neuronal loss and neuroinflammation in the cortex and the hippocampus. Treatment of primary neuron-glia cultures with aged Aβ (a mixture of monomers, oligomers, and fibrils) and/or BaP was used to investigate mechanisms by which BaP enhanced Aβ-induced neurodegeneration. Results BaP exposure induced progressive decline in spatial learning/memory and exploratory behaviors in APP/PS1 mice and WT mice, and APP/PS1 mice showed severer behavioral deficits than WT mice. Moreover, BaP exposure promoted neuronal loss, Aβ burden and Aβ plaque formation in APP/PS1 mice, but not in WT mice. Gene expression profiling showed most robust alteration in genes and pathways related to inflammation and immunoregulatory process, Aβ secretion and degradation, and synaptic formation in WT and APP/PS1 mice after BaP exposure. Consistently, the cortex and the hippocampus of WT and APP/PS1 mice displayed activation of microglia and astroglia and upregulation of inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP), and NADPH oxidase (three widely used neuroinflammatory markers) after BaP exposure. Furthermore, BaP exposure aggravated neurodegeneration induced by aged Aβ peptide in primary neuron-glia cultures through enhancing NADPH oxidase-derived oxidative stress. Conclusion Our study showed that chronic exposure to environmental pollutant BaP induced, accelerated, and exacerbated the progression of AD, in which elevated neuroinflammation and NADPH oxidase-derived oxidative insults were key pathogenic events.
Collapse
Affiliation(s)
- Dan Liu
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China.,Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Yujia Zhao
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Yuze Qi
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Yun Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
| | - Dezhen Tu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
| | - Yinxi Wang
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Hui-Ming Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China.
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
59
|
Abstract
Significance: The primary function of NADPH oxidases (NOX1-5 and dual oxidases DUOX1/2) is to produce reactive oxygen species (ROS). If inadequately regulated, NOX-associated ROS can promote oxidative stress, aberrant signaling, and genomic instability. Correspondingly, NOX isoforms are known to be overexpressed in multiple malignancies, thus constituting potential therapeutic targets in cancer. Recent Advances: Multiple genetic studies aimed at suppressing the expression of NOX proteins in cellular and animal models of cancer have provided support for the notion that NOXs play a pro-tumorigenic role. Further, large drug screens and rational design efforts have yielded inhibitor compounds, such as the diphenylene iodonium (DPI) analog series developed by our group, with increased selectivity and potency over "first generation" NOX inhibitors such as apocynin and DPI. Critical Issues: The precise role of NOX enzymes in tumor biology remains poorly defined. The tumorigenic properties of NOXs vary with cancer type, and precise tools, such as selective inhibitors, are needed to deconvolute NOX contribution to cancer development. Most NOX inhibitors developed to date are unspecific, and/or their mechanistic and pharmacological characteristics are not well defined. A lack of high-resolution crystal structures for NOX functional domains has hindered the development of potent and selective inhibitors. Future Directions: In-depth studies of NOX interactions with the tumor microenvironment (e.g., cytokines, cell-surface antigens) will help identify new approaches for NOX inhibition in cancer.
Collapse
Affiliation(s)
- Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
60
|
Hou L, Zhang L, Hong JS, Zhang D, Zhao J, Wang Q. Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy. Antioxid Redox Signal 2020; 33:374-393. [PMID: 31968994 DOI: 10.1089/ars.2019.8014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The growing incidence of neurodegenerative diseases significantly impacts the individuals who suffer from these disorders and is a major health concern globally. Although the specific mechanisms of neurodegenerative diseases are still far from being acknowledged, it is becoming clear that oxidative stress and neuroinflammation are critical contributing factors to the progression of neurodegeneration. Thus, it is conceivable that the inhibition of oxidative stress and neuroinflammation may represent promising therapeutic targets for the treatment of neurodegenerative diseases. Recent Advances: Recently, the strategy for neurodegenerative disease therapy has shifted from the use of antioxidants and conventional anti-inflammatory targets to upstream mediators due to the failure of most antioxidants and nonsteroidal anti-inflammatory drugs in clinical trials. Nicotinamide adenine dinucleotide phosphate oxidases (NOXs), a family of superoxide-producing enzyme complexes, have been identified as an upstream factor that controls both oxidative stress and neuroinflammation. Genetic inactivation or pharmacological inhibition of NOX enzymes displays potent neuroprotective effects in a broad spectrum of neurodegenerative disease models. Critical Issues: The detailed mechanisms of how NOX enzymes regulate oxidative stress and neuroinflammation still remain unclear. Moreover, the currently available inhibitors of NOX enzymes exhibit nonspecificity, off-target effects, unsuitable pharmacokinetic properties, and even high toxicity, markedly limiting their potential clinical applications. Future Directions: This review provides novel insights into the roles of NOXs in neurodegenerative pharmacology, and indicates the types of NOX enzyme inhibitors that should be identified and developed as candidates for future applications, which might reveal novel neurodegenerative disease therapies based on NOXs.
Collapse
Affiliation(s)
- Liyan Hou
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Dan Zhang
- State Key Laboratory of Natural Products and Functions, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Qingshan Wang
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
61
|
Cognitive enhancing effect of diapocynin in D-galactose-ovariectomy-induced Alzheimer's-like disease in rats: Role of ERK, GSK-3β, and JNK signaling. Toxicol Appl Pharmacol 2020; 398:115028. [DOI: 10.1016/j.taap.2020.115028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
|
62
|
Wang Q, Oyarzabal EA, Song S, Wilson B, Santos JH, Hong JS. Locus coeruleus neurons are most sensitive to chronic neuroinflammation-induced neurodegeneration. Brain Behav Immun 2020; 87:359-368. [PMID: 31923552 PMCID: PMC7316605 DOI: 10.1016/j.bbi.2020.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) develops over decades through spatiotemporal stages that ascend from the brainstem to the forebrain. The mechanism behind this caudo-rostral neurodegeneration remains largely undefined. In unraveling this phenomenon, we recently developed a lipopolysaccharide (LPS)-elicited chronic neuroinflammatory mouse model that displays sequential losses of neurons in brainstem, substantia nigra, hippocampus and cortex. In this study, we aimed to investigate the mechanisms of caudo-rostral neurodegeneration and focused our efforts on the earliest neurodegeneration of vulnerable noradrenergic locus coeruleus (NE-LC) neurons in the brainstem. We found that compared with neurons in other brain regions, NE-LC neurons in untreated mice displayed high levels of mitochondrial oxidative stress that was severely exacerbated in the presence of LPS-elicited chronic neuroinflammation. In agreement, NE-LC neurons in LPS-treated mice displayed early reduction of complex IV expression and mitochondrial swelling and loss of cristae. Mechanistically, the activation of the superoxide-generating enzyme NADPH oxidase (NOX2) on NE-LC neurons was essential for their heightened vulnerability during chronic neuroinflammation. LPS induced early and high expressions of NOX2 in NE-LC neurons. Genetic or pharmacological inactivation of NOX2 markedly reduced mitochondrial oxidative stress and dysfunction in LPS-treated mice. Furthermore, inhibition of NOX2 significantly ameliorated LPS-induced NE-LC neurodegeneration. More importantly, post-treatment with NOX2 inhibitor diphenyleneiodonium when NE-LC neurodegeneration had already begun, still showed high efficacy in protecting NE-LC neurons from degeneration in LPS-treated mice. This study strongly supports that chronic neuroinflammation and NOX2 expression among vulnerable neuronal populations contribute to caudo-rostral degeneration in PD.
Collapse
Affiliation(s)
- Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| | - Esteban A. Oyarzabal
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Sheng Song
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Belinda Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Janine H. Santos
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
63
|
Curcumin nanoparticles ameliorate hepatotoxicity and nephrotoxicity induced by cisplatin in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1941-1953. [PMID: 32447466 DOI: 10.1007/s00210-020-01888-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
The present work was conducted to investigate the effect of curcumin nanoparticles (CUR NPs) on cisplatin-induced hepatotoxicty and nephrotoxicity in rats. Rats were divided randomly into the following: control, rats treated daily with CUR NPs (50 mg/kg body wt/day) for 14 days, rats treated with a single dose of cisplatin (12 mg/kg body wt, i.p), and rats treated with a single dose of cisplatin followed by a daily administration of CUR NPs for 14 days. Cisplatin-induced hepato- and nephrotoxicity were evaluated by histological examinations and biochemical analyses of liver and kidney functions. Cisplatin induced significant increases in the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) and in the levels of bilirubin, urea, uric acid and creatinine. In addition, the levels of hepatic and renal lipid peroxidation (MDA), nitric oxide (NO), and serum tumor necrosis factor-α (TNF-α) increased significantly. However, cisplatin significantly decreased hepatic and renal reduced glutathione levels and renal Na+/K+-ATPase activity. Treatment with CUR NPs ameliorated almost all the biochemical changes induced by cisplatin and improved the histopathological alterations in liver and kidney. In conclusion, the present findings indicate that CUR NPs offered an effective protection against cisplatin-induced hepatotoxicity and nephrotoxicity through its antioxidant and anti-inflammatory properties.
Collapse
|
64
|
Salamone P, Fuda G, Casale F, Marrali G, Lunetta C, Caponnetto C, Mazzini L, La Bella V, Mandrioli J, Simone IL, Moglia C, Calvo A, Tarella C, Chio A. G-CSF (filgrastim) treatment for amyotrophic lateral sclerosis: protocol for a phase II randomised, double-blind, placebo-controlled, parallel group, multicentre clinical study (STEMALS-II trial). BMJ Open 2020; 10:e034049. [PMID: 32209625 PMCID: PMC7202695 DOI: 10.1136/bmjopen-2019-034049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurological disorder characterised by a selective degeneration of motor neurons (MNs). Stem cell transplantation is considered as a promising strategy in neurological disorders therapy and the possibility of inducing bone marrow cells (BMCs) to circulate in the peripheral blood is suggested to investigate stem cells migration in degenerated ALS nerve tissues where potentially repair MN damage. Granulocyte-colony stimulating factor (G-CSF) is a growth factor which stimulates haematopoietic progenitor cells, mobilises BMCs into injured brain and it is itself a neurotrophic factor for MN. G-CSF safety in humans has been demonstrated and many observations suggest that it may affect neural cells. Therefore, we decided to use G-CSF to mobilise BMCs into the peripheral circulation in patients with ALS, planning a clinical trial to evaluate the effect of G-CSF administration in ALS patients compared with placebo. METHODS AND ANALYSIS STEMALS-II is a phase II multicentre, randomised double-blind, placebo-controlled, parallel group clinical trial on G-CSF (filgrastim) and mannitol in ALS patients. Specifically, we investigate safety, tolerability and efficacy of four repeated courses of intravenous G-CSF and mannitol administered in 76 ALS patients in comparison with placebo (indistinguishable glucose solution 5%). We determine increase of G-CSF levels in serum and cerebrospinal fluid as CD34+ cells and leucocyte count after treatment; reduction in ALS Functional Rating Scale-Revised Score, forced vital capacity, Scale for Testing Muscle Strength Score and quality of life; the adverse events/reactions during the treatment; changes in neuroinflammation biomarkers before and after treatment. ETHICS AND DISSEMINATION The study protocol was approved by the Ethics Committee of Azienda Ospedaliera Universitaria 'Città della Salute e della Scienza', Torino, Italy. Results will be presented during scientific symposia or published in scientific journals. TRIAL REGISTRATION NUMBER Eudract 2014-002228-28.
Collapse
Affiliation(s)
- Paolina Salamone
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Giuseppe Fuda
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Federico Casale
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Giuseppe Marrali
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milan, Italy
| | - Claudia Caponnetto
- Neurological Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Mazzini
- Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Vincenzo La Bella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Sicilia, Italy
| | - Jessica Mandrioli
- Department of Neuroscience, Azienda Ospedaliera Universitaria Modena, St. Agostino-Estense Hospital, Modena, Italy
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Puglia, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Corrado Tarella
- Oncohematology Division, IEO European Institute of Oncology, IRCCS, University of Milan, Milano, Lombardia, Italy
| | - Adriano Chio
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| |
Collapse
|
65
|
Chronic Exposure to Fluoride Affects GSH Level and NOX4 Expression in Rat Model of This Element of Neurotoxicity. Biomolecules 2020; 10:biom10030422. [PMID: 32182821 PMCID: PMC7175316 DOI: 10.3390/biom10030422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure of neural cells to harmful and toxic factors promotes oxidative stress, resulting in disorders of metabolism, cell differentiation, and maturation. The study examined the brains of rats pre- and postnatally exposed to sodium fluoride (NaF 50 mg/L) and activity of NADPH oxidase 4 (NOX4), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), concentration of glutathione (GSH), and total antioxidant capacity (TAC) in the cerebellum, prefrontal cortex, hippocampus, and striatum were measured. Additionally, NOX4 expression was determined by qRT-PCR. Rats exposed to fluorides (F-) showed an increase in NOX4 activity in the cerebellum and hippocampus, a decrease in its activity in the prefrontal cortex and hippocampus, and upregulation of NOX4 expression in hippocampus and its downregulation in other brain structures. Analysis also showed significant changes in the activity of all antioxidant enzymes and a decrease in TAC in brain structures. NOX4 induction and decreased antioxidant activity in central nervous system (CNS) cells may be central mechanisms of fluoride neurotoxicity. NOX4 contributes to blood-brain barrier damage, microglial activation, and neuronal loss, leading to impairment of brain function. Fluoride-induced oxidative stress involves increased reactive oxygen speciaes (ROS) production, which in turn increases the expression of genes encoding pro-inflammatory cytokines.
Collapse
|
66
|
Gao Y, Tu D, Yang R, Chu CH, Hong JS, Gao HM. Through Reducing ROS Production, IL-10 Suppresses Caspase-1-Dependent IL-1β Maturation, thereby Preventing Chronic Neuroinflammation and Neurodegeneration. Int J Mol Sci 2020; 21:ijms21020465. [PMID: 31940754 PMCID: PMC7013455 DOI: 10.3390/ijms21020465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic neuroinflammation contributes to the pathogenesis of Parkinson’s disease (PD). However, cellular and molecular mechanisms by which chronic neuroinflammation is formed and maintained remain elusive. This study aimed to explore detailed mechanisms by which anti-inflammatory cytokine interleukin-10 (IL-10) prevented chronic neuroinflammation and neurodegeneration. At 24 h after an intranigral injection of lipopolysaccharide (LPS), levels of NLRP3, pro-caspase-1, pro-IL-1β, active caspase-1, and mature IL-1β in the midbrain were much higher in IL-10−/− mice than wildtype mice. Mechanistically, IL-10−/− microglia produced more intracellular reactive oxygen species (iROS) and showed more profound activation of NADPH oxidase (NOX2) than wildtype microglia. Meanwhile, suppression of NOX2-derived iROS production blocked LPS-elicited caspase-1 activation and IL-1β maturation in IL-10−/− microglia in vitro and in vivo. One month after intranigral LPS injection, IL-10−/− mice revealed more profound microglial activation and dopaminergic neurodegeneration in the substantia nigra than wildtype mice. Importantly, such PD-like pathological changes were prevented by IL-1β neutralization. Collectively, IL-10 inhibited LPS-elicited production of NOX2-derived iROS thereby suppressing synthesis of NLRP3, pro-caspase-1 and pro-IL-1β and their activation and cleavage. By this mechanism, IL-10 prevented chronic neuroinflammation and neurodegeneration. This study suggested boosting anti-inflammatory effects of IL-10 and suppressing NLRP3 inflammasome activation could be beneficial for PD treatment.
Collapse
Affiliation(s)
- Yun Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, Nanjing 210061, China; (Y.G.); (D.T.); (R.Y.)
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA; (C.-H.C.); (J.-S.H.)
| | - Dezhen Tu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, Nanjing 210061, China; (Y.G.); (D.T.); (R.Y.)
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA; (C.-H.C.); (J.-S.H.)
| | - Ru Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, Nanjing 210061, China; (Y.G.); (D.T.); (R.Y.)
| | - Chun-Hsien Chu
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA; (C.-H.C.); (J.-S.H.)
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA; (C.-H.C.); (J.-S.H.)
| | - Hui-Ming Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, Nanjing 210061, China; (Y.G.); (D.T.); (R.Y.)
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA; (C.-H.C.); (J.-S.H.)
- Correspondence: ; Tel.: +86-25-5864-1561; Fax: +86-25-5864-1500
| |
Collapse
|
67
|
Guo D, Xu S, Yasen W, Zhang C, Shen J, Huang Y, Chen D, Zhu X. Tirapazamine-embedded polyplatinum(iv) complex: a prodrug combo for hypoxia-activated synergistic chemotherapy. Biomater Sci 2020; 8:694-701. [DOI: 10.1039/c9bm01640f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A polyprodrug complex containing oxygen depleting chemodrugs and hypoxia-activated antitumor agents can serve as a promising drug delivery system for synergistic chemotherapy.
Collapse
Affiliation(s)
- Dongbo Guo
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Shuting Xu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Wumaier Yasen
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210046
| | - Yu Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Dong Chen
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
68
|
Hydroxytyrosol Decreases LPS- and α-Synuclein-Induced Microglial Activation In Vitro. Antioxidants (Basel) 2019; 9:antiox9010036. [PMID: 31906130 PMCID: PMC7022576 DOI: 10.3390/antiox9010036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a common feature shared by neurodegenerative disorders, such as Parkinson’s disease (PD), and seems to play a key role in their development and progression. Microglia cells, the principal orchestrators of neuroinflammation, can be polarized in different phenotypes, which means they are able to have anti-inflammatory, pro-inflammatory, or neurodegenerative effects. Increasing evidence supports that the traditional Mediterranean dietary pattern is related to the reduction of cognitive decline in neurodegenerative diseases. A considerable intake of plant foods, fish, and extra virgin olive oil (EVOO), as well as a moderate consumption of red wine, all characteristic of the Mediterranean diet (MD), are behind these effects. These foods are especially rich in polyphenols, being the most relevant in the MD hydroxytyrosol (HT) and their derivatives present in EVOO, which have demonstrated a wide array of biological activities. Here, we demonstrate that HT is able to reduce the inflammation induced by two different stimuli: lipopolysaccharide and α-synuclein. We also study the possible molecular mechanisms involved in the anti-inflammatory effect of HT, including the study of nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and inflammasome. Our data support the use of HT to prevent the inflammation associated with PD and shed light into the relationship between MD and this neurological disorder.
Collapse
|
69
|
Nan B, Gu X, Huang X. The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4291-4303. [PMID: 31908415 PMCID: PMC6927222 DOI: 10.2147/dddt.s212313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Emerging evidence of significant hearing loss occurring shortly after cisplatin administration in cancer patients has stimulated research into the causes and treatment of this side effect. Although the aetiology of cisplatin-induced hearing loss (CIHL) remains unknown, an increasing body of research suggests that it is associated with excessive generation of intracellular reactive oxygen species (ROS) in the cochlea. Astaxanthin, a xanthophyll carotenoid, has powerful anti-oxidant, anti-inflammatory, and anti-apoptotic properties based on its unique cell membrane function, diverse biological activities, and ability to permeate the blood-brain barrier. In this review, we summarize the role of ROS in CIHL and the effect of astaxanthin on inhibiting ROS production. We focus on investigating the mechanism of action of astaxanthin in suppressing excessive production of ROS.
Collapse
Affiliation(s)
- Benyu Nan
- Department of Otorhinolaryngology-Head and Neck Surgery, Wenzhou Medical University, Affiliated Hospital 2, Wenzhou 325000, People's Republic of China.,Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| | - Xi Gu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| |
Collapse
|
70
|
Trageser KJ, Smith C, Herman FJ, Ono K, Pasinetti GM. Mechanisms of Immune Activation by c9orf72-Expansions in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Neurosci 2019; 13:1298. [PMID: 31920478 PMCID: PMC6914852 DOI: 10.3389/fnins.2019.01298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with overlapping pathomechanisms, neurobehavioral features, and genetic etiologies. Individuals diagnosed with either disorder exhibit symptoms within a clinical spectrum. Symptoms of ALS involve neuromusculature deficits, reflecting upper and lower motor neurodegeneration, while the primary clinical features of FTD are behavioral and cognitive impairments, reflecting frontotemporal lobar degeneration. An intronic G4C2 hexanucleotide repeat expansion (HRE) within the promoter region of chromosome 9 open reading frame 72 (C9orf72) is the predominant monogenic cause of both ALS and FTD. While the heightened risk to develop ALS/FTD in response to C9orf72 expansions is well-established, studies continue to define the precise mechanisms by which this mutation elicits neurodegeneration. Studies show that G4C2 expansions undergo repeat-associated non-ATG dependent (RAN) translation, producing dipeptide repeat proteins (DRPs) with varying toxicities. Accumulation of DRPs in neurons, in particular arginine containing DRPs, have neurotoxic effects by potently impairing nucleocytoplasmic transport, nucleotide metabolism, lysosomal processes, and cellular metabolic pathways. How these pathophysiological effects of C9orf72 expansions engage and elicit immune activity with additional neurobiological consequences is an important line of future investigations. Immunoreactive microglia and elevated levels of peripheral inflammatory cytokines noted in individuals with C9orf72 ALS/FTD provide evidence that persistent immune activation has a causative role in the progression of each disorder. This review highlights the current understanding of the cellular, proteomic and genetic substrates through which G4C2 HREs may elicit detrimental immune activity, facilitating region-specific neurodegeneration in C9orf72 mediated ALS/FTD. We in particular emphasize interactions between intracellular pathways induced by C9orf72 expansions and innate immune inflammasome complexes, intracellular receptors responsible for eliciting inflammation in response to cellular stress. A further understanding of the intricate, reciprocal relationship between the cellular and molecular pathologies resulting from C9orf72 HREs and immune activation may yield novel therapeutics for ALS/FTD, which currently have limited treatment strategies.
Collapse
Affiliation(s)
- Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chad Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Francis J Herman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
71
|
Tu D, Gao Y, Yang R, Guan T, Hong JS, Gao HM. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J Neuroinflammation 2019; 16:255. [PMID: 31805953 PMCID: PMC6896486 DOI: 10.1186/s12974-019-1659-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/26/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metabolic dysfunction and neuroinflammation are increasingly implicated in Parkinson's disease (PD). The pentose phosphate pathway (PPP, a metabolic pathway parallel to glycolysis) converts glucose-6-phosphate into pentoses and generates ribose-5-phosphate and NADPH thereby governing anabolic biosynthesis and redox homeostasis. Brains and immune cells display high activity of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP. A postmortem study reveals dysregulation of G6PD enzyme in brains of PD patients. However, spatial and temporal changes in activity/expression of G6PD in PD remain undetermined. More importantly, it is unclear how dysfunction of G6PD and the PPP affects neuroinflammation and neurodegeneration in PD. METHODS We examined expression/activity of G6PD and its association with microglial activation and dopaminergic neurodegeneration in multiple chronic PD models generated by an intranigral/intraperitoneal injection of LPS, daily subcutaneous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 6 days, or transgenic expression of A53T α-synuclein. Primary microglia were transfected with G6PD siRNAs and treated with lipopolysaccharide (LPS) to examine effects of G6PD knockdown on microglial activation and death of co-cultured neurons. LPS alone or with G6PD inhibitor(s) was administrated to mouse substantia nigra or midbrain neuron-glia cultures. While histological and biochemical analyses were conducted to examine microglial activation and dopaminergic neurodegeneration in vitro and in vivo, rotarod behavior test was performed to evaluate locomotor impairment in mice. RESULTS Expression and activity of G6PD were elevated in LPS-treated midbrain neuron-glia cultures (an in vitro PD model) and the substantia nigra of four in vivo PD models. Such elevation was positively associated with microglial activation and dopaminergic neurodegeneration. Furthermore, inhibition of G6PD by 6-aminonicotinamide and dehydroepiandrosterone and knockdown of microglial G6PD attenuated LPS-elicited chronic dopaminergic neurodegeneration. Mechanistically, microglia with elevated G6PD activity/expression produced excessive NADPH and provided abundant substrate to over-activated NADPH oxidase (NOX2) leading to production of excessive reactive oxygen species (ROS). Knockdown and inhibition of G6PD ameliorated LPS-triggered production of ROS and activation of NF-кB thereby dampening microglial activation. CONCLUSIONS Our findings indicated that G6PD-mediated PPP dysfunction and neuroinflammation exacerbated each other mediating chronic dopaminergic neurodegeneration and locomotor impairment. Insight into metabolic-inflammatory interface suggests that G6PD and NOX2 are potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Dezhen Tu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
- Neurobiology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Yun Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
- Neurobiology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Ru Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
| | - Tian Guan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Hui-Ming Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China.
- Neurobiology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
72
|
Kesler SR, Harrison RA, Petersen ML, Rao V, Dyson H, Alfaro-Munoz K, Weathers SP, de Groot J. Pre-surgical connectome features predict IDH status in diffuse gliomas. Oncotarget 2019; 10:6484-6493. [PMID: 31741712 PMCID: PMC6849657 DOI: 10.18632/oncotarget.27301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Gliomas are the most common type of malignant brain tumor. Clinical outcomes depend on many factors including tumor molecular characteristics. Mutation of the isocitrate dehydrogenase (IDH) gene confers significant benefits in terms of survival and quality of life. Preoperative determination of IDH genotype can facilitate surgical planning, allow for novel clinical trial designs, and assist clinical counseling surrounding the individual patient's disease. METHODS In this study, we aimed to evaluate a novel approach for non-invasively predicting IDH status from conventional MRI via connectomics, a whole-brain network-based technique. We retrospectively extracted 93 connectome features from the preoperative, T1-weighted MRI data of 234 adult patients (148 IDH mutated) and evaluated the performance of four common machine learning models to predict IDH genotype. RESULTS Area under the curve (AUC) of the receiver operator characteristic were 0.76 to 0.94 with random forest (RF) showing significantly higher performance (p < 0.01) than other algorithms. Feature selection schemes and the addition of age and tumor location did not change RF performance. CONCLUSIONS Our findings suggest that connectomics is a feasible approach for preoperatively predicting IDH genotype in patients with gliomas. Our results support prior evidence that RF is an ideal machine learning method for this area of research. Additionally, connectomics provides unique insights regarding potential mechanisms of tumor genotype on large-scale brain network organization.
Collapse
Affiliation(s)
- Shelli R. Kesler
- Cancer Neuroscience Laboratory, School of Nursing, The University of Texas at Austin, Austin, Texas, USA
- Department of Diagnostic Medicine, Dell School of Medicine, The University of Texas at Austin, Austin, Texas, USA
- These authors contributed equally to this work
| | - Rebecca A. Harrison
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- These authors contributed equally to this work
| | - Melissa L. Petersen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vikram Rao
- Cancer Neuroscience Laboratory, School of Nursing, The University of Texas at Austin, Austin, Texas, USA
- Department of Diagnostic Medicine, Dell School of Medicine, The University of Texas at Austin, Austin, Texas, USA
| | - Hannah Dyson
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kristin Alfaro-Munoz
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
73
|
Yun HK, Park J, Chae U, Lee HS, Huh JW, Lee SR, Bae YC, Lee DS. Parkin in early stage LPS-stimulated BV-2 cells regulates pro-inflammatory response and mitochondrial quality via mitophagy. J Neuroimmunol 2019; 336:577044. [DOI: 10.1016/j.jneuroim.2019.577044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/29/2022]
|
74
|
Gao W, Wang W, Zhang J, Deng P, Hu J, Yang J, Deng Z. Allicin ameliorates obesity comorbid depressive-like behaviors: involvement of the oxidative stress, mitochondrial function, autophagy, insulin resistance and NOX/Nrf2 imbalance in mice. Metab Brain Dis 2019; 34:1267-1280. [PMID: 31201726 DOI: 10.1007/s11011-019-00443-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Abstract
The increased prevalence of obesity has been a major medical and public health problem in the past decades. In obese status, insulin resistance and sustained oxidative stress damage might give rise to behavioral deficits. The anti-obesity and anti-oxidant effects of allicin have been previously reported in peripheral tissues. In the present study, the functions and mechanisms of allicin involved in the prevention of high-fat diet (HFD)-induced depressive-like behaviors were investigated to better understand the pharmacological activities of allicin. Obese mice (five weeks of age) were treated with allicin (50, 100, and 200 mg/kg) by gavage for 15 weeks and behavioral test (sucrose preference, open field, and tail suspension) were performed. Furthermore, markers of oxidative stress, mitochondrial function, autophagy, and insulin resistance were measured in the hippocampal tissue. Finally, the levels of NADPH oxidase (NOX2, NOX4) and the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway were evaluated in the hippocampus. The body weight, metabolic disorders, and depressive-like behaviors in obese mice were ameliorated by allicin. The depressive-like behaviors presented in the obese mice were accompanied by remarkably excessive reactive oxygen species (ROS) production and oxidative stress, damaged mitochondrial function, imbalanced autophagy, and enhanced insulin resistance in the hippocampus. We found that allicin improved the above undesirable effects in the obese mice. Furthermore, allicin significantly decreased NOX2 and NOX4 levels and activated the Nrf2 pathway. Allicin attenuated depressive-like behaviors triggered by long-term HFD consumption by inhibiting ROS production and oxidative stress, improving mitochondrial function, regulating autophagy, and reducing insulin resistance in the hippocampus via optimization of NOX/Nrf2 imbalance.
Collapse
Affiliation(s)
- Wenqi Gao
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University&Technology, Wuhan, Hubei, China
| | - Wei Wang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jing Zhang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Pengyi Deng
- Department of Nuclear medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jun Hu
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jian Yang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China.
| | - Zhifang Deng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China.
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.
| |
Collapse
|
75
|
Differential Modulation of NF- κB in Neurons and Astrocytes Underlies Neuroprotection and Antigliosis Activity of Natural Antioxidant Molecules. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8056904. [PMID: 31485299 PMCID: PMC6710787 DOI: 10.1155/2019/8056904] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/20/2019] [Indexed: 02/02/2023]
Abstract
Neuroinflammation, a hallmark of chronic neurodegenerative disorders, is characterized by sustained glial activation and the generation of an inflammatory loop, through the release of cytokines and other neurotoxic mediators that cause oxidative stress and limit functional repair of brain parenchyma. Dietary antioxidants may protect against neurodegenerative diseases by counteracting chronic neuroinflammation and reducing oxidative stress. Here, we describe the effects of a number of natural antioxidants (polyphenols, carotenoids, and thiolic molecules) in rescuing astrocytic function and neuronal viability following glial activation by reducing astrocyte proliferation and restoring astrocytic and neuronal survival and basal levels of reactive oxygen species (ROS). All antioxidant molecules are also effective under conditions of oxidative stress and glutamate toxicity, two maladaptive components of neuroinflammatory processes. Moreover, it is remarkable that their antioxidant and anti-inflammatory activity occurs through differential modulation of NF-κB binding activity in neurons and astrocytes. In fact, we show that inflammatory stimuli promote a significant induction of NF-κB binding activity in astrocytes and its concomitant reduction in neurons. These changes are prevented in astrocytes and neurons pretreated with the antioxidant molecules, suggesting that NF-κB plays a key role in the modulation of survival and anti-inflammatory responses. Finally, we newly demonstrate that effective antigliosis and neuroprotective activity is achieved with a defined cocktail of four natural antioxidants at very low concentrations, suggesting a promising strategy to reduce inflammatory and oxidative damage in neurodegenerative diseases with limited side effects.
Collapse
|
76
|
Merla C, Liberti M, Consales C, Denzi A, Apollonio F, Marino C, Benassi B. Evidences of plasma membrane-mediated ROS generation upon ELF exposure in neuroblastoma cells supported by a computational multiscale approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1446-1457. [DOI: 10.1016/j.bbamem.2019.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
|
77
|
Butturini E, Boriero D, Carcereri de Prati A, Mariotto S. STAT1 drives M1 microglia activation and neuroinflammation under hypoxia. Arch Biochem Biophys 2019; 669:22-30. [PMID: 31121156 DOI: 10.1016/j.abb.2019.05.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
Microglia are resident immune cells that act as the first active defence in the central nervous system. These cells constantly monitor the tissue microenvironment and rapidly react in response to hypoxia, infection and injuries. Hypoxia in the brain has been detected in several neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. Hypoxic conditions activate microglia cells towards M1 phenotype resulting in oxidative stress and the release of pro-inflammatory cytokines. Recently, we have demonstrated that oxidative stress induces S-glutathionylation of the STAT1 and hyper-activates its signaling in microglia BV2 cells pointing out the importance of this transcription factor in neuroinflammation. In this paper we analyse the cellular mechanisms that drive M1 microglia activation in BV2 cells in response to hypoxia correlating it to STAT1 activation. The analysis of the molecular mechanism of STAT1 signaling reveals that hypoxia generates oxidative stress and induces both phosphorylation and S-glutathionylation of STAT1 that are responsible of its aberrant activation. The silencing of STAT1 protein expression counteracts hypoxia-M1 microglia phenotype suggesting the strong link between hypoxia-STAT1 and STAT1-microglia activation.
Collapse
Affiliation(s)
- Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| | - Diana Boriero
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
78
|
Tsoy A, Saliev T, Abzhanova E, Turgambayeva A, Kaiyrlykyzy A, Akishev M, Saparbayev S, Umbayev B, Askarova S. The Effects of Mobile Phone Radiofrequency Electromagnetic Fields on β-Amyloid-Induced Oxidative Stress in Human and Rat Primary Astrocytes. Neuroscience 2019; 408:46-57. [PMID: 30953670 DOI: 10.1016/j.neuroscience.2019.03.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/25/2022]
Abstract
Amyloid beta peptide (Aβ) is implicated in the development of pathological reactions associated with Alzheimer's disease (AD), such as oxidative stress, neuro-inflammation and death of brain cells. Current pharmacological approaches to treat AD are not able to control the deposition of Aβ and suppression of Aβ-induced cellular response. There is a growing body of evidence that exposure to radiofrequency electromagnetic field (RF-EMF) causes a decrease of beta-amyloid deposition in the brains and provides cognitive benefits to Alzheimer's Tg mice. Herein, we investigated the effects of mobile phone radiofrequency EMF of 918 MHz on reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), activity of NADPH-oxidase, and phosphorylation of p38MAPK and ERK1/2 kinases in human and rat primary astrocytes in the presence of Aβ42 and H2O2. Our data demonstrate that EMF is able to reduce Aβ42- and H2O2-induced cellular ROS, abrogate Aβ₄₂-induced production of mitochondrial ROS and the co-localization between the cytosolic (p47-phox) and membrane (gp91-phox) subunits of NADPH oxidase, while increasing MMP, and inhibiting H2O2-induced phosphorylation of p38MAPK and ERK1/2 in primary astrocytes. Yet, EMF was not able to modulate alterations in the phosphorylation state of the MAPKs triggered by Aβ42. Our findings provide an insight into the mechanisms of cellular and molecular responses of astrocytes on RF-EMF exposure and indicate the therapeutic potential of RF-EMF for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Timur Saliev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan; S.D. Asfendiyarov Kazakh National Medical University, Tole Bi Street 94, Almaty, 050000, Kazakhstan
| | - Elvira Abzhanova
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Anel Turgambayeva
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Aiym Kaiyrlykyzy
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Mars Akishev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Samat Saparbayev
- National Scientific Medical Center, 42 Abylai Khan Ave, Astana, 010000, Kazakhstan, 010009
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan.
| |
Collapse
|
79
|
Kumar A, Henry RJ, Stoica BA, Loane DJ, Abulwerdi G, Bhat SA, Faden AI. Neutral Sphingomyelinase Inhibition Alleviates LPS-Induced Microglia Activation and Neuroinflammation after Experimental Traumatic Brain Injury. J Pharmacol Exp Ther 2019; 368:338-352. [PMID: 30563941 PMCID: PMC6367691 DOI: 10.1124/jpet.118.253955] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation is one of the key secondary injury mechanisms triggered by traumatic brain injury (TBI). Microglial activation, a hallmark of brain neuroinflammation, plays a critical role in regulating immune responses after TBI and contributes to progressive neurodegeneration and neurologic deficits following brain trauma. Here we evaluated the role of neutral sphingomyelinase (nSMase) in microglial activation by examining the effects of the nSMase inhibitors altenusin and GW4869 in vitro (using BV2 microglia cells and primary microglia), as well as in a controlled cortical injury (CCI) model in adult male C57BL/6 mice. Pretreatment of altenusin or GW4869 prior to lipopolysaccharide (LPS) stimulation for 4 or 24 hours, significantly downregulated gene expression of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, iNOS, and CCL2 in microglia and reduced the release of nitric oxide and TNF-α These nSMase inhibitors also attenuated the release of microparticles and phosphorylation of p38 MAPK and ERK1/2. In addition, altenusin pretreatment also reduced the gene expression of multiple inflammatory markers associated with microglial activation after experimental TBI, including TNF-α, IL-1β, IL-6, iNOS, CCL2, CD68, NOX2, and p22phox Overall, our data demonstrate that nSMase inhibitors attenuate multiple inflammatory pathways associated with microglial activation in vitro and after experimental TBI. Thus, nSMase inhibitors may represent promising therapeutics agents targeting neuroinflammation.
Collapse
Affiliation(s)
- Asit Kumar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gelareh Abulwerdi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shahnawaz A Bhat
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
80
|
Núñez MT, Hidalgo C. Noxious Iron-Calcium Connections in Neurodegeneration. Front Neurosci 2019; 13:48. [PMID: 30809110 PMCID: PMC6379295 DOI: 10.3389/fnins.2019.00048] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Iron and calcium share the common feature of being essential for normal neuronal function. Iron is required for mitochondrial function, synaptic plasticity, and the development of cognitive functions whereas cellular calcium signals mediate neurotransmitter exocytosis, axonal growth and synaptic plasticity, and control the expression of genes involved in learning and memory processes. Recent studies have revealed that cellular iron stimulates calcium signaling, leading to downstream activation of kinase cascades engaged in synaptic plasticity. The relationship between calcium and iron is Janus-faced, however. While under physiological conditions iron-mediated reactive oxygen species generation boosts normal calcium-dependent signaling pathways, excessive iron levels promote oxidative stress leading to the upsurge of unrestrained calcium signals that damage mitochondrial function, among other downstream targets. Similarly, increases in mitochondrial calcium to non-physiological levels result in mitochondrial dysfunction and a predicted loss of iron homeostasis. Hence, if uncontrolled, the iron/calcium self-feeding cycle becomes deleterious to neuronal function, leading eventually to neuronal death. Here, we review the multiple cell-damaging responses generated by the unregulated iron/calcium self-feeding cycle, such as excitotoxicity, free radical-mediated lipid peroxidation, and the oxidative modification of crucial components of iron and calcium homeostasis/signaling: the iron transporter DMT1, plasma membrane, and intracellular calcium channels and pumps. We discuss also how iron-induced dysregulation of mitochondrial calcium contributes to the generation of neurodegenerative conditions, including Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Marco Tulio Núñez
- Iron and Neuroregeneration Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Calcium Signaling Laboratory, Biomedical Research Institute, CEMC, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
81
|
Yao K, Zhao YF, Zu HB. Melatonin receptor stimulation by agomelatine prevents Aβ-induced tau phosphorylation and oxidative damage in PC12 cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:387-396. [PMID: 30718944 PMCID: PMC6345325 DOI: 10.2147/dddt.s182684] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose As a novel antidepressant drug, agomelatine has good therapeutic effect on the mood disorder and insomnia in Alzheimer's disease (AD). Recent studies have shown the neuroprotective function of agomelatine, including anti-oxidative and anti-apoptosis effect. However, it remains unclear whether agomelatine exerts neuroprotection in AD. Thus, the neuroprotective effect of agomelatine against amyloid beta 25-35 (Aβ25-35)-induced toxicity in PC12 cells was evaluated in this study. Methods The concentration of malondialdehyde (MDA), LDH, and ROS was investigated to evaluate oxidative damage. The expression of P-tau, tau, PTEN, P-Akt, Akt, P-GSK3β, and GSK3β proteins was assessed by Western blotting. Our results demonstrated that Aβ25-35 significantly increased the content of MDA, LDH, and ROS. Meanwhile, Aβ25-35 upregulated the expression of P-tau and PTEN as well as downregulated P-Akt and P-GSK3β expression. These effects could be blocked by agomelatine pretreatment. Furthermore, luzindole, the melatonin receptor (MT) antagonist, could reverse the neuroprotective effect of agomelatine. Conclusion The results demonstrated that antidepressant agomelatine might prevent the tau protein phosphorylation and oxidative damage induced by Aβ25-35 in PC12 cells by activating MT-PTEN/Akt/GSK3β signaling. This study provided a novel therapeutic target for AD in the future.
Collapse
Affiliation(s)
- Kai Yao
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, China,
| | - Yong-Fei Zhao
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, China,
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, China,
| |
Collapse
|
82
|
Rane P, Sarmah D, Bhute S, Kaur H, Goswami A, Kalia K, Borah A, Dave KR, Sharma N, Bhattacharya P. Novel Targets for Parkinson's Disease: Addressing Different Therapeutic Paradigms and Conundrums. ACS Chem Neurosci 2019; 10:44-57. [PMID: 29957921 DOI: 10.1021/acschemneuro.8b00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is pathologically characterized by degeneration of dopamine neurons in the substantia nigra pars compacta (SNpc). PD leads to clinical motor features that include rigidity, tremor, and bradykinesia. Despite multiple available therapies for PD, the clinical features continue to progress, and patients suffer progressive disability. Many advances have been made in PD therapy which directly target the cause of the disease rather than providing symptomatic relief. A neuroprotective or disease modifying strategy that can slow or cease clinical progression and worsening disability remains as a major unmet medical need for PD management. The present review discusses potential novel therapies for PD that include recent interventions in the form of immunomodulatory techniques and stem cell therapy. Further, an introspective approach to identify numerous other novel targets that can alleviate PD pathogenesis and enable physicians to practice multitargeted therapy and that may provide a ray of hope to PD patients in the future are discussed.
Collapse
Affiliation(s)
- Pallavi Rane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Shashikala Bhute
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Avirag Goswami
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
83
|
Ceccon M, Millana Fananas E, Massari M, Mattevi A, Magnani F. Engineering stability in NADPH oxidases: A common strategy for enzyme production. Mol Membr Biol 2019; 34:67-76. [PMID: 30307338 DOI: 10.1080/09687688.2018.1535141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
NADPH oxidases (NOXs) are membrane enzymes whose sole function is the generation of reactive oxygen species. Humans have seven NOX isoenzymes that feature distinct functions in immune response and cell signaling but share the same catalytic core comprising a FAD-binding dehydrogenase domain and a heme-binding transmembrane domain. We previously described a mutation that stabilizes the dehydrogenase domain of a prokaryotic homolog of human NOX5. The thermostable mutant exhibited a large 19 °C increase in the apparent melting temperature (app Tm) and a much tighter binding of the FAD cofactor, which allowed the crystallization and structure determination of the domain holo-form. Here, we analyze the transferability of this mutation onto prokaryotic and eukaryotic full-length NOX enzymes. We found that the mutation exerts a significative stabilizing effect on the full-length NOX5 from both Cylindrospermum stagnale (app Tm increase of 8 °C) and Homo sapiens (app ΔTm of 2 °C). Enhanced thermal stability resulted in more homogeneous preparations of the bacterial NOX5 with less aggregation problems. Moreover, we also found that the mutation increases the overall expression of recombinant human NOX4 and NOX5 in mammalian cells. Such a 2-5-fold increase is mainly due to the lowered cell toxicity, which leads to higher biomasses. Because of the high sequence identity of the catalytic core within this family of enzymes, this strategy can be a general tool to boost the production of all NOXs.
Collapse
Affiliation(s)
- Marta Ceccon
- a Department of Biology and Biotechnology , University of Pavia , Pavia , Italy
| | | | - Marta Massari
- a Department of Biology and Biotechnology , University of Pavia , Pavia , Italy
| | - Andrea Mattevi
- a Department of Biology and Biotechnology , University of Pavia , Pavia , Italy
| | - Francesca Magnani
- a Department of Biology and Biotechnology , University of Pavia , Pavia , Italy
| |
Collapse
|
84
|
Mancini A, Gaetani L, Gentili L, Di Filippo M. Finding a way to preserve mitochondria: new pathogenic pathways in experimental multiple sclerosis. Neural Regen Res 2019; 14:77-78. [PMID: 30531078 PMCID: PMC6262986 DOI: 10.4103/1673-5374.243707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Andrea Mancini
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Lucia Gentili
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Massimiliano Di Filippo
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
85
|
Xu F, He B, Xiao F, Yan T, Bi K, Jia Y, Wang Z. Neuroprotective Effects of Spinosin on Recovery of Learning and Memory in a Mouse Model of Alzheimer's Disease. Biomol Ther (Seoul) 2019; 27:71-77. [PMID: 29925225 PMCID: PMC6319550 DOI: 10.4062/biomolther.2018.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 11/29/2022] Open
Abstract
Previous studies have shown that spinosin was implicated in the modulation of sedation and hypnosis, while its effects on learning and memory deficits were rarely reported. The aim of this study is to investigate the effects of spinosin on the improvement of cognitive impairment in model mice with Alzheimer’s disease (AD) induced by Aβ1–42 and determine the underlying mechanism. Spontaneous locomotion assessment and Morris water maze test were performed to investigate the impact of spinosin on behavioral activities, and the pathological changes were assayed by biochemical analyses and histological assay. After 7 days of intracerebroventricular (ICV) administration of spinosin (100 µg/kg/day), the cognitive impairment of mice induced by Aβ1–42 was significantly attenuated. Moreover, spinosin treatment effectively decreased the level of malondialdehyde (MDA) and Aβ1–42 accumulation in hippocampus. Aβ1–42 induced alterations in the expression of brain derived neurotrophic factor (BDNF) and B-cell lymphoma-2 (Bcl-2), as well as inflammatory response in brain were also reversed by spinosin treatment. These results indicated that the ameliorating effect of spinosin on cognitive impairment might be mediated through the regulation of oxidative stress, inflammatory process, apoptotic program and neurotrophic factor expression, suggesting that spinosin might be beneficial to treat learning and memory deficits in patients with AD via multi-targets.
Collapse
Affiliation(s)
- Fanxing Xu
- Jiangsu Kangyuan Pharmaceutical Co., Ltd., Lianyungang 222047, China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bosai He
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng Xiao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tingxu Yan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenzhong Wang
- Jiangsu Kangyuan Pharmaceutical Co., Ltd., Lianyungang 222047, China
| |
Collapse
|
86
|
The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci 2018; 19:ijms19123824. [PMID: 30513656 PMCID: PMC6321244 DOI: 10.3390/ijms19123824] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
For a number of years, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) was synonymous with NOX2/gp91phox and was considered to be a peculiarity of professional phagocytic cells. Over the last decade, several more homologs have been identified and based on current research, the NOX family consists of NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2 enzymes. NOXs are electron transporting membrane proteins that are responsible for reactive oxygen species (ROS) generation-primarily superoxide anion (O₂●-), although hydrogen peroxide (H₂O₂) can also be generated. Elevated ROS leads to oxidative stress (OS), which has been associated with a myriad of inflammatory and degenerative pathologies. Interestingly, OS is also the commonality in the pathophysiology of neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). NOX enzymes are expressed in neurons, glial cells and cerebrovascular endothelial cells. NOX-mediated OS is identified as one of the main causes of cerebrovascular damage in neurodegenerative diseases. In this review, we will discuss recent developments in our understanding of the mechanisms linking NOX activity, OS and neurodegenerative diseases, with particular focus on the neurovascular component of these conditions. We conclude highlighting current challenges and future opportunities to combat age-related neurodegenerative disorders by targeting NOXs.
Collapse
|
87
|
Tayara K, Espinosa-Oliva AM, García-Domínguez I, Ismaiel AA, Boza-Serrano A, Deierborg T, Machado A, Herrera AJ, Venero JL, de Pablos RM. Divergent Effects of Metformin on an Inflammatory Model of Parkinson's Disease. Front Cell Neurosci 2018; 12:440. [PMID: 30519161 PMCID: PMC6258993 DOI: 10.3389/fncel.2018.00440] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023] Open
Abstract
The oral antidiabetic drug metformin is known to exhibit anti-inflammatory properties through activation of AMP kinase, thus protecting various brain tissues as cortical neurons, for example. However, the effect of metformin on the substantia nigra (SN), the main structure affected in Parkinson’s disease (PD), has not yet been studied in depth. Inflammation is a key feature of PD and it may play a central role in the neurodegeneration that takes place in this disorder. The aim of this work was to determine the effect of metformin on the microglial activation of the SN of rats using the animal model of PD based on the injection of the pro-inflammogen lipopolysaccharide (LPS). In vivo and in vitro experiments were conducted to study the activation of microglia at both the cellular and molecular levels. Our results indicate that metformin overall inhibits microglia activation measured by OX-6 (MHCII marker), IKKβ (pro-inflammatory marker) and arginase (anti-inflammatory marker) immunoreactivity. In addition, qPCR experiments reveal that metformin treatment minimizes the expression levels of several pro- and anti-inflammatory cytokines. Mechanistically, the drug decreases the phosphorylated forms of mitogen-activated protein kinases (MAPKs) as well as ROS generation through the inhibition of the NADPH oxidase enzyme. However, metformin treatment fails to protect the dopaminergic neurons of SN in response to intranigral LPS. These findings suggest that metformin could have both beneficial and harmful pharmacological effects and raise the question about the potential use of metformin for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Khadija Tayara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Irene García-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Afrah Abdul Ismaiel
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonio Boza-Serrano
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alberto Machado
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonio J Herrera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José L Venero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
88
|
Tran HQ, Park SJ, Shin EJ, Tran TV, Sharma N, Lee YJ, Jeong JH, Jang CG, Kim DJ, Nabeshima T, Kim HC. Clozapine attenuates mitochondrial burdens and abnormal behaviors elicited by phencyclidine in mice via inhibition of p47 phox; Possible involvements of phosphoinositide 3-kinase/Akt signaling. J Psychopharmacol 2018; 32:1233-1251. [PMID: 30207504 DOI: 10.1177/0269881118795244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Oxidative stress and mitochondrial dysfunction have been implicated in the pathophysiology of schizophrenia. AIMS We investigated whether antipsychotic clozapine modulates nicotinamide adenine dinucleotide phosphate oxidase and mitochondrial burdens induced by phencyclidine in mice. METHODS We examined the effect of clozapine on nicotinamide adenine dinucleotide phosphate oxidase activation, mitochondrial burdens (i.e. oxidative stress and mitochondrial dysfunction), and activities of enzymatic antioxidant in the prefrontal cortex, and subsequent abnormal behaviors induced by repeated treatment with phencyclidine. p47 phox Knockout mice and LY294002, a phosphoinositide 3-kinase inhibitor, were employed to elucidate the pharmacological mechanism of clozapine. RESULTS Phencyclidine treatment resulted in an early increase nicotinamide adenine dinucleotide phosphate oxidase activity, membrane translocation of p47 phox, interaction between p-Akt and p47 phox, and mitochondrial burdens in wild-type mice. Although these increases returned to near control level four days post-phencyclidine, mitochondrial superoxide dismutase and glutathione peroxidase activities were decreased at that time. Clozapine, LY294002, or p47 phox knockout significantly ameliorated social withdrawal and recognition memory deficits produced by phencyclidine. Importantly, LY294002 did not significantly alter the effects of clozapine against abnormal behaviors and the interaction between p-Akt and p47 phox induced by phencyclidine. Furthermore, neither LY294002 nor clozapine exhibited any additive effects to the protection afforded by p47 phox knockout against phencyclidine insult. CONCLUSION Our results suggest that p47 phox gene mediates phencyclidine-induced mitochondrial burdens and abnormal behaviors, and that the interactive modulation between p47 phox and phosphoinositide 3-kinase/Akt is important for the understanding on the pharmacological mechanism of clozapine.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Se J Park
- 2 School of Natural Resources and Environmental Sciences, Kangwon National University, Chunchon, Republic of Korea
| | - Eun-Joo Shin
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - The-Vinh Tran
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Naveen Sharma
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Yu J Lee
- 3 Clinical Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Ji H Jeong
- 4 Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- 5 Department of Pharmacology, Sungkyunkwan University, Suwon, Korea
| | - Dae-Joong Kim
- 6 Department of Anatomy and Cell Biology, Kangwon National University, Chunchon, Korea
| | - Toshitaka Nabeshima
- 7 Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.,9 Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|
89
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
90
|
Wang J, Ma MW, Dhandapani KM, Brann DW. NADPH oxidase 2 deletion enhances neurogenesis following traumatic brain injury. Free Radic Biol Med 2018; 123:62-71. [PMID: 29782989 DOI: 10.1016/j.freeradbiomed.2018.05.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
The NADPH oxidase (NOX) enzyme family is a major source of reactive oxygen species (ROS) and contributor to the secondary pathology underlying traumatic brain injury (TBI). However, little is known about how NOX-derived ROS influences the proliferation and cell-fate determination of neural stem/progenitor cells (NSCs/NPCs) following TBI. In the current study, we found that deletion of NOX2 (NOX2-KO) significantly decreases the population of radial glia-like NSCs and neuroblasts but maintains the population of non-radial Sox2 expressing stem cells under physiological (non-injury) conditions. Surprisingly, the brains of NOX2-KO mice demonstrated a robust increase in the number of neuroblasts during the first week after TBI, as compared to the wild-type group. This increase may result from an enhanced proliferation of NPCs in a lower ROS environment after brain injury, as further examination revealed a significant increase of dividing neuroblasts in both NOX2-KO and NOX inhibitor-treated mouse brain during the first week following TBI. Finally, 5-Bromo-2'-deoxyuridine (BrdU) lineage tracing demonstrated a significantly increased number of newborn neurons were present in the perilesional cortex of NOX2-KO mice at 5 weeks post TBI, indicating that deletion of NOX2 promotes long-term neurogenesis in the injured brain following TBI. Altogether, these findings suggest that targeting NOX through genetic deletion or inhibition enhances post-injury neurogenesis, which may be beneficial for recovery following TBI.
Collapse
Affiliation(s)
- Jing Wang
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA
| | - Merry W Ma
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA
| | - Krishnan M Dhandapani
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA
| | - Darrell W Brann
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA.
| |
Collapse
|
91
|
Ma MW, Wang J, Dhandapani KM, Wang R, Brann DW. NADPH oxidases in traumatic brain injury - Promising therapeutic targets? Redox Biol 2018; 16:285-293. [PMID: 29571125 PMCID: PMC5952873 DOI: 10.1016/j.redox.2018.03.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Despite intense investigation, no neuroprotective agents for TBI have yet translated to the clinic. Recent efforts have focused on identifying potential therapeutic targets that underlie the secondary TBI pathology that evolves minutes to years following the initial injury. Oxidative stress is a key player in this complex cascade of secondary injury mechanisms and prominently contributes to neurodegeneration and neuroinflammation. NADPH oxidase (NOX) is a family of enzymes whose unique function is to produce reactive oxygen species (ROS). Human post-mortem and animal studies have identified elevated NOX2 and NOX4 levels in the injured brain, suggesting that these two NOXs are involved in the pathogenesis of TBI. In support of this, NOX2 and NOX4 deletion studies have collectively revealed that targeting NOX enzymes can reduce oxidative stress, attenuate neuroinflammation, promote neuronal survival, and improve functional outcomes following TBI. In addition, NOX inhibitor studies have confirmed these findings and demonstrated an extended critical window of efficacious TBI treatment. Finally, the translational potential, caveats, and future directions of the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Merry W Ma
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
92
|
Hou L, Wang K, Zhang C, Sun F, Che Y, Zhao X, Zhang D, Li H, Wang Q. Complement receptor 3 mediates NADPH oxidase activation and dopaminergic neurodegeneration through a Src-Erk-dependent pathway. Redox Biol 2018; 14:250-260. [PMID: 28978491 PMCID: PMC5975223 DOI: 10.1016/j.redox.2017.09.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/17/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023] Open
Abstract
Microglial NADPH oxidase (Nox2) plays a key role in chronic neuroinflammation and related dopaminergic neurodegeneration in Parkinson's disease (PD). However, the mechanisms behind Nox2 activation remain unclear. Here, we revealed the critical role of complement receptor 3 (CR3), a microglia-specific pattern recognition receptor, in Nox2 activation and subsequent dopaminergic neurodegeneration by using paraquat and maneb-induced PD model. Suppression or genetic deletion of CR3 impeded paraquat and maneb-induced activation of microglial Nox2, which was associated with attenuation of dopaminergic neurodegeneration. Mechanistic inquiry revealed that blocking CR3 reduced paraquat and maneb-induced membrane translocation of Nox2 cytosolic subunit p47phox, an essential step for Nox2 activation. Src and Erk (extracellular regulated protein kinases) were subsequently recognized as the downstream signals of CR3. Moreover, inhibition of Src or Erk impaired Nox2 activation in response to paraquat and maneb co-exposure. Finally, we found that CR3-deficient mice were more resistant to paraquat and maneb-induced Nox2 activation and nigral dopaminergic neurodegeneration as well as motor dysfunction than the wild type controls. Taken together, our results showed that CR3 regulated Nox2 activation and dopaminergic neurodegeneration through a Src-Erk-dependent pathway in a two pesticide-induced PD model, providing novel insights into the immune pathogenesis of PD.
Collapse
Affiliation(s)
- Liyan Hou
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Ke Wang
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Cong Zhang
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Fuqiang Sun
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Yuning Che
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, China
| | - Dan Zhang
- State Key Laboratory of Natural Products and Functions, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Huihua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
93
|
Marrali G, Casale F, Salamone P, Fuda G, Ilardi A, Manera U, Calvo A, Zibetti M, Lopiano L, Chiò A. NADPH oxidases 2 activation in patients with Parkinson's disease. Parkinsonism Relat Disord 2018; 49:110-111. [DOI: 10.1016/j.parkreldis.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
|
94
|
Chen SH, Sung YF, Oyarzabal EA, Tan YM, Leonard J, Guo M, Li S, Wang Q, Chu CH, Chen SL, Lu RB, Hong JS. Physiological Concentration of Prostaglandin E 2 Exerts Anti-inflammatory Effects by Inhibiting Microglial Production of Superoxide Through a Novel Pathway. Mol Neurobiol 2018; 55:8001-8013. [PMID: 29492849 DOI: 10.1007/s12035-018-0965-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/16/2018] [Indexed: 01/21/2023]
Abstract
This study investigated the physiological regulation of brain immune homeostasis in rat primary neuron-glial cultures by sub-nanomolar concentrations of prostaglandin E2 (PGE2). We demonstrated that 0.01 to 10 nM PGE2 protected dopaminergic neurons against LPS-induced neurotoxicity through a reduction of microglial release of pro-inflammatory factors in a dose-dependent manner. Mechanistically, neuroprotective effects elicited by PGE2 were mediated by the inhibition of microglial NOX2, a major superoxide-producing enzyme. This conclusion was supported by (1) the close relationship between inhibition of superoxide and PGE2-induced neuroprotective effects; (2) the mediation of PGE2-induced reduction of superoxide and neuroprotection via direct inhibition of the catalytic subunit of NOX2, gp91phox, rather than through the inhibition of conventional prostaglandin E2 receptors; and (3) abolishment of the neuroprotective effect of PGE2 in NOX2-deficient cultures. In summary, this study revealed a potential physiological role of PGE2 in maintaining brain immune homeostasis and protecting neurons via an EP receptor-independent mechanism.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.
| | - Yueh-Feng Sung
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.,Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Esteban A Oyarzabal
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, National Exposure Research Lab, Research Triangle Park, NC, USA
| | - Jeremy Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Mingri Guo
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.,Department of Laboratory Medicine, Tianjin Haihe Hospital/Haihe Clinical Institute of Tianjin Medical University, Tianjin, China
| | - Shuo Li
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.,Department of Respiratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingshan Wang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Chun-Hsien Chu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Shiou-Lan Chen
- Department of Neurology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ru-Band Lu
- Institute of Behavioral Medicine, College of Medicine & Hospital, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University, Tainan, Taiwan
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
95
|
Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Nah SY, Jeong JH, Byun JK, Ko SK, Bing G, Hong JS, Kim HC. Ginsenoside Re protects methamphetamine-induced dopaminergic neurotoxicity in mice via upregulation of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated neurokinin 1 receptor. J Neuroinflammation 2018; 15:52. [PMID: 29467000 PMCID: PMC5822489 DOI: 10.1186/s12974-018-1087-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously reported that ginsenoside Re (GRe) attenuated against methamphetamine (MA)-induced neurotoxicity via anti-inflammatory and antioxidant potentials. We also demonstrated that dynorphin possesses anti-inflammatory and antioxidant potentials against dopaminergic loss, and that balance between dynorphin and substance P is important for dopaminergic neuroprotection. Thus, we examined whether GRe positively affects interactive modulation between dynorphin and substance P against MA neurotoxicity in mice. METHODS We examined changes in dynorphin peptide level, prodynorphin mRNA, and substance P mRNA, substance P-immunoreactivity, homeostasis in enzymatic antioxidant system, oxidative parameter, microglial activation, and pro-apoptotic parameter after a neurotoxic dose of MA to clarify the effects of GRe, prodynorphin knockout, pharmacological inhibition of κ-opioid receptor (i.e., nor-binaltorphimine), or neurokinin 1 (NK1) receptor (i.e., L-733,060) against MA insult in mice. RESULTS GRe attenuated MA-induced decreases in dynorphin level, prodynorphin mRNA expression in the striatum of wild-type (WT) mice. Prodynorphin knockout potentiated MA-induced dopaminergic toxicity in mice. The imbalance of enzymatic antioxidant system, oxidative burdens, microgliosis, and pro-apoptotic changes led to the dopaminergic neurotoxicity. Neuroprotective effects of GRe were more pronounced in prodynorphin knockout than in WT mice. Nor-binaltorphimine, a κ-opioid receptor antagonist, counteracted against protective effects of GRe. In addition, we found that GRe significantly attenuated MA-induced increases in substance P-immunoreactivity and substance P mRNA expression in the substantia nigra. These increases were more evident in prodynorphin knockout than in WT mice. Although, we observed that substance P-immunoreactivity was co-localized in NeuN-immunreactive neurons, GFAP-immunoreactive astrocytes, and Iba-1-immunoreactive microglia. NK1 receptor antagonist L-733,060 or GRe selectively inhibited microgliosis induced by MA. Furthermore, L-733,060 did not show any additive effects against GRe-mediated protective activity (i.e., antioxidant, antimicroglial, and antiapoptotic effects), indicating that NK1 receptor is one of the molecular targets of GRe. CONCLUSIONS Our results suggest that GRe protects MA-induced dopaminergic neurotoxicity via upregulatgion of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated NK1 R.
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jung Hwan Jeong
- Headquarters of Forestry Support, Korea Forestry Promotion Institute, Seoul, 07570, Republic of Korea
| | - Jae Kyung Byun
- Korean Society of Forest Environment Research, Namyangju, 12014, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food and Nutrition, Semyung University, Jecheon, 27136, Republic of Korea.
| | - Guoying Bing
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
96
|
Wang SM, Lim SW, Wang YH, Lin HY, Lai MD, Ko CY, Wang JM. Astrocytic CCAAT/Enhancer-binding protein delta contributes to reactive oxygen species formation in neuroinflammation. Redox Biol 2018; 16:104-112. [PMID: 29499563 PMCID: PMC5953220 DOI: 10.1016/j.redox.2018.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Excessive reactive oxygen species (ROS) can form an oxidative stress and an associated neuroinflammation. However, the contribution of astrocytes to ROS formation, the cause of the resistance of astrocytes to oxidative stress, and the consequences on neurons remain largely uninvestigated. The transcription factor CCAAT/enhancer-binding protein delta (CEBPD) is highly expressed in astrocytes and has been suggested to contribute to the progress of Alzheimer's disease (AD). In this study, we found that ROS formation and expression of p47phox and p67phox, subunits of NADPH oxidase, were increased in AppTg mice but attenuated in AppTg/Cebpd-/- mice. Cebpd can up-regulate p47phox and p67phox transcription via a direct binding on their promoters, which results in an increase in intracellular oxidative stress. In addition, Cebpd also up-regulated Cu/Zn superoxide dismutase (Sod1) in astrocytes. Inactivation of Sod1 increased the sensitization to oxidative stress, which provides a reason for the resistance of astrocytes in an oxidative stress environment. Taken together, the study first revealed and dissected the involvement of astrocytic Cebpd in the promotion of oxidative stress and the contribution of CEBPD to the resistance of astrocytes in an oxidative stress environment.
Collapse
Affiliation(s)
- Shao-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Center for Neurotrauma and Neuroregeneration, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Sher-Wei Lim
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Departments of Neurosurgery, Chi-Mei Medical Center, Tainan 722, Taiwan; Department of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan
| | - Ya-Han Wang
- Department of Life Science, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Yi Lin
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Derg Lai
- Institute of Basic Medical Sciences, College of Medicine, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiung-Yuan Ko
- Center for Neurotrauma and Neuroregeneration, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Ju-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Graduate Institute of Medical Sciences, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
97
|
Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Ottersen OP, Nah SY, Hong JS, Nabeshima T, Kim HC. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic Biol Med 2018; 115:318-337. [PMID: 29269308 PMCID: PMC7074955 DOI: 10.1016/j.freeradbiomed.2017.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
Protein kinase C (PKC) has been recognized to activate NADPH oxidase (PHOX). However, the interaction between PKC and PHOX in vivo remains elusive. Treatment with methamphetamine (MA) resulted in a selective increase in PKCδ expression out of PKC isoforms. PKCδ co-immunoprecipitated with p47phox, and facilitated phosphorylation and membrane translocation of p47phox. MA-induced increases in PHOX activity and reactive oxygen species were attenuated by knockout of p47phox or PKCδ. In addition, MA-induced impairments in the Nrf-2-related glutathione synthetic system were also mitigated by knockout of p47phox or PKCδ. Glutathione-immunoreactivity was co-localized in Iba-1-labeled microglial cells and in NeuN-labeled neurons, but not in GFAP-labeled astrocytes, reflecting the necessity for self-protection against oxidative stress by mainly microglia. Buthionine-sulfoximine, an inhibitor of glutathione biosynthesis, potentiated microglial activation and pro-apoptotic changes, leading to dopaminergic losses. These neurotoxic processes were attenuated by rottlerin, a pharmacological inhibitor of PKCδ, genetic inhibitions of PKCδ [i.e., PKCδ knockout mice (KO) and PKCδ antisense oligonucleotide (ASO)], or genetic inhibition of p47phox (i.e., p47phox KO or p47phox ASO). Rottlerin did not exhibit any additive effects against the protective activity offered by genetic inhibition of p47phox. Therefore, we suggest that PKCδ is a critical regulator for p47phox activation induced by MA, and that Nrf-2-dependent GSH induction via inhibition of PKCδ or p47phox, is important for dopaminergic protection against MA insult.
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ole Petter Ottersen
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Toshitaka Nabeshima
- Nabeshima Laboratory, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
98
|
Mancini A, Tantucci M, Mazzocchetti P, de Iure A, Durante V, Macchioni L, Giampà C, Alvino A, Gaetani L, Costa C, Tozzi A, Calabresi P, Di Filippo M. Microglial activation and the nitric oxide/cGMP/PKG pathway underlie enhanced neuronal vulnerability to mitochondrial dysfunction in experimental multiple sclerosis. Neurobiol Dis 2018; 113:97-108. [PMID: 29325869 DOI: 10.1016/j.nbd.2018.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/07/2017] [Accepted: 01/04/2018] [Indexed: 12/24/2022] Open
Abstract
During multiple sclerosis (MS), a close link has been demonstrated to occur between inflammation and neuro-axonal degeneration, leading to the hypothesis that immune mechanisms may promote neurodegeneration, leading to irreversible disease progression. Energy deficits and inflammation-driven mitochondrial dysfunction seem to be involved in this process. In this work we investigated, by the use of striatal electrophysiological field-potential recordings, if the inflammatory process associated with experimental autoimmune encephalomyelitis (EAE) is able to influence neuronal vulnerability to the blockade of mitochondrial complex IV, a crucial component for mitochondrial activity responsible of about 90% of total cellular oxygen consumption. We showed that during the acute relapsing phase of EAE, neuronal susceptibility to mitochondrial complex IV inhibition is markedly enhanced. This detrimental effect was counteracted by the pharmacological inhibition of microglia, of nitric oxide (NO) synthesis and its intracellular pathway (involving soluble guanylyl cyclase, sGC, and protein kinase G, PKG). The obtained results suggest that mitochondrial complex IV exerts an important role in maintaining neuronal energetic homeostasis during EAE. The pathological processes associated with experimental MS, and in particular the activation of microglia and of the NO pathway, lead to an increased neuronal vulnerability to mitochondrial complex IV inhibition, representing promising pharmacological targets.
Collapse
Affiliation(s)
- Andrea Mancini
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Michela Tantucci
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Petra Mazzocchetti
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio de Iure
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Valentina Durante
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Lara Macchioni
- Sezione di Fisiologia e Biochimica, Dipartimento di Medicina Sperimentale, Università degli Studi di Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Carmela Giampà
- Università Cattolica del Sacro Cuore, Istituto di Anatomia Umana e Biologia Cellulare, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessandra Alvino
- Università Cattolica del Sacro Cuore, Istituto di Anatomia Umana e Biologia Cellulare, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Lorenzo Gaetani
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Cinzia Costa
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Alessandro Tozzi
- Sezione di Fisiologia e Biochimica, Dipartimento di Medicina Sperimentale, Università degli Studi di Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy; IRCCS, Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy; IRCCS, Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Massimiliano Di Filippo
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy.
| |
Collapse
|
99
|
Esposito S, Masala A, Sanna S, Rassu M, Pimxayvong V, Iaccarino C, Crosio C. Redox-sensitive GFP to monitor oxidative stress in neurodegenerative diseases. Rev Neurosci 2018; 28:133-144. [PMID: 28030361 DOI: 10.1515/revneuro-2016-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Abstract
Redox processes are key events in the degenerative cascade of many adult-onset neurodegenerative diseases (NDs), but the biological relevance of a single redox change is often dependent on the redox couple involved and on its subcellular origin. The biosensors based on engineered fluorescent proteins (redox-sensitive GFP [roGFP]) offer a unique opportunity to monitor redox changes in both physiological and pathological contexts in living animals and plants. Here, we review the use of roGFPs to monitor oxidative stress in different three adult-onset NDs: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite the many differences spanning from incidence to onset, the hypotheses on biological processes underlying both sporadic and familiar ND forms in humans outline a model in which noncompeting mechanisms are likely to converge in various unsuccessful patterns to mediate the selective degeneration of a specific neuronal population. roGFPs, targeted to different cell compartments, are successfully used as specific markers of cell toxicity, induced by expression of causative genes linked to a determined ND. We also report the use of roGFP to monitor oxidative stress induced by the expression of the ALS-causative gene SOD1.
Collapse
|
100
|
Kapoor M, Sharma N, Sandhir R, Nehru B. Effect of the NADPH oxidase inhibitor apocynin on ischemia-reperfusion hippocampus injury in rat brain. Biomed Pharmacother 2018; 97:458-472. [DOI: 10.1016/j.biopha.2017.10.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/23/2023] Open
|