51
|
Boopathy S, Luce BE, Lugo CM, Hakim P, McDonald J, Kim HL, Ponce J, Ueberheide BM, Chao LH. Identification of SLC25A46 interaction interfaces with mitochondrial membrane fusogens Opa1 and Mfn2. J Biol Chem 2024; 300:107740. [PMID: 39222684 PMCID: PMC11459905 DOI: 10.1016/j.jbc.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondrial fusion requires the sequential merger of four bilayers to two. The outer-membrane solute carrier family 25 member (SLC25A46) interacts with both the outer and inner membrane dynamin family GTPases mitofusin 1/2 and optic atrophy 1 (Opa1). While SLC25A46 levels are known to affect mitochondrial morphology, how SLC25A46 interacts with mitofusin 1/2 and Opa1 to regulate membrane fusion is not understood. In this study, we use crosslinking mass spectrometry and AlphaFold 2 modeling to identify interfaces mediating an SLC25A46 interaction with Opa1 and Mfn2. We reveal that the bundle signaling element of Opa1 interacts with SLC25A46, and present evidence of an Mfn2 interaction involving the SLC25A46 cytosolic face. We validate these newly identified interaction interfaces and show that they play a role in mitochondrial network maintenance.
Collapse
Affiliation(s)
- Sivakumar Boopathy
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston Massachusetts, USA
| | - Bridget E Luce
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Camila Makhlouta Lugo
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Pusparanee Hakim
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Julie McDonald
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Ha Lin Kim
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Jackeline Ponce
- Proteomics Resource Center, Division of Advanced Research Technologies, New York University Langone Health Center, New York New York, USA
| | - Beatrix M Ueberheide
- Proteomics Resource Center, Division of Advanced Research Technologies, New York University Langone Health Center, New York New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone Health Center, New York New York, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston Massachusetts, USA.
| |
Collapse
|
52
|
Wang Y, Li YJ, Li CC, Pu L, Geng WL, Gao F, Zhang Q. GRP78 mediates mitochondrial fusion and fission in cigarette smoke-induced inflammatory responses in airway epithelial cells. Inhal Toxicol 2024; 36:511-520. [PMID: 39565149 DOI: 10.1080/08958378.2024.2428163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is characterized by persistent airway inflammation, with cigarette smoke being a major contributor to epithelial injury. Recent studies have shown that abnormal mitochondrial function is closely linked to the onset and progression of airway inflammation. This study aims to explore the role and underlying molecular mechanisms of mitochondrial dynamics in cigarette smoke-induced airway inflammation. MATERIALS AND METHODS Human bronchial epithelial (HBE) cells were exposed to cigarette smoke extract (CSE) to assess the expression of mitochondrial fusion markers MFN2 and OPA1, the fission marker DRP1, and the glucose-regulated protein GRP78. The siRNA and pharmaceutics targeting DRP1, MFN2, and GRP78 were employed. Both cells and supernatants were analyzed for inflammatory factor levels and the related signaling pathways. RESULTS In this study, HBE cells exposed to CSE showed a significant decrease in the proteins MFN2 and OPA1 and an increase in DRP1. The inhibition of DRP1 expression mitigated inflammation while silencing MFN2 exacerbated it. This was similarly corroborated by the use of the DRP1 inhibitor mdivi-1 and the MFN2 activator leflunomide. Additionally, we proved that GRP78 played an important regulatory role as an essential endoplasmic reticulum protein, regulating the mitochondrial fusion/fission process and subsequently activating the NF-κB pathway to regulate airway inflammation. DISCUSSION AND CONCLUSION Taken together, these results suggested that the GRP78-mediated mitochondrial fusion and fission process played a vital role in cigarette smoke-induced airway inflammation and might be a potential therapeutic target in this regard.
Collapse
Affiliation(s)
- Yong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ya-Jing Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chen-Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Pu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wan-Li Geng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qing Zhang
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
53
|
Brueck L, Roocke S, Matschke V, Richter-Unruh A, Marcus-Alic K, Theiss C, Stahlke S. FGF23 and Cell Stress in SaOS-2 Cells-A Model Reflecting X-Linked Hypophosphatemia Dynamics. Cells 2024; 13:1515. [PMID: 39329699 PMCID: PMC11430666 DOI: 10.3390/cells13181515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Our study investigates the impact of FGF23 overexpression on SaOS-2 cells to elucidate its role in cellular stress and morphology, contributing to the understanding of skeletal pathologies like X-linked hypophosphatemia (XLH). Using transmission electron microscopy and protein analysis (Western blot), we analyzed the rough endoplasmic reticulum (rER) and mitochondria in SaOS-2 cells with FGF23 overexpression compared to controls. We found significant morphological changes, including enlarged and elongated rER and mitochondria, with increased contact zones, suggesting enhanced interaction and adaptation to elevated protein synthesis and secretion demands. Additionally, we observed higher apoptosis rates of the cells after 24-72 h in vitro and upregulated proteins associated with ER stress and apoptosis, such as CHOP, XBP1 (spliced and unspliced), GRP94, eIF2α, and BAX. These findings indicate a robust activation of the unfolded protein response (UPR) and apoptotic pathways due to FGF23 overexpression. Our results highlight the critical role of ER and mitochondrial interactions in cellular stress responses and provide new insights into the mechanistic link between FGF23 signaling and cellular homeostasis. In conclusion, our study underscores the importance of analyzing UPR-related pathways in the development of therapeutic strategies for skeletal and systemic diseases and contributes to a broader understanding of diseases like XLH.
Collapse
Affiliation(s)
- Lisanne Brueck
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
| | - Sascha Roocke
- The Medical Proteome Center, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Annette Richter-Unruh
- Clinic for Children and Adolescents, Pediatric Endocrinology, St. Josefs-Hospital, D-44791 Bochum, Germany
| | - Katrin Marcus-Alic
- The Medical Proteome Center, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
| |
Collapse
|
54
|
Cheng Y, Zhu L, Xie S, Lu B, Du X, Ding G, Wang Y, Ma L, Li Q. Relationship between ferroptosis and mitophagy in acute lung injury: a mini-review. PeerJ 2024; 12:e18062. [PMID: 39282121 PMCID: PMC11397134 DOI: 10.7717/peerj.18062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Acute lung injury (ALI) is one of the most deadly and prevalent diseases in the intensive care unit. Ferroptosis and mitophagy are pathological mechanisms of ALI. Ferroptosis aggravates ALI, whereas mitophagy regulates ALI. Ferroptosis and mitophagy are both closely related to reactive oxygen species (ROS). Mitophagy can regulate ferroptosis, but the specific relationship between ferroptosis and mitophagy is still unclear. This study summarizes previous research findings on ferroptosis and mitophagy, revealing their involvement in ALI. Examining the functions of mTOR and NLPR3 helps clarify the connection between ferroptosis and mitophagy in ALI, with the goal of establishing a theoretical foundation for potential therapeutic approaches in the future management of ALI.
Collapse
Affiliation(s)
- Yunhua Cheng
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Liling Zhu
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, Hunan Province, China
| | - Shuangxiong Xie
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Binyuan Lu
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Xiaoyu Du
- Medical College of Northwest Minzu University, Northwest Minzu University, Lanzhou, Gansu Province, China
| | - Guanjiang Ding
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Yan Wang
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Linchong Ma
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Qingxin Li
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| |
Collapse
|
55
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
56
|
Thapak P, Gomez-Pinilla F. The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function. Pharmacol Res 2024; 208:107389. [PMID: 39243913 DOI: 10.1016/j.phrs.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
57
|
Kadier T, Zhang YG, Jing YX, Weng ZY, Liao SS, Luo J, Ding K, Cao C, Chen R, Meng QT. MCU inhibition protects against intestinal ischemia‒reperfusion by inhibiting Drp1-dependent mitochondrial fission. Free Radic Biol Med 2024; 221:111-124. [PMID: 38763207 DOI: 10.1016/j.freeradbiomed.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.
Collapse
Affiliation(s)
- Tulanisa Kadier
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Guo Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Xin Jing
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Yi Weng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shi-Shi Liao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Luo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen Cao
- Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
58
|
Lv W, Tu Y, Xu T, Zhang Y, Chen J, Yang N, Wang Y. The Mitochondrial Distribution and Morphology Family 33 Gene FgMDM33 Is Involved in Autophagy and Pathogenesis in Fusarium graminearum. J Fungi (Basel) 2024; 10:579. [PMID: 39194905 DOI: 10.3390/jof10080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The mitochondrial distribution and morphology family 33 gene (MDM33) regulates mitochondrial homeostasis by mediating the mitochondrial fission process in yeast. The wheat head blight Fusarium graminearum contains an FgMdm33 protein that is orthologous to Saccharomyces cerevisiae Mdm33, albeit its function remains unknown. We have reported here the roles of FgMdm33 in regulating fungal morphogenesis, mitochondrial morphology, autophagy, apoptosis, and fungal pathogenicity. The ΔFgmdm33 mutants generated through a homologous recombination strategy in this study exhibited defects in terms of mycelial growth, conidia production, and virulence. Hyphal cells lacking FgMDM33 displayed elongated mitochondria and a dispensable respiratory-deficient growth phenotype, indicating the possible involvement of FgMDM33 in mitochondrial fission. The ΔFgmdm33 mutants displayed a remarkable reduction in the proteolysis of GFP-FgAtg8, whereas the formation of autophagic bodies in the hyphal cells of mutants was recorded under the induction of mitophagy. In addition, the transcriptional expression of the apoptosis-inducing factor 1 gene (FgAIF1) was significantly upregulated in the ΔFgmdm33 mutants. Cumulatively, these results indicate that FgMDM33 is involved in mitochondrial fission, non-selective macroautophagy, and apoptosis and that it regulates fungal growth, conidiation, and pathogenicity of the head blight pathogen.
Collapse
Affiliation(s)
- Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiyi Tu
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Ting Xu
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - You Zhang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Junjie Chen
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Nan Yang
- The People's Government Office of Bengbu City, Bengbu 233000, China
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
59
|
Yin H, Liu Y, Dong Q, Wang H, Yan Y, Wang X, Wan X, Yuan G, Pan Y. The mechanism of extracellular CypB promotes glioblastoma adaptation to glutamine deprivation microenvironment. Cancer Lett 2024; 597:216862. [PMID: 38582396 DOI: 10.1016/j.canlet.2024.216862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Glioblastoma, previously known as glioblastoma multiform (GBM), is a type of glioma with a high degree of malignancy and rapid growth rate. It is highly dependent on glutamine (Gln) metabolism during proliferation and lags in neoangiogenesis, leading to extensive Gln depletion in the core region of GBM. Gln-derived glutamate is used to synthesize the antioxidant Glutathione (GSH). We demonstrated that GSH levels are also reduced in Gln deficiency, leading to increased reactive oxygen species (ROS) levels. The ROS production induces endoplasmic reticulum (ER) stress, and the proteins in the ER are secreted into the extracellular medium. We collected GBM cell supernatants cultured with or without Gln medium; the core and peripheral regions of human GBM tumor tissues. Proteomic analysis was used to screen out the target-secreted protein CypB. We demonstrated that the extracellular CypB expression is associated with Gln deprivation. Then, we verified that GBM can promote the glycolytic pathway by activating HIF-1α to upregulate the expression of GLUT1 and LDHA. Meanwhile, the DRP1 was activated, increasing mitochondrial fission, thus inhibiting mitochondrial function. To explore the specific mechanism of its regulation, we constructed a si-CD147 knockout model and added human recombinant CypB protein to verify that extracellular CypB influenced the expression of downstream p-AKT through its cell membrane receptor CD147 binding. Moreover, we confirmed that p-AKT could upregulate HIF-1α and DRP1. Finally, we observed that extracellular CypB can bind to the CD147 receptor, activate p-AKT, upregulate HIF-1α and DRP1 in order to promote glycolysis while inhibiting mitochondrial function to adapt to the Gln-deprived microenvironment.
Collapse
Affiliation(s)
- Hang Yin
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Liu
- Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China; Neurological Diseases Clinical Medical Research Center of Gansu Province, Lanzhou, China
| | - Qiang Dong
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Hongyu Wang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yunji Yan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoqing Wang
- Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China; Neurological Diseases Clinical Medical Research Center of Gansu Province, Lanzhou, China
| | - Xiaoyu Wan
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore, Singapore; School of Basic Medicine, Henan University, Kaifeng, China
| | - Guoqiang Yuan
- Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China; Neurological Diseases Clinical Medical Research Center of Gansu Province, Lanzhou, China.
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
60
|
Sun A, Wang WX. Differentiation of cellular responses to particulate and soluble constituents in sunscreen products. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134791. [PMID: 38833954 DOI: 10.1016/j.jhazmat.2024.134791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Despite the growing awareness of potential human and environmental risks associated with sunscreens, identifying the specific constituents responsible for their potential toxicity is challenging. In this study, we applied three different types of sunscreens with contrasting compositions and compared the effects of their particulate and soluble fractions based on 15 cellular biomarkers of HaCaT cells. Multilinear regression analysis revealed that the internalized soluble fractions played a primary role in the overall cytotoxicity of sunscreen mixtures, which was primarily attributed to their biotransformation, generating metabolites with higher toxicity. The presence of plastic microspheres in sunscreens either inhibited the internalization of soluble fractions or led to their redistribution toward lysosomes. Conversely, subcellular toxicity resulting from the sunscreen mixture was predominantly influenced by particulates. Bio-transformable particulates such as ZnO dissolved in the organelles and induced higher subcellular toxicity compared to bioinert particulates such as microplastics. Subcellular biomarkers including lysosomal count, lysosomal size, mitochondrial count and mitochondrial shape emerged as the potential predictors of sunscreen presence. Our study provides important understanding of sunscreen toxicity by elucidating the differential impacts of particulate and soluble fractions in mixture contaminants.
Collapse
Affiliation(s)
- Anqi Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
61
|
Gao H, Huang X, Chen W, Feng Z, Zhao Z, Li P, Tan C, Wang J, Zhuang Q, Gao Y, Min S, Yao Q, Qian M, Ma X, Wu F, Yan W, Sheng W, Huang G. Association of copy number variation in X chromosome-linked PNPLA4 with heterotaxy and congenital heart disease. Chin Med J (Engl) 2024; 137:1823-1834. [PMID: 38973237 PMCID: PMC12077557 DOI: 10.1097/cm9.0000000000003192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Heterotaxy (HTX) is a thoracoabdominal organ anomaly syndrome and commonly accompanied by congenital heart disease (CHD). The aim of this study was to analyze rare copy number variations (CNVs) in a HTX/CHD cohort and to examine the potential mechanisms contributing to HTX/CHD. METHODS Chromosome microarray analysis was used to identify rare CNVs in a cohort of 120 unrelated HTX/CHD patients, and available samples from parents were used to confirm the inheritance pattern. Potential candidate genes in CNVs region were prioritized via the DECIPHER database, and PNPLA4 was identified as the leading candidate gene. To validate, we generated PNPLA4 -overexpressing human induced pluripotent stem cell lines as well as pnpla4 -overexpressing zebrafish model, followed by a series of transcriptomic, biochemical and cellular analyses. RESULTS Seventeen rare CNVs were identified in 15 of the 120 HTX/CHD patients (12.5%). Xp22.31 duplication was one of the inherited CNVs identified in this HTX/CHD cohort, and PNPLA4 in the Xp22.31 was a candidate gene associated with HTX/CHD. PNPLA4 is expressed in the lateral plate mesoderm, which is known to be critical for left/right embryonic patterning as well as cardiomyocyte differentiation, and in the neural crest cell lineage. Through a series of in vivo and in vitro analyses at the molecular and cellular levels, we revealed that the biological function of PNPLA4 is importantly involved in the primary cilia formation and function via its regulation of energy metabolism and mitochondria-mediated ATP production. CONCLUSIONS Our findings demonstrated a significant association between CNVs and HTX/CHD. Our data strongly suggested that an increased genetic dose of PNPLA4 due to Xp22.31 duplication is a disease-causing risk factor for HTX/CHD.
Collapse
Affiliation(s)
- Han Gao
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xianghui Huang
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children’s Hospital, Xiamen, Fujian 361006, China
| | - Weicheng Chen
- Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zhiyu Feng
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Zhengshan Zhao
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Ping Li
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Chaozhong Tan
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Jinxin Wang
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Quannan Zhuang
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Yuan Gao
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Shaojie Min
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Qinyu Yao
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Maoxiang Qian
- Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Xiaojing Ma
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Feizhen Wu
- Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Weili Yan
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| | - Wei Sheng
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children’s Hospital, Xiamen, Fujian 361006, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| | - Guoying Huang
- Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children’s Hospital, Xiamen, Fujian 361006, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| |
Collapse
|
62
|
Tao H, Zhu P, Xia W, Chu M, Chen K, Wang Q, Gu Y, Lu X, Bai J, Geng D. The Emerging Role of the Mitochondrial Respiratory Chain in Skeletal Aging. Aging Dis 2024; 15:1784-1812. [PMID: 37815897 PMCID: PMC11272194 DOI: 10.14336/ad.2023.0924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of mitochondrial homeostasis is crucial for ensuring healthy mitochondria and normal cellular function. This process is primarily responsible for regulating processes that include mitochondrial OXPHOS, which generates ATP, as well as mitochondrial oxidative stress, apoptosis, calcium homeostasis, and mitophagy. Bone mesenchymal stem cells express factors that aid in bone formation and vascular growth. Positive regulation of hematopoietic stem cells in the bone marrow affects the differentiation of osteoclasts. Furthermore, the metabolic regulation of cells that play fundamental roles in various regions of the bone, as well as interactions within the bone microenvironment, actively participates in regulating bone integrity and aging. The maintenance of cellular homeostasis is dependent on the regulation of intracellular organelles, thus understanding the impact of mitochondrial functional changes on overall bone metabolism is crucially important. Recent studies have revealed that mitochondrial homeostasis can lead to morphological and functional abnormalities in senescent cells, particularly in the context of bone diseases. Mitochondrial dysfunction in skeletal diseases results in abnormal metabolism of bone-associated cells and a secondary dysregulated microenvironment within bone tissue. This imbalance in the oxidative system and immune disruption in the bone microenvironment ultimately leads to bone dysplasia. In this review, we examine the latest developments in mitochondrial respiratory chain regulation and its impacts on maintenance of bone health. Specifically, we explored whether enhancing mitochondrial function can reduce the occurrence of bone cell deterioration and improve bone metabolism. These findings offer prospects for developing bone remodeling biology strategies to treat age-related degenerative diseases.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| |
Collapse
|
63
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 PMCID: PMC12036329 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
64
|
Guo Z. The role of glucagon-like peptide-1/GLP-1R and autophagy in diabetic cardiovascular disease. Pharmacol Rep 2024; 76:754-779. [PMID: 38890260 DOI: 10.1007/s43440-024-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Diabetes leads to a significantly accelerated incidence of various related macrovascular complications, including peripheral vascular disease and cardiovascular disease (the most common cause of mortality in diabetes), as well as microvascular complications such as kidney disease and retinopathy. Endothelial dysfunction is the main pathogenic event of diabetes-related vascular disease at the earliest stage of vascular injury. Understanding the molecular processes involved in the development of diabetes and its debilitating vascular complications might bring up more effective and specific clinical therapies. Long-acting glucagon-like peptide (GLP)-1 analogs are currently available in treating diabetes with widely established safety and extensively evaluated efficacy. In recent years, autophagy, as a critical lysosome-dependent self-degradative process to maintain homeostasis, has been shown to be involved in the vascular endothelium damage in diabetes. In this review, the GLP-1/GLP-1R system implicated in diabetic endothelial dysfunction and related autophagy mechanism underlying the pathogenesis of diabetic vascular complications are briefly presented. This review also highlights a possible crosstalk between autophagy and the GLP-1/GLP-1R axis in the treatment of diabetic angiopathy.
Collapse
Affiliation(s)
- Zi Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
65
|
Boopathy S, Luce BE, Lugo CM, Hakim P, McDonald J, Kim HL, Ponce J, Ueberheide BM, Chao LH. Identification of SLC25A46 interaction interfaces with mitochondrial membrane fusogens Opa1 and Mfn2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573615. [PMID: 38234813 PMCID: PMC10793391 DOI: 10.1101/2023.12.29.573615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Mitochondrial fusion requires the sequential merger of four bilayers to two. The outer-membrane solute carrier protein SLC25A46 interacts with both the outer and inner-membrane dynamin family GTPases Mfn1/2 and Opa1. While SLC25A46 levels are known to affect mitochondrial morphology, how SLC25A46 interacts with Mfn1/2 and Opa1 to regulate membrane fusion is not understood. In this study, we use crosslinking mass-spectrometry and AlphaFold 2 modeling to identify interfaces mediating a SLC25A46 interactions with Opa1 and Mfn2. We reveal that the bundle signaling element of Opa1 interacts with SLC25A46, and present evidence of a Mfn2 interaction involving the SLC25A46 cytosolic face. We validate these newly identified interaction interfaces and show that they play a role in mitochondrial network maintenance.
Collapse
|
66
|
Sun YD, Xu QG, Dai DS, Wang SX, Li XQ, Shi SH, Jiang P, Jin Y, Wang X, Zhang Y, Wang F, Liu P, Zhang BL, Li TX, Xu CS, Wu B, Cai JZ. Pim-1 kinase protects the liver from ischemia reperfusion injury by regulating dynamics-related protein 1. iScience 2024; 27:110280. [PMID: 39055921 PMCID: PMC11269306 DOI: 10.1016/j.isci.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/25/2023] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatic ischemia-reperfusion (IR) injury significantly impacts liver transplantation success, yet current treatments remain inadequate. This study explores the role of Proto-oncogene serine/threonine-protein kinase (Pim-1) in liver IR, an area previously unexplored. Utilizing a mouse liver IR in vivo model and a MIHA cell hypoxia-reoxygenation in vitro model, we observed that Pim-1 expression increases following IR, inversely correlating with serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Increased Pim-1 expression stabilizes mitochondrial membranes by modifying Drp1 phosphorylation, reducing mitochondrial fission and apoptosis, thereby mitigating liver damage. Additionally, we discovered that elevated Pim-1 expression is dependent on the trimethylation of histone H3 lysine 9 during liver IR. These findings underscore the importance and potential clinical application of targeting Pim-1 in treating hepatic IR, presenting a novel therapeutic avenue.
Collapse
Affiliation(s)
- Yan-dong Sun
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qing-guo Xu
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - De-shu Dai
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shu-xian Wang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xin-qiang Li
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shang-heng Shi
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Peng Jiang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yan Jin
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xin Wang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yong Zhang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Feng Wang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Peng Liu
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bing-liang Zhang
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tian-xiang Li
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chuan-shen Xu
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bin Wu
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jin-zhen Cai
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
67
|
Wang T, Li X, Tao Y, Wang X, Li L, Liu J. METTL3-mediated NDUFB5 m6A modification promotes cell migration and mitochondrial respiration to promote the wound healing of diabetic foot ulcer. J Transl Med 2024; 22:643. [PMID: 38982516 PMCID: PMC11234709 DOI: 10.1186/s12967-024-05463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is the most devastating complication of diabetes mellitus (DM) and plays a major role in disability and death in DM patients. NADH: ubiquinone oxidoreductase subunit B5 (NDUFB5) plays an important role in maintaining mitochondrial respiration, but whether it is involved in regulating the progression of advanced glycation end products (AGEs)-mediated DFU is still unclear. METHODS Firstly, the role of AGEs on cell viability, migration, and mitochondrial respiration in human umbilical vein endothelial cells (HUVECs) was explored in vitro. Next, NDUFB5 expression was detected in human samples and AGEs-treated HUVECs, and NDUFB5's effect on AGEs-induced HUVECs injury and skin wound in diabetic mice was further clarified. In addition, the role of m6A modification mediated by methyltransferase-like 3 (METTL3) in regulating NDUFB5 expression and AGEs-induced HUVECs injury was investigated. RESULTS NDUFB5 promoted cell viability, migration, and mitochondrial respiration in AGEs-treated HUVECs, whereas mitochondrial fusion promoter M1 facilitated cell viability, migration, and mitochondrial oxiadative respiration in NDUFB5 knockdown HUVECs. Meanwhile, NDUFB5 promotes skin wound healing in diabetic mice. Besides, METTL3-mediated m6A modification and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) enhanced NDUFB5 expression in HUVECs. Furthermore, METTL3 promoted cell viability, migration, and mitochondrial respiration in AGEs-treated HUVECs by increasing NDUFB5. CONCLUSION METTL3-mediated NDUFB5 m6A modification inhibits AGEs-induced cell injury in HUVECs. METTL3 and NDUFB5 might serve as potential targets for DFU therapy in the future.
Collapse
Affiliation(s)
- Tao Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Xu Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Yue Tao
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Xiaojun Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Limeng Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China
| | - Jianjun Liu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, affiliated to Fudan University, 1158 East Park Road, Qingpu District, Shanghai, 201700, China.
| |
Collapse
|
68
|
Xi Q, Liu L, Zhao Q, Zhu S. KLF13 Attenuates Lipopolysaccharide-Induced Alveolar Epithelial Cell Damage by Regulating Mitochondrial Quality Control via Binding PGC-1α. J Interferon Cytokine Res 2024. [PMID: 38949897 DOI: 10.1089/jir.2023.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Sepsis is a clinically life-threatening syndrome, and acute lung injury is the earliest and most serious complication. We aimed to assess the role of kruppel-like factor 13 (KLF13) in lipopolysaccharide (LPS)-induced human alveolar type II epithelial cell damage and to reveal the possible mechanism related to peroxisome proliferator-activated receptor-γ co-activator 1-α (PGC-1α). In LPS-treated A549 cells with or without KLF13 overexpression or PGC-1α knockdown, cell viability was measured by a cell counting kit-8 assay. Enzyme-linked immunosorbent assay kits detected the levels of inflammatory factors, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining measured cell apoptosis. Besides, mitochondrial reactive oxygen species (MitoSOX) and mitochondrial membrane potential were detected using MitoSOX red- and JC-1 staining. Expression of proteins related to mitochondrial quality control (MQC) was evaluated by western blot. Co-immunoprecipitation (Co-IP) assay was used to analyze the interaction between KLF13 and PGC-1α. Results indicated that KLF13 was highly expressed in LPS-treated A549 cells. KLF13 upregulation elevated the viability and reduced the levels of inflammatory factors in A549 cells exposed to LPS. Moreover, KLF13 gain-of-function inhibited LPS-induced apoptosis of A549 cells, accompanied by upregulated BCL2 expression and downregulated Bax and cleaved caspase3 expression. Furthermore, MQC was improved by KLF13 overexpression, as evidenced by decreased MitoSOX, JC-1 monomers and increased JC-1 aggregates, coupled with the changes of proteins related to MQC. In addition, Co-IP assay confirmed the interaction between KLF13 and PGC-1α. PGC-1α deficiency restored the impacts of KLF13 upregulation on the inflammation, apoptosis, and MQC in LPS-treated A549 cells. In conclusion, KLF13 attenuated LPS-induced alveolar epithelial cell inflammation and apoptosis by regulating MQC via binding PGC-1α.
Collapse
Affiliation(s)
- Qiong Xi
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lin Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qin Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shan Zhu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
69
|
Wang Z, Zhang G, Hu S, Fu M, Zhang P, Zhang K, Hao L, Chen S. Research progress on the protective effect of hormones and hormone drugs in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 176:116764. [PMID: 38805965 DOI: 10.1016/j.biopha.2024.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Ischemic heart disease (IHD) is a condition where the heart muscle does not receive enough blood flow, leading to cardiac dysfunction. Restoring blood flow to the coronary artery is an effective clinical therapy for myocardial ischemia. This strategy helps lower the size of the myocardial infarction and improves the prognosis of patients. Nevertheless, if the disrupted blood flow to the heart muscle is restored within a specific timeframe, it leads to more severe harm to the previously deprived heart tissue. This condition is referred to as myocardial ischemia/reperfusion injury (MIRI). Until now, there is a dearth of efficacious strategies to prevent and manage MIRI. Hormones are specialized substances that are produced directly into the circulation by endocrine organs or tissues in humans and animals, and they have particular effects on the body. Hormonal medications utilize human or animal hormones as their active components, encompassing sex hormones, adrenaline medications, thyroid hormone medications, and others. While several studies have examined the preventive properties of different endocrine hormones, such as estrogen and hormone analogs, on myocardial injury caused by ischemia-reperfusion, there are other hormone analogs whose mechanisms of action remain unexplained and whose safety cannot be assured. The current study is on hormones and hormone medications, elucidating the mechanism of hormone pharmaceuticals and emphasizing the cardioprotective effects of different endocrine hormones. It aims to provide guidance for the therapeutic use of drugs and offer direction for the examination of MIRI in clinical therapy.
Collapse
Affiliation(s)
- Zhongyi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Gaojiang Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Meilin Fu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Pingyuan Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kuo Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Sichong Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
70
|
Zhang N, Zhang P, Deng X, Zhu M, Hu Y, Ji D, Li L, Liu Y, Zeng W, Ke M. Protective Effect of Nicotinamide Riboside on Glucocorticoid-Induced Glaucoma: Mitigating Mitochondrial Damage and Extracellular Matrix Deposition. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38949632 PMCID: PMC11221610 DOI: 10.1167/iovs.65.8.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Glucocorticoid-induced glaucoma (GIG) is a prevalent complication associated with glucocorticoids (GCs), resulting in irreversible blindness. GIG is characterized by the abnormal deposition of extracellular matrix (ECM) in the trabecular meshwork (TM), elevation of intraocular pressure (IOP), and loss of retinal ganglion cells (RGCs). The objective of this study is to investigate the effects of nicotinamide riboside (NR) on TM in GIG. Methods Primary human TM cells (pHTMs) and C57BL/6J mice responsive to GCs were utilized to establish in vitro and in vivo GIG models, respectively. The study assessed the expression of ECM-related proteins in TM and the functions of pHTMs to reflect the effects of NR. Mitochondrial morphology and function were also examined in the GIG cell model. GIG progression was monitored through IOP, RGCs, and mitochondrial morphology. Intracellular nicotinamide adenine dinucleotide (NAD+) levels of pHTMs were enzymatically assayed. Results NR significantly prevented the expression of ECM-related proteins and alleviated dysfunction in pHTMs after dexamethasone treatment. Importantly, NR protected damaged ATP synthesis, preventing overexpression of mitochondrial reactive oxygen species (ROS), and also protect against decreased mitochondrial membrane potential induced by GCs in vitro. In the GIG mouse model, NR partially prevented the elevation of IOP and the loss of RGCs. Furthermore, NR effectively suppressed the excessive expression of ECM-associated proteins and mitigated mitochondrial damage in vivo. Conclusions Based on the results, NR effectively enhances intracellular levels of NAD+, thereby mitigating abnormal ECM deposition and TM dysfunction in GIG by attenuating mitochondrial damage induced by GCs. Thus, NR has promising potential as a therapeutic candidate for GIG treatment.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pengyu Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Zhu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yixin Hu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongxiao Ji
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Huaihai Hospital of Henan University, Kaifeng, Henan, China
| | - Lufan Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Liu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
71
|
Ma Z, Xie K, Xue X, Li J, Yang Y, Wu J, Li Y, Li X. Si-Wu-Tang attenuates hepatocyte PANoptosis and M1 polarization of macrophages in non-alcoholic fatty liver disease by influencing the intercellular transfer of mtDNA. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118057. [PMID: 38518965 DOI: 10.1016/j.jep.2024.118057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic fatty liver disease (NAFLD) represents a burgeoning challenge for public health with potential progression to malignant liver diseases. PANoptosis, an avant-garde conceptualization of cell deaths, is closely associated with mitochondrial damage and linked to multiple liver disorders. Si-Wu-Tang (SWT), a traditional Chinese herbal prescription renowned for regulating blood-related disorders and ameliorating gynecological and hepatic diseases, has been demonstrated to alleviate liver fibrosis by regulating bile acid metabolism and immune responses. AIM OF THE STUDY However, the mechanisms by which mtDNA is released from PANoptotic hepatocytes, triggering macrophage activation and hepatitis and whether this process can be reversed by SWT remain unclear. MATERIALS AND METHODS Here, sophisticated RNA-sequencing complemented by molecular approaches were applied to explore the underlying mechanism of SWT against NAFLD in methionine/choline-deficient diet (MCD)-induced mice and relative in vitro models. RESULTS We revealed that SWT profoundly repaired mitochondrial dysfunction, blocked mitochondrial permeability transition and mtDNA released to the cytoplasm, subsequently reversing hepatocyte PANoptosis and macrophage polarization both in MCD-stimulated mice and in vitro. Mechanically, loaded lipids dramatically promoted the opening of mPTP and oligomerization of VDAC2 to orchestrate mtDNA release, which was combined with ZBP1 to promote hepatocyte PANoptosis and also taken by macrophages to trigger M1 polarization via the FSTL1 and PKM2 combination. SWT effectively blocked NOXA signaling and reversed all these detrimental outcomes. CONCLUSION Our findings show that SWT protects against hepatitis-mediated hepatocyte PANoptosis and macrophage M1 polarization by influencing intrahepatic synthesis, release and intercellular transfer of mtDNA, suggesting a potential therapeutic strategy for ameliorating NAFLD.
Collapse
Affiliation(s)
- Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kaihong Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
72
|
Duan F, Li L, Liu S, Tao J, Gu Y, Li H, Yi X, Gong J, You D, Feng Z, Yu T, Tan H. Cortistatin protects against septic cardiomyopathy by inhibiting cardiomyocyte pyroptosis through the SSTR2-AMPK-NLRP3 pathway. Int Immunopharmacol 2024; 134:112186. [PMID: 38733824 DOI: 10.1016/j.intimp.2024.112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Although the pathophysiological mechanism of septic cardiomyopathy has been continuously discovered, it is still a lack of effective treatment method. Cortistatin (CST), a neuroendocrine polypeptide of the somatostatin family, has emerged as a novel cardiovascular-protective peptide, but the specific mechanism has not been elucidated. PURPOSE The aim of our study is to explore the role of CST in cardiomyocytes pyroptosis and myocardial injury in sepsis and whether CST inhibits cardiomyocytes pyroptosis through specific binding with somastatin receptor 2 (SSTR2) and activating AMPK/Drp1 signaling pathway. METHODS AND RESULTS In this study, plasma CST levels were significantly high and were negatively correlated with N-terminal pro-B type natriuretic peptide (NT-proBNP), a biomarker for cardiac dysfunction, in patients with sepsis. Exogenous administration of CST significantly improved survival rate and cardiac function in mouse models of sepsis by inhibiting the activation of the NLRP3 inflammasome and pyroptosis of cardiomyocytes (decreased cleavage of caspase-1, IL-1β and gasdermin D). Pharmacological inhibition and genetic ablation revealed that CST exerted anti-pyroptosis effects by specifically binding to somatostatin receptor subtype 2 (SSTR2), thus activating AMPK and inactivating Drp1 to inhibit mitochondrial fission in cardiomyocytes. CONCLUSIONS This study is the first to report that CST attenuates septic cardiomyopathy by inhibiting cardiomyocyte pyroptosis through the SSTR2-AMPK-Drp1-NLRP3 pathway. Importantly, CST specifically binds to SSTR2, which promotes AMPK phosphorylation, inhibits Drp1-mediated mitochondrial fission, and reduces ROS levels, thereby inhibiting NLRP3 inflammasome activation-mediated pyroptosis and alleviating sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Fengqi Duan
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Li Li
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510012, Guangdong, China
| | - Sijun Liu
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jun Tao
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yang Gu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510012, Guangdong, China
| | - Huangjing Li
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaoling Yi
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510012, Guangdong, China
| | - Jianfeng Gong
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Daiting You
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zejiang Feng
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510012, Guangdong, China
| | - Hongmei Tan
- Department of Pathophysiology, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Laboratory Animal Center, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
73
|
Sun F, Fang M, Zhang H, Song Q, Li S, Li Y, Jiang S, Yang L. Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway. Cell Biochem Biophys 2024; 82:435-455. [PMID: 38438751 DOI: 10.1007/s12013-024-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.
Collapse
Affiliation(s)
- Fulin Sun
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Min Fang
- Department of Gynaecology, Qingdao Women and Children's Hospital, Qingdao, 266021, Shandong, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
74
|
Da W, Chen Q, Shen B. The current insights of mitochondrial hormesis in the occurrence and treatment of bone and cartilage degeneration. Biol Res 2024; 57:37. [PMID: 38824571 PMCID: PMC11143644 DOI: 10.1186/s40659-024-00494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 06/03/2024] Open
Abstract
It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Quan Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
75
|
Nie X, Fan J, Wang Y, Xie R, Chen C, Li H, Wang DW. lncRNA ZNF593-AS inhibits cardiac hypertrophy and myocardial remodeling by upregulating Mfn2 expression. Front Med 2024; 18:484-498. [PMID: 38743133 DOI: 10.1007/s11684-023-1036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/15/2023] [Indexed: 05/16/2024]
Abstract
lncRNA ZNF593 antisense (ZNF593-AS) transcripts have been implicated in heart failure through the regulation of myocardial contractility. The decreased transcriptional activity of ZNF593-AS has also been detected in cardiac hypertrophy. However, the function of ZNF593-AS in cardiac hypertrophy remains unclear. Herein, we report that the expression of ZNF593-AS reduced in a mouse model of left ventricular hypertrophy and cardiomyocytes in response to treatment with the hypertrophic agonist phenylephrine (PE). In vivo, ZNF593-AS aggravated pressure overload-induced cardiac hypertrophy in knockout mice. By contrast, cardiomyocyte-specific transgenic mice (ZNF593-AS MHC-Tg) exhibited attenuated TAC-induced cardiac hypertrophy. In vitro, vector-based overexpression using murine or human ZNF593-AS alleviated PE-induced myocyte hypertrophy, whereas GapmeR-induced inhibition aggravated hypertrophic phenotypes. By using RNA-seq and gene set enrichment analyses, we identified a link between ZNF593-AS and oxidative phosphorylation and found that mitofusin 2 (Mfn2) is a direct target of ZNF593-AS. ZNF593-AS exerts an antihypertrophic effect by upregulating Mfn2 expression and improving mitochondrial function. Therefore, it represents a promising therapeutic target for combating pathological cardiac remodeling.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Yanwen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Rong Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
76
|
Cai M, Wan J, Cai K, Li S, Du X, Song H, Sun W, Hu J. The mitochondrial quality control system: a new target for exercise therapeutic intervention in the treatment of brain insulin resistance-induced neurodegeneration in obesity. Int J Obes (Lond) 2024; 48:749-763. [PMID: 38379083 DOI: 10.1038/s41366-024-01490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Obesity is a major global health concern because of its strong association with metabolic and neurodegenerative diseases such as diabetes, dementia, and Alzheimer's disease. Unfortunately, brain insulin resistance in obesity is likely to lead to neuroplasticity deficits. Since the evidence shows that insulin resistance in brain regions abundant in insulin receptors significantly alters mitochondrial efficiency and function, strategies targeting the mitochondrial quality control system may be of therapeutic and practical value in obesity-induced cognitive decline. Exercise is considered as a powerful stimulant of mitochondria that improves insulin sensitivity and enhances neuroplasticity. It has great potential as a non-pharmacological intervention against the onset and progression of obesity associated neurodegeneration. Here, we integrate the current knowledge of the mechanisms of neurodegenration in obesity and focus on brain insulin resistance to explain the relationship between the impairment of neuronal plasticity and mitochondrial dysfunction. This knowledge was synthesised to explore the exercise paradigm as a feasible intervention for obese neurodegenration in terms of improving brain insulin signals and regulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Ming Cai
- Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201599, China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Wanju Sun
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
77
|
Qiu F, Zhang H, Wang X, Jia Z, He Y, Wu Y, Li Z, Zheng T, Xia W, Xu S, Li Y. Prenatal arsenic metabolite exposure is associated with increased newborn mitochondrial DNA copy number: evidence from a birth cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38142-38152. [PMID: 38789711 DOI: 10.1007/s11356-024-32933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 05/26/2024]
Abstract
While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether maternal urinary arsenic metabolite levels in different trimesters were related to neonatal cord blood mtDNAcn. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters. We determined cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each one-unit increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the third trimester was related to 8.43% (95% CI 1.13%, 16.26%) and 12.15% (95% CI 4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the third trimester with mtDNAcn (DMA percent changes (%Δ) = 25.60 (95% CI 6.73, 47.82), for the highest vs the lowest tertile (P = 0.02); TAs %Δ = 40.31 (95% CI 19.25, 65.10), for the highest vs the lowest tertile (P = 0.0002)). These findings may prove the relationships between prenatal arsenic species levels and neonatal mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, 430023, Hubei, People's Republic of China
| | - Xin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yi Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhangpeng Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
78
|
Han F, Wu S, Dong Y, Liu Y, Sun B, Chen L. Aberrant expression of NEDD4L disrupts mitochondrial homeostasis by downregulating CaMKKβ in diabetic kidney disease. J Transl Med 2024; 22:465. [PMID: 38755664 PMCID: PMC11100153 DOI: 10.1186/s12967-024-05207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Disturbance in mitochondrial homeostasis within proximal tubules is a critical characteristic associated with diabetic kidney disease (DKD). CaMKKβ/AMPK signaling plays an important role in regulating mitochondrial homeostasis. Despite the downregulation of CaMKKβ in DKD pathology, the underlying mechanism remains elusive. The expression of NEDD4L, which is primarily localized to renal proximal tubules, is significantly upregulated in the renal tubules of mice with DKD. Coimmunoprecipitation (Co-IP) assays revealed a physical interaction between NEDD4L and CaMKKβ. Moreover, deletion of NEDD4L under high glucose conditions prevented rapid CaMKKβ protein degradation. In vitro studies revealed that the aberrant expression of NEDD4L negatively influences the protein stability of CaMKKβ. This study also explored the role of NEDD4L in DKD by using AAV-shNedd4L in db/db mice. These findings confirmed that NEDD4L inhibition leads to a decrease in urine protein excretion, tubulointerstitial fibrosis, and oxidative stress, and mitochondrial dysfunction. Further in vitro studies demonstrated that si-Nedd4L suppressed mitochondrial fission and reactive oxygen species (ROS) production, effects antagonized by si-CaMKKβ. In summary, the findings provided herein provide strong evidence that dysregulated NEDD4L disturbs mitochondrial homeostasis by negatively modulating CaMKKβ in the context of DKD. This evidence underscores the potential of therapeutic interventions targeting NEDD4L and CaMKKβ to safeguard renal tubular function in the management of DKD.
Collapse
Affiliation(s)
- Fei Han
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital Tianjin and Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shi Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital Tianjin and Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ya Dong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital Tianjin and Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yanjie Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital Tianjin and Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital Tianjin and Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital Tianjin and Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
79
|
Wang TT, Zhu HL, Ouyang KW, Wang H, Luo YX, Zheng XM, Ling Q, Wang KW, Zhang J, Chang W, Lu Q, Zhang YF, Yuan Z, Li H, Xiong YW, Wei T, Wang H. Environmental cadmium inhibits testicular testosterone synthesis via Parkin-dependent MFN1 degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134142. [PMID: 38555669 DOI: 10.1016/j.jhazmat.2024.134142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Low testosterone (T) levels are associated with many common diseases, such as obesity, male infertility, depression, and cardiovascular disease. It is well known that environmental cadmium (Cd) exposure can induce T decline, but the exact mechanism remains unclear. We established a murine model in which Cd exposure induced testicular T decline. Based on the model, we found Cd caused mitochondrial fusion disorder and Parkin mitochondrial translocation in mouse testes. MFN1 overexpression confirmed that MFN1-dependent mitochondrial fusion disorder mediated the Cd-induced T synthesis suppression in Leydig cells. Further data confirmed Cd induced the decrease of MFN1 protein by increasing ubiquitin degradation. Testicular specific Parkin knockdown confirmed Cd induced the ubiquitin-dependent degradation of MFN1 protein through promoting Parkin mitochondrial translocation in mouse testes. Expectedly, testicular specific Parkin knockdown also mitigated testicular T decline. Mito-TEMPO, a targeted inhibitor for mitochondrial reactive oxygen species (mtROS), alleviated Cd-caused Parkin mitochondrial translocation and mitochondrial fusion disorder. As above, Parkin mitochondrial translocation induced mitochondrial fusion disorder and the following T synthesis repression in Cd-exposed Leydig cells. Collectively, our study elucidates a novel mechanism through which Cd induces T decline and provides a new treatment strategy for patients with androgen disorders.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qi Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
80
|
Fang X, Zhang Y, Wu H, Wang H, Miao R, Wei J, Zhang Y, Tian J, Tong X. Mitochondrial regulation of diabetic endothelial dysfunction: Pathophysiological links. Int J Biochem Cell Biol 2024; 170:106569. [PMID: 38556159 DOI: 10.1016/j.biocel.2024.106569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Micro- and macrovascular complications frequently occur in patients with diabetes, with endothelial dysfunction playing a key role in the development and progression of the complications. For the early diagnosis and optimal treatment of vascular complications associated with diabetes, it is imperative to comprehend the cellular and molecular mechanisms governing the function of diabetic endothelial cells. Mitochondria function as crucial sensors of environmental and cellular stress regulating endothelial cell viability, structural integrity and function. Impaired mitochondrial quality control mechanisms and mitochondrial dysfunction are the main features of endothelial damage. Hence, targeted mitochondrial therapy is considered promising novel therapeutic options in vascular complications of diabetes. In this review, we focus on the mitochondrial functions in the vascular endothelial cells and the pathophysiological role of mitochondria in diabetic endothelial dysfunction, aiming to provide a reference for related drug development and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Jilin 130117, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
81
|
Zheng H, Liang G, Guan C, Liu L, Dong J, Zhao J, Tang M, Kong L. Mitochondrial Fission in Nickel Nanoparticle-Induced Reproductive Toxicity: An In Vitro GC-1 Cell Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:689. [PMID: 38668183 PMCID: PMC11054017 DOI: 10.3390/nano14080689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Reproductive disorders and declining fertility rates are significant public health concerns affecting birth rates and future populations. Male infertility, often due to spermatogenesis defects, may be linked to environmental pollutants like nickel nanoparticles (Ni NPs). Ni NPs are extensively utilized across different industries. Nevertheless, their potential adverse effects cannot be overlooked. Previous studies have linked the reproductive toxicity induced by Ni NPs with disturbances in mitochondrial function. Mitochondrial division/fusion dynamics are crucial to their proper function, yet little is known about how Ni NPs perturb these dynamics and whether such perturbation contributes to the impairment of the male reproductive system. Herein, we demonstrated that the exposure of Ni NPs to the mouse-derived spermatogonia cell line (GC-1 cells) triggered DRP1-mediated mitochondrial division and the enhanced impairment of mitochondria, consequently promoting mitochondria-dependent cell apoptosis. Notably, both the mitochondrial division inhibitor (Mdivi-1) and lentiviral-transfected cells with low expression of Dnm1l-DK in these cells could mitigate the toxic effects induced by Ni NPs, pointing to the potential role of mitochondrial dynamics in Ni NP-induced reproductive toxicity. Collectively, our work contributes to the understanding of the mechanisms by which Ni NPs can impact male reproductive function and identifies mitochondrial division as a potential target for intervention.
Collapse
Affiliation(s)
- Hanyue Zheng
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Geyu Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Chunliu Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Lin Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Jiahui Dong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Jinshun Zhao
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA;
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.Z.); (G.L.); (C.G.); (L.L.); (J.D.); (M.T.)
| |
Collapse
|
82
|
Liu Y, Wang L, Ai J, Li K. Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential. Stem Cell Rev Rep 2024; 20:617-636. [PMID: 38265576 DOI: 10.1007/s12015-024-10681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Mesenchymal stem cells (MSCs) have become popular tool cells in the field of transformation and regenerative medicine due to their function of cell rescue and cell replacement. The dynamically changing mitochondria serve as an energy metabolism factory and signal transduction platform, adapting to different cell states and maintaining normal cell activities. Therefore, a clear understanding of the regulatory mechanism of mitochondria in MSCs is profit for more efficient clinical transformation of stem cells. This review highlights the cutting-edge knowledge regarding mitochondrial biology from the following aspects: mitochondrial morphological dynamics, energy metabolism and signal transduction. The manuscript mainly focuses on mitochondrial mechanistic insights in the whole life course of MSCs, as well as the potential roles played by mitochondria in MSCs treatment of transplantation, for seeking pivotal targets of stem cell fate regulation and stem cell therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Ai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
83
|
Cheng Q, Liu QQ, Lu CA. A state-of-the-science review of using mitochondrial DNA copy number as a biomarker for environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123642. [PMID: 38402934 DOI: 10.1016/j.envpol.2024.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
84
|
Garone C, De Giorgio F, Carli S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases. J Transl Med 2024; 22:238. [PMID: 38438847 PMCID: PMC10910780 DOI: 10.1186/s12967-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.
Collapse
Affiliation(s)
- C Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UO Neuropsichiatria Dell'età Pediatrica, Bologna, Italy.
| | - F De Giorgio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - S Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
85
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
86
|
Zhang B, Sun R, Bai R, Sun Z, Liu R, Li W, Yao L, Sun H, Tang Y. G-quadruplex in mitochondria as a possible biomarker for mitophagy detection. Int J Biol Macromol 2024; 259:129337. [PMID: 38218296 DOI: 10.1016/j.ijbiomac.2024.129337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Mitochondrial autophagy (mitophagy) is a key physiological process that maintains the homeostasis of mitochondrial quality and quantity. Monitoring mitophagy is of great significance for detecting cellular abnormalities and developing therapeutic drugs. However, there are still very few biomarkers specifically developed for monitoring mitophagy. Here, we propose for the first time that mitochondrial G-quadruplex may serve as a biomarker for mitophagy detection, and develope a fluorescent light-up probe AMTC to monitor mitophagy in live cells. During mitophagy, AMTC fluorescence is significantly enhanced, but once mitophagy is inhibited, its fluorescence immediately decreases. The fluorescence behavior of AMTC implicates an increase in the formation of mitochondrial G-quadruplex during mitophagy. This inference has also been supported by the other two G-quadruplex probes. Taken together, this work provides a new possible biomarker and detection tool for the study of mitophagy.
Collapse
Affiliation(s)
- Boyang Zhang
- Beijing Institute of Graphic Communication, Beijing 102600, PR China
| | - Ranran Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ruiyang Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhicheng Sun
- Beijing Institute of Graphic Communication, Beijing 102600, PR China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, PR China.
| | - Wenchao Li
- Senior Department of Pediatrics, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China.
| | - Li Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
87
|
Zhou L, Su W, Wang Y, Zhang Y, Xia Z, Lei S. FOXO1 reduces STAT3 activation and causes impaired mitochondrial quality control in diabetic cardiomyopathy. Diabetes Obes Metab 2024; 26:732-744. [PMID: 37961034 DOI: 10.1111/dom.15369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
AIMS To investigate the role of FOXO1 in STAT3 activation and mitochondrial quality control in the diabetic heart. METHODS Type 1 diabetes mellitus (T1DM) was induced in rats by a single intraperitoneal injection of 60 mg · kg-1 streptozotocin (STZ), while type 2 diabetes mellitus (T2DM) was induced in rats with a high-fat diet through intraperitoneal injection of 35 mg · kg-1 STZ. Primary neonatal mouse cardiomyocytes and H9c2 cells were exposed to low glucose (5.5 mM) or high glucose (HG; 30 mM) with or without treatment with the FOXO1 inhibitor AS1842856 (1 μM) for 24 hours. In addition, the diabetic db/db mice (aged 8 weeks) and sex- and age-matched non-diabetic db/+ mice were treated with vehicle or AS1842856 by oral gavage for 15 days at a dose of 5 mg · kg-1 · d-1 . RESULTS Rats with T1DM or T2DM had excessive cardiac FOXO1 activation, accompanied by decreased STAT3 activation. Immunofluorescence and immunoprecipitation analysis showed colocalization and association of FOXO1 and STAT3 under basal conditions in isolated cardiomyocytes. Selective inhibition of FOXO1 activation by AS1842856 or FOXO1 siRNA transfection improved STAT3 activation, mitophagy and mitochondrial fusion, and decreased mitochondrial fission in isolated cardiomyocytes exposed to HG. Transfection with STAT3 siRNA further reduced mitophagy, mitochondrial fusion and increased mitochondrial fission in HG-treated cardiomyocytes. AS1842856 alleviated cardiac dysfunction, pathological damage and improved STAT3 activation, mitophagy and mitochondrial dynamics in diabetic db/db mice. Additionally, AS1842856 improved mitochondrial function indicated by increased mitochondrial membrane potential and adenosine triphosphate production and decreased mitochondrial reactive oxygen species production in isolated cardiomyocytes exposed to HG. CONCLUSIONS Excessive FOXO1 activation during diabetes reduces STAT3 activation, with subsequent impairment of mitochondrial quality, ultimately promoting the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wating Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuefu Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
88
|
Wang R, Huang S, Wang P, Shi X, Li S, Ye Y, Zhang W, Shi L, Zhou X, Tang X. Global trends and hotspots in the field of mitochondrial dynamics and hepatocellular carcinoma: A bibliometric analysis from 2007 to 2023. Heliyon 2024; 10:e24407. [PMID: 38293381 PMCID: PMC10826148 DOI: 10.1016/j.heliyon.2024.e24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Mitochondria are dynamic organelles, and mitochondrial dynamics are important for the maintenance of mitochondrial inheritance and function. Recently, an increasing number of studies have shown that mitochondrial dynamics play an important role in the occurrence and development of hepatocellular carcinoma (HCC). However, bibliometric analyses of mitochondrial dynamics in HCC are scarce. Therefore, we conducted a bibliometric analysis to explore the current global research status and trends in mitochondrial dynamics and HCC. METHODS Global publications on mitochondrial dynamics and HCC published between 2007 and May 2023 were retrieved from the Web of Science Core Collection (WoSCC) database. Bibliometric analysis was performed using Bibliometrix, VOSviewer, and CiteSpace to analyze the numbers, citations, countries, institutions, authors, journals, references, and keywords. RESULTS A total of 518 publications were retrieved fromthe WoSCC database. China and The Fourth Military Medical University were the most productive countries and institutions. Zorzano, A published the most literature whereas Chen, HC was the author with the highest number of co-citations. Plos One was the most popular journal, whereas the Journal of Biological Chemistry had the highest number of co-citations. The most frequently used keyword was "mitochondria". Further analysis of the references and keywords showed that the molecular mechanisms linking them to drug therapy targets should be the focus of future studies. CONCLUSIONS Research on mitochondrial dynamics in HCC has received much attention, and many studies have been published. However, research on mitochondrial dynamics and HCC has been limited by insufficient regional development imbalances and global cooperation. Nevertheless, future research on mitochondrial dynamics and HCC is promising, especially regarding the molecular mechanisms of mitochondrial fission and fusion and how to link the currently known molecular mechanisms with drug therapy targets for HCC.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Shu Huang
- Department of Gastroenterology, Lianshui County People’ Hospital, Huaian, China
- Department of Gastroenterology, Lianshui People’ Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China
| | - Ping Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaomin Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Shiqi Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Yusong Ye
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Wei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Lei Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xian Zhou
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaowei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
89
|
Yu F, Ma C, Jin X, Zhao H, Xiao J, Li L, Song S, Xie X, Yang S, Tang Y, Wang L, Zhang F. Mitochondrial disturbance related to increased caspase-1 of CD4 +T cells in HIV-1 infection. BMC Infect Dis 2024; 24:129. [PMID: 38267841 PMCID: PMC10809604 DOI: 10.1186/s12879-023-08485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND In HIV-1 infection, more than 95% of CD4+T cells die of caspase-1 mediated pyroptosis. What governs the increased susceptibility of CD4+T cells to pyroptosis is poorly understood. METHODS Blood samples were obtained from 31 untreated HIV-infected patients (UNT), 29 antiretroviral therapy treated HIV-infected patients (ART), and 21 healthy control donors (HD). Plasma levels of IL-18 and IL-1β, caspase-1 expression, mitochondrial mass (MM) and mitochondrial fusion/fisson genes of CD4+T subsets were measured. RESULTS A significantly higher IL-18 level in plasma and MM level of CD4+T cells were found in HIV-infected patients (UNT and ART) compared to HD, and the MMhigh phenotype was manifested, related to increased caspase-1 expression. Moreover, the increased MM was more pronounced in the early differentiated and inactivated CD4+T cells. However, higher MM was not intrinsically linked to T cell differentiation disorder or excessive activation of the CD4+T cells. Mechanistically, the increased MM was significantly correlated with an elevated level of expression of the mitochondrial fusion gene mitofusin1. CONCLUSION An increase in MM was associated with heightened sensitivity of CD4+T cells to pyroptosis, even in early differentiated and inactivated CD4+T cells, in patients with HIV-1 infection, regardless of whether patients were on antiretroviral therapy or not. These new revelations have uncovered a previously unappreciated challenge to immune reconstitution with antiretroviral therapy.
Collapse
Affiliation(s)
- Fengting Yu
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Chengjie Ma
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xia Jin
- Human Viral Diseases and Vaccine Translation Research Unit, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Jiang Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Li Li
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Shujing Song
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Xie
- Department of Infectious Diseases, Peking University Ditan Teaching, Hospital, Beijing, China
| | - Siyuan Yang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Yunxia Tang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Linghang Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| | - Fujie Zhang
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China.
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| |
Collapse
|
90
|
Lei Z, Lin W. Mechanisms Governing Oligodendrocyte Viability in Multiple Sclerosis and Its Animal Models. Cells 2024; 13:116. [PMID: 38247808 PMCID: PMC10814231 DOI: 10.3390/cells13020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory demyelinating disease of the central nervous system (CNS), which is triggered by an autoimmune assault targeting oligodendrocytes and myelin. Recent research indicates that the demise of oligodendrocytes due to an autoimmune attack contributes significantly to the pathogenesis of MS and its animal model experimental autoimmune encephalomyelitis (EAE). A key challenge in MS research lies in comprehending the mechanisms governing oligodendrocyte viability and devising therapeutic approaches to enhance oligodendrocyte survival. Here, we provide an overview of recent findings that highlight the contributions of oligodendrocyte death to the development of MS and EAE and summarize the current literature on the mechanisms governing oligodendrocyte viability in these diseases.
Collapse
Affiliation(s)
- Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
91
|
Hovhannisyan Y, Li Z, Callon D, Suspène R, Batoumeni V, Canette A, Blanc J, Hocini H, Lefebvre C, El-Jahrani N, Kitsara M, L'honoré A, Kordeli E, Fornes P, Concordet JP, Tachdjian G, Rodriguez AM, Vartanian JP, Béhin A, Wahbi K, Joanne P, Agbulut O. Critical contribution of mitochondria in the development of cardiomyopathy linked to desmin mutation. Stem Cell Res Ther 2024; 15:10. [PMID: 38167524 PMCID: PMC10763022 DOI: 10.1186/s13287-023-03619-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Beyond the observed alterations in cellular structure and mitochondria, the mechanisms linking rare genetic mutations to the development of heart failure in patients affected by desmin mutations remain unclear due in part, to the lack of relevant human cardiomyocyte models. METHODS To shed light on the role of mitochondria in these mechanisms, we investigated cardiomyocytes derived from human induced pluripotent stem cells carrying the heterozygous DESE439K mutation that were either isolated from a patient or generated by gene editing. To increase physiological relevance, cardiomyocytes were either cultured on an anisotropic micropatterned surface to obtain elongated and aligned cardiomyocytes, or as a cardiac spheroid to create a micro-tissue. Moreover, when applicable, results from cardiomyocytes were confirmed with heart biopsies of suddenly died patient of the same family harboring DESE439K mutation, and post-mortem heart samples from five control healthy donors. RESULTS The heterozygous DESE439K mutation leads to dramatic changes in the overall cytoarchitecture of cardiomyocytes, including cell size and morphology. Most importantly, mutant cardiomyocytes display altered mitochondrial architecture, mitochondrial respiratory capacity and metabolic activity reminiscent of defects observed in patient's heart tissue. Finally, to challenge the pathological mechanism, we transferred normal mitochondria inside the mutant cardiomyocytes and demonstrated that this treatment was able to restore mitochondrial and contractile functions of cardiomyocytes. CONCLUSIONS This work highlights the deleterious effects of DESE439K mutation, demonstrates the crucial role of mitochondrial abnormalities in the pathophysiology of desmin-related cardiomyopathy, and opens up new potential therapeutic perspectives for this disease.
Collapse
Affiliation(s)
- Yeranuhi Hovhannisyan
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Zhenlin Li
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Domitille Callon
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
- Department of Pathology, Academic Hospital of Reims, Reims, France
| | - Rodolphe Suspène
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vivien Batoumeni
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
- Ksilink, Strasbourg, France
| | - Alexis Canette
- Service de Microscopie Électronique (IBPS-SME), Institut de Biologie Paris-Seine (IBPS), CNRS, Sorbonne Université, Paris, France
| | - Jocelyne Blanc
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Hakim Hocini
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Cécile Lefebvre
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Nora El-Jahrani
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Maria Kitsara
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Aurore L'honoré
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Ekaterini Kordeli
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Paul Fornes
- Department of Pathology, Academic Hospital of Reims, Reims, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris, France
| | - Gérard Tachdjian
- Laboratoire de Cytogénétique, Service d'Histologie-Embryologie-Cytogénétique, AP-HP, Hôpital Antoine Béclère, Université Paris Saclay, Clamart, France
| | - Anne-Marie Rodriguez
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Jean-Pierre Vartanian
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anthony Béhin
- Reference Center for Muscle Diseases Paris-Est, Myology Institute, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Karim Wahbi
- Cardiology Department, AP-HP, Cochin Hospital, Université Paris Cité, Paris, France
| | - Pierre Joanne
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France.
| | - Onnik Agbulut
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France.
| |
Collapse
|
92
|
Zhao JH, Li S, Du SL, Zhang ZQ. The role of mitochondrial dysfunction in macrophages on SiO 2 -induced pulmonary fibrosis: A review. J Appl Toxicol 2024; 44:86-95. [PMID: 37468209 DOI: 10.1002/jat.4517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Several epidemiologic and toxicological studies have widely regarded that mitochondrial dysfunction is a popular molecular event in the process of silicosis from different perspectives, but the details have not been systematically summarized yet. Thus, it is necessary to investigate how silica dust leads to pulmonary fibrosis by damaging the mitochondria of macrophages. In this review, we first introduce the molecular mechanisms that silica dust induce mitochondrial morphological and functional abnormalities and then introduce the main molecular mechanisms that silica-damaged mitochondria induce pulmonary fibrosis. Finally, we conclude that the mitochondrial abnormalities of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis through these two sequential mechanisms. Therefore, reducing the silica-damaged mitochondria will prevent the potential occurrence and fatality of the disease in the future.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Shuang Li
- Department of Public Health, Jining Medical University, Jining, Shandong, China
- Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Ling Du
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
93
|
Chaplygina A, Zhdanova D. Mitochondrial Fragmentation as a Key Driver of Neurodegenerative Disease. Curr Alzheimer Res 2024; 21:607-614. [PMID: 39791144 DOI: 10.2174/0115672050366194250107050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Mitochondrial form and function are intricately linked through dynamic processes of fusion and fission, and disruptions in these processes are key drivers of neurodegenerative diseases, like Alzheimer's. The inability of mitochondria to transition between their dynamic forms is a critical factor in the development of pathological states. In this paper, we focus on the importance of different types of mitochondrial phenotypes in nervous tissue, discussing how mitochondria in Alzheimer's disease are "stuck" in certain patterns and how this pattern maintains itself. Understanding the specific roles and transitions between mitochondrial forms, including tiny, networked, and hyperfused, is crucial in developing new therapies aimed at restoring mitochondrial homeostasis. By targeting these dynamics, we may be able to intervene early in the disease process, offering novel avenues for preventing or treating neurodegeneration.
Collapse
Affiliation(s)
- Alina Chaplygina
- Institute of Cell Biophysics, Russian Academy of Sciences - A Separate Division of Federal Research Center Pushchino Research Center for Biological Studies, Russian Academy of Sciences (ICB RAS), Moscow, 142290, Russia
| | - Daria Zhdanova
- Institute of Cell Biophysics, Russian Academy of Sciences - A Separate Division of Federal Research Center Pushchino Research Center for Biological Studies, Russian Academy of Sciences (ICB RAS), Moscow, 142290, Russia
| |
Collapse
|
94
|
Lin Y, Ding Y, Wu Y, Yang Y, Liu Z, Xiang L, Zhang C. The underestimated role of mitochondria in vitiligo: From oxidative stress to inflammation and cell death. Exp Dermatol 2024; 33:e14856. [PMID: 37338012 DOI: 10.1111/exd.14856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Vitiligo is an acquired depigmentary disorder characterized by the depletion of melanocytes in the skin. Mitochondria shoulder multiple functions in cells, such as production of ATP, maintenance of redox balance, initiation of inflammation and regulation of cell death. Increasing evidence has implicated the involvement of mitochondria in the pathogenesis of vitiligo. Mitochondria alteration will cause the abnormalities of mitochondria functions mentioned above, ultimately leading to melanocyte loss through various cell death modes. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in mitochondrial homeostasis, and the downregulation of Nrf2 in vitiligo may correlate with mitochondria damage, making both mitochondria and Nrf2 promising targets in treatment of vitiligo. In this review, we aim to discuss the alterations of mitochondria and its role in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Yi Lin
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yuecen Ding
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Ziqi Liu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
95
|
Daviu N, Portilla Y, Gómez de Cedrón M, Ramírez de Molina A, Barber DF. DMSA-coated IONPs trigger oxidative stress, mitochondrial metabolic reprograming and changes in mitochondrial disposition, hindering cell cycle progression of cancer cells. Biomaterials 2024; 304:122409. [PMID: 38052135 DOI: 10.1016/j.biomaterials.2023.122409] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
There is increasing interest in modulating the redox homeostasis of tumors since high levels of reactive oxygen species (ROS) make them more vulnerable to changes in these species. Nanomedicine offers promise in this context as such applications may provoke biological responses that induce ROS production. Indeed, iron oxide nanoparticles (IONPs) can induce ROS accumulation through the so-called Fenton reaction of iron, further augmenting the ROS in tumors and overloading the antioxidant system beyond its capacity, thereby driving oxidative stress to a level that is incompatible with cell survival. Here, three different coatings for IONPs were compared to assess their intrinsic capacity to induce ROS production in cells. Of these coatings, dimercaptosuccinic acid-coated IONPs (DMSA-NPs) provoked the strongest ROS production, which was associated with the ability to reprogram the metabolism of cancer cells. This latter phenomenon involved shutting-down oxidative phosphorylation (OXPHOS), shifting mitochondrial morphology towards a more elongated phenotype, reducing the total mitochondrial mass and ultimately, blocking cell proliferation by inducing G0/G1 cell cycle arrest. Consequently, the data obtained highlights the importance of studying the chemical properties of IONPs, presenting DMSA-NPs as a novel tool to induce oxidative stress in cancer cells and alter their cell fate.
Collapse
Affiliation(s)
- Neus Daviu
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Yadileiny Portilla
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Crta. De Canto Blanco 8, 28049, Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Crta. De Canto Blanco 8, 28049, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
96
|
Anjum S, Srivastava S, Panigrahi L, Ansari UA, Trivedi AK, Ahmed S. TORC1 mediated regulation of mitochondrial integrity and calcium ion homeostasis by Wat1/mLst8 in S. pombe. Int J Biol Macromol 2023; 253:126907. [PMID: 37717872 DOI: 10.1016/j.ijbiomac.2023.126907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The mTOR complexes play a fundamental role in mitochondrial biogenesis and cellular homeostasis. Wat1, an ortholog of mammalian Lst8 is an important component of TOR complex and is essential for the regulation of downstream signaling. Earlier we reported the role of Wat1 in oxidative stress response. Here, we have shown that the abrogation of wat1 causes respiratory defects and mitochondrial depolarization that leads to a decrease in ATP production. The confocal and electron microscopy in wat1Δ cells revealed the fragmented mitochondrial morphology implying its role in mitochondrial fission. Furthermore, we also showed its role in autophagy and the maintenance of calcium ion homeostasis. Additionally, tor2-287 mutant cells also exhibit defects in mitochondrial integrity indicating the TORC1-dependent involvement of Wat1 in the maintenance of mitochondrial homeostasis. The interaction studies of Wat1 and Tor2 with Por1 and Mmm1 proteins revealed a plausible cross-talk between mitochondria and endoplasmic reticulum through the Mitochondria-associated membranes (MAM) and endoplasmic reticulum-mitochondria encounter structure (ERMES) complex, involving TORC1. Taken together, this study demonstrates the involvement of Wat1/mLst8 in harmonizing various mitochondrial functions, redox status, and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Simmi Anjum
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Lalita Panigrahi
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Uzair Ahmad Ansari
- System Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicological Research, Vishvigyan Bhawan, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
97
|
Xin Y, Zhang T, Zhou M, Li X, Ping K, Ji X, Yang H, Dong J. Hepatotoxicity of the Pesticide Avermectin Exposure to Freshwater-Farmed Carp: Evidence from In Vivo and In Vitro Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20654-20670. [PMID: 38091468 DOI: 10.1021/acs.jafc.3c06728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Avermectin (AVM) is presently one of the most extensively employed insecticides across the globe. A number of toxicity research studies of AVM have been carried out in freshwater-farmed carp; however, there are currently no toxicity studies on the liver. This investigation aims to replicate an acute liver injury model induced by AVM in carp, subsequently analyzing the adverse effects imposed on the nontarget species while delving into potential mechanisms underlying its toxicity. In this study, we found that AVM-exposed carp liver tissue showed cellular hydration degeneration and necrosis and reduced the viability of hepatocyte L8824. Second, AVM induced oxidative stress in carp, and AVM stimulation led to reactive oxygen species (ROS) accumulation and Ca2+ overload in hepatocyte L8824, suggesting that AVM exposure induces mitochondrial dysfunction in hepatocytes. AVM induced inflammation in carp liver tissue by inducing mitochondrial kinetic disruption, which triggered hepatic tissue injury. AVM induced autophagy and apoptosis in carp liver tissue and ROS mediated AVM-induced autophagy and apoptosis. The formation of autophagy attenuated the AVM-induced liver injury. In conclusion, the present study elucidated the hepatotoxicity and potential mechanisms of freshwater aquaculture carp exposed to the pesticide AVM, emphasized the importance of monitoring pesticide AVM contamination in freshwater aquaculture aquatic environments, and provided theoretical references for the targeted prevention of AVM-induced toxicity in carp.
Collapse
Affiliation(s)
- Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
98
|
Deng S, Li C, Chen J, Cui Z, Lei T, Yang H, Chen P. Effects of triclosan exposure on stem cells from human exfoliated deciduous teeth (SHED) fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167053. [PMID: 37709070 DOI: 10.1016/j.scitotenv.2023.167053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Triclosan (TCS), a widely used broad-spectrum antibacterial agent and preservative, is commonly found in products and environments. Widespread human exposure to TCS has drawn increasing attention from researchers concerning its toxicological effect. However, minimal studies have focused on the impact of TCS exposure on human stem cells. Therefore, the aim of the present study was to evaluate the effects of TCS exposure on stem cells from human exfoliated deciduous teeth (SHED) and its molecular mechanisms. A series of experimental methods were conducted to assess cell viability, morphology, proliferation, differentiation, senescence, apoptosis, mitochondrial function, and oxidative stress after SHED exposure to TCS. Furthermore, transcriptome analysis was applied to investigate the response of SHED to different concentrations of TCS exposure and to explore the molecular mechanisms. We demonstrated that TCS has a dose-dependent proliferation and differentiation inhibition of SHED, while promoting cellular senescence, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and oxidative stress, as well as significantly induces apoptosis and autophagy flux inhibition at high concentrations. Interestingly, no significant morphological changes in SHED were observed after TCS exposure. Transcriptome analysis of normal and TCS-induced SHED suggested that SHED may use different strategies to counteract stress from different concentrations of TCS and showed significant differences. We discovered that TCS mediates cellular injury of SHED by enhancing the expression of PTEN, thereby inhibiting the phosphorylation levels of PI3K and AKT as well as mTOR expression. Collectively, our findings provide a new understanding of the toxic effects of TCS on human stem cell fate, which is important for determining the risk posed by TCS to human health.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junqi Chen
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| |
Collapse
|
99
|
Noone J, Rochfort KD, O'Sullivan F, O'Gorman DJ. SIRT4 is a regulator of human skeletal muscle fatty acid metabolism influencing inner and outer mitochondrial membrane-mediated fusion. Cell Signal 2023; 112:110931. [PMID: 37858614 DOI: 10.1016/j.cellsig.2023.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE The mitochondrial phenotype, governed by the balance of fusion-fission, is a key determinant of energy metabolism. The inner and outer mitochondrial membrane (IMM) fusion proteins optic atrophy 1 (OPA1) and Mitofusin 1 and 2 (Mfn1/2) play an important role in this process. Recent evidence also shows that Sirtuin 4 (SIRT4), located within the mitochondria, is involved in the regulation of fatty acid oxidation. The purpose of this study was to determine if SIRT4 expression regulates inner and outer mitochondrial-mediated fusion and substrate utilization within differentiated human skeletal muscle cells (HSkMC). MATERIAL AND METHODS SIRT4 expression was knocked down using small interfering RNA (siRNA) transfection in differentiated HSkMC. Following knockdown, mitochondrial respiration was determined by high-resolution respirometry (HRR) using the Oroboros Oxygraph O2k. Live cell confocal microscopy, quantified using the Mitochondrial Network Analysis (MiNA) toolset, was used to examine mitochondrial morphological change. This was further examined through the measurement of key metabolic and mitochondrial morphological regulators (mRNA and protein) induced by knockdown. RESULTS SIRT4 knockdown resulted in a significant decrease in LEAK respiration, potentially explained by a decrease in ANT1 protein expression. Knockdown further increased oxidative phosphorylation and protein expression of key regulators of fatty acid metabolism. Quantitative analysis of live confocal imaging of fluorescently labelled mitochondria following SIRT4 knockdown supported the role SIRT4 plays in the regulation of mitochondrial morphology, as emphasized by an increase in mitochondrial network branches and junctions. Measurement of key regulators of mitochondrial dynamics illustrated a significant increase in mitochondrial fusion proteins Mfn1, OPA1 respectively, indicative of an increase in mitochondrial size. CONCLUSIONS This study provides evidence of a direct relationship between the mitochondrial phenotype and substrate oxidation in HSkMC. We identify SIRT4 as a key protagonist of energy metabolism via its regulation of IMM and OMM fusion proteins, OPA1 and Mfn1. SIRT4 knockdown increases mitochondrial capacity to oxidize fatty acids, decreasing LEAK respiration and further increasing mitochondrial elongation via its regulation of mitochondrial fusion.
Collapse
Affiliation(s)
- John Noone
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin, Ireland; National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland; Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Keith D Rochfort
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland; School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin 9, Ireland
| | - Finbarr O'Sullivan
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals
| | - Donal J O'Gorman
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin, Ireland; National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals.
| |
Collapse
|
100
|
Wang AS, Lemire G, VanNoy GE, Austin-Tse C, O'Donnell-Luria A, Kilbane C. DNM1L variant presenting as adolescent-onset sensory neuronopathy, spasticity, dystonia, and ataxia. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:475-478. [PMID: 38481935 PMCID: PMC10932615 DOI: 10.1055/s-0043-1771352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Abstract
DMN1L encodes for dynamin-like protein 1 (DLP1) which plays a key role in perixosomal and mitochondrial fission. Individuals with heterozygous variants in DNM1L present with a wide range of neurologic symptoms, including encephalopathy, epilepsy, and motor deficits. Here we report on a woman presenting with adolescence onset of sensory neuronopathy, spasticity, dystonia, and ataxia. Trio genome sequencing identified a heterozygous variant in DNM1L (NM_012062.3 c.121G>A/p.Val41Met) which was thought to be pathogenic. This case describes the latest known symptomatic onset of DMN1L-related disease described in literature. We highlight our approach to a challenging diagnostic workup and interpretation of a specific variant that has not been previously reported. Furthermore, the case highlights the diagnostic importance of utilizing genomic sequencing and research studies for patients with rare disease.
Collapse
Affiliation(s)
- Alexander S Wang
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA, 44106
- Case Western Reserve University, Cleveland, OH, USA, 44106
| | - Gabrielle Lemire
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA, 02142
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA, 02115
| | - Grace E VanNoy
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA, 02142
| | - Christina Austin-Tse
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA, 02142
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA, 02142
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA, 02115
| | - Camilla Kilbane
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA, 44106
- Case Western Reserve University, Cleveland, OH, USA, 44106
| |
Collapse
|