51
|
García-Nicolás O, Ricklin ME, Liniger M, Vielle NJ, Python S, Souque P, Charneau P, Summerfield A. A Japanese Encephalitis Virus Vaccine Inducing Antibodies Strongly Enhancing In Vitro Infection Is Protective in Pigs. Viruses 2017; 9:v9050124. [PMID: 28531165 PMCID: PMC5454436 DOI: 10.3390/v9050124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 01/17/2023] Open
Abstract
The Japanese encephalitis virus (JEV) is responsible for zoonotic severe viral encephalitis transmitted by Culex mosquitoes. Although birds are reservoirs, pigs play a role as amplifying hosts, and are affected in particular through reproductive failure. Here, we show that a lentiviral JEV vector, expressing JEV prM and E proteins (TRIP/JEV.prME), but not JEV infection induces strong antibody-dependent enhancement (ADE) activities for infection of macrophages. Such antibodies strongly promoted infection via Fc receptors. ADE was found at both neutralizing and non-neutralizing serum dilutions. Nevertheless, in vivo JEV challenge of pigs demonstrated comparable protection induced by the TRIP/JEV.prME vaccine or heterologous JEV infection. Thus, either ADE antibodies cause no harm in the presence of neutralizing antibodies or may even have protective effects in vivo in pigs. Additionally, we found that both pre-infected and vaccinated pigs were not fully protected as low levels of viral RNA were found in lymphoid and nervous system tissue in some animals. Strikingly, the virus from the pre-infection persisted in the tonsils throughout the experiment. Finally, despite the vaccination challenge, viral RNA was detected in the oronasal swabs in all vaccinated pigs. These latter data are relevant when JEV vaccination is employed in pigs.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Cell Line
- Culex/immunology
- Disease Models, Animal
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/pathogenicity
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Lentivirus/immunology
- Lymphocytes/virology
- Macrophages/virology
- Nervous System/virology
- RNA, Viral/isolation & purification
- Receptors, IgG
- Sus scrofa
- Swine
- Vaccination
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Obdulio García-Nicolás
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| | - Meret E Ricklin
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| | - Matthias Liniger
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| | - Nathalie J Vielle
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| | - Sylvie Python
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| | - Philippe Souque
- Virologie Moléculaire et Vaccinologie, Institut Pasteur, 75015 Paris, France.
| | - Pierre Charneau
- Virologie Moléculaire et Vaccinologie, Institut Pasteur, 75015 Paris, France.
| | - Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| |
Collapse
|
52
|
Hegde NR, Gore MM. Japanese encephalitis vaccines: Immunogenicity, protective efficacy, effectiveness, and impact on the burden of disease. Hum Vaccin Immunother 2017; 13:1-18. [PMID: 28301270 DOI: 10.1080/21645515.2017.1285472] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Japanese encephalitis (JE) is a serious public health concern in most of Asia. The disease is caused by JE virus (JEV), a flavivirus transmitted by Culex mosquitoes. Several vaccines have been developed to control JE in endemic areas as well as to protect travelers and military personnel who visit or are commissioned from non-endemic to endemic areas. The vaccines include inactivated vaccines produced in mouse brain or cell cultures, live attenuated vaccines, and a chimeric vaccine based on the live attenuated yellow fever virus 17D vaccine strain. All the marketed vaccines belong to the JEV genotype III, but have been shown to be efficacious against other genotypes and strains, with varying degrees of cross-neutralization, albeit at levels deemed to be protective. The protective responses have been shown to last three or more years, depending on the type of vaccine and the number of doses. This review presents a brief account of the different JE vaccines, their immunogenicity and protective ability, and the impact of JE vaccines in reducing the burden of disease in endemic countries.
Collapse
Affiliation(s)
- Nagendra R Hegde
- a Ella Foundation, Genome Valley , Turkapally, Shameerpet Mandal , Hyderabad , India
| | - Milind M Gore
- b National Institute of Virology, Indian Council of Medical Research , Pune , India
| |
Collapse
|
53
|
Aliota MT, Dudley DM, Newman CM, Mohr EL, Gellerup DD, Breitbach ME, Buechler CR, Rasheed MN, Mohns MS, Weiler AM, Barry GL, Weisgrau KL, Eudailey JA, Rakasz EG, Vosler LJ, Post J, Capuano S, Golos TG, Permar SR, Osorio JE, Friedrich TC, O’Connor SL, O’Connor DH. Heterologous Protection against Asian Zika Virus Challenge in Rhesus Macaques. PLoS Negl Trop Dis 2016; 10:e0005168. [PMID: 27911897 PMCID: PMC5135040 DOI: 10.1371/journal.pntd.0005168] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV; Flaviviridae, Flavivirus) was declared a public health emergency of international concern by the World Health Organization (WHO) in February 2016, because of the evidence linking infection with ZIKV to neurological complications, such as Guillain-Barre Syndrome in adults and congenital birth defects including microcephaly in the developing fetus. Because development of a ZIKV vaccine is a top research priority and because the genetic and antigenic variability of many RNA viruses limits the effectiveness of vaccines, assessing whether immunity elicited against one ZIKV strain is sufficient to confer broad protection against all ZIKV strains is critical. Recently, in vitro studies demonstrated that ZIKV likely circulates as a single serotype. Here, we demonstrate that immunity elicited by African lineage ZIKV protects rhesus macaques against subsequent infection with Asian lineage ZIKV. METHODOLOGY/PRINCIPAL FINDINGS Using our recently developed rhesus macaque model of ZIKV infection, we report that the prototypical ZIKV strain MR766 productively infects macaques, and that immunity elicited by MR766 protects macaques against heterologous Asian ZIKV. Furthermore, using next generation deep sequencing, we found in vivo restoration of a putative N-linked glycosylation site upon replication in macaques that is absent in numerous MR766 strains that are widely being used by the research community. This reversion highlights the importance of carefully examining the sequence composition of all viral stocks as well as understanding how passage history may alter a virus from its original form. CONCLUSIONS/SIGNIFICANCE An effective ZIKV vaccine is needed to prevent infection-associated fetal abnormalities. Macaques whose immune responses were primed by infection with East African ZIKV were completely protected from detectable viremia when subsequently rechallenged with heterologous Asian ZIKV. Therefore, these data suggest that immunogen selection is unlikely to adversely affect the breadth of vaccine protection, i.e., any Asian ZIKV immunogen that protects against homologous challenge will likely confer protection against all other Asian ZIKV strains.
Collapse
Affiliation(s)
- Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Dane D. Gellerup
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Connor R. Buechler
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mustafa N. Rasheed
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gabrielle L. Barry
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Josh A. Eudailey
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Logan J. Vosler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer Post
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Departments of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Departments of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
54
|
Petiot E, Ansorge S, Rosa-Calatrava M, Kamen A. Critical phases of viral production processes monitored by capacitance. J Biotechnol 2016; 242:19-29. [PMID: 27867077 DOI: 10.1016/j.jbiotec.2016.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
Abstract
Over the last decade industrial manufacturing of viral vaccines and viral vectors for prophylactic and therapeutic applications is experiencing a remarkable growth. Currently, the quality attributes of viral derived products are assessed only at the end-point of the production process, essentially because in-process monitoring tools are not available or not implemented at industrial scale. However, to demonstrate process reproducibility and robustness, manufacturers are strongly advised by regulatory agencies to adopt more on-line process monitoring and control. Dielectric spectroscopy has been successfully used as an excellent indicator of the cell culture state in mammalian and yeast cell systems. We previously reported the use of this technique for monitoring influenza and lentiviral productions in HEK293 cell cultures. For both viruses, multi-frequency capacitance measurements allowed not only the on-line monitoring of the production kinetics, but also the identification of the viral release time from the cells. The present study demonstrates that the same approach can be successfully exploited for the on-line monitoring of different enveloped and non-enveloped virus production kinetics in cell culture processes. The on-line monitoring multi-frequency capacitance method was assessed in human HEK293 and Sf9 insect cells expression systems, with viral productions initiated by either infection or transfection. The comparative analyses of all the data acquired indicate that the characteristic capacitance signals were highly correlated with the occurrence of viral replication phases. Furthermore the evolution of the cell dielectric properties (intracellular conductivity and membrane capacitance) were indicative of each main replication steps. In conclusion, multi-frequency capacitance has a great potential for on-line monitoring, supervision and control of viral vector production in cell culture processes.
Collapse
Affiliation(s)
- Emma Petiot
- NRC, Human Health Therapeutics Portfolio, 6100 Royalmount Ave, Montréal, QC, H4P 2R2, Canada; Virologie et Pathologie Humaine - VirPath Team, International Center for Infectious diseases Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, Lyon, France.
| | - Sven Ansorge
- NRC, Human Health Therapeutics Portfolio, 6100 Royalmount Ave, Montréal, QC, H4P 2R2, Canada.
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath Team, International Center for Infectious diseases Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, Lyon, France.
| | - Amine Kamen
- NRC, Human Health Therapeutics Portfolio, 6100 Royalmount Ave, Montréal, QC, H4P 2R2, Canada; McGill University, Bioengineering Dpt. 817, Sherbrooke St. W., Montreal, QC, H2 B 2C6, Canada.
| |
Collapse
|
55
|
Zika vaccine candidates progress through nonclinical development and enter clinical trials. NPJ Vaccines 2016; 1:16023. [PMID: 29263861 PMCID: PMC5707887 DOI: 10.1038/npjvaccines.2016.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 11/08/2022] Open
|
56
|
Turtle L, Bali T, Buxton G, Chib S, Chan S, Soni M, Hussain M, Isenman H, Fadnis P, Venkataswamy MM, Satishkumar V, Lewthwaite P, Kurioka A, Krishna S, Shankar MV, Ahmed R, Begum A, Ravi V, Desai A, Yoksan S, Fernandez S, Willberg CB, Kloverpris HN, Conlon C, Klenerman P, Satchidanandam V, Solomon T. Human T cell responses to Japanese encephalitis virus in health and disease. J Exp Med 2016; 213:1331-52. [PMID: 27242166 PMCID: PMC4925015 DOI: 10.1084/jem.20151517] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 05/04/2016] [Indexed: 12/28/2022] Open
Abstract
Japanese encephalitis (JE) virus (JEV) is an important cause of encephalitis in children of South and Southeast Asia. However, the majority of individuals exposed to JEV only develop mild symptoms associated with long-lasting adaptive immunity. The related flavivirus dengue virus (DENV) cocirculates in many JEV-endemic areas, and clinical data suggest cross-protection between DENV and JEV. To address the role of T cell responses in protection against JEV, we conducted the first full-breadth analysis of the human memory T cell response using a synthetic peptide library. Ex vivo interferon-γ (IFN-γ) responses to JEV in healthy JEV-exposed donors were mostly CD8(+) and targeted nonstructural (NS) proteins, whereas IFN-γ responses in recovered JE patients were mostly CD4(+) and targeted structural proteins and the secreted protein NS1. Among patients, a high quality, polyfunctional CD4(+) T cell response was associated with complete recovery from JE. T cell responses from healthy donors showed a high degree of cross-reactivity to DENV that was less apparent in recovered JE patients despite equal exposure. These data reveal divergent functional CD4(+) and CD8(+) T cell responses linked to different clinical outcomes of JEV infection, associated with distinct targeting and broad flavivirus cross-reactivity including epitopes from DENV, West Nile, and Zika virus.
Collapse
Affiliation(s)
- Lance Turtle
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, England, UK
- Health Protection Research Unit for Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, England, UK
- Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool L7 8XP, England, UK
| | - Tanushka Bali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Gemma Buxton
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, England, UK
| | - Savita Chib
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Sajesh Chan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Mohammed Soni
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Mohammed Hussain
- Department of Microbiology, Vijayanagar Institute of Medical Science Medical College, Bellary 583104, India
| | - Heather Isenman
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, England, UK
| | - Prachi Fadnis
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Manjunatha M. Venkataswamy
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Vishali Satishkumar
- Department of Microbiology, Vijayanagar Institute of Medical Science Medical College, Bellary 583104, India
- Department of Paediatrics, Vijayanagar Institute of Medical Science Medical College, Bellary 583104, India
| | - Penny Lewthwaite
- Department of Infection and Travel Medicine, University Hospital of St. James, Leeds Teaching Hospitals, National Health Service Trust, Leeds LS9 7TF, England, UK
| | - Ayako Kurioka
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, England, UK
| | - Srinivasa Krishna
- Department of Microbiology, Vijayanagar Institute of Medical Science Medical College, Bellary 583104, India
| | - M. Veera Shankar
- Department of Paediatrics, Vijayanagar Institute of Medical Science Medical College, Bellary 583104, India
| | - Riyaz Ahmed
- Department of Paediatrics, Vijayanagar Institute of Medical Science Medical College, Bellary 583104, India
| | - Ashia Begum
- Department of Microbiology, Vijayanagar Institute of Medical Science Medical College, Bellary 583104, India
- Department of Paediatrics, Vijayanagar Institute of Medical Science Medical College, Bellary 583104, India
| | - Vasanthapuram Ravi
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Anita Desai
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University at Salaya, Bangkok 73170, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Science, Bangkok 10400, Thailand
| | - Christian B. Willberg
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, England, UK
| | - Henrik N. Kloverpris
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, England, UK
| | - Christopher Conlon
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, England, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, England, UK
| | - Vijaya Satchidanandam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, England, UK
- Health Protection Research Unit for Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, England, UK
- Walton Center National Health Service Foundation Trust, Liverpool L9 7LJ, England, UK
| |
Collapse
|
57
|
Ricklin ME, Garcìa-Nicolàs O, Brechbühl D, Python S, Zumkehr B, Posthaus H, Oevermann A, Summerfield A. Japanese encephalitis virus tropism in experimentally infected pigs. Vet Res 2016; 47:34. [PMID: 26911997 PMCID: PMC4765024 DOI: 10.1186/s13567-016-0319-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/01/2016] [Indexed: 11/10/2022] Open
Abstract
Pigs are considered to be the main amplifying host for Japanese encephalitis virus (JEV), and their infection can correlate with human cases of disease. Despite their importance in the ecology of the virus as it relates to human cases of encephalitis, the pathogenesis of JEV in pigs remains obscure. In the present study, the localization and kinetics of virus replication were investigated in various tissues after experimental intravenous infection of pigs. The data demonstrate a rapid and broad spreading of the virus to the central nervous system (CNS) and various other organs. A particular tropism of JEV in pigs not only to the CNS but also for secondary lymphoid tissue, in particular the tonsils with the overall highest viral loads, was observed. In this organ, even 11 days post infection, the latest time point of the experiment, no apparent decrease in viral RNA loads and live virus was found despite the presence of a neutralizing antibody response. This was also well beyond the clinical and viremic phase. These results are of significance for the pathogenesis of JEV, and call for further experimental studies focusing on the cellular source and duration of virus replication in pigs.
Collapse
Affiliation(s)
- Meret E Ricklin
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.
| | | | - Daniel Brechbühl
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.
| | - Sylvie Python
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.
| | - Beatrice Zumkehr
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.
| | - Horst Posthaus
- Vetsuisse Faculty, Institute for Animal Pathology, University of Bern, Bern, Switzerland.
| | - Anna Oevermann
- Division of Neurological Sciences, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland. .,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
58
|
Abstract
Japanese encephalitis virus, as the most important vaccine-preventable cause of viral encephalitis in Asia, is estimated to cause over 68,000 clinical cases yearly. In endemic areas, most Japanese encephalitis infections occur in children younger than 10 y and clinical manifestation of this disease is critical, because there is no effective treatment available. As JEV infections are regarded as one of the most serious viral causes of encephalitis and mass immunization programmes are generally recommended for residents in endemic areas, a safe and effective JEV vaccine was needed to protect them as well as others at risk. Due to the safety concerns with the mouse brain derived vaccine, second generation vaccines against JE produced in cell culture like Vero cells were developed. IXIARO® is a purified, inactivated aluminum-adjuvanted JE vaccine, based on the SA14-14-2 virus strain, and is available in North America, Europe, Canada, Switzerland, Singapore, Hong Kong and Israel as well as in Australia & New Zealand (as JESPECT®).The safety, tolerability and immunogenicity profile of IXIARO® is well established through a number of clinical studies comparing IXIARO® with placebo as well as mouse brain derived vaccine. Recent data show that the global incidence of JE remains substantial, especially young children in endemic areas are most susceptible. As vaccination is the most feasible, reliable and cost effective tool for JE control, IXIARO® with confirmed excellent safety profile is highly recommendable, in particular for vaccination of children at risk. The European Commission as well as the FDA approved the extension of indication of IXIARO® to the pediatric segment (2 months of age and older) based on these data.
Collapse
Affiliation(s)
- Christa Firbas
- a Department of Clinical Pharmacology; Medical University of Vienna ; Vienna , Austria
| | | |
Collapse
|
59
|
Nedjadi T, El-Kafrawy S, Sohrab SS, Desprès P, Damanhouri G, Azhar E. Tackling dengue fever: Current status and challenges. Virol J 2015; 12:212. [PMID: 26645066 PMCID: PMC4673751 DOI: 10.1186/s12985-015-0444-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
According to recent statistics, 96 million apparent dengue infections were estimated worldwide in 2010. This figure is by far greater than the WHO prediction which indicates the rapid spread of this disease posing a growing threat to the economy and a major challenge to clinicians and health care services across the globe particularly in the affected areas.This article aims at bringing to light the current epidemiological and clinical status of the dengue fever. The relationship between genetic mutations, single nucleotide polymorphism (SNP) and the pathophysiology of disease progression will be put into perspective. It will also highlight the recent advances in dengue vaccine development.Thus far, a significant progress has been made in unraveling the risk factors and understanding the molecular pathogenesis associated with the disease. However, further insights in molecular features of the disease and the development of animal models will enormously help improving the therapeutic interventions and potentially contribute to finding new preventive measures for population at risk.
Collapse
Affiliation(s)
- Taoufik Nedjadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sherif El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sayed S Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Philippe Desprès
- UMR PIMIT (I2T team), University of Reunion island, INSERM U1187, CNRS 9192, IRD 249, Technology Platform CYROI, 2 rue Maxime Rivière Saint-Clotilde, La Reunion, 97491, France.
| | - Ghazi Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Esam Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
60
|
Gupta N, de Wispelaere M, Lecerf M, Kalia M, Scheel T, Vrati S, Berek C, Kaveri SV, Desprès P, Lacroix-Desmazes S, Dimitrov JD. Neutralization of Japanese Encephalitis Virus by heme-induced broadly reactive human monoclonal antibody. Sci Rep 2015; 5:16248. [PMID: 26542535 PMCID: PMC4635365 DOI: 10.1038/srep16248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/12/2015] [Indexed: 12/04/2022] Open
Abstract
Geographical expansion and re-emerging new genotypes of the Japanese encephalitis virus (JEV) require the development of novel therapeutic approaches. Here, we studied a non-conventional approach for antibody therapy and show that, upon exposure to heme, a fraction of natural human immunoglobulins acquires high-affinity reactivity with the antigenic domain-III of JEV E glycoprotein. These JEV-reactive antibodies exhibited neutralizing activity against recently dominant JEV genotypes. This study opens new therapeutic options for Japanese encephalitis.
Collapse
Affiliation(s)
- Nimesh Gupta
- INSERM, UMR S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Pierre et Marie Curie-Paris6, UMR S 1138, Paris, France.,Université Paris Descartes, UMR S 1138, Paris, France
| | - Mélissanne de Wispelaere
- Flavivirus-Host Molecular Interactions laboratory, Virology Department, Institut Pasteur, Paris, France
| | - Maxime Lecerf
- INSERM, UMR S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Pierre et Marie Curie-Paris6, UMR S 1138, Paris, France.,Université Paris Descartes, UMR S 1138, Paris, France
| | - Manjula Kalia
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tobias Scheel
- Deutsches Rheuma-Forschungszentrum, Institut der Leibniz-Gemeinschaft, 10117 Berlin, Germany
| | - Sudhanshu Vrati
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Claudia Berek
- Deutsches Rheuma-Forschungszentrum, Institut der Leibniz-Gemeinschaft, 10117 Berlin, Germany
| | - Srinivas V Kaveri
- INSERM, UMR S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Pierre et Marie Curie-Paris6, UMR S 1138, Paris, France.,Université Paris Descartes, UMR S 1138, Paris, France
| | - Philippe Desprès
- Flavivirus-Host Molecular Interactions laboratory, Virology Department, Institut Pasteur, Paris, France.,Infection and Epidemiology Department, Institut Pasteur, 75724 Paris &UMR PIMIT (I2T), University of Reunion Island, INSERM U1187, CNRS 9192, IRD 249, GIP-CYROI, la Reunion, France
| | - Sébastien Lacroix-Desmazes
- INSERM, UMR S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Pierre et Marie Curie-Paris6, UMR S 1138, Paris, France.,Université Paris Descartes, UMR S 1138, Paris, France
| | - Jordan D Dimitrov
- INSERM, UMR S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Pierre et Marie Curie-Paris6, UMR S 1138, Paris, France.,Université Paris Descartes, UMR S 1138, Paris, France
| |
Collapse
|
61
|
de Wispelaere M, Ricklin M, Souque P, Frenkiel MP, Paulous S, Garcìa-Nicolàs O, Summerfield A, Charneau P, Desprès P. A Lentiviral Vector Expressing Japanese Encephalitis Virus-like Particles Elicits Broad Neutralizing Antibody Response in Pigs. PLoS Negl Trop Dis 2015; 9:e0004081. [PMID: 26437302 PMCID: PMC4593544 DOI: 10.1371/journal.pntd.0004081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/21/2015] [Indexed: 01/08/2023] Open
Abstract
Background Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in Southeast Asia. Vaccination of domestic pigs has been suggested as a “one health” strategy to reduce viral disease transmission to humans. The efficiency of two lentiviral TRIP/JEV vectors expressing the JEV envelope prM and E glycoproteins at eliciting protective humoral response was assessed in a mouse model and piglets. Methodology/Principal Findings A gene encoding the envelope proteins prM and E from a genotype 3 JEV strain was inserted into a lentiviral TRIP vector. Two lentiviral vectors TRIP/JEV were generated, each expressing the prM signal peptide followed by the prM protein and the E glycoprotein, the latter being expressed either in its native form or lacking its two C-terminal transmembrane domains. In vitro transduction of cells with the TRIP/JEV vector expressing the native prM and E resulted in the efficient secretion of virus-like particles of Japanese encephalitis virus. Immunization of BALB/c mice with TRIP/JEV vectors resulted in the production of IgGs against Japanese encephalitis virus, and the injection of a second dose one month after the prime injection greatly boosted antibody titers. The TRIP/JEV vectors elicited neutralizing antibodies against JEV strains belonging to genotypes 1, 3, and 5. Immunization of piglets with two doses of the lentiviral vector expressing JEV virus-like particles led to high titers of anti-JEV antibodies, that had efficient neutralizing activity regardless of the JEV genotype tested. Conclusions/Significance Immunization of pigs with the lentiviral vector expressing JEV virus-like particles is particularly efficient to prime antigen-specific humoral immunity and trigger neutralizing antibody responses against JEV genotypes 1, 3, and 5. The titers of neutralizing antibodies elicited by the TRIP/JEV vector are sufficient to confer protection in domestic pigs against different genotypes of JEV and this could be of a great utility in endemic regions where more than one genotype is circulating. Japanese encephalitis virus is the etiologic agent of the most medically important viral encephalitis in South Asia with thousands of deaths per year. The virus is maintained in an enzootic cycle between Culex mosquitoes and amplifying vertebrate hosts, such as wild boars and pigs. Vaccination of domestic pigs has been suggested as a strategy to reduce viral disease transmission to humans, in line with the now-called “One Health” concept. Lentiviral gene transfer vectors represent a novel vaccination platform with an unprecedented ability to induce robust humoral immunity in various animal species. In our study, we demonstrated that immunization of pigs with a recombinant lentiviral vector expressing virus-like particles of Japanese encephalitis virus is particularly efficient at eliciting specific humoral immunity. The titers of neutralizing antibodies elicited by the lentiviral vector are sufficient to confer protection in domestic pigs against the different genotypes of Japanese encephalitis virus observed in Asia.
Collapse
Affiliation(s)
| | - Meret Ricklin
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Philippe Souque
- Virologie Moléculaire et Vaccinologie, Institut Pasteur, Paris, France
| | | | - Sylvie Paulous
- Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris, France
| | | | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pierre Charneau
- Virologie Moléculaire et Vaccinologie, Institut Pasteur, Paris, France
- * E-mail: (PC); (PD)
| | - Philippe Desprès
- Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris, France
- * E-mail: (PC); (PD)
| |
Collapse
|
62
|
Erra EO, Kantele A. The Vero cell-derived, inactivated, SA14-14-2 strain-based vaccine (Ixiaro) for prevention of Japanese encephalitis. Expert Rev Vaccines 2015; 14:1167-79. [PMID: 26162529 DOI: 10.1586/14760584.2015.1061939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With an estimated 68,000 cases each year, Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia. Vaccination against the disease is recommended for endemic populations and also for travelers at risk. Recently, a Vero cell-derived, inactivated, SA14-14-2 strain-based JE vaccine (JE-VC) became available for travelers from non-endemic regions, replacing the traditional mouse brain-derived vaccines. First licensed in 2009, JE-VC is currently available in Europe, the USA, Canada, Australia and several other countries. In 2013, the vaccine was approved by the European Medicines Agency and the US Food and Drug Administration for use in children. This review summarizes current data on the immunogenicity, safety and clinical use of JE-VC.
Collapse
Affiliation(s)
- Elina O Erra
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
63
|
Fernandez S, Thomas SJ, De La Barrera R, Im-erbsin R, Jarman RG, Baras B, Toussaint JF, Mossman S, Innis BL, Schmidt A, Malice MP, Festraets P, Warter L, Putnak JR, Eckels KH. An adjuvanted, tetravalent dengue virus purified inactivated vaccine candidate induces long-lasting and protective antibody responses against dengue challenge in rhesus macaques. Am J Trop Med Hyg 2015; 92:698-708. [PMID: 25646261 PMCID: PMC4385761 DOI: 10.4269/ajtmh.14-0268] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/04/2014] [Indexed: 11/07/2022] Open
Abstract
The immunogenicity and protective efficacy of a candidate tetravalent dengue virus purified inactivated vaccine (TDENV PIV) formulated with alum or an Adjuvant System (AS01, AS03 tested at three different dose levels, or AS04) was evaluated in a 0, 1-month vaccination schedule in rhesus macaques. One month after dose 2, all adjuvanted formulations elicited robust and persisting neutralizing antibody titers against all four dengue virus serotypes. Most of the formulations tested prevented viremia after challenge, with the dengue serotype 1 and 2 virus strains administered at 40 and 32 weeks post-dose 2, respectively. This study shows that inactivated dengue vaccines, when formulated with alum or an Adjuvant System, are candidates for further development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kenneth H. Eckels
- *Address correspondence to Kenneth H. Eckels, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910. E-mail:
| |
Collapse
|
64
|
Thomas SJ, Endy TP, Rothman AL, Barrett AD. Flaviviruses (Dengue, Yellow Fever, Japanese Encephalitis, West Nile Encephalitis, St. Louis Encephalitis, Tick-Borne Encephalitis, Kyasanur Forest Disease, Alkhurma Hemorrhagic Fever, Zika). MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:1881-1903.e6. [DOI: 10.1016/b978-1-4557-4801-3.00155-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
65
|
Kim DS, Houillon G, Jang GC, Cha SH, Choi SH, Lee J, Kim HM, Kim JH, Kang JH, Kim JH, Kim KH, Kim HS, Bang J, Naimi Z, Bosch-Castells V, Boaz M, Bouckenooghe A. A randomized study of the immunogenicity and safety of Japanese encephalitis chimeric virus vaccine (JE-CV) in comparison with SA14-14-2 vaccine in children in the Republic of Korea. Hum Vaccin Immunother 2014; 10:2656-63. [PMID: 25483480 PMCID: PMC4977450 DOI: 10.4161/hv.29743] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A new live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) has been developed based on innovative technology to give protection against JE with an improved immunogenicity and safety profile. In this phase 3, observer-blind study, 274 children aged 12−24 months were randomized 1:1 to receive one dose of JE-CV (Group JE-CV) or the SA14–14–2 vaccine currently used to vaccinate against JE in the Republic of Korea (Group SA14–14–2). JE neutralizing antibody titers were assessed using PRNT50 before and 28 days after vaccination. The primary endpoint of non-inferiority of seroconversion rates on D28 was demonstrated in the Per Protocol analysis set as the difference between Group JE-CV and Group SA14–14–2 was 0.9 percentage points (95% confidence interval [CI]: −2.35; 4.68), which was above the required −10%. Seroconversion and seroprotection rates 28 days after administration of a single vaccine dose were 100% in Group JE-CV and 99.1% in Group SA14–14–2; all children except one (Group SA14–14–2) were seroprotected. Geometric mean titers (GMTs) increased in both groups from D0 to D28; GM of titer ratios were slightly higher in Group JE-CV (182 [95% CI: 131; 251]) than Group SA14–14–2 (116 [95% CI: 85.5, 157]). A single dose of JE-CV was well tolerated and no safety concerns were identified. In conclusion, a single dose of JE-CV or SA14–14–2 vaccine elicited a comparable immune response with a good safety profile. Results obtained in healthy Korean children aged 12−24 months vaccinated with JE-CV are consistent with those obtained in previous studies conducted with JE-CV in toddlers.
Collapse
Key Words
- AE, adverse event
- AESI, AE of Special Interest
- AR, adverse reaction
- CI, confidence interval
- FAS, Full Analysis Set
- GMT, Geometric mean titers
- GMTRs, GM of titer ratios
- JE, Japanese encephalitis
- JE-CV, JE chimeric virus vaccine
- JEV, JE virus
- Japanese encephalitis (JE) vaccine
- MBDV, mouse brain derived inactivated anti-JE vaccines
- PP, Per Protocol
- PRNT50, 50% plaque reduction neutralization test
- Phase 3 trial
- SAE, serious adverse events.
- children
- immunogenicity
- safety
Collapse
Affiliation(s)
- Dong Soo Kim
- a Yonsei University College of Medicine; Severance Children's Hospital ; Seoul , Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Primary immunization of infants and toddlers in Thailand with Japanese encephalitis chimeric virus vaccine in comparison with SA14-14-2: a randomized study of immunogenicity and safety. Pediatr Infect Dis J 2014; 33:643-9. [PMID: 24717964 DOI: 10.1097/inf.0000000000000276] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The live, attenuated Japanese encephalitis (JE) chimeric virus vaccine (JE-CV) is licensed in Thailand and Australia for prophylaxis of JE in individuals at the age of 12 months. JE-CV has not yet been compared with the SA14-14-2 JE vaccine, which is also licensed in Thailand. METHODS In this phase 3, observer-blinded trial, 300 children at the age of 9-18 months were randomized 1:1 to receive 1 dose of JE-CV or SA14-14-2. JE neutralizing antibody titers were assessed using PRNT50. The primary endpoint was the noninferiority of seroconversion against JE on Day 28 after JE-CV compared with SA14-14-2, as assessed using the 95% confidence interval of the difference between the groups. Safety and reactogenicity were described in each group using conventional methods, including the reporting of solicited and unsolicited adverse events. RESULTS The seroconversion rate on Day 28 was 99.2% in each group. Noninferiority was demonstrated as the difference between the JE-CV and SA14-14-2 groups was -0.012 percentage points (95% confidence interval: -3.6 to 3.6), which was above the required -10%. The seroprotection rate remained very high at Month 6 and comparable between groups, but a slight decrease was observed in the JE-CV group between Months 6 and 12. Current recommendations for both vaccines call for a booster dose 12-24 months after primary immunization to maintain high seroprotection rates in the long term. Geometric mean titers (GMTs) on Day 28 after vaccination were 507 (1/dil) in the JE-CV group and 370 (1/dil) in the SA14-14-2 group, decreasing by 4.3-fold and 3.6-fold, respectively, to Month 6 before remaining stable to Month 12 and comparable between groups. Solicited reactions were all reported at lower rates after vaccination with JE-CV compared with SA14-14-2. CONCLUSIONS A single dose of JE-CV elicited a noninferior immune response compared with SA14-14-2 and had a satisfactory safety profile.
Collapse
|
67
|
Jelinek T. IXIARO updated: overview of clinical trials and developments with the inactivated vaccine against Japanese encephalitis. Expert Rev Vaccines 2014; 12:859-69. [PMID: 23984958 DOI: 10.1586/14760584.2013.835638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mosquito-borne Japanese encephalitis virus causes an estimated 50,000 cases in Asia, accounting for at least 10,000 deaths and 15,000 cases of neuropsychiatric sequelae. IXIARO (Intercell AG, Vienna, Austria), an inactivated, Vero cell-derived vaccine against Japanese encephalitis was introduced in 2009. The vaccine is highly immunogenic, showing significantly higher geometric mean antibody titers compared with previous, mouse brain-derived vaccines. Postmarketing studies have confirmed the excellent safety profile. Studies on children aged 2 months to 18 years have been published. Based on these data, positive opinion from the EMA for vaccination of children has recently been given. Since a safe and effective vaccine against Japanese encephalitis is now available, outdated guidelines and recommendations have to be revised: travelers to rural areas of Asia should generally be recommended vaccination.
Collapse
Affiliation(s)
- Tomas Jelinek
- Berlin Center for Travel and Tropical Medicine, Jägerstrasse 67-69, 10117 Berlin, Germany.
| |
Collapse
|
68
|
Bonaparte M, Dweik B, Feroldi E, Meric C, Bouckenooghe A, Hildreth S, Hu B, Yoksan S, Boaz M. Immune response to live-attenuated Japanese encephalitis vaccine (JE-CV) neutralizes Japanese encephalitis virus isolates from south-east Asia and India. BMC Infect Dis 2014; 14:156. [PMID: 24656175 PMCID: PMC3994458 DOI: 10.1186/1471-2334-14-156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/14/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND During clinical development of the licensed Japanese encephalitis chimeric virus vaccine (JE-CV), the neutralization capacity of vaccine-induced antibodies was assessed against the vaccine virus and against well characterized wild-type (wt) viruses isolated between 1949-1991. We assessed whether JE-CV-induced antibodies can also neutralize more recent wt Japanese encephalitis virus (JEV) isolates including a genotype 1 isolate. METHODS Sera from 12-18 month-old children who received a single dose of JE-CV in a phase III study in Thailand and the Philippines (ClinicalTrials.gov NCT00735644) were randomly selected and pooled according to neutralization titer against JE-CV into eight samples. Neutralization was assessed by plaque reduction neutralization tests (PRNT50) against three recent isolates from JEV genotypes 1 and 3 in addition to four JEV previously tested. RESULTS Neutralization titers against the three recent JEV strains were comparable to those observed previously against other strains and the vaccine virus. The observed differences between responses to genotype 1 and 3 viruses were within assay variability for the PRNT50. CONCLUSIONS The results were consistent with previously generated data on the neutralization of wt JEV isolates, immune responses induced by JE-CV neutralize recently isolated virus from southeast (SE) Asia and India.
Collapse
Affiliation(s)
- Matthew Bonaparte
- Sanofi Pasteur Global Clinical Immunology Department, Swiftwater, USA
| | - Bashir Dweik
- Sanofi Pasteur Global Clinical Immunology Department, Swiftwater, USA
| | - Emmanuel Feroldi
- Sanofi Pasteur Clinical Development Department, Marcy l’Etoile, France
| | - Claude Meric
- Sanofi Pasteur Clinical Development Department, Marcy l’Etoile, France
| | | | - Stephen Hildreth
- Sanofi Pasteur Global Clinical Immunology Department, Swiftwater, USA
| | - Branda Hu
- Sanofi Pasteur Global Clinical Immunology Department, Swiftwater, USA
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Bioscience, Mahidol University, Bangkok, Thailand
| | - Mark Boaz
- Sanofi Pasteur Global Clinical Immunology Department, Swiftwater, USA
| |
Collapse
|
69
|
Internal ribosome entry site-based attenuation of a flavivirus candidate vaccine and evaluation of the effect of beta interferon coexpression on vaccine properties. J Virol 2013; 88:2056-70. [PMID: 24307589 DOI: 10.1128/jvi.03051-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infectious clone technologies allow the rational design of live attenuated viral vaccines with the possibility of vaccine-driven coexpression of immunomodulatory molecules for additional vaccine safety and efficacy. The latter could lead to novel strategies for vaccine protection against infectious diseases where traditional approaches have failed. Here we show for the flavivirus Murray Valley encephalitis virus (MVEV) that incorporation of the internal ribosome entry site (IRES) of Encephalomyocarditis virus between the capsid and prM genes strongly attenuated virulence and that the resulting bicistronic virus was both genetically stable and potently immunogenic. Furthermore, the novel bicistronic genome organization facilitated the generation of a recombinant virus carrying an beta interferon (IFN-β) gene. Given the importance of IFNs in limiting virus dissemination and in efficient induction of memory B and T cell antiviral immunity, we hypothesized that coexpression of the cytokine with the live vaccine might further increase virulence attenuation without loss of immunogenicity. We found that bicistronic mouse IFN-β coexpressing MVEV yielded high virus and IFN titers in cultured cells that do not respond to the coexpressed IFN. However, in IFN response-sufficient cell cultures and mice, the virus produced a self-limiting infection. Nevertheless, the attenuated virus triggered robust innate and adaptive immune responses evidenced by the induced expression of Mx proteins (used as a sensitive biomarker for measuring the type I IFN response) and the generation of neutralizing antibodies, respectively. IMPORTANCE The family Flaviviridae includes a number of important human pathogens, such as Dengue virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, and Hepatitis C virus. Flaviviruses infect large numbers of individuals on all continents. For example, as many as 100 million people are infected annually with Dengue virus, and 150 million people suffer a chronic infection with Hepatitis C virus. However, protective vaccines against dengue and hepatitis C are still missing, and improved vaccines against other flaviviral diseases are needed. The present study investigated the effects of a redesigned flaviviral genome and the coexpression of an antiviral protein (interferon) on virus replication, pathogenicity, and immunogenicity. Our findings may aid in the rational design of a new class of well-tolerated and safe vaccines.
Collapse
|
70
|
Yun SI, Lee YM. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother 2013; 10:263-79. [PMID: 24161909 PMCID: PMC4185882 DOI: 10.4161/hv.26902] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/14/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022] Open
Abstract
Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| |
Collapse
|
71
|
Dayan GH, Thakur M, Boaz M, Johnson C. Safety and immunogenicity of three tetravalent dengue vaccine formulations in healthy adults in the USA. Vaccine 2013; 31:5047-54. [DOI: 10.1016/j.vaccine.2013.08.088] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/19/2013] [Accepted: 08/27/2013] [Indexed: 11/28/2022]
|
72
|
Jelinek T. IXIARO ® updated: overview of clinical trials and developments with the inactivated vaccine against Japanese encephalitis. Expert Rev Vaccines 2013:1-11. [PMID: 23718271 DOI: 10.1586/erv.13.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The mosquito-borne Japanese encephalitis virus causes an estimated 50,000 cases in Asia, accounting for at least 10,000 deaths and 15,000 cases of neuropsychiatric sequelae. IXIARO® (Intercell AG, Vienna, Austria), an inactivated, Vero cell-derived vaccine against Japanese encephalitis was introduced in 2009. The vaccine is highly immunogenic, showing significantly higher geometric mean antibody titers compared with previous, mouse brain-derived vaccines. Postmarketing studies have confirmed the excellent safety profile. Studies on children aged 2 months to 18 years have been published. Based on these data, positive opinion from the EMA for vaccination of children has recently been given. Since a safe and effective vaccine against Japanese encephalitis is now available, outdated guidelines and recommendations have to be revised: travelers to rural areas of Asia should generally be recommended vaccination.
Collapse
Affiliation(s)
- Tomas Jelinek
- Berlin Center for Travel and Tropical Medicine, Jägerstrasse 67-69, 10117 Berlin, Germany.
| |
Collapse
|
73
|
Fan YC, Chen JM, Chen YY, Lin JW, Chiou SS. Reduced neutralizing antibody titer against genotype I virus in swine immunized with a live-attenuated genotype III Japanese encephalitis virus vaccine. Vet Microbiol 2013; 163:248-56. [DOI: 10.1016/j.vetmic.2013.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 01/14/2013] [Accepted: 01/21/2013] [Indexed: 11/25/2022]
|
74
|
Abstract
Viruses that replicate in the cytoplasm cannot access the host nuclear capping machinery. These viruses have evolved viral methyltransferase(s) to methylate N-7 and 2'-O cap of their RNA; alternatively, they "snatch" host mRNA cap to form the 5' end of viral RNA. The function of 2'-O methylation of viral RNA cap is to mimic cellular mRNA and to evade host innate immune restriction. A cytoplasmic virus defective in 2'-O methylation is replicative, but its viral RNA lacks 2'-O methylation and is recognized and eliminated by the host immune response. Such a mutant virus could be rationally designed as a live attenuated vaccine. Here, we use Japanese encephalitis virus (JEV), an important mosquito-borne flavivirus, to prove this novel vaccine concept. We show that JEV methyltransferase is responsible for both N-7 and 2'-O cap methylations as well as evasion of host innate immune response. Recombinant virus completely defective in 2'-O methylation was stable in cell culture after being passaged for >30 days. The mutant virus was attenuated in mice, elicited robust humoral and cellular immune responses, and retained the engineered mutation in vivo. A single dose of immunization induced full protection against lethal challenge with JEV strains in mice. Mechanistically, the attenuation phenotype was attributed to the enhanced sensitivity of the mutant virus to the antiviral effects of interferon and IFIT proteins. Collectively, the results demonstrate the feasibility of using 2'-O methylation-defective virus as a vaccine approach; this vaccine approach should be applicable to other flaviviruses and nonflaviviruses that encode their own viral 2'-O methyltransferases.
Collapse
|
75
|
Feroldi E, Capeding MR, Boaz M, Gailhardou S, Meric C, Bouckenooghe A. Memory immune response and safety of a booster dose of Japanese encephalitis chimeric virus vaccine (JE-CV) in JE-CV-primed children. Hum Vaccin Immunother 2013; 9:889-97. [PMID: 23442823 DOI: 10.4161/hv.23087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Japanese encephalitis chimeric virus vaccine (JE-CV) is a licensed vaccine indicated in a single dose administration for primary immunization. This controlled phase III comparative trial enrolled children aged 36-42 mo in the Philippines. 345 children who had received one dose of JE-CV in a study two years earlier, received a JE-CV booster dose. 105 JE-vaccine-naïve children in general good health were randomized to receive JE-CV (JE-vaccine naïve group; 46 children) or varicella vaccine (safety control group; 59 children). JE neutralizing antibody titers were assessed using PRNT50. Immunological memory was observed in children who had received the primary dose of JE-CV before. Seven days after the JE-CV booster dose administration, 96.2% and 66.8% of children were seroprotected and had seroconverted, respectively, and the geometric mean titer (GMT) was 231 1/dil. Twenty-eight days after the JE-CV booster dose seroprotection and seroconversion were achieved in 100% and 95.3% of children, respectively, and the GMT was 2,242 1/dil. In contrast, only 15.4% of JE-CV-vaccine naïve children who had not received any prior JE vaccine were seroprotected seven days after they received JE-CV. One year after receiving the JE-CV booster dose, 99.4% of children remained seroprotected. We conclude that JE-CV is effective and safe, both as a single dose and when administrated as a booster dose. A booster dose increases the peak GMT above the peak level reached after primary immunization and the antibody persistence is maintained at least one year after the JE-CV booster dose administration. Five year follow up is ongoing.
Collapse
Affiliation(s)
- Emmanuel Feroldi
- Sanofi Pasteur Clinical Development Department; Marcy l'Etoile, France
| | | | | | | | | | | |
Collapse
|
76
|
JE-ADVAX vaccine protection against Japanese encephalitis virus mediated by memory B cells in the absence of CD8(+) T cells and pre-exposure neutralizing antibody. J Virol 2013; 87:4395-402. [PMID: 23388724 DOI: 10.1128/jvi.03144-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
JE-ADVAX is a new, delta inulin-adjuvanted, Japanese encephalitis (JE) candidate vaccine with a strong safety profile and potent immunogenicity that confers efficient immune protection not only against JE virus but also against related neurotropic flaviviruses such as West Nile virus. In this study, we investigated the immunological mechanism of protection by JE-ADVAX vaccine using knockout mice deficient in B cells or CD8(+) T cells and poor persistence of neutralizing antibody or by adoptive transfer of immune splenocyte subpopulations. We show that memory B cells induced by JE-ADVAX provide long-lived protection against JE even in the absence of detectable pre-exposure serum neutralizing antibodies and without the requirement of CD8(+) T cells. Upon virus encounter, these vaccine-induced memory B cells were rapidly triggered to produce neutralizing antibodies that then protected immunized mice from morbidity and mortality. The findings suggest that the extent of the B-cell memory compartment might be a better immunological correlate for clinical efficacy of JE vaccines than the currently recommended measure of serum neutralizing antibody. This may explain the paradox where JE protection is observed in some subjects even in the absence of detectable serum neutralizing antibody. Our investigation also established the suitability of a novel flavivirus challenge model (β(2)-microglobulin-knockout mice) for studies of the role of B-cell memory responses in vaccine protection.
Collapse
|
77
|
|
78
|
Erra EO, Askling HH, Yoksan S, Rombo L, Riutta J, Vene S, Lindquist L, Vapalahti O, Kantele A. Cross-protective capacity of Japanese encephalitis (JE) vaccines against circulating heterologous JE virus genotypes. Clin Infect Dis 2012; 56:267-70. [PMID: 23074319 PMCID: PMC3526254 DOI: 10.1093/cid/cis883] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current Japanese encephalitis vaccines are derived from strains of genotype III, yet heterologous genotypes are emerging in endemic areas. Inactivated vaccines given to European travelers were found to elicit protective levels of neutralizing antibodies against heterologous strains of genotypes I-IV.
Collapse
Affiliation(s)
- Elina O Erra
- Haartman Institute, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Fan YC, Chen JM, Chiu HC, Chen YY, Lin JW, Shih CC, Chen CM, Chang CC, Chang GJJ, Chiou SS. Partially neutralizing potency against emerging genotype I virus among children received formalin-inactivated Japanese encephalitis virus vaccine. PLoS Negl Trop Dis 2012; 6:e1834. [PMID: 23029592 PMCID: PMC3459827 DOI: 10.1371/journal.pntd.0001834] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/13/2012] [Indexed: 11/23/2022] Open
Abstract
Background Genotype I (GI) Japanese encephalitis virus (JEV) that replaced GIII virus has become the dominant circulating virus in Asia. Currently, all registered live and inactivated JEV vaccines are derived from genotype III viruses. In Taiwan, the compulsory JEV vaccination policy recommends that children receives four doses of formalin-inactivated Nakayama (GIII) JEV vaccine. Methodology/Principal Findings To evaluate the influence of genotype replacement on the post-vaccination viral neutralizing ability by GIII and GI viruses, the small panel of vaccinated-children serum specimens was assembled, and the reciprocal 50% plaque-reduction neutralizing antibody titers (PRNT50) were measured against Nakayama vaccine strain, CJN GIII human brain isolate and TC2009-1 GI mosquito isolate. The seropositivity rate (PRNT50≥1∶10) and geometric mean titers (GMT) against the TC2009-1 virus were the lowest among the three viruses. The protective threshold against the CJN and TC2009-1 viruses could only be achieved when the GMT against Nakayama virus was ≥1∶20 or ≥1∶80, respectively. Using undiluted vaccinees' sera, the enhancement of JEV infection in K562 cells was observed in some low or non-neutralizing serum specimens. Conclusions/Significance Our preliminary study has shown that neutralizing antibodies, elicited by the mouse brain-derived and formalin-inactivated JEV Nakayama vaccine among a limited number of vaccinees, have reduced neutralizing capacity against circulating GI virus, but more detailed studies are needed to address the potential impact on the future vaccine policy. Genotype I (GI) Japanese encephalitis virus (JEV) that replaced GIII virus has become the dominant circulating virus in Asia; however, all available JEV vaccines are derived from genotype III viruses, and no study has been conducted on the cross-neutralization and protection elicited by GIII JEV vaccines against GI viruses using vaccinated children’s serum specimens collected from the general population. Genotype I virus was first detected in Taiwan in 2008, and became the dominant circulating JEV, and was island-wide within a year. In the present study, the small panel of GIII virus vaccinated-children serum specimens were not only showed lower strain-specific neutralization against GI virus as compared to the GIII vaccine and human isolates but also observed the enhancement of GI virus infection in K562 cells in some low or non-neutralizing serum specimens. These preliminary results indicated the reduced neutralization potency due to genotype replacement should be closely monitored in the JE epidemic/endemic regions in the future.
Collapse
MESH Headings
- Adolescent
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Asia
- Child
- Child, Preschool
- Encephalitis Virus, Japanese/classification
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Genotype
- Humans
- Infant
- Japanese Encephalitis Vaccines/administration & dosage
- Japanese Encephalitis Vaccines/immunology
- Mice
- Neutralization Tests
- Taiwan
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Viral Plaque Assay
Collapse
Affiliation(s)
- Yi-Chin Fan
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Mei Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jen-Wei Lin
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chen-Chang Shih
- Department of Neurology, Mennonite Christian Hospital, Hualien, Taiwan
| | - Chih-Ming Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of Infectious Disease, Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Gwong-Jen J. Chang
- Arboviral Diseases Branch, Center for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Shyan-Song Chiou
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
80
|
Okada K, Iwasa T, Namazue J, Akechi M, Ueda S. Safety and immunogenicity of a freeze-dried, cell culture-derived Japanese encephalitis vaccine (Inactivated) (JEBIK(®)V) in children. Vaccine 2012; 30:5967-72. [PMID: 22841478 DOI: 10.1016/j.vaccine.2012.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/09/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
Freeze dried, cell culture-derived Japanese encephalitis vaccine (Inactivated) (JEBIK(®)V) is approved for a three-dose primary immunization followed by a one-dose booster immunization in Japan. We conducted a multicenter, double-blinded, randomized controlled trial of the safety and immunogenicity of the vaccine in 370 healthy children who received three doses of 5, 2.5 or 1.25 μg of virus protein per 0.5 mL formulation subcutaneously. Children received two doses of test vaccine 7-28 days apart followed by a dose 6-12 months after the second vaccination. The three-dose regimen showed a good safety profile with no serious vaccine-related adverse events. Fever and reactions at the injection site were common adverse reactions at each dose of vaccine. The seroconversion rates were 100%, 99.2% and 95.0% after two doses in the 5, 2.5 and 1.25 μg groups, respectively, and 100.0% after three doses in all groups. The geometric mean titers were high for all three formulations after the second and third doses, with a very clear dose-response relationship. These results indicate that JEBIK(®)V is likely to be a useful vaccine.
Collapse
Affiliation(s)
- Kenji Okada
- Department of Pediatrics, Fukuoka National Hospital, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
81
|
Lobigs M, Diamond MS. Feasibility of cross-protective vaccination against flaviviruses of the Japanese encephalitis serocomplex. Expert Rev Vaccines 2012; 11:177-87. [PMID: 22309667 DOI: 10.1586/erv.11.180] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Serological cross-reactivity providing cross-protective immunity between antigenically related viruses is a cornerstone of vaccination. It was the immunological basis for the first human vaccine against smallpox introduced more than 200 years ago, and continues to underpin modern vaccine development as has recently been shown for human papillomavirus vaccines, which confer cross-protection against other oncogenic papillomavirus types not present in the vaccine. Here, we review the feasibility of cross-protective vaccination against an antigenic group of clinically important viruses belonging to the Japanese encephalitis serocomplex in the Flaviviridae family. We will discuss evidence suggesting that 'new generation' flavivirus vaccines may provide effective cross-protective immunity against heterologous Japanese encephalitis serocomplex viruses, and appraise potential risks associated with cross-reactive vaccine immunity. The review will also focus on the structural and mechanistic basis for cross-protective immunity among this group of flaviviruses, which is predominantly mediated by antibodies against a single viral surface protein.
Collapse
Affiliation(s)
- Mario Lobigs
- Department of Emerging Pathogens & Vaccines, John Curtin School of Medical Research, The Australian National University, PO Box 334, Canberra, 2600, ACT, Australia.
| | | |
Collapse
|
82
|
Modelling the long-term persistence of neutralizing antibody in adults after one dose of live attenuated Japanese encephalitis chimeric virus vaccine. Vaccine 2012; 30:2510-5. [DOI: 10.1016/j.vaccine.2012.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/18/2022]
|
83
|
Kikukawa A, Gomi Y, Akechi M, Onishi T, Manabe S, Namazue J, Fuke I, Ishikawa T, Okuno Y, Ueda S. Superior immunogenicity of a freeze-dried, cell culture-derived Japanese encephalitis vaccine (inactivated). Vaccine 2012; 30:2329-35. [PMID: 22306856 DOI: 10.1016/j.vaccine.2012.01.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/29/2011] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
Abstract
Japanese encephalitis is an infectious disease caused by the Japanese encephalitis virus, which is widespread throughout Asia. The worldwide incidence is 50,000 cases per year. There is no specific treatment available, but inactivated mouse brain-derived vaccine was used from the 1950s to prevent infection. However, quality control of mouse brain-derived vaccines is difficult, and therefore a new freeze-dried, cell culture-derived Japanese encephalitis vaccine (inactivated) (JEBIK V; development code: BK-VJE) was developed. In this paper, we report an analysis of neutralizing antibody titers in vaccinated subjects enrolled in clinical study of BK-VJE at various doses, and study of BK-VJE with the mouse brain-derived vaccine as a control. The results show that BK-VJE has superior immunogenicity compared to mouse brain-derived vaccine.
Collapse
Affiliation(s)
- Akiko Kikukawa
- Kanonji Institute, Research Foundation for Microbial Diseases of Osaka University, 2-9-41, Yahata-cho, Kanonji, Kagawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Gangwar RS, Shil P, Sapkal GN, Khan SA, Gore MM. Induction of virus-specific neutralizing immune response against West Nile and Japanese encephalitis viruses by chimeric peptides representing T-helper and B-cell epitopes. Virus Res 2012; 163:40-50. [DOI: 10.1016/j.virusres.2011.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 02/03/2023]
|
85
|
Wang RYL, Huang YR, Chong KM, Hung CY, Ke ZL, Chang RY. DnaJ homolog Hdj2 facilitates Japanese encephalitis virus replication. Virol J 2011; 8:471. [PMID: 21999493 PMCID: PMC3205071 DOI: 10.1186/1743-422x-8-471] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/14/2011] [Indexed: 12/15/2022] Open
Abstract
Background Japanese encephalitis virus (JEV) is a member of the mosquito-borne Flaviviridae family of viruses that causes human encephalitis. Upon infection of a new host, replication of viral RNA involves not only the viral RNA-dependent RNA polymerase (RdRp), but also host proteins. Host factors involved in JEV replication are not well characterized. Results We identified Hdj2, a heat-shock protein 40 (Hsp40)/DnaJ homolog, from a mouse brain cDNA library interacting with JEV nonstructural protein 5 (NS5) encoding viral RdRp using yeast two-hybrid system. Specific interaction of Hdj2 with NS5 was confirmed by coimmunoprecipitation and colocalization in JEV-infected cells. Overexpression of Hdj2 in JEV-infected cells led to an increase of RNA synthesis, and the virus titer was elevated approximately 4.5- to 10-fold. Knocking down of Hdj2 by siRNA reduced the virus production significantly. Conclusions We conclude that Hdj2 directly associates with JEV NS5 and facilitates viral replication. This study is the first to demonstrate Hdj2 involved in JEV replication, providing insight into a potential therapeutic target and cell-based vaccine development of JEV infection.
Collapse
|