51
|
Wang L, Sun J, Wu Z, Lian X, Han S, Huang S, Yang C, Wang L, Song L. AP-1 regulates the expression of IL17-4 and IL17-5 in the pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2020; 97:554-563. [PMID: 31887409 DOI: 10.1016/j.fsi.2019.12.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
The activator protein-1 (AP-1) plays an important role in inducing the immune effector production in response to cellular stress and bacterial infection. In the present study, an AP-1 was identified from Pacific oyster Crassostrea gigas (designed as CgAP-1) and its function was investigated in response against lipopolysaccharide (LPS) stimulation. CgAP-1 was consisted of 290 amino acids including a Jun domain and a basic region leucine zipper (bZIP) domain. CgAP-1 shared 98.6% similarities with ChAP-1 from oyster C. hongkongensis, and assigned into the branch of invertebrates in the phylogenetic tree. The mRNA transcripts of CgAP-1 gene were detected in all tested tissues with highest expression level in hemocytes, especially in granulocytes. The mRNA expression level of CgAP-1 gene in hemocytes was significantly up-regulated (8.53-fold of that in PBS group, p < 0.01) at 6 h after LPS stimulation. CgAP-1 protein could be translocated into the nucleus of oyster hemocytes after LPS stimulation. The mRNA transcripts of interleukin17s (CgIL17-4 and CgIL17-5) in the hemocytes of CgAP-1-RNAi oysters decreased significantly at 24 h after LPS stimulation, which were 0.37-fold (p < 0.05) and 0.17-fold (p < 0.01) compared with that in EGFP-RNAi oysters, respectively. The results suggested that CgAP-1 played an important role in the immune response of oyster by regulating the expression of CgIL17s.
Collapse
Affiliation(s)
- Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Zhaojun Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xingye Lian
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Shuo Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
52
|
van Dongen JJM, O'Gorman MRG, Orfao A. EuroFlow and its activities: Introduction to the special EuroFlow issue of The Journal of Immunological Methods. J Immunol Methods 2019; 475:112704. [PMID: 31758969 DOI: 10.1016/j.jim.2019.112704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| | - Maurice R G O'Gorman
- Departments of Pathology and Pediatrics, The Keck School of Medicine, U. of Southern California, Children's Hospital of Los Angeles Los Angeles, CA, USA
| | - Alberto Orfao
- Cancer Research Centre (IBMCC-CASIC/USAL), Department of Medicine, Cytometry Service (NUCLEUS) and Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca (Spain) and CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
53
|
Lucchesi S, Nolfi E, Pettini E, Pastore G, Fiorino F, Pozzi G, Medaglini D, Ciabattini A. Computational Analysis of Multiparametric Flow Cytometric Data to Dissect B Cell Subsets in Vaccine Studies. Cytometry A 2019; 97:259-267. [PMID: 31710181 PMCID: PMC7079172 DOI: 10.1002/cyto.a.23922] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023]
Abstract
The generation of the B cell response upon vaccination is characterized by the induction of different functional and phenotypic subpopulations and is strongly dependent on the vaccine formulation, including the adjuvant used. Here, we have profiled the different B cell subsets elicited upon vaccination, using machine learning methods for interpreting high‐dimensional flow cytometry data sets. The B cell response elicited by an adjuvanted vaccine formulation, compared to the antigen alone, was characterized using two automated methods based on clustering (FlowSOM) and dimensional reduction (t‐SNE) approaches. The clustering method identified, based on multiple marker expression, different B cell populations, including plasmablasts, plasma cells, germinal center B cells and their subsets, while this profiling was more difficult with t‐SNE analysis. When undefined phenotypes were detected, their characterization could be improved by integrating the t‐SNE spatial visualization of cells with the FlowSOM clusters. The frequency of some cellular subsets, in particular plasma cells, was significantly higher in lymph nodes of mice primed with the adjuvanted formulation compared to antigen alone. Thanks to this automatic data analysis it was possible to identify, in an unbiased way, different B cell populations and also intermediate stages of cell differentiation elicited by immunization, thus providing a signature of B cell recall response that can be hardly obtained with the classical bidimensional gating analysis. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Simone Lucchesi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Emanuele Nolfi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Gabiria Pastore
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| |
Collapse
|
54
|
Teklue T, Sun Y, Abid M, Luo Y, Qiu HJ. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg Dis 2019; 67:529-542. [PMID: 31538406 DOI: 10.1111/tbed.13364] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
African swine fever (ASF) is a highly lethal haemorrhagic disease of swine caused by African swine fever virus (ASFV), a unique and genetically complex virus. The disease continues to be a huge burden to the pig industry in Africa, Europe and recently in Asia, especially China. The purpose of this review was to recapitulate the current scenarios and evolving trends in ASF vaccine development. The unavailability of an applicable ASF vaccine is partly due to the complex nature of the virus, which encodes various proteins associated with immune evasion. Moreover, the incomplete understanding of immune protection determinants of ASFV hampers the rational vaccine design. Developing an effective ASF vaccine continues to be a challenging task due to many undefined features of ASFV immunobiology. Recent attempts on DNA and live attenuated ASF vaccines have been reported with promising efficacy, and especially live attenuated vaccines have been proved to provide complete homologous protection. Single-cycle viral vaccines have been developed for various diseases such as Rift Valley fever and bluetongue, and the rational extension of these strategies could be helpful for developing single-cycle ASF vaccines. Therefore, live attenuated vaccines in short term and single-cycle vaccines in long term would be the next generation of ASF vaccines.
Collapse
Affiliation(s)
- Teshale Teklue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Abid
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
55
|
Liechti T, Roederer M. OMIP-060: 30-Parameter Flow Cytometry Panel to Assess T Cell Effector Functions and Regulatory T Cells. Cytometry A 2019; 95:1129-1134. [PMID: 31334913 DOI: 10.1002/cyto.a.23853] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/12/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022]
Abstract
We developed this comprehensive 28-color flow cytometry panel with the aim to measure a variety of T cell effector functions in combination with T cell differentiation markers (CCR7, CD27, CD28, CD45RO, CD95) in γδ T cells and CD4+ and CD8+ αβ T cells (Table 1). The effector functions measured in this panel include activation and co-stimulatory molecules (CD69, CD137, and CD154), cytokines (IL-2, IL-13, IL-17A, IL-21, IL-22, TNF, and IFNγ), the chemokine IL-8, cytotoxic molecules (perforin and granzyme B), and the degranulation marker CD107a. In addition, Ki67 enables the identification and analysis of recently activated T cells. To characterize regulatory T cells (Tregs ), we included CD25, CD39, and the canonical Tregs transcription factor FoxP3. We developed and optimized this panel for cryopreserved human peripheral blood mononuclear cells (PBMC) and stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, we successfully tested other types of stimulation such as staphylococcus enterotoxin B (SEB) or a mix of immunodominant peptides (CEF peptide pool) from cytomegalovirus (CMV), Epstein-Barr virus (EBV) and influenza. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
56
|
Ciabattini A, Olivieri R, Lazzeri E, Medaglini D. Role of the Microbiota in the Modulation of Vaccine Immune Responses. Front Microbiol 2019; 10:1305. [PMID: 31333592 PMCID: PMC6616116 DOI: 10.3389/fmicb.2019.01305] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
The human immune system and the microbiota co-evolve, and their balanced relationship is based on crosstalk between the two systems through the course of life. This tight association and the overall composition and richness of the microbiota play an important role in the modulation of host immunity and may impact the immune response to vaccination. The availability of innovative technologies, such as next-generation sequencing (NGS) and correlated bioinformatics tools, allows a deeper investigation of the crosstalk between the microbiota and human immune responses. This review discusses the current knowledge on the influence of the microbiota on the immune response to vaccination and novel tools to deeply analyze the impact of the microbiome on vaccine responses.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Raffaela Olivieri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
57
|
Kalayci S, Selvan ME, Ramos I, Cotsapas C, Harris E, Kim EY, Montgomery RR, Poland G, Pulendran B, Tsang JS, Klein RJ, Gümüş ZH. ImmuneRegulation: a web-based tool for identifying human immune regulatory elements. Nucleic Acids Res 2019; 47:W142-W150. [PMID: 31114925 PMCID: PMC6602512 DOI: 10.1093/nar/gkz450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 01/04/2023] Open
Abstract
Humans vary considerably both in their baseline and activated immune phenotypes. We developed a user-friendly open-access web portal, ImmuneRegulation, that enables users to interactively explore immune regulatory elements that drive cell-type or cohort-specific gene expression levels. ImmuneRegulation currently provides the largest centrally integrated resource on human transcriptome regulation across whole blood and blood cell types, including (i) ∼43,000 genotyped individuals with associated gene expression data from ∼51,000 experiments, yielding genetic variant-gene expression associations on ∼220 million eQTLs; (ii) 14 million transcription factor (TF)-binding region hits extracted from 1945 ChIP-seq studies; and (iii) the latest GWAS catalog with 67,230 published variant-trait associations. Users can interactively explore associations between queried gene(s) and their regulators (cis-eQTLs, trans-eQTLs or TFs) across multiple cohorts and studies. These regulators may explain genotype-dependent gene expression variations and be critical in selecting the ideal cohorts or cell types for follow-up studies or in developing predictive models. Overall, ImmuneRegulation significantly lowers the barriers between complex immune regulation data and researchers who want rapid, intuitive and high-quality access to the effects of regulatory elements on gene expression in multiple studies to empower investigators in translating these rich data into biological insights and clinical applications, and is freely available at https://immuneregulation.mssm.edu.
Collapse
Affiliation(s)
- Selim Kalayci
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene Ramos
- Department of Microbiology and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chris Cotsapas
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ruth R Montgomery
- Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Bali Pulendran
- Emory Vaccine Center/Yerkes National Primate Research Center at Emory University, Atlanta, GA 30329, USA
| | - John S Tsang
- Multiscale Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- NIH Center for Human Immunology, Bethesda, MD 20892, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
58
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp Gerontol 2019; 124:110632. [PMID: 31201918 DOI: 10.1016/j.exger.2019.110632] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Immunosenescence contributes to a decreased capacity of the immune system to respond effectively to infections or vaccines in the elderly. The full extent of the biological changes that lead to immunosenescence are unknown, but numerous cell types involved in innate and adaptive immunity exhibit altered phenotypes and function as a result of aging. These manifestations of immunosenescence at the cellular level are mediated by dysregulation at the genetic level, and changes throughout the immune system are, in turn, propagated by numerous cellular interactions. Environmental factors, such as nutrition, also exert significant influence on the immune system during aging. While the mechanisms that govern the onset of immunosenescence are complex, systems biology approaches allow for the identification of individual contributions from each component within the system as a whole. Although there is still much to learn regarding immunosenescence, systems-level studies of vaccine responses have been highly informative and will guide the development of new vaccine candidates, novel adjuvant formulations, and immunotherapeutic drugs to improve vaccine responses among the aging population.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
59
|
Rashidi S, Mojtahedi Z, Shahriari B, Kalantar K, Ghalamfarsa G, Mohebali M, Hatam G. An immunoproteomic approach to identifying immunoreactive proteins in Leishmania infantum amastigotes using sera of dogs infected with canine visceral leishmaniasis. Pathog Glob Health 2019; 113:124-132. [PMID: 31099725 DOI: 10.1080/20477724.2019.1616952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Visceral leishmaniasis (VL), the most severe form of leishmaniasis, is caused by Leishmania donovani and Leishmania infantum. The infected dogs with canine visceral leishmaniasis (CVL) are important reservoirs for VL in humans, so the diagnosis, treatment and vaccination of the infected dogs will ultimately decrease the rate of human VL. Proteomics and immunoproteomics techniques have facilitated the introduction of novel drug, vaccine and diagnostic targets. Our immunoproteomic study was conducted to identify new immunoreactive proteins in amastigote form of L. infantum. The strain of L. infantum (MCAN/IR/07/Moheb-gh) was obtained from CVL-infected dogs. J774 macrophage cells were infected with the L. infantum promastigotes. The infected macrophages were ruptured, and pure amastigotes were extracted from the macrophages. After protein extraction, two-dimensional gel electrophoresis was employed for protein separation followed by Western blotting. Western blotting was performed, using symptomatic and asymptomatic sera of the infected dogs with CVL. Thirteen repeatable immunoreactive spots were identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Some, including prohibitin, ornithine aminotransferase, annexin A4, and apolipoprotein A-I, have been critically involved in metabolic pathways, survival, and pathogenicity of Leishmania parasites. Further investigations are required to confirm our identified immunoreactive proteins as a biomarker for CVL.
Collapse
Affiliation(s)
- Sajad Rashidi
- a Department of Parasitology and Mycology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zahra Mojtahedi
- b Institute for Cancer Research, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Bahador Shahriari
- c Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Kurosh Kalantar
- d Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ghasem Ghalamfarsa
- e Medicinal Plants Research Center, Faculty of Medicine , Yasuj University of Medical Sciences , Yasuj , Iran
| | - Mehdi Mohebali
- f Department of Medical Parasitology and Mycology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Hatam
- c Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
60
|
Sonnenburg ED, Sonnenburg JL. The ancestral and industrialized gut microbiota and implications for human health. Nat Rev Microbiol 2019; 17:383-390. [DOI: 10.1038/s41579-019-0191-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
61
|
Pittala S, Bagley K, Schwartz JA, Brown EP, Weiner JA, Prado IJ, Zhang W, Xu R, Ota-Setlik A, Pal R, Shen X, Beck C, Ferrari G, Lewis GK, LaBranche CC, Montefiori DC, Tomaras GD, Alter G, Roederer M, Fouts TR, Ackerman ME, Bailey-Kellogg C. Antibody Fab-Fc properties outperform titer in predictive models of SIV vaccine-induced protection. Mol Syst Biol 2019; 15:e8747. [PMID: 31048360 PMCID: PMC6497031 DOI: 10.15252/msb.20188747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 01/13/2023] Open
Abstract
Characterizing the antigen-binding and innate immune-recruiting properties of the humoral response offers the chance to obtain deeper insights into mechanisms of protection than revealed by measuring only overall antibody titer. Here, a high-throughput, multiplexed Fab-Fc Array was employed to profile rhesus macaques vaccinated with a gp120-CD4 fusion protein in combination with different genetically encoded adjuvants, and subsequently subjected to multiple heterologous simian immunodeficiency virus (SIV) challenges. Systems analyses modeling protection and adjuvant differences using Fab-Fc Array measurements revealed a set of correlates yielding strong and robust predictive performance, while models based on measurements of response magnitude alone exhibited significantly inferior performance. At the same time, rendering Fab-Fc measurements mathematically independent of titer had relatively little impact on predictive performance. Similar analyses for a distinct SIV vaccine study also showed that Fab-Fc measurements performed significantly better than titer. These results suggest that predictive modeling with measurements of antibody properties can provide detailed correlates with robust predictive power, suggest directions for vaccine improvement, and potentially enable discovery of mechanistic associations.
Collapse
Affiliation(s)
| | | | | | - Eric P Brown
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | | | | | | | - Rong Xu
- Profectus BioSciences, Inc., Baltimore, MD, USA
| | | | - Ranajit Pal
- Advanced Bioscience Laboratories, Inc., Rockville, MD, USA
| | | | - Charles Beck
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - George K Lewis
- Institute for Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Galit Alter
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | | | | | | | | |
Collapse
|
62
|
OMIC Technologies and Vaccine Development: From the Identification of Vulnerable Individuals to the Formulation of Invulnerable Vaccines. J Immunol Res 2019; 2019:8732191. [PMID: 31183393 PMCID: PMC6512027 DOI: 10.1155/2019/8732191] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Routine vaccination is among the most effective clinical interventions to prevent diseases as it is estimated to save over 3 million lives every year. However, the full potential of global immunization programs is not realised because population coverage is still suboptimal. This is also due to the inadequate immune response and paucity of informative correlates of protection upon immunization of vulnerable individuals such as newborns, preterm infants, pregnant women, and elderly individuals as well as those patients affected by chronic and immune compromising medical conditions. In addition, these groups are undervaccinated for a number of reasons, including lack of awareness of vaccine-preventable diseases and uncertainty or misconceptions about the safety and efficacy of vaccination by parents and healthcare providers. The presence of these nonresponders/undervaccinated individuals represents a major health and economic burden to society, which will become particularly difficult to address in settings with limited public resources. This review describes innovative and experimental approaches that can help identify specific genomic profiles defining nonresponder individuals for whom specific interventions might be needed. We will provide examples that show how such information can be useful to identify novel biomarkers of safety and immunogenicity for future vaccine trials. Finally, we will discuss how system biology “OMICs” data can be used to design bioinformatic tools to predict the vaccination outcome providing genetic and molecular “signatures” of protective immune response. This strategy may soon enable identification of signatures highly predictive of vaccine safety, immunogenicity, and efficacy/protection thereby informing personalized vaccine interventions in vulnerable populations.
Collapse
|
63
|
Sarkar I, Garg R, van Drunen Littel-van den Hurk S. Selection of adjuvants for vaccines targeting specific pathogens. Expert Rev Vaccines 2019; 18:505-521. [PMID: 31009255 PMCID: PMC7103699 DOI: 10.1080/14760584.2019.1604231] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adjuvants form an integral component in most of the inactivated and subunit vaccine formulations. Careful and proper selection of adjuvants helps in promoting appropriate immune responses against target pathogens at both innate and adaptive levels such that protective immunity can be elicited. Areas covered: Herein, we describe the recent progress in our understanding of the mode of action of adjuvants that are licensed for use in human vaccines or in clinical or pre-clinical stages at both innate and adaptive levels. Different pathogens have distinct characteristics, which require the host to mount an appropriate immune response against them. Adjuvants can be selected to elicit a tailor-made immune response to specific pathogens based on their unique properties. Identification of biomarkers of adjuvanticity for several candidate vaccines using omics-based technologies can unravel the mechanism of action of modern and experimental adjuvants. Expert opinion: Adjuvant technology has been revolutionized over the last two decades. In-depth understanding of the role of adjuvants in activating the innate immune system, combined with systems vaccinology approaches, have led to the development of next-generation, novel adjuvants that can be used in vaccines against challenging pathogens and in specific target populations.
Collapse
Affiliation(s)
- Indranil Sarkar
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada.,b Microbiology and Immunology , University of Saskatchewan , Saskatoon , Canada
| | - Ravendra Garg
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada
| | | |
Collapse
|
64
|
Baliu-Piqué M, Kurniawan H, Ravesloot L, Verheij MW, Drylewicz J, Lievaart-Peterson K, Borghans JAM, Koets A, Tesselaar K. Age-related distribution and dynamics of T-cells in blood and lymphoid tissues of goats. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:1-10. [PMID: 30550777 DOI: 10.1016/j.dci.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Neonatal mammals have increased disease susceptibility and sub-optimal vaccine responses. This raises problems in both humans and farm animals. The high prevalence of paratuberculosis in goats and the lack of an effective vaccine against it have a strong impact on the dairy sector, and calls for vaccines optimized for the neonatal immune system. We characterized the composition of the T-cell pool in neonatal kids and adult goats and quantified their turnover rates using in vivo deuterium labelling. From birth to adulthood, CD4+ T-cells were the predominant subset in the thymus and lymph nodes, while spleen and bone marrow contained mainly CD8+ lymphocytes. In blood, CD4+ T-cells were the predominant subset during the neonatal period, while CD8+ T-cells predominated in adults. We observed that thymic mass and cellularity increased during the first 5 months after birth, but decreased later in life. Deuterium labelling revealed that T-cell turnover rates in neonatal kids are considerably higher than in adult animals.
Collapse
Affiliation(s)
- Mariona Baliu-Piqué
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Henry Kurniawan
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lars Ravesloot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Myrddin W Verheij
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Julia Drylewicz
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - José A M Borghans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ad Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Kiki Tesselaar
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
65
|
Joshi S, Yadav NK, Rawat K, Kumar V, Ali R, Sahasrabuddhe AA, Siddiqi MI, Haq W, Sundar S, Dube A. Immunogenicity and Protective Efficacy of T-Cell Epitopes Derived From Potential Th1 Stimulatory Proteins of Leishmania (Leishmania) donovani. Front Immunol 2019; 10:288. [PMID: 30873164 PMCID: PMC6403406 DOI: 10.3389/fimmu.2019.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/04/2019] [Indexed: 11/24/2022] Open
Abstract
Development of a suitable vaccine against visceral leishmaniasis (VL), a fatal parasitic disease, is considered to be vital for maintaining the success of kala-azar control programs. The fact that Leishmania-infected individuals generate life-long immunity offers a viable proposition in this direction. Our prior studies demonstrated that T-helper1 (Th1) type of cellular response was generated by six potential recombinant proteins viz. elongation factor-2 (elF-2), enolase, aldolase, triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and p45, derived from a soluble antigenic fraction (89.9–97.1 kDa) of Leishmania (Leishmania) donovani promastigote, in treated Leishmania patients and golden hamsters and showed significant prophylactic potential against experimental VL. Moreover, since, it is well-known that our immune system, in general, triggers production of specific protective immunity in response to a small number of amino acids (peptide), this led to the identification of antigenic epitopes of the above-stated proteins utilizing immunoinformatics. Out of thirty-six, three peptides-P-10 (enolase), P-14, and P-15 (TPI) elicited common significant lymphoproliferative as well as Th1-biased cytokine responses both in golden hamsters and human subjects. Further, immunization with these peptides plus BCG offered 75% prophylactic efficacy with boosted cellular immune response in golden hamsters against Leishmania challenge which is indicative of their candidature as potential vaccine candidates.
Collapse
Affiliation(s)
- Sumit Joshi
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Narendra Kumar Yadav
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Keerti Rawat
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Vikash Kumar
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Rafat Ali
- Medicinal Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Amogh Anant Sahasrabuddhe
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Wahajul Haq
- Medicinal Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anuradha Dube
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
66
|
Pezeshki A, Ovsyannikova IG, McKinney BA, Poland GA, Kennedy RB. The role of systems biology approaches in determining molecular signatures for the development of more effective vaccines. Expert Rev Vaccines 2019; 18:253-267. [PMID: 30700167 DOI: 10.1080/14760584.2019.1575208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Emerging infectious diseases are a major threat to public health, and while vaccines have proven to be one of the most effective preventive measures for infectious diseases, we still do not have safe and effective vaccines against many human pathogens, and emerging diseases continually pose new threats. The purpose of this review is to discuss how the creation of vaccines for these new threats has been hindered by limitations in the current approach to vaccine development. Recent advances in high-throughput technologies have enabled scientists to apply systems biology approaches to collect and integrate increasingly large datasets that capture comprehensive biological changes induced by vaccines, and then decipher the complex immune response to those vaccines. AREAS COVERED This review covers advances in these technologies and recent publications that describe systems biology approaches to understanding vaccine immune responses and to understanding the rational design of new vaccine candidates. EXPERT OPINION Systems biology approaches to vaccine development provide novel information regarding both the immune response and the underlying mechanisms and can inform vaccine development.
Collapse
Affiliation(s)
| | | | - Brett A McKinney
- b Department of Mathematics , University of Tulsa , Tulsa , OK , USA.,c Tandy School of Computer Science , University of Tulsa , Tulsa , OK , USA
| | - Gregory A Poland
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | |
Collapse
|
67
|
Wangkahart E, Secombes CJ, Wang T. Dissecting the immune pathways stimulated following injection vaccination of rainbow trout (Oncorhynchus mykiss) against enteric redmouth disease (ERM). FISH & SHELLFISH IMMUNOLOGY 2019; 85:18-30. [PMID: 28757198 DOI: 10.1016/j.fsi.2017.07.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Enteric redmouth disease (ERM or yersiniosis) is one of the most important diseases of salmonids and leads to significant economic losses. It is caused by the Gram-negative bacterium Yersinia ruckeri but can be controlled by bacterin vaccination. The first commercial ERM vaccine was licenced in 1976 and is one of the most significant and successful health practices within the aquaculture industry. Although ERM vaccination provides complete protection, knowledge of the host immune response to the vaccine and the molecular mechanisms that underpin the protection elicited is limited. In this report, we analysed the expression in spleen and gills of a large set of genes encoding for cytokines, acute phase proteins (APPs) and antimicrobial peptides (AMPs) in response to ERM vaccination in rainbow trout, Oncorhynchus mykiss. Many immune genes in teleost fish are known to have multiple paralogues that can show differential responses to ERM vaccination, highlighting the necessity to determine whether all of the genes present react in a similar manner. ERM vaccination immediately activated a balanced inflammatory response with correlated expression of both pro- and anti-inflammatory cytokines (eg IL-1β1-2, TNF-α1-3, IL-6, IL-8 and IL-10A etc.) in the spleen. The increase of pro-inflammatory cytokines may explain the systemic upregulation of APPs (eg serum amyloid A protein and serum amyloid protein P) and AMPs (eg cathelicidins and hepcidin) seen in both spleen and gills. We also observed an upregulation of all the α-chains but only one β-chain (p40B2) of the IL-12 family cytokines, that suggests specific IL-12 and IL-23 isoforms with distinct functions might be produced in the spleen of vaccinated fish. Notably the expression of Th1 cytokines (IFN-γ1-2) and a Th17 cytokine (IL-17A/F1a) was also up-regulated and correlated with enhanced expression of the IL-12 family α-chains, and the majority of pro- and anti-inflammatory cytokines, APPs and AMPs. These expression profiles may suggest that ERM vaccination activates host innate immunity and expression of specific IL-12 and IL-23 isoforms leading to a Th1 and Th17 biased immune response. A late induction of Th2 cytokines (IL-4/13B1-2) was also observed, that may have a homeostatic role and/or involvement in antibody production. This study has increased our understanding of the host immune response to ERM vaccination and the adaptive pathways involved. The early responses of a set of genes established in this study may provide essential information and function as biomarkers in future vaccine development in aquaculture.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham 44150, Thailand
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
68
|
Sylvester TT, Parsons SDC, van Helden PD, Miller MA, Loxton AG. A pilot study evaluating the utility of commercially available antibodies for flow cytometric analysis of Panthera species lymphocytes. BMC Vet Res 2018; 14:410. [PMID: 30567560 PMCID: PMC6299994 DOI: 10.1186/s12917-018-1717-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022] Open
Abstract
Background The immune response against tuberculosis in lions is still poorly defined and our understanding is hampered by the lack of lion specific reagents. The process for producing antibodies against a specific antigen is laborious and not available to many research laboratories. As the search for antibody cross-reactivity is an important strategy for immunological studies in veterinary medicine, we have investigated the use of commercially available antibodies to characterize T cell subsets in African lions (Panthera leo). Results Commercially available antibodies were screened and investigated the influence of two different sample processing methods, as well as the effect of time delay on cell surface marker expression on lion lymphocytes. Using commercially available antibodies, we were able to identify CD4+, CD5+, CD8+, CD14+, CD25+, CD44+ and CD45+ T lymphocytes in samples obtained by density gradient centrifugation as well as red cell lysis of lion whole blood. Two distinct lymphocyte populations, which differed in size and phenotype, were observed in the samples processed by density gradient centrifugation. Conclusion Commercially available antibodies are able to differentiate between T lymphocyte subsets including immune effector cells in African lion whole blood, and possibly give insight into unique specie phenotypes. Electronic supplementary material The online version of this article (10.1186/s12917-018-1717-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tashnica Taime Sylvester
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sven David Charles Parsons
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul David van Helden
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele Ann Miller
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre Gareth Loxton
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
69
|
Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2018; 109:333-344. [PMID: 30399567 DOI: 10.1016/j.biopha.2018.10.075] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022] Open
Abstract
Fungal infections include a wide range of opportunistic and invasive diseases. Two of four major fatal diseases in patients with human immunodeficiency virus (HIV) infection are related to the fungal infections, cryptococcosis, and pneumocystosis. Disseminated candidiasis and different clinical forms of aspergillosis annually impose expensive medical costs to governments and hospitalized patients and ultimately lead to high mortality rates. Therefore, urgent implementations are necessary to prevent the expansion of these diseases. Designing an effective vaccine is one of the most important approaches in this field. So far, numerous efforts have been carried out in developing an effective vaccine against fungal infections. Some of these challenges engaged in different stages of clinical trials but none of them could be approved by the United States Food and Drug Administration (FDA). Here, in addition to have a comprehensive overview on the data from studied vaccine programs, we will discuss the immunology response against fungal infections. Moreover, it will be attempted to clarify the underlying immune mechanisms of vaccines targeting different fungal infections that are crucial for designing an effective vaccination strategy.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine/Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Vakili
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Khezripour
- Department of Pharmacotherapy, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
70
|
Abdel Rahman AN, Khalil AA, Abdallah HM, ElHady M. The effects of the dietary supplementation of Echinacea purpurea extract and/or vitamin C on the intestinal histomorphology, phagocytic activity, and gene expression of the Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2018; 82:312-318. [PMID: 30107260 DOI: 10.1016/j.fsi.2018.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/10/2018] [Accepted: 08/11/2018] [Indexed: 05/07/2023]
Abstract
In this study, the influence of the dietary incorporation of Echinacea purpurea (EP) extract and/or vitamin C on the intestinal histomorphology and some immunological indices were tested in the Nile tilapia (Oreochromis niloticus Linn.). O. niloticus were randomly divided into four groups. The control group G1 was fed on a basal diet, while the G2 and G3 were fed on basal diets, supplemented with EP extract and vitamin C at the doses of 500 mg kg-1 and 400 mg kg-1, respectively. Meanwhile, G4 was fed on a basal diet, supplemented with a mixture of EP extract and vitamin C. After 28 days of feeding, the intestinal tissues were collected for histological observation and immune status, was based on an assay for measuring the phagocytic activity. Furthermore, the expression of the transforming growth factor-beta 1 (TGF-β1), interleukin-1beta (IL-1β), and tumor necrosis factor alpha (TNF-α) genes was evaluated in intestine and head kidney. The results revealed that the G4 successfully surpassed the other groups in terms of the heights of intestinal villi, the number of goblet cells and intraepithelial lymphocytes (IELs), and the phagocytic activity, followed by the G3 and G2. The expression of the IL-1β and TNF-α genes were up regulated only in G4 but in the G3 only the expression of the IL-1β gene was up regulated. Hence, EP extract along with vitamin C could be used as a feed additive in order to improve the structure of the intestinal mucosal epithelium and immune response in tilapia.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Alshimaa A Khalil
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - H M Abdallah
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Mohamed ElHady
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
71
|
Seo JW, Tavaré R, Mahakian LM, Silvestrini MT, Tam S, Ingham ES, Salazar FB, Borowsky AD, Wu AM, Ferrara KW. CD8 + T-Cell Density Imaging with 64Cu-Labeled Cys-Diabody Informs Immunotherapy Protocols. Clin Cancer Res 2018; 24:4976-4987. [PMID: 29967252 PMCID: PMC6215696 DOI: 10.1158/1078-0432.ccr-18-0261] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/06/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023]
Abstract
Purpose: Noninvasive and quantitative tracking of CD8+ T cells by PET has emerged as a potential technique to gauge response to immunotherapy. We apply an anti-CD8 cys-diabody, labeled with 64Cu, to assess the sensitivity of PET imaging of normal and diseased tissue.Experimental Design: Radiolabeling of an anti-CD8 cys-diabody (169cDb) with 64Cu was developed. The accumulation of 64Cu-169cDb was evaluated with PET/CT imaging (0, 5, and 24 hours) and biodistribution (24 hours) in wild-type mouse strains (n = 8/group studied with imaging and IHC or flow cytometry) after intravenous administration. Tumor-infiltrating CD8+ T cells in tumor-bearing mice treated with CpG and αPD-1 were quantified and mapped (n = 6-8/group studied with imaging and IHC or flow cytometry).Results: We demonstrate the ability of immunoPET to detect small differences in CD8+ T-cell distribution between mouse strains and across lymphoid tissues, including the intestinal tract of normal mice. In FVB mice bearing a syngeneic HER2-driven model of mammary adenocarcinoma (NDL), 64Cu-169cDb PET imaging accurately visualized and quantified changes in tumor-infiltrating CD8+ T cells in response to immunotherapy. A reduction in the circulation time of the imaging probe followed the development of treatment-related liver and splenic hypertrophy and provided an indication of off-target effects associated with immunotherapy protocols.Conclusions: 64Cu-169cDb imaging can spatially map the distribution of CD8+ T cells in normal organs and tumors. ImmunoPET imaging of tumor-infiltrating cytotoxic CD8+ T cells detected changes in T-cell density resulting from adjuvant and checkpoint immunotherapy protocols in our preclinical evaluation. Clin Cancer Res; 24(20); 4976-87. ©2018 AACR.
Collapse
Affiliation(s)
- Jai Woong Seo
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Richard Tavaré
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Matthew T Silvestrini
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Sarah Tam
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Felix B Salazar
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, California
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California, Davis, Davis, California.
| |
Collapse
|
72
|
Turi KN, Shankar J, Anderson LJ, Rajan D, Gaston K, Gebretsadik T, Das SR, Stone C, Larkin EK, Rosas-Salazar C, Brunwasser SM, Moore ML, Peebles RS, Hartert TV. Infant Viral Respiratory Infection Nasal Immune-Response Patterns and Their Association with Subsequent Childhood Recurrent Wheeze. Am J Respir Crit Care Med 2018; 198:1064-1073. [PMID: 29733679 PMCID: PMC6221572 DOI: 10.1164/rccm.201711-2348oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/07/2018] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Recurrent wheeze and asthma are thought to result from alterations in early life immune development following respiratory syncytial virus (RSV) infection. However, prior studies of the nasal immune response to infection have assessed only individual cytokines, which does not capture the whole spectrum of response to infection. OBJECTIVES To identify nasal immune phenotypes in response to RSV infection and their association with recurrent wheeze. METHODS A birth cohort of term healthy infants born June to December were recruited and followed to capture the first infant RSV infection. Nasal wash samples were collected during acute respiratory infection, viruses were identified by RT-PCR, and immune-response analytes were assayed using a multianalyte bead-based panel. Immune-response clusters were identified using machine learning, and association with recurrent wheeze at age 1 and 2 years was assessed using logistic regression. MEASUREMENTS AND MAIN RESULTS We identified two novel and distinct immune-response clusters to RSV and human rhinovirus. In RSV-infected infants, a nasal immune-response cluster characterized by lower non-IFN antiviral immune-response mediators, and higher type-2 and type-17 cytokines was significantly associated with first and second year recurrent wheeze. In comparison, we did not observe this in infants with human rhinovirus acute respiratory infection. Based on network analysis, type-2 and type-17 cytokines were central to the immune response to RSV, whereas growth factors and chemokines were central to the immune response to human rhinovirus. CONCLUSIONS Distinct immune-response clusters during infant RSV infection and their association with risk of recurrent wheeze provide insights into the risk factors for and mechanisms of asthma development.
Collapse
Affiliation(s)
- Kedir N. Turi
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Jyoti Shankar
- Infectious Disease Group, J. Craig Venter Institute, Rockville, Maryland; and
| | | | - Devi Rajan
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Kelsey Gaston
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | | | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine
- Infectious Disease Group, J. Craig Venter Institute, Rockville, Maryland; and
| | - Cosby Stone
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Emma K. Larkin
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | | | | | - Martin L. Moore
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | | | - Tina V. Hartert
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| |
Collapse
|
73
|
Yu Y, Ma X, Gong R, Zhu J, Wei L, Yao J. Recent advances in CD8 + regulatory T cell research. Oncol Lett 2018; 15:8187-8194. [PMID: 29805553 DOI: 10.3892/ol.2018.8378] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/01/2018] [Indexed: 11/05/2022] Open
Abstract
Various subgroups of CD8+ T lymphocytes do not only demonstrate cytotoxic effects, but also serve important regulatory roles in the body's immune response. In particular, CD8+ regulatory T cells (CD8+ Tregs), which possess important immunosuppressive functions, are able to effectively block the overreacting immune response and maintain the body's immune homeostasis. In recent years, studies have identified a small set of special CD8+ Tregs that can recognize major histocompatibility complex class Ib molecules, more specifically Qa-1 in mice and HLA-E in humans, and target the self-reactive CD4+ T ce lls. These findings have generated broad implications in the scientific community and attracted general interest to CD8+ Tregs. The present study reviews the recent research progress on CD8+ Tregs, including their origin, functional classification, molecular markers and underlying mechanisms of action.
Collapse
Affiliation(s)
- Yating Yu
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Xinbo Ma
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Rufei Gong
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Jianmeng Zhu
- Department of Chunan First People's Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Lihua Wei
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Jinguang Yao
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| |
Collapse
|
74
|
New Technologies for Vaccine Development: Harnessing the Power of Human Immunology. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
75
|
Montomoli E, Torelli A, Manini I, Gianchecchi E. Immunogenicity and Safety of the New Inactivated Quadrivalent Influenza Vaccine Vaxigrip Tetra: Preliminary Results in Children ≥6 Months and Older Adults. Vaccines (Basel) 2018; 6:E14. [PMID: 29518013 PMCID: PMC5874655 DOI: 10.3390/vaccines6010014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/26/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022] Open
Abstract
Since the mid-1980s, two lineages of influenza B viruses have been distinguished. These can co-circulate, limiting the protection provided by inactivated trivalent influenza vaccines (TIVs). This has prompted efforts to formulate quadrivalent influenza vaccines (QIVs), to enhance protection against circulating influenza B viruses. This review describes the results obtained from seven phase III clinical trials evaluating the immunogenicity, safety, and lot-to-lot consistency of a new quadrivalent split-virion influenza vaccine (Vaxigrip Tetra®) formulated by adding a second B strain to the already licensed TIV. Since Vaxigrip Tetra was developed by means of a manufacturing process strictly related to that used for TIV, the data on the safety profile of TIV are considered supportive of that of Vaxigrip Tetra. The safety and immunogenicity of Vaxigrip Tetra were similar to those of the corresponding licensed TIV. Moreover, the new vaccine elicits a superior immune response towards the additional strain, without affecting immunogenicity towards the other three strains. Vaxigrip Tetra is well tolerated, has aroused no safety concerns, and is recommended for the active immunization of individuals aged ≥6 months. In addition, preliminary data confirm its immunogenicity and safety even in children aged 6-35 months and its immunogenicity in older subjects (aged 66-80 years).
Collapse
Affiliation(s)
- Emanuele Montomoli
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy.
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Alessandro Torelli
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy.
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Elena Gianchecchi
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy.
| |
Collapse
|
76
|
Lawrence GM, Friedlander Y, Calderon-Margalit R, Enquobahrie DA, Huang JY, Tracy RP, Manor O, Siscovick DS, Hochner H. Associations of social environment, socioeconomic position and social mobility with immune response in young adults: the Jerusalem Perinatal Family Follow-Up Study. BMJ Open 2017; 7:e016949. [PMID: 29273651 PMCID: PMC5778288 DOI: 10.1136/bmjopen-2017-016949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Immune response to cytomegalovirus (CMV) impacts adult chronic disease. This study investigates associations of childhood and adulthood social environment, socioeconomic position (SEP) and social mobility with CMV response in young adults. DESIGN Historical prospective study design. SETTING Subcohort of all 17 003 births to residents of Jerusalem between 1974 and 1976. PARTICIPANTS Participants included 1319 young adults born in Jerusalem with extensive archival and follow-up data, including childhood and adulthood SEP-related factors and anti-CMV IgG titre levels and seroprevalence measured at age 32. MAIN EXPOSURE AND OUTCOME MEASURES Principal component analysis was used to transform correlated social environment and SEP-related variables at two time points (childhood and adulthood) into two major scores reflecting household (eg, number of siblings/children, religiosity) and socioeconomic (eg, occupation, education) components. Based on these components, social mobility variables were created. Linear and Poisson regression models were used to investigate associations of components and mobility with anti-CMV IgG titre level and seroprevalence, adjusted for confounders. RESULTS Lower levels of household and socioeconomic components in either childhood or adulthood were associated with higher anti-CMV IgG titre level and seropositivity at age 32. Compared with individuals with stable favourable components, anti-CMV IgG titre level and risk for seropositivity were higher in stable unfavourable household and socioeconomic components (household: β=3.23, P<0.001; relative risk (RR)=1.21, P<0.001; socioeconomic: β=2.20, P=0.001; RR=1.14, P=0.01), downward household mobility (β=4.32, P<0.001; RR=1.26, P<0.001) and upward socioeconomic mobility (β=1.37, P=0.04; RR=1.19, P<0.001). Among seropositive individuals, associations between household components and mobility with anti-CMV IgG titre level were maintained and associations between socioeconomic components and mobility with anti-CMV IgG titre level were attenuated. CONCLUSIONS Our study provides evidence that accumulating low SEP from childhood through adulthood and social mobility may compromise immune response in young adulthood.
Collapse
Affiliation(s)
- Gabriella M Lawrence
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yehiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | | | - Daniel A Enquobahrie
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Jonathan Yinhao Huang
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Institute for Health and Social Policy, McGill University, Montreal, Canada
| | - Russell P Tracy
- Departments of Pathology and Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Orly Manor
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - David S Siscovick
- Institute for Urban Health, New York Academy of Medicine, New York City, New York, USA
| | - Hagit Hochner
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
77
|
Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic. Nat Immunol 2017; 19:20-28. [PMID: 29199281 PMCID: PMC7097586 DOI: 10.1038/s41590-017-0007-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/30/2017] [Indexed: 12/30/2022]
Abstract
Emerging infectious diseases will continue to threaten public health and are sustained by global commerce, travel and disruption of ecological systems. Most pandemic threats are caused by viruses from either zoonotic sources or vector-borne sources. Developing better ways to anticipate and manage the ongoing microbial challenge will be critical for achieving the United Nations Sustainable Development Goals and, conversely, each such goal will affect the ability to control infectious diseases. Here we discuss how technology can be applied effectively to better prepare for and respond to new viral diseases with a focus on new paradigms for vaccine development. Emerging viral diseases present a huge and increasingly important global threat to public health systems. Graham and Sullivan discuss the challenges presented by emerging viral diseases and discuss how innovations in technology and policy can address this threat.
Collapse
|
78
|
Abstract
CD4(+) T helper (Th) cells play a central role in the adaptive immune response by providing help to B cells and cytotoxic T cells and by releasing different types of cytokines in tissues to mediate protection against a wide range of pathogenic microorganisms. These functions are performed by different types of Th cells endowed with distinct migratory capacities and effector functions. Here we discuss how studies of the human T cell response to microbes have advanced our understanding of Th cell functional heterogeneity, in particular with the discovery of a distinct Th1 subset involved in the response to Mycobacteria and the characterization of two types of Th17 cells specific for extracellular bacteria or fungi. We also review new approaches to dissect at the clonal level the human CD4(+) T cell response induced by pathogens or vaccines that have revealed an unexpected degree of intraclonal diversification and propose a progressive and selective model of CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Federica Sallusto
- Center of Medical Immunology and Laboratory of Cellular Immunology, Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
| |
Collapse
|
79
|
Reeves PM, Sluder AE, Paul SR, Scholzen A, Kashiwagi S, Poznansky MC. Application and utility of mass cytometry in vaccine development. FASEB J 2017; 32:5-15. [PMID: 29092906 DOI: 10.1096/fj.201700325r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Mass cytometry enables highly multiplexed profiling of cellular immune responses in limited-volume samples, advancing prospects of a new era of systems immunology. The capabilities of mass cytometry offer expanded potential for deciphering immune responses to infectious diseases and to vaccines. Several studies have used mass cytometry to profile protective immune responses, both postinfection and postvaccination, although no vaccine-development program has yet systematically employed the technology from the outset to inform both candidate design and clinical evaluation. In this article, we review published mass cytometry studies relevant to vaccine development, briefly compare immune profiling by mass cytometry to other systems-level technologies, and discuss some general considerations for deploying mass cytometry in the context of vaccine development.-Reeves, P. M., Sluder, A. E., Raju Paul, S., Scholzen, A., Kashiwagi, S., Poznansky, M. C. Application and utility of mass cytometry in vaccine development.
Collapse
Affiliation(s)
- Patrick M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Susan Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | | | - Satoshi Kashiwagi
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| |
Collapse
|
80
|
Quantifying the relative immune cell activation from whole tissue/organ-derived differentially expressed gene data. Sci Rep 2017; 7:12847. [PMID: 28993694 PMCID: PMC5634445 DOI: 10.1038/s41598-017-12970-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/18/2017] [Indexed: 01/07/2023] Open
Abstract
Evaluation of immune responses in individual immune cell types is important for the development of new medicines. Here, we propose a computational method designated ICEPOP (Immune CEll POPulation) to estimate individual immune cell type responses from bulk tissue and organ samples. The relative gene responses are scored for each cell type by using the data from differentially expressed genes derived from control- vs drug-treated sample pairs, and the data from public databases including ImmGen and IRIS, which contain gene expression profiles of a variety of immune cells. By ICEPOP, we analysed cell responses induced by vaccine-adjuvants in the mouse spleen, and extended the analyses to human peripheral blood mononuclear cells and gut biopsy samples focusing on human papilloma virus vaccination and inflammatory bowel disease treatment with Infliximab. In both mouse and human datasets, our method reliably quantified the responding immune cell types and provided insightful information, demonstrating that our method is useful to evaluate immune responses from bulk sample-derived gene expression data. ICEPOP is available as an interactive web site (https://vdynamics.shinyapps.io/icepop/) and Python package (https://github.com/ewijaya/icepop).
Collapse
|
81
|
Abstract
Systems-biology approaches in immunology take various forms, but here we review strategies for measuring a broad swath of immunological functions as a means of discovering previously unknown relationships and phenomena and as a powerful way of understanding the immune system as a whole. This approach has rejuvenated the field of vaccine development and has fostered hope that new ways will be found to combat infectious diseases that have proven refractory to classical approaches. Systems immunology also presents an important new strategy for understanding human immunity directly, taking advantage of the many ways the immune system of humans can be manipulated.
Collapse
|
82
|
Molony RD, Malawista A, Montgomery RR. Reduced dynamic range of antiviral innate immune responses in aging. Exp Gerontol 2017; 107:130-135. [PMID: 28822811 PMCID: PMC5815956 DOI: 10.1016/j.exger.2017.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 01/04/2023]
Abstract
The worldwide population aged ≥ 65 years is increasing and the average life span is expected to increase another 10 years by 2050. This extended lifespan is associated with a progressive decline in immune function and a paradoxical state of low-grade, chronic inflammation that may contribute to susceptibility to viral infection, and reduced responses to vaccination. Here we review the effects of aging on innate immune responses to viral pathogens including elements of recognition, signaling, and production of inflammatory mediators. We specifically focus on age-related changes in key pattern recognition receptor signaling pathways, converging on altered cytokine responses, including a notable impairment of antiviral interferon responses. We highlight an emergent change in innate immunity that arises during aging – the dampening of the dynamic range of responses to multiple sources of stimulation – which may underlie reduced efficiency of immune responses in aging. We review the effects of aging on innate antiviral immunity, including recognition, signaling, and cytokine responses. Lower Toll-like receptor expression leads to impaired signaling and responses upon activation of these sensors. Effects of aging on cytosolic nucleic acid sensing receptors and inflammasomes remains incompletely characterized. In aging the dynamic range of innate immunity is compressed, with increased basal activation of many signaling pathways. Interferon production is impaired with age, which may lead to the increased viral susceptibility of older persons.
Collapse
Affiliation(s)
- Ryan D Molony
- Departments of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Anna Malawista
- Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Ruth R Montgomery
- Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, United States; Human Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
83
|
Zhao T, Zhang Z, Zhang Y, Feng M, Fan S, Wang L, Liu L, Wang X, Wang Q, Zhang X, Wang J, Liao Y, He Z, Lu S, Yang H, Li Q. Dynamic Interaction of Enterovirus 71 and Dendritic Cells in Infected Neonatal Rhesus Macaques. Front Cell Infect Microbiol 2017; 7:171. [PMID: 28540257 PMCID: PMC5423916 DOI: 10.3389/fcimb.2017.00171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the main pathogens responsible for hand, foot, and mouth disease (HFMD). Infection with EV71 can lead to severe clinical disease via extensive infections of either the respiratory or alimentary tracts in children. Based on the previous pathological study of EV71 infections in neonatal rhesus macaques, our work using this animal model and an EV71 chimera that expresses enhanced green fluorescent protein (EGFP-EV71) primarily explored where EV71 localizes and proliferates, and the subsequent initiation of the pathological process. The chimeric EGFP-EV71 we constructed was similar to the wild-type EV71 (WT-EV71) virus in its biological characteristics. Similar clinical manifestations and histo-pathologic features were equally displayed in neonatal rhesus macaques infected with either WT-EV71 or EGFP-EV71 via the respiratory route. Fluorescent signal tracing in tissues from the animals infected with EGFP-EV71 showed that EV71 proliferated primarily in the respiratory tract epithelium and the associated lymphoid tissues. Immunofluorescence and flow cytometry analyses revealed that EV71 was able to enter a pre-conventional dendritic cell (DC) population at the infection sites. The viremia identified in the macaques infected by WT-EV71 or EGFP-EV71 was present even in the artificial presence of a specific antibody against the virus. Our results suggest that EV71 primarily proliferates in the respiratory tract epithelium followed by subsequent entry into a pre-cDC population of DCs. These cells are then hijacked by the virus and they can potentially transmit the virus from local sites to other organs through the blood circulation during the infection process. Our results suggest that the EV71 infection process in this DC population does not interfere with the induction of an independent immune response against the EV71 infection in the neonatal macaques.
Collapse
Affiliation(s)
- Ting Zhao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Zhixiao Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Min Feng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Shengtao Fan
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Xi Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Qinglin Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Xiaolong Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Jingjing Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Zhanlong He
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Shuaiyao Lu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Huai Yang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming, China
| |
Collapse
|
84
|
Cardoso AR, Cabral-Miranda G, Reyes-Sandoval A, Bachmann MF, Sales MGF. Detecting circulating antibodies by controlled surface modification with specific target proteins: Application to malaria. Biosens Bioelectron 2017; 91:833-841. [DOI: 10.1016/j.bios.2017.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/13/2017] [Indexed: 01/10/2023]
|
85
|
Moormann AM, Bailey JA. Malaria - how this parasitic infection aids and abets EBV-associated Burkitt lymphomagenesis. Curr Opin Virol 2016; 20:78-84. [PMID: 27689909 DOI: 10.1016/j.coviro.2016.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/27/2022]
Abstract
Burkitt lymphoma (BL) is >90% EBV-associated when this pediatric cancer is diagnosed in regions heavily burden by endemic Plasmodium falciparum malaria and thus has been geographically classified as endemic BL. The incidence of endemic BL is 10-fold higher compared to BL diagnosed in non-malarious regions of the world. The other forms of BL have been classified as sporadic BL which contain EBV in ∼30% of cases and immunodeficiency BL which occurs in HIV-infected adults with ∼40% of tumors containing EBV. Within malaria endemic regions, epidemiologic studies replicating Denis Burkitt's seminal observation continue to show differences in endemic BL incidence linked to intensity of malaria transmission. However, the mechanisms by which malaria contributes to B cell tumorigenesis have not been resolved to the point of designing cancer prevention strategies. The focus of this review is to summarize our current knowledge regarding the influence of prolonged, chronic malaria exposure on defects in immunosurveillance that would otherwise control persistent EBV infections. And thus, set the stage for ensuing mechanisms by which malaria could instigate B cell activation and aberrant activation-induced cytidine deaminase expression initiating somatic hypermutation and thereby increasing the likelihood of an Ig/Myc translocation, the hallmark of all BL tumors. Malaria appears to play multiple, sequential and simultaneous roles in endemic BL etiology; the complexity of these interactions are being revealed by applying computational methods to human immunology. Remaining questions yet to be addressed and prevention strategies will also be discussed.
Collapse
Affiliation(s)
- Ann M Moormann
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Jeffrey A Bailey
- Program for Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
86
|
Mendonça SCF. Differences in immune responses against Leishmania induced by infection and by immunization with killed parasite antigen: implications for vaccine discovery. Parasit Vectors 2016; 9:492. [PMID: 27600664 PMCID: PMC5013623 DOI: 10.1186/s13071-016-1777-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 08/26/2016] [Indexed: 01/06/2023] Open
Abstract
The leishmaniases are a group of diseases caused by different species of the protozoan genus Leishmania and transmitted by sand fly vectors. They are a major public health problem in almost all continents. There is no effective control of leishmaniasis and its geographical distribution is expanding in many countries. Great effort has been made by many scientists to develop a vaccine against leishmaniasis, but, so far, there is still no effective vaccine against the disease. The only way to generate protective immunity against leishmaniasis in humans is leishmanization, consisting of the inoculation of live virulent Leishmania as a means to acquire long-lasting immunity against subsequent infections. At present, all that we know about human immune responses to Leishmania induced by immunization with killed parasite antigens came from studies with first generation candidate vaccines (killed promastigote extracts). In the few occasions that the T cell-mediated immune responses to Leishmania induced by infection and immunization with killed parasite antigens were compared, important differences were found both in humans and in animals. This review discusses these differences and their relevance to the development of a vaccine against leishmaniasis, the major problems involved in this task, the recent prospects for the selection of candidate antigens and the use of attenuated Leishmania as live vaccines.
Collapse
Affiliation(s)
- Sergio C F Mendonça
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. 4365 - Manguinhos, 21040-360, Rio de Janeiro, Brazil.
| |
Collapse
|
87
|
Vance DJ, Mantis NJ. Progress and challenges associated with the development of ricin toxin subunit vaccines. Expert Rev Vaccines 2016; 15:1213-22. [PMID: 26998662 PMCID: PMC5193006 DOI: 10.1586/14760584.2016.1168701] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The past several years have seen major advances in the development of a safe and efficacious ricin toxin vaccine, including the completion of two Phase I clinical trials with two different recombinant A subunit (RTA)-based vaccines: RiVax™ and RVEc™ adsorbed to aluminum salt adjuvant, as well as a non-human primate study demonstrating that parenteral immunization with RiVax elicits a serum antibody response that was sufficient to protect against a lethal dose aerosolized ricin exposure. One of the major obstacles moving forward is assessing vaccine efficacy in humans, when neither ricin-specific serum IgG endpoint titers nor toxin-neutralizing antibody levels are accepted as definitive predictors of protective immunity. In this review we summarize ongoing efforts to leverage recent advances in our understanding of RTA-antibody interactions at the structural level to develop novel assays to predict vaccine efficacy in humans.
Collapse
Affiliation(s)
- David J. Vance
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
88
|
Challa DK, Mi W, Lo ST, Ober RJ, Ward ES. Antigen dynamics govern the induction of CD4 + T cell tolerance during autoimmunity. J Autoimmun 2016; 72:84-94. [DOI: 10.1016/j.jaut.2016.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 11/16/2022]
|
89
|
Rinchai D, Anguiano E, Nguyen P, Chaussabel D. Finger stick blood collection for gene expression profiling and storage of tempus blood RNA tubes. F1000Res 2016; 5:1385. [PMID: 28357036 PMCID: PMC5357033 DOI: 10.12688/f1000research.8841.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 03/16/2025] Open
Abstract
With this report we aim to make available a standard operating procedure (SOP) developed for RNA stabilization of small blood volumes collected via a finger stick. The anticipation that this procedure may be improved through peer-review and/or readers public comments is another element motivating the publication of this SOP. Procuring blood samples from human subjects can, among other uses, enable assessment of the immune status of an individual subject via the profiling of RNA abundance using technologies such as real time PCR, NanoString, microarrays or RNA-sequencing. It is often desirable to minimize blood volumes and employ methods that are the least invasive and can be practically implemented outside of clinical settings. Finger stick blood samples are increasingly used for measurement of levels of pharmacological drugs and biological analytes. It is a simple and convenient procedure amenable for instance to field use or self-collection at home using a blood sample collection kit. Such methodologies should also enable the procurement of blood samples at high frequency for health or disease monitoring applications.
Collapse
Affiliation(s)
- Darawan Rinchai
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| | | | | | - Damien Chaussabel
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
90
|
Rinchai D, Anguiano E, Nguyen P, Chaussabel D. Finger stick blood collection for gene expression profiling and storage of tempus blood RNA tubes. F1000Res 2016; 5:1385. [PMID: 28357036 PMCID: PMC5357033 DOI: 10.12688/f1000research.8841.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
With this report we aim to make available a standard operating procedure (SOP) developed for RNA stabilization of small blood volumes collected via a finger stick. The anticipation that this procedure may be improved through peer-review and/or readers public comments is another element motivating the publication of this SOP. Procuring blood samples from human subjects can, among other uses, enable assessment of the immune status of an individual subject via the profiling of RNA abundance using technologies such as real time PCR, NanoString, microarrays or RNA-sequencing. It is often desirable to minimize blood volumes and employ methods that are the least invasive and can be practically implemented outside of clinical settings. Finger stick blood samples are increasingly used for measurement of levels of pharmacological drugs and biological analytes. It is a simple and convenient procedure amenable for instance to field use or self-collection at home using a blood sample collection kit. Such methodologies should also enable the procurement of blood samples at high frequency for health or disease monitoring applications.
Collapse
Affiliation(s)
- Darawan Rinchai
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| | | | | | - Damien Chaussabel
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
91
|
Beitelshees M, Li Y, Pfeifer BA. Enhancing vaccine effectiveness with delivery technology. Curr Opin Biotechnol 2016; 42:24-29. [PMID: 26954947 DOI: 10.1016/j.copbio.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/11/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022]
Abstract
Vaccines stand as a very powerful means of disease prevention and treatment. Fundamental to the success of vaccination is the efficient delivery of antigenic cargo needed to trigger an effective immune response. In this article, we will review recent advances in delivery technology with a focus on devices designed to optimally maximize responses to antigen cargo. Included with the review is an overview of traditional vaccine applications and how these approaches can benefit by well-designed delivery methods.
Collapse
Affiliation(s)
- Marie Beitelshees
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
92
|
Kaufmann SHE, Fletcher HA, Guzmán CA, Ottenhoff THM. Big Data in Vaccinology: Introduction and section summaries. Vaccine 2015; 33:5237-40. [PMID: 25939278 DOI: 10.1016/j.vaccine.2015.04.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Helen A Fletcher
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, England
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|