51
|
Rallabhandi P, Phillips RL, Boukhvalova MS, Pletneva LM, Shirey KA, Gioannini TL, Weiss JP, Chow JC, Hawkins LD, Vogel SN, Blanco JCG. Respiratory syncytial virus fusion protein-induced toll-like receptor 4 (TLR4) signaling is inhibited by the TLR4 antagonists Rhodobacter sphaeroides lipopolysaccharide and eritoran (E5564) and requires direct interaction with MD-2. mBio 2012; 3:e00218-12. [PMID: 22872782 PMCID: PMC3419526 DOI: 10.1128/mbio.00218-12] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 11/26/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Toll-like receptor 4 (TLR4), a signaling receptor for structurally diverse microbe-associated molecular patterns, is activated by the RSV fusion (F) protein and by bacterial lipopolysaccharide (LPS) in a CD14-dependent manner. TLR4 signaling by LPS also requires the presence of an additional protein, MD-2. Thus, it is possible that F protein-mediated TLR4 activation relies on MD-2 as well, although this hypothesis has not been formally tested. LPS-free RSV F protein was found to activate NF-κB in HEK293T transfectants that express wild-type (WT) TLR4 and CD14, but only when MD-2 was coexpressed. These findings were confirmed by measuring F-protein-induced interleukin 1β (IL-1β) mRNA in WT versus MD-2(-/-) macrophages, where MD-2(-/-) macrophages failed to show IL-1β expression upon F-protein treatment, in contrast to the WT. Both Rhodobacter sphaeroides LPS and synthetic E5564 (eritoran), LPS antagonists that inhibit TLR4 signaling by binding a hydrophobic pocket in MD-2, significantly reduced RSV F-protein-mediated TLR4 activity in HEK293T-TLR4-CD14-MD-2 transfectants in a dose-dependent manner, while TLR4-independent NF-κB activation by tumor necrosis factor alpha (TNF-α) was unaffected. In vitro coimmunoprecipitation studies confirmed a physical interaction between native RSV F protein and MD-2. Further, we demonstrated that the N-terminal domain of the F1 segment of RSV F protein interacts with MD-2. These data provide new insights into the importance of MD-2 in RSV F-protein-mediated TLR4 activation. Thus, targeting the interaction between MD-2 and RSV F protein may potentially lead to novel therapeutic approaches to help control RSV-induced inflammation and pathology. IMPORTANCE This study shows for the first time that the fusion (F) protein of respiratory syncytial virus (RSV), a major cause of bronchiolitis and death, particularly in infants and young children, physically interacts with the Toll-like receptor 4 (TLR4) coreceptor, MD-2, through its N-terminal domain. We show that F protein-induced TLR4 activation can be blocked by lipid A analog antagonists. This observation provides a strong experimental rationale for testing such antagonists in animal models of RSV infection for potential use in people.
Collapse
Affiliation(s)
- Prasad Rallabhandi
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Zeng R, Cui Y, Hai Y, Liu Y. Pattern recognition receptors for respiratory syncytial virus infection and design of vaccines. Virus Res 2012; 167:138-45. [PMID: 22698878 DOI: 10.1016/j.virusres.2012.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/28/2012] [Accepted: 06/04/2012] [Indexed: 12/25/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants and young children. Host immune response has been implicated in both the protection and immunopathological mechanisms. Pattern recognition receptors (PRRs) expressed on innate immune cells during RSV infection recognize the RSV-associated molecular patterns and activate innate immune cells as well as mediate airway inflammation, protective immune response, and pulmonary immunopathology. The resident and recruited innate immune cells play important roles in the protection and pathogenesis of an RSV disease by expressing these PRRs. Agonist-binding PRRs are the basis of many adjuvants that are essential for most vaccines. In the present review, we highlight recent advances in the innate immune recognition of and responses to RSV through PRRs, including toll-like receptors (TLRs), retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). We also describe the role of PRRs in the design of RSV vaccines.
Collapse
Affiliation(s)
- Ruihong Zeng
- Department of Immunology, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang 050017, Hebei, PR China.
| | | | | | | |
Collapse
|
53
|
Kamphuis T, Meijerhof T, Stegmann T, Lederhofer J, Wilschut J, de Haan A. Immunogenicity and protective capacity of a virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A in mice. PLoS One 2012; 7:e36812. [PMID: 22590614 PMCID: PMC3348902 DOI: 10.1371/journal.pone.0036812] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/06/2012] [Indexed: 12/23/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is a major cause of viral brochiolitis in infants and young children and is also a significant problem in elderly and immuno-compromised adults. To date there is no efficacious and safe RSV vaccine, partially because of the outcome of a clinical trial in the 1960s with a formalin-inactivated RSV vaccine (FI-RSV). This vaccine caused enhanced respiratory disease upon exposure to the live virus, leading to increased morbidity and the death of two children. Subsequent analyses of this incident showed that FI-RSV induces a Th2-skewed immune response together with poorly neutralizing antibodies. As a new approach, we used reconstituted RSV viral envelopes, i.e. virosomes, with incorporated monophosphoryl lipid A (MPLA) adjuvant to enhance immunogenicity and to skew the immune response towards a Th1 phenotype. Incorporation of MPLA stimulated the overall immunogenicity of the virosomes compared to non-adjuvanted virosomes in mice. Intramuscular administration of the vaccine led to the induction of RSV-specific IgG2a levels similar to those induced by inoculation of the animals with live RSV. These antibodies were able to neutralize RSV in vitro. Furthermore, MPLA-adjuvanted RSV virosomes induced high amounts of IFNγ and low amounts of IL5 in both spleens and lungs of immunized and subsequently challenged animals, compared to levels of these cytokines in animals vaccinated with FI-RSV, indicating a Th1-skewed response. Mice vaccinated with RSV-MPLA virosomes were protected from live RSV challenge, clearing the inoculated virus without showing signs of lung pathology. Taken together, these data demonstrate that RSV-MPLA virosomes represent a safe and efficacious vaccine candidate which warrants further evaluation.
Collapse
Affiliation(s)
- Tobias Kamphuis
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
54
|
Marr N, Turvey SE. Role of human TLR4 in respiratory syncytial virus-induced NF-κB activation, viral entry and replication. Innate Immun 2012; 18:856-65. [PMID: 22535679 DOI: 10.1177/1753425912444479] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TLRs play a key role in innate immune defenses. It was previously reported that purified respiratory syncytial virus (RSV) fusion protein elicits an inflammatory response in hematopoietic cells, which required expression of TLR4 and its co-receptor CD14. However, a biological role of TLR4 in immunity to RSV, as initially proposed, has remained inconclusive and controversial. Here, we directly assess the role of human TLR4 and its co-receptors in NF-κB activation, viral entry and replication using intact virions rather than purified RSV components. We used HEK 293 reporter cells that are highly permissive for RSV and that either express or a lack a functional human TLR4/MD-2/CD14 complex. We demonstrate that RSV-mediated NF-κB activation, viral entry and replication are independent of the expression of a functional human TLR4/MD-2/CD14 complex and that, in turn, human TLR4 activation by LPS remains unaffected in RSV-infected cells. Thus, although isolated viral compounds such as purified RSV F protein may bind TLR4 and/or CD14, a direct interaction between intact RSV particles and the human TLR4 receptor complex does not seem to play a biological role in RSV pathogenesis.
Collapse
Affiliation(s)
- Nico Marr
- Department of Pediatrics, University of British Columbia and the Child & Family Research Institute, Vancouver, Canada.
| | | |
Collapse
|
55
|
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract viral disease in infants and young children. Presently, there are no explicit recommendations for RSV treatment apart from supportive care. The virus is therefore responsible for an estimated 160,000 deaths per year worldwide. Despite half a century of dedicated research, there remains no licensed vaccine product. Herein are described past and current efforts to harness innate and adaptive immune potentials to combat RSV. A plethora of candidate vaccine products and strategies are reviewed. The development of a successful RSV vaccine may ultimately stem from attention to historical lessons, in concert with an integral partnering of immunology and virology research fields.
Collapse
Affiliation(s)
- Julia L Hurwitz
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
56
|
Shafique M, Wilschut J, de Haan A. Induction of mucosal and systemic immunity against respiratory syncytial virus by inactivated virus supplemented with TLR9 and NOD2 ligands. Vaccine 2012; 30:597-606. [PMID: 22120195 DOI: 10.1016/j.vaccine.2011.11.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/13/2011] [Accepted: 11/14/2011] [Indexed: 12/18/2022]
Abstract
Respiratory syncytial virus (RSV) infection is the most important viral cause of severe respiratory disease in infants and children worldwide and also forms a serious threat in the elderly. The development of RSV vaccine, however, has been hampered by the disastrous outcome of an earlier trial using an inactivated and parenterally administered RSV vaccine which did not confer protection but rather primed for enhanced disease upon natural infection. Mucosal administration does not seem to prime for enhanced disease, but non-replicating RSV antigen does not induce a strong mucosal immune response. We therefore investigated if mucosal immunization with inactivated RSV supplemented with innate receptor ligands, TLR9 (CpG ODN) and NOD2 (L18-MDP) through the upper or total respiratory tract is an effective and safe approach to induce RSV-specific immunity. Our data show that beta-propiolactone (BPL) inactivated RSV (BPL-RSV) supplemented with CpG ODN and L18-MDP potentiates activation of antigen-presenting cells (APC) in vitro, as demonstrated by NF-κB induction in a model APC cell line. In vivo, BPL-RSV supplemented with CpG ODN/L18-MDP ligands induces local IgA responses and augments Th1-signature IgG2a subtype responses after total respiratory tract (TRT), but less efficient after upper respiratory tract (intranasal, IN) immunization. Addition of TLR9/NOD2 ligands to the inactivated RSV also promoted affinity maturation of RSV-specific IgG antibodies and shifted T cell responses from mainly IL-5-secreting cells to predominantly IFN-γ-producing cells, indicating a Th1-skewed response. This effect was seen for both IN and TRT immunization. Finally, BPL-RSV supplemented with TLR9/NOD2 ligands significantly improved the protection efficacy against a challenge with infectious virus, without stimulating enhanced disease as evidenced by lack of eotaxin mRNA expression and eosinophil infiltration in the lung. We conclude that mucosal immunization with inactivated RSV antigen supplemented with TLR9/NOD2 ligands is a promising approach to induce effective RSV-specific immunity without priming for enhanced disease.
Collapse
Affiliation(s)
- Muhammad Shafique
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center and University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
57
|
Berencsi III G. Fetal and Neonatal Illnesses Caused or Influenced by Maternal Transplacental IgG and/or Therapeutic Antibodies Applied During Pregnancy. MATERNAL FETAL TRANSMISSION OF HUMAN VIRUSES AND THEIR INFLUENCE ON TUMORIGENESIS 2012. [PMCID: PMC7121401 DOI: 10.1007/978-94-007-4216-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human fetus is protected by the mother’s antibodies. At the end of the pregnancy, the concentration of maternal antibodies is higher in the cord blood, than in the maternal circulation. Simultaneously, the immune system of the fetus begins to work and from the second trimester, fetal IgM is produced by the fetal immune system specific to microorganisms and antigens passing the maternal-fetal barrier. The same time the fetal immune system has to cope and develop tolerance and TREG cells to the maternal microchimeric cells, latent virus-carrier maternal cells and microorganisms transported through the maternal-fetal barrier. The maternal phenotypic inheritance may hide risks for the newborn, too. Antibody mediated enhancement results in dengue shock syndrome in the first 8 month of age of the baby. A series of pathologic maternal antibodies may elicit neonatal illnesses upon birth usually recovering during the first months of the life of the offspring. Certain antibodies, however, may impair the fetal or neonatal tissues or organs resulting prolonged recovery or initiating prolonged pathological processes of the children. The importance of maternal anti-idiotypic antibodies are believed to prime the fetal immune system with epitopes of etiologic agents infected the mother during her whole life before pregnancy and delivery. The chemotherapeutical and biological substances used for the therapy of the mother will be transcytosed into the fetal body during the last two trimesters of pregnancy. The long series of the therapeutic monoclonal antibodies and conjugates has not been tested systematically yet. The available data are summarised in this chapter. The innate immunity plays an important role in fetal defence. The concentration of interferon is relative high in the placenta. This is probably one reason, why the therapeutic interferon treatment of the mother does not impair the fetal development.
Collapse
Affiliation(s)
- György Berencsi III
- , Division of Virology, National Center for Epidemiology, Gyáli Street 2-6, Budapest, 1096 Hungary
| |
Collapse
|
58
|
Collins PL, Melero JA. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 2011; 162:80-99. [PMID: 21963675 PMCID: PMC3221877 DOI: 10.1016/j.virusres.2011.09.020] [Citation(s) in RCA: 348] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/25/2023]
Abstract
Human respiratory syncytial virus (RSV) is a ubiquitous pathogen that infects everyone worldwide early in life and is a leading cause of severe lower respiratory tract disease in the pediatric population as well as in the elderly and in profoundly immunosuppressed individuals. RSV is an enveloped, nonsegmented negative-sense RNA virus that is classified in Family Paramyxoviridae and is one of its more complex members. Although the replicative cycle of RSV follows the general pattern of the Paramyxoviridae, it encodes additional proteins. Two of these (NS1 and NS2) inhibit the host type I and type III interferon (IFN) responses, among other functions, and another gene encodes two novel RNA synthesis factors (M2-1 and M2-2). The attachment (G) glycoprotein also exhibits unusual features, such as high sequence variability, extensive glycosylation, cytokine mimicry, and a shed form that helps the virus evade neutralizing antibodies. RSV is notable for being able to efficiently infect early in life, with the peak of hospitalization at 2-3 months of age. It also is notable for the ability to reinfect symptomatically throughout life without need for significant antigenic change, although immunity from prior infection reduces disease. It is widely thought that re-infection is due to an ability of RSV to inhibit or subvert the host immune response. Mechanisms of viral pathogenesis remain controversial. RSV is notable for a historic, tragic pediatric vaccine failure involving a formalin-inactivated virus preparation that was evaluated in the 1960s and that was poorly protective and paradoxically primed for enhanced RSV disease. RSV also is notable for the development of a successful strategy for passive immunoprophylaxis of high-risk infants using RSV-neutralizing antibodies. Vaccines and new antiviral drugs are in pre-clinical and clinical development, but controlling RSV remains a formidable challenge.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antiviral Agents/administration & dosage
- Child
- Communicable Disease Control/organization & administration
- Cytokines/immunology
- Humans
- Immunity, Innate
- Infant
- RNA, Viral/genetics
- RNA, Viral/immunology
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - José A. Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
59
|
McDermott DS, Weiss KA, Knudson CJ, Varga SM. Central role of dendritic cells in shaping the adaptive immune response during respiratory syncytial virus infection. Future Virol 2011; 6:963-973. [PMID: 21887154 DOI: 10.2217/fvl.11.62] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. Premature infants, immunocompromised individuals and the elderly exhibit the highest risk for the development of severe RSV-induced disease. Murine studies demonstrate that CD8 T cells mediate RSV clearance from the lungs. Murine studies also indicate that the host immune response contributes to RSV-induced morbidity as T-cell depletion prevents the development of disease despite sustained viral replication. Dendritic cells (DCs) play a central role in the induction of the RSV-specific adaptive immune response. Following RSV infection, lung-resident DCs acquire viral antigens, migrate to the lung-draining lymph nodes and initiate the T-cell response. This article focuses on data generated from both in vitro DC infection studies and RSV mouse models that together have advanced our understanding of how RSV infection modulates DC function and the subsequent impact on the adaptive immune response.
Collapse
Affiliation(s)
- Daniel S McDermott
- Interdisciplinary Graduate Program in Immunology, 51 Newton Road, 3-532 Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
60
|
Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune response to viral infection. Viruses 2011; 3:920-40. [PMID: 21994762 PMCID: PMC3186011 DOI: 10.3390/v3060920] [Citation(s) in RCA: 606] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/27/2011] [Accepted: 06/02/2011] [Indexed: 01/24/2023] Open
Abstract
The innate immune response to viral pathogens is critical in order to mobilize protective immunity. Cells of the innate immune system detect viral infection largely through germline-encoded pattern recognition receptors (PRRs) present either on the cell surface or within distinct intracellular compartments. These include the Toll-like receptors (TLRs), the retinoic acid-inducble gene I-like receptors (RLRs), the nucleotide oligomerization domain-like receptors (NLRs, also called NACHT, LRR and PYD domain proteins) and cytosolic DNA sensors. While in certain cases viral proteins are the trigger of these receptors, the predominant viral activators are nucleic acids. The presence of viral sensing PRRs in multiple cellular compartments allows innate cells to recognize and quickly respond to a broad range of viruses, which replicate in different cellular compartments. Here, we review the role of PRRs and associated signaling pathways in detecting viral pathogens in order to evoke production of interferons and cytokines. By highlighting recent progress in these areas, we hope to convey a greater understanding of how viruses activate PRR signaling and how this interaction shapes the anti-viral immune response.
Collapse
Affiliation(s)
- Mikayla R Thompson
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
61
|
Cormier SA, You D, Honnegowda S. The use of a neonatal mouse model to study respiratory syncytial virus infections. Expert Rev Anti Infect Ther 2011; 8:1371-80. [PMID: 21133663 DOI: 10.1586/eri.10.125] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Respiratory syncytial virus (RSV) infection is the most significant cause of viral death in infants worldwide. The significant morbidity and mortality associated with this disease underscores the urgent need for the development of an RSV vaccine. The development of an RSV vaccine has been hampered by our limited understanding of the human host immune system, which plays a significant role in RSV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which RSV causes disease. Within the past few years, a revolutionary variation on these animal models has emerged--age at time of initial infection--and early studies in neonatal mice (aged <7 days at time of initial infection) indicate the validity of this model to understand RSV infection in infants. This article reviews available information on current murine and emerging neonatal mouse RSV models.
Collapse
Affiliation(s)
- Stephania A Cormier
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | | | | |
Collapse
|
62
|
Vareille M, Kieninger E, Edwards MR, Regamey N. The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev 2011; 24:210-29. [PMID: 21233513 PMCID: PMC3021210 DOI: 10.1128/cmr.00014-10] [Citation(s) in RCA: 470] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.
Collapse
Affiliation(s)
- Marjolaine Vareille
- Division of Respiratory Medicine, Department of Pediatrics, University Children's Hospital of Bern, Inselpital, 3010 Bern, Switzerland, Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom
| | - Elisabeth Kieninger
- Division of Respiratory Medicine, Department of Pediatrics, University Children's Hospital of Bern, Inselpital, 3010 Bern, Switzerland, Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom
| | - Michael R. Edwards
- Division of Respiratory Medicine, Department of Pediatrics, University Children's Hospital of Bern, Inselpital, 3010 Bern, Switzerland, Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom
| | - Nicolas Regamey
- Division of Respiratory Medicine, Department of Pediatrics, University Children's Hospital of Bern, Inselpital, 3010 Bern, Switzerland, Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom
| |
Collapse
|
63
|
Coffey TJ, Werling D. Therapeutic targeting of the innate immune system in domestic animals. Cell Tissue Res 2011; 343:251-61. [PMID: 20953632 DOI: 10.1007/s00441-010-1054-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/08/2010] [Indexed: 12/23/2022]
Abstract
Since first being described in the fruit fly Drosophila melanogaster, the knowledge regarding Toll-like receptors (TLRs) has transformed our understanding of immunology. TLRs are a family of conserved pattern recognition receptors (PRR) that recognise specific microbial-associated molecular patterns and allow the cell to distinguish between self and non-self materials. The very property of the TLRs, to link innate and adaptive immunity, offers a novel opportunity to develop vaccines that engage TLR signalling. The presence of TLR ligands as adjuvants in conjunction with a vaccine is shown to increase the efficacy and response to the immunisation with a particular antigen. Here, we focus on the findings pertaining to TLR ligands as adjuvants and discuss the importance of these studies in the development of an optimal vaccine in farm and companion animals.
Collapse
Affiliation(s)
- Tracey J Coffey
- Bovine Genomics Group, Institute for Animal Health, Compton, RG20 7NN, UK
| | | |
Collapse
|
64
|
Abstract
Infectious diseases continue to impact human morbidity and mortality. Every individual is vulnerable to microbial infections regardless of socioeconomic status, gender, age group or ethnic background. There has been an explosion of international air travel with an estimated 2 billion passengers travelling on commercial airlines every year. The rapid expansion of globalization and mass tourism has facilitated the spread of disease-causing pathogens from one continent to another at unprecedented rates.
Collapse
Affiliation(s)
- F.P. Nijkamp
- Faculteit Farmacie, Rijksuniversiteit Utrecht, Utrecht, Netherlands
| | - Michael J. Parnham
- Diseases "Dr. Fran Mihaljevic", Research & Clinical Immunology Unit, University Hospital for Infectious, Mirogojska cesta 8, Zagreb, 10000 Croatia
| |
Collapse
|
65
|
Stegmann T, Kamphuis T, Meijerhof T, Goud E, de Haan A, Wilschut J. Lipopeptide-adjuvanted respiratory syncytial virus virosomes: A safe and immunogenic non-replicating vaccine formulation. Vaccine 2010; 28:5543-50. [DOI: 10.1016/j.vaccine.2010.06.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/19/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022]
|
66
|
Blanco JCG, Boukhvalova MS, Shirey KA, Prince GA, Vogel SN. New insights for development of a safe and protective RSV vaccine. HUMAN VACCINES 2010; 6:482-92. [PMID: 20671419 PMCID: PMC2965816 DOI: 10.4161/hv.6.6.11562] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Respiratory Syncytial Virus (RSV) is the leading cause of pneumonia and bronchiolitis in infants and children <1 year old, resulting in significant morbidity and mortality worldwide. There is currently no RSV vaccine. In the 1960s, a formalin-inactivated RSV (FI-RSV) vaccine trial led to exacerbated disease upon natural infection of vaccinees, including two deaths. The causes involved in the disastrous results of these vaccine trials are still unclear but they remain the engine for searching new avenues to develop a safe vaccine that can provide long-term protection against this important pathogen. This article reviews some of the early history of RSV vaccine development,as well as more recent information on the interaction between RSV and the host innate and adaptive immune responses. A safe and efficacious vaccine for RSV will require "re-education" of the host immune response against RSV to prevent vaccine-enhanced or severe RSV disease.
Collapse
|
67
|
Shirey KA, Pletneva LM, Puche AC, Keegan AD, Prince GA, Blanco JC, Vogel SN. Control of RSV-induced lung injury by alternatively activated macrophages is IL-4R alpha-, TLR4-, and IFN-beta-dependent. Mucosal Immunol 2010; 3:291-300. [PMID: 20404812 PMCID: PMC2875872 DOI: 10.1038/mi.2010.6] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Severe respiratory syncytial virus (RSV)-induced bronchiolitis has been associated with a mixed "Th1" and "Th2" cytokine storm. We hypothesized that differentiation of "alternatively activated" macrophages (AA-M phi) would mediate the resolution of RSV-induced lung injury. RSV induced interleukin (IL)-4 and IL-13 by murine lung and peritoneal macrophages, IL-4R alpha/STAT6-dependent AA-M phi differentiation, and significantly enhanced inflammation in the lungs of IL-4R alpha(-/-) mice. Adoptive transfer of wildtype macrophages to IL-4R alpha(-/-) mice restored RSV-inducible AA-M phi phenotype and diminished lung pathology. RSV-infected Toll-like receptor (TLR)4(-/-) and interferon (IFN)-beta(-/-) macrophages and mice also failed to express AA-M phi markers, but exhibited sustained proinflammatory cytokine production (e.g., IL-12) in vitro and in vivo and epithelial damage in vivo. TLR4 signaling is required for peroxisome proliferator-activated receptor gamma expression, a DNA-binding protein that induces AA-M phi genes, whereas IFN-beta regulates IL-4, IL-13, IL-4R alpha, and IL-10 expression in response to RSV. RSV-infected cotton rats treated with a cyclooxygenase-2 inhibitor increased expression of lung AA-M phi. These data suggest new treatment strategies for RSV that promote AA-M phi differentiation.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cyclooxygenase 2 Inhibitors/pharmacology
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Humans
- Interferon-beta/genetics
- Interferon-beta/immunology
- Interferon-beta/metabolism
- Lung Injury/immunology
- Lung Injury/metabolism
- Lung Injury/virology
- Macrophage Activation/drug effects
- Macrophage Activation/immunology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/virology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/virology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Pneumonia/immunology
- Pneumonia/metabolism
- Pneumonia/virology
- Rats
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Respiratory Syncytial Virus Infections/genetics
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Viruses/immunology
- Respiratory Syncytial Viruses/metabolism
- Sigmodontinae
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Toll-Like Receptor 4/metabolism
Collapse
Affiliation(s)
- Kari Ann Shirey
- Dept. of Microbiology and Immunology, University of Maryland, Baltimore (UMB), Baltimore, MD 21201; USA
| | | | - Adam C. Puche
- Dept. of Anatomy and Neurobiology; University of Maryland, Baltimore (UMB), Baltimore, MD 21201; USA
| | - Achsah D. Keegan
- Dept. of Microbiology and Immunology, University of Maryland, Baltimore (UMB), Baltimore, MD 21201; USA
| | | | | | - Stefanie N. Vogel
- Dept. of Microbiology and Immunology, University of Maryland, Baltimore (UMB), Baltimore, MD 21201; USA
| |
Collapse
|
68
|
Shaw CA, Otten G, Wack A, Palmer GA, Mandl CW, Mbow ML, Valiante N, Dormitzer PR. Antibody affinity maturation and respiratory syncytial virus disease. Nat Med 2009; 15:725; author reply 725-6. [PMID: 19584854 DOI: 10.1038/nm0709-725a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
69
|
|
70
|
Boukhvalova MS, Prince GA, Blanco JC. The cotton rat model of respiratory viral infections. Biologicals 2009; 37:152-9. [PMID: 19394861 PMCID: PMC2882635 DOI: 10.1016/j.biologicals.2009.02.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 10/20/2022] Open
Abstract
Development of successful vaccines against human infectious diseases depends on using appropriate animal models for testing vaccine efficacy and safety. For some viral infections the task is further complicated by the frequently changing genetic make-up of the virus, as in the case of influenza, or by the existence of the little-understood phenomenon of vaccine-enhanced disease, as in the case of respiratory syncytial virus (RSV). The cotton rat Sigmodon hispidus has been used for years as an excellent small animal model of the RSV vaccine-enhanced disease. Recently, using cotton rats, we have demonstrated that vaccination against another paramyxovirus, human metapneumovirus (hMPV), can also lead to vaccine-enhanced disease. In addition to the study of paramyxoviruses, S. hispidus presents important advantages for the study of orthomyxoviruses such as influenza. The cotton rat is susceptible to infection with unadapted human influenza strains, and heterosubtypic immunity to influenza can be evoked in S. hispidus. The mechanisms of influenza, RSV, and hMPV pathogenesis and immunity can now be investigated in the cotton rat with the development of species-specific reagents for this animal model.
Collapse
|
71
|
Abstract
The cotton rat (Sigmodon hispidus) model has proven to be a suitable small animal model for measles virus pathogenesis to fill the niche between tissue culture and studies in macaques. Similar to mice, inbred cotton rats are available in a microbiologically defined quality with an ever-increasing arsenal of reagents and methods available for the study of infectious diseases. Cotton rats replicate measles virus in the respiratory tract and (depending on virus strain) in lymphoid organs. They can be infected with vaccine, wild-type, and recombinant measles viruses and have been used to study viruses with genetic modifications. Other areas of study include efficacy testing of antivirals and vaccines. The cotton rat also has been an informative animal model to investigate measles virus-induced immune suppression and suppression of vaccination by maternal antibodies. In addition, the cotton rat promises to be a useful model for the study of polymicrobial disease (interaction between measles virus and secondary pathogens).
Collapse
Affiliation(s)
- S Niewiesk
- College of Veterinary Medicine, Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
72
|
Cyr SL, Angers I, Guillot L, Stoica-Popescu I, Lussier M, Qureshi S, Burt DS, Ward BJ. TLR4 and MyD88 control protection and pulmonary granulocytic recruitment in a murine intranasal RSV immunization and challenge model. Vaccine 2009; 27:421-30. [DOI: 10.1016/j.vaccine.2008.10.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/26/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022]
|
73
|
Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J Virol 2008; 83:1492-500. [PMID: 19019963 DOI: 10.1128/jvi.00671-08] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of infection that is associated with a range of respiratory illnesses, from common cold-like symptoms to serious lower respiratory tract illnesses such as pneumonia and bronchiolitis. RSV is the single most important cause of serious lower respiratory tract illness in children <1 year of age. Host innate and acquired immune responses activated following RSV infection have been suspected to contribute to RSV disease. Toll-like receptors (TLRs) activate innate and acquired immunity and are candidates for playing key roles in the host immune response to RSV. Leukocytes express TLRs, including TLR2, TLR6, TLR3, TLR4, and TLR7, that can interact with RSV and promote immune responses following infection. Using knockout mice, we have demonstrated that TLR2 and TLR6 signaling in leukocytes can activate innate immunity against RSV by promoting tumor necrosis factor alpha, interleukin-6, CCL2 (monocyte chemoattractant protein 1), and CCL5 (RANTES). As previously noted, TLR4 also contributes to cytokine activation (L. M. Haynes, D. D. Moore, E. A. Kurt-Jones, R. W. Finberg, L. J. Anderson, and R. A. Tripp, J. Virol. 75:10730-10737, 2001, and E. A. Kurt-Jones, L. Popova, L. Kwinn, L. M. Haynes, L. P. Jones, R. A. Tripp, E. E. Walsh, M. W. Freeman, D. T. Golenbock, L. J. Anderson, and R. W. Finberg, Nat. Immunol. 1:398-401, 2000). Furthermore, we demonstrated that signals generated following TLR2 and TLR6 activation were important for controlling viral replication in vivo. Additionally, TLR2 interactions with RSV promoted neutrophil migration and dendritic cell activation within the lung. Collectively, these studies indicate that TLR2 is involved in RSV recognition and subsequent innate immune activation.
Collapse
|
74
|
Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci 2008; 65:3231-40. [PMID: 18668203 PMCID: PMC2647720 DOI: 10.1007/s00018-008-8228-6] [Citation(s) in RCA: 437] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of non-infectious subunit vaccines greatly increases the safety of prophylactic immunization, but also reinforces the need for a new generation of immunostimulatory adjuvants. Because adverse effects are a paramount concern in prophylactic immunization, few new adjuvants have received approval for use anywhere in the developed world. The vaccine adjuvant monophosphoryl lipid A is a detoxified form of the endotoxin lipopolysaccharide, and is among the first of a new generation of Toll-like receptor agonists likely to be used as vaccine adjuvants on a mass scale in human populations. Much remains to be learned about this compound's mechanism of action, but recent developments have made clear that it is unlikely to be simply a weak version of lipopolysaccharide. Instead, monophosphoryl lipid A's structure seems to have fortuitously retained several functions needed for stimulation of adaptive immune responses, while shedding those associated with pro-inflammatory side effects.
Collapse
Affiliation(s)
- C. R. Casella
- Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202 USA
| | - T. C. Mitchell
- Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202 USA
- Dept. of Microbiology and Immunology, University of Louisville School of Medicine, 570 S. Preston St., Donald Baxter Bldg., 4th floor, Louisville, KY 40202 USA
| |
Collapse
|
75
|
Pletneva LM, Haller O, Porter DD, Prince GA, Blanco JCG. Induction of type I interferons and interferon-inducible Mx genes during respiratory syncytial virus infection and reinfection in cotton rats. J Gen Virol 2008; 89:261-270. [PMID: 18089750 PMCID: PMC2741016 DOI: 10.1099/vir.0.83294-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of bronchiolitis in young children. In general, RSV is considered to be a poor inducer of type I (alpha/beta) interferons (IFNs). Measurement of active type I IFN production during infection in vivo is demanding, as multiple IFN subtypes with overlapping activities are produced. In contrast, Mx gene expression, which is tightly regulated by type I IFN expression, is easily determined. This study therefore measured Mx expression as a reliable surrogate marker of type I IFN activity during RSV infection in vivo in a cotton rat model. It was shown that expression of Mx genes was dramatically augmented in the lungs of infected animals in a dose- and virus strain-dependent manner. The expression of Mx genes in the lungs was paralleled by their induction in the nose and spleen, although in spleen no simultaneous virus gene expression was detected. Reinfection of RSV-immune animals leads to abortive virus replication in the lungs. Thus, type I IFN and Mx gene expression was triggered in reinfected animals, even though virus could not be isolated from their lungs. Furthermore, it was demonstrated that immunity to RSV wanes with time. Virus replication and Mx gene expression became more prominent with increasing intervals between primary infection and reinfection. These results highlight the role of type I IFN in modulation of the immune response to RSV.
Collapse
Affiliation(s)
- Lioubov M. Pletneva
- Virion Systems Inc., 9610 Medical Center Dr., Suite 100, Rockville, Maryland 20850
| | - Otto Haller
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D79008 Freiburg, Germany
| | - David D. Porter
- Virion Systems Inc., 9610 Medical Center Dr., Suite 100, Rockville, Maryland 20850
| | - Gregory A. Prince
- Virion Systems Inc., 9610 Medical Center Dr., Suite 100, Rockville, Maryland 20850
| | - Jorge C. G. Blanco
- Virion Systems Inc., 9610 Medical Center Dr., Suite 100, Rockville, Maryland 20850
| |
Collapse
|
76
|
Becker Y. Past, present and future of RSV and PIV vaccines and anti-RSV antibodies for the protection of humans against RSV. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.8.941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
77
|
Abstract
Pattern recognition receptors are critically involved in the development of innate and adaptive antiviral immunity. Innate immune activation by viruses may occur via cell surface, intracellular and cytosolic pattern recognition receptors. These receptors sense viral components and may activate unique downstream pathways to generate antiviral immunity. In this article, we summarize the pattern recognition receptors that recognize major human respiratory viral pathogens, including influenza virus, respiratory syncytial virus and adenovirus. We also provide an overview of the current knowledge of regulation of type I interferons and inflammatory cytokines in viral infection.
Collapse
Affiliation(s)
- Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
78
|
Yim KC, Cragin RP, Boukhvalova MS, Blanco JCG, Hamlin ME, Boivin G, Porter DD, Prince GA. Human metapneumovirus: enhanced pulmonary disease in cotton rats immunized with formalin-inactivated virus vaccine and challenged. Vaccine 2007; 25:5034-40. [PMID: 17543425 PMCID: PMC1937335 DOI: 10.1016/j.vaccine.2007.04.075] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/04/2007] [Accepted: 04/16/2007] [Indexed: 11/19/2022]
Abstract
Cotton rats (Sigmodon hispidus) are susceptible to the recently discovered human metapneumovirus (hMPV), an agent closely related to human respiratory syncytial virus. Since certain respiratory syncytial virus vaccines can induce enhanced disease upon viral challenge, we have done similar experiments with hMPV in cotton rats. Young adult cotton rats were vaccinated with a formalin-inactivated preparation of hMPV strain C-85473, or with a mock preparation of the vaccine on day 0 and again on day 28. All animals were challenged intranasally on day 49 with 10(7) TCID50 of the same hMPV strain. Animals were sacrificed on days 4, 7, and 10 post-challenge and lungs were removed for viral quantitation, histopathology, and cytokine mRNA expression analysis (interferon-gamma (IFN-gamma) and interleukin-4 (IL-4)). Although the vaccinated animals showed almost complete protection from viral replication in the lungs (<10(2.0) TCID50 per gram), there was a dramatic increase in the lung pathology, particularly the interstitial pneumonitis and alveolitis with elevated serum neutralizing antibody titer prior to challenge. Cytokine profiles were distinctive from those observed during primary infection and re-infection. The data raise safety concerns for hMPV vaccine preparations.
Collapse
Affiliation(s)
- Kevin C Yim
- Virion Systems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
van Drunen Littel-van den Hurk S, Mapletoft JW, Arsic N, Kovacs-Nolan J. Immunopathology of RSV infection: prospects for developing vaccines without this complication. Rev Med Virol 2007; 17:5-34. [PMID: 17004293 DOI: 10.1002/rmv.518] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Respiratory syncytial virus is the most important cause of lower respiratory tract infection in infants and young children. RSV clinical disease varies from rhinitis and otitis media to bronchiolitis and pneumonia. An increased incidence of asthma later in life has been associated with the more severe lower respiratory tract infections. Despite its importance as a pathogen, there is no licensed vaccine against RSV. This is due to a number of factors complicating the development of an effective and safe vaccine. The immunity to natural RSV infection is incomplete as re-infections occur in all age groups, which makes it challenging to design a protective vaccine. Second, the primary target population is the newborn infant, which has a relatively immature immune system and maternal antibodies that can interfere with vaccination. Finally, some vaccines have resulted in a predisposition for exacerbated pulmonary disease in infants, which was attributed to an imbalanced Th2-biased immune response, although the exact cause has not been elucidated. This makes it difficult to proceed with vaccine testing in infants. It is likely that an effective and safe vaccine needs to elicit a balanced immune response, including RSV-specific neutralising antibodies, CD8 T-cells, Th1/Th2 CD4 T-cells and preferably secretory IgA. Subunit vaccines formulated with appropriate adjuvants may be adequate for previously exposed individuals. However, intranasally delivered genetically engineered attenuated or vectored vaccines are currently most promising for newborns, as they are expected to induce a balanced immune response similar to that elicited to natural infection and not be subject to interference from maternal antibodies. Maternal vaccination may be the optimal strategy to protect the very young infants.
Collapse
MESH Headings
- Adult
- Animals
- Antibody Formation
- Child, Preschool
- Female
- Humans
- Immunity, Active
- Immunity, Cellular
- Immunity, Innate
- Immunity, Maternally-Acquired
- Infant
- Infant, Newborn
- Pregnancy
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/adverse effects
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/immunology
- Vaccination/methods
- Vaccination/trends
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
|