51
|
Douglas GC, VandeVoort CA, Kumar P, Chang TC, Golos TG. Trophoblast stem cells: models for investigating trophectoderm differentiation and placental development. Endocr Rev 2009; 30:228-40. [PMID: 19299251 PMCID: PMC2726840 DOI: 10.1210/er.2009-0001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The placenta is an ephemeral organ containing diverse populations of trophoblasts that are all derived from the embryonic trophectoderm but have morphological, functional, and molecular diversity within and across species. In hemochorial placentation, these cells play especially important roles, interfacing with and modifying the cells of the maternal decidua. Within the rapidly growing placenta, it has been shown that there are trophoblast stem cells well characterized in the mouse and postulated but not well understood in primates. This review will discuss the characteristics of candidates for human and nonhuman primate trophoblast stem cells, present the diverse methods of their generation, and propose future prospects for experimental systems in which they can shed light on developmental and pathophysiological processes in human pregnancy.
Collapse
Affiliation(s)
- Gordon C Douglas
- Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, Wisconsin 53715-1299, USA
| | | | | | | | | |
Collapse
|
52
|
Zheng H, Pritchard DM, Yang X, Bennett E, Liu G, Liu C, Ai W. KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2009; 296:G490-8. [PMID: 19109406 PMCID: PMC2660173 DOI: 10.1152/ajpgi.90393.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 12/17/2008] [Indexed: 01/31/2023]
Abstract
In Kruppel-like factor (KLF)-4-deficient mice, colonic goblet cell numbers are significantly reduced. Goblet cell development is regulated by the Notch signaling pathway. The aim of this study was to examine whether Notch represses KLF4 expression to regulate goblet cell differentiation. We first detected that KLF4 gene expression was upregulated in a human progastrin-overexpressing mouse model where goblet cell hyperplasia has been observed. We then found that mice treated with a gamma-secretase inhibitor (compound E, 10 micromol/kg) for 24 h, which inhibits the Notch signaling pathway, had significantly increased KLF4 mRNA levels in small intestine and colon, accompanied by an increased number of KLF4-expressing cells at the bottom of crypts in small intestine and colon. In a colon cancer cell line (HCT116 cells), KLF4 promoter activity was inhibited by a constitutively active form of Notch1 (ICN1) by transient cotransfection assays. This inhibition was significantly compromised by a dominant-negative RBPjk, a repressive mediator of the Notch signaling pathway. An ICN1-responsive element was then mapped in the human KLF4 promoter between -151 and -122 nucleotides upstream of the transcriptional start site. It was also found that an intact ICN1-responsive element is required for ICN1 to inhibit KLF4 promoter activity by transient cotransfection assays. Our findings thus reveal a possible mechanism by which KLF4 is inhibited by Notch, which controls goblet cell differentiation in mouse gastrointestinal tract.
Collapse
Affiliation(s)
- Hai Zheng
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Zaret KS, Watts J, Xu J, Wandzioch E, Smale ST, Sekiya T. Pioneer factors, genetic competence, and inductive signaling: programming liver and pancreas progenitors from the endoderm. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 73:119-26. [PMID: 19028990 PMCID: PMC2773436 DOI: 10.1101/sqb.2008.73.040] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endoderm is a multipotent progenitor cell population in the embryo that gives rise to the liver, pancreas, and other cell types and provides paradigms for understanding cell-type specification. Studies of isolated embryo tissue cells and genetic approaches in vivo have defined fibroblast growth factor/mitogen-activated protein kinase (FGF/MAPK) and bone morphogenetic protein (BMP) signaling pathways that induce liver and pancreatic fates in the endoderm. In undifferentiated endoderm cells, the FoxA and GATA transcription factors are among the first to engage silent genes, helping to endow competence for cell-type specification. FoxA proteins can bind their target sites in highly compacted chromatin and open up the local region for other factors to bind; hence, they have been termed "pioneer factors." We recently found that FoxA proteins remain bound to chromatin in mitosis, as an epigenetic mark. In embryonic stem cells, which lack FoxA, FoxA target sites can be occupied by FoxD3, which in turn helps to maintain a local demethylation of chromatin. By these means, a cascade of Fox factors helps to endow progenitor cells with the competence to activate genes in response to tissue-inductive signals. Understanding such epigenetic mechanisms for transcriptional competence coupled with knowledge of the relevant signals for cell-type specification should greatly facilitate efforts to predictably differentiate stem cells to liver and pancreatic fates.
Collapse
Affiliation(s)
- K S Zaret
- Epigenetics and Progenitor Cells Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
54
|
Abstract
The Foxd3 forkhead transcription factor is required for maintaining pluripotent cells in the early mouse embryo and for the establishment of murine embryonic stem cell (ESC) lines. To begin to understand the role of Foxd3 in ESC maintenance, we derived ESC lines from blastocysts that carried two conditional Foxd3 alleles and a tamoxifen-inducible Cre transgene. Tamoxifen treatment produced a rapid and near complete loss of Foxd3 mRNA and protein. Foxd3-deficient ESCs maintained a normal proliferation rate but displayed increased apoptosis, and clonally dispersed ESCs showed a decreased ability to self-renew. Under either self-renewal or differentiation-promoting culture conditions we observed a strong, precocious differentiation of Foxd3 mutant ESCs along multiple lineages, including trophectoderm, endoderm, and mesendoderm. This profound alteration in biological behavior occurred in the face of continued expression of factors known to induce pluripotency, including Oct4, Sox2, and Nanog. We present a model for the role of Foxd3 in repressing differentiation, promoting self-renewal, and maintaining survival of mouse ESCs. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Ying Liu
- Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0494, USA.
| | | |
Collapse
|
55
|
Rielland M, Hue I, Renard JP, Alice J. Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: new tools to study trophoblast growth and differentiation. Dev Biol 2008; 322:1-10. [PMID: 18680738 DOI: 10.1016/j.ydbio.2008.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/04/2008] [Accepted: 07/09/2008] [Indexed: 12/25/2022]
Abstract
The trophoblast is a supportive tissue in mammals that plays key roles in embryonic patterning, foetal growth and nutrition. It shows an extensive growth up to the formation of the placenta. This growth is believed to be fed by trophoblast stem cells able to self-renew and to give rise to the differentiated derivatives present in the placenta. In this review, we summarize recent data on the molecular regulation of the trophoblast in vivo and in vitro. Most data have been obtained in the mouse, however, whenever relevant, we compare this model to other mammals. In ungulates, the growth of the trophoblast displays some striking features that make these species interesting alternative models for the study of trophoblast development. After the transfer of somatic nuclei into oocytes, studies in the mouse and the cow have both underlined that the trophoblast may be a direct target of reprogramming defects and that its growth seems specifically affected. We propose that the study of TS cells derived from nuclear transfer embryos may help to unravel some of the epigenetic abnormalities which occur therein.
Collapse
Affiliation(s)
- Maite Rielland
- INRA, UMR 1198 Biologie du Developpement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
56
|
Simmons DG, Natale DRC, Begay V, Hughes M, Leutz A, Cross JC. Early patterning of the chorion leads to the trilaminar trophoblast cell structure in the placental labyrinth. Development 2008; 135:2083-91. [PMID: 18448564 PMCID: PMC3159581 DOI: 10.1242/dev.020099] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The labyrinth of the rodent placenta contains villi that are the site of nutrient exchange between mother and fetus. They are covered by three trophoblast cell types that separate the maternal blood sinusoids from fetal capillaries--a single mononuclear cell that is a subtype of trophoblast giant cell (sinusoidal or S-TGC) with endocrine function and two multinucleated syncytiotrophoblast layers, each resulting from cell-cell fusion, that function in nutrient transport. The developmental origins of these cell types have not previously been elucidated. We report here the discovery of cell-layer-restricted genes in the mid-gestation labyrinth (E12.5-14.5) including Ctsq in S-TGCs (also Hand1-positive), Syna in syncytiotrophoblast layer I (SynT-I), and Gcm1, Cebpa and Synb in syncytiotrophoblast layer II (SynT-II). These genes were also expressed in distinct layers in the chorion as early as E8.5, prior to villous formation. Specifically, Hand1 was expressed in apical cells lining maternal blood spaces (Ctsq is not expressed until E12.5), Syna in a layer immediately below, and Gcm1, Cebpa and Synb in basal cells in contact with the allantois. Cebpa and Synb were co-expressed with Gcm1 and were reduced in Gcm1 mutants. By contrast, Hand1 and Syna expression was unaltered in Gcm1 mutants, suggesting that Gcm1-positive cells are not required for the induction of the other chorion layers. These data indicate that the three differentiated trophoblast cell types in the labyrinth arise from distinct and autonomous precursors in the chorion that are patterned before morphogenesis begins.
Collapse
Affiliation(s)
- David G. Simmons
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - David R. C. Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Valerie Begay
- Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Str. 10, 13092 Berlin, Germany
| | - Martha Hughes
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Achim Leutz
- Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Str. 10, 13092 Berlin, Germany
| | - James C. Cross
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
57
|
Teng L, Mundell NA, Frist AY, Wang Q, Labosky PA. Requirement for Foxd3 in the maintenance of neural crest progenitors. Development 2008; 135:1615-24. [PMID: 18367558 PMCID: PMC2562748 DOI: 10.1242/dev.012179] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the molecular mechanisms of stem cell maintenance is crucial for the ultimate goal of manipulating stem cells for the treatment of disease. Foxd3 is required early in mouse embryogenesis; Foxd3(-/-) embryos fail around the time of implantation, cells of the inner cell mass cannot be maintained in vitro, and blastocyst-derived stem cell lines cannot be established. Here, we report that Foxd3 is required for maintenance of the multipotent mammalian neural crest. Using tissue-specific deletion of Foxd3 in the neural crest, we show that Foxd3(flox/-); Wnt1-Cre mice die perinatally with a catastrophic loss of neural crest-derived structures. Cranial neural crest tissues are either missing or severely reduced in size, the peripheral nervous system consists of reduced dorsal root ganglia and cranial nerves, and the entire gastrointestinal tract is devoid of neural crest derivatives. These results demonstrate a global role for this transcriptional repressor in all aspects of neural crest maintenance along the anterior-posterior axis, and establish an unprecedented molecular link between multiple divergent progenitor lineages of the mammalian embryo.
Collapse
Affiliation(s)
- Lu Teng
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Nathan A. Mundell
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0494, USA
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0494, USA
| | - Audrey Y. Frist
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0494, USA
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0494, USA
| | - Qiaohong Wang
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Patricia A. Labosky
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0494, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0494, USA
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0494, USA
| |
Collapse
|
58
|
Yan Z, Wang Z, Sharova L, Sharov AA, Ling C, Piao Y, Aiba K, Matoba R, Wang W, Ko MS. BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells 2008; 26:1155-65. [PMID: 18323406 PMCID: PMC2409195 DOI: 10.1634/stemcells.2007-0846] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Whether SWI/SNF chromatin remodeling complexes play roles in embryonic stem (ES) cells remains unknown. Here we show that SWI/SNF complexes are present in mouse ES cells, and their composition is dynamically regulated upon induction of ES cell differentiation. For example, the SWI/SNF purified from undifferentiated ES cells contains a high level of BAF155 and a low level of BAF170 (both of which are homologs of yeast SWI3 protein), whereas that from differentiated cells contains nearly equal amounts of both. Moreover, the levels of BAF250A and BAF250B decrease during the differentiation of ES cells, whereas that of BRM increases. The altered expression of SWI/SNF components hinted that these complexes could play roles in ES cell maintenance or differentiation. We therefore generated ES cells with biallelic inactivation of BAF250B and found that these cells display a reduced proliferation rate and an abnormal cell cycle. Importantly, these cells are deficient in the self-renewal capacity of undifferentiated ES cells and exhibit certain phenotypes of differentiated cells, including reduced expression of several pluripotency-related genes and increased expression of some differentiation-related genes. These data suggest that the BAF250B-associated SWI/SNF is essential for mouse ES cells to maintain their normal proliferation and pluripotency. The work presented here underscores the importance of SWI/SNF chromatin remodeling complexes in pluripotent stem cells.
Collapse
Affiliation(s)
- Zhijiang Yan
- Genome Instability and Chromatin-Remodeling Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Zhong Wang
- Cardiovascular Research Center, Massachusetts General Hospital, Richard B. Simches Research Center, Harvard Medical School, Boston, MA 02114
| | - Lioudmila Sharova
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Alexei A. Sharov
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Chen Ling
- Genome Instability and Chromatin-Remodeling Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Yulan Piao
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Kazuhiro Aiba
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Ryo Matoba
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Weidong Wang
- Genome Instability and Chromatin-Remodeling Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Minoru S.H. Ko
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
59
|
Xu J, Pope SD, Jazirehi AR, Attema JL, Papathanasiou P, Watts JA, Zaret KS, Weissman IL, Smale ST. Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc Natl Acad Sci U S A 2007; 104:12377-82. [PMID: 17640912 PMCID: PMC1941477 DOI: 10.1073/pnas.0704579104] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recent studies have suggested that, in ES cells, inactive genes encoding early developmental regulators possess bivalent histone modification domains and are therefore poised for activation. However, bivalent domains were not observed at typical tissue-specific genes. Here, we show that windows of unmethylated CpG dinucleotides and putative pioneer factor interactions mark enhancers for at least some tissue-specific genes in ES cells. The unmethylated windows expand in cells that express the gene and contract, disappear, or remain unchanged in nonexpressing tissues. However, in ES cells, they do not always coincide with common histone modifications. Genomic footprinting and chromatin immunoprecipitation demonstrated that transcription factor binding underlies the unmethylated windows at enhancers for the Ptcra and Alb1 genes. After stable integration of premethylated Ptcra enhancer constructs into the ES cell genome, the unmethylated windows readily appeared. In contrast, the premethylated constructs remained fully methylated and silent after introduction into Ptcra-expressing thymocytes. These findings provide initial functional support for a model in which pioneer factor interactions in ES cells promote the assembly of a chromatin structure that is permissive for subsequent activation, and in which differentiated tissues lack the machinery required for gene activation when these ES cell marks are absent. The enhancer marks may therefore represent important features of the pluripotent state.
Collapse
Affiliation(s)
- Jian Xu
- *Howard Hughes Medical Institute, Molecular Biology Institute, and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Scott D. Pope
- *Howard Hughes Medical Institute, Molecular Biology Institute, and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Ali R. Jazirehi
- *Howard Hughes Medical Institute, Molecular Biology Institute, and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Joanne L. Attema
- Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5323; and
| | - Peter Papathanasiou
- Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5323; and
| | - Jason A. Watts
- Cell and Developmental Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Kenneth S. Zaret
- Cell and Developmental Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Irving L. Weissman
- Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5323; and
- To whom correspondence may be addressed. E-mail: or
| | - Stephen T. Smale
- *Howard Hughes Medical Institute, Molecular Biology Institute, and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
60
|
Snider P, Olaopa M, Firulli AB, Conway SJ. Cardiovascular development and the colonizing cardiac neural crest lineage. ScientificWorldJournal 2007; 7:1090-113. [PMID: 17619792 PMCID: PMC2613651 DOI: 10.1100/tsw.2007.189] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 05/17/2007] [Accepted: 05/25/2007] [Indexed: 11/30/2022] Open
Abstract
Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that regulate myocardial proliferation, can signal to the epicardium to subsequently secrete a growth factor/s, or may even contribute directly to the heart. Although there are species differences between mouse, chick, and Xenopus during cardiac neural crest cell morphogenesis, recent data suggest mouse and chick are more similar to each other than to the zebrafish neural crest cell lineage. Several groups have used the genetically defined Pax3 (splotch) mutant mice model to address the role of the cardiac neural crest lineage. Here we review the current literature, the neural crest-related role of the Pax3 transcription factor, and discuss potential function/s of cardiac neural crest-derived cells during cardiovascular developmental remodeling.
Collapse
Affiliation(s)
- Paige Snider
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Michael Olaopa
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Anthony B. Firulli
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Simon J. Conway
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| |
Collapse
|
61
|
Cebra-Thomas JA, Betters E, Yin M, Plafkin C, McDow K, Gilbert SF. Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evol Dev 2007; 9:267-77. [PMID: 17501750 DOI: 10.1111/j.1525-142x.2007.00159.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The origin of the turtle plastron is not known, but these nine bones have been homologized to the exoskeletal components of the clavicles, the interclavicular bone, and gastralia. Earlier evidence from our laboratory showed that the bone-forming cells of the plastron were positive for HNK-1 and PDGFRalpha, two markers of the skeletogenic neural crest. This study looks at the embryonic origin of these plastron-forming cells. We show that the HNK-1+ cells are also positive for p75 and FoxD3, confirming their neural crest identity, and that they originate from the dorsal neural tube of stage 17 turtle embryos, several days after the original wave of neural crest cells have migrated and differentiated. DiI studies show that these are migratory cells, and they can be observed in the lateral regions of the embryo and can be seen forming intramembranous bone in the ventral (plastron) regions. Before migrating ventrally, these late-emerging neural crest cells reside for over a week in a carapacial staging area above the neural tube and vertebrae. It is speculated that this staging area is where they lose the inability to form skeletal cells.
Collapse
Affiliation(s)
- Judith A Cebra-Thomas
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | | | | | | | | | | |
Collapse
|
62
|
Abstract
Gene expression profiling studies have classified breast cancer into five intrinsic subtypes with distinct prognostic significance: luminal type A, luminal type B, normal-like, HER-2-positive and basal type. These studies have also uncovered novel diagnostic markers and molecular targets. FOXA1, a winged-helix transcription factor belonging to the forkhead family, is one among them as it is expressed predominantly in luminal type A breast cancer, which is characterized by the presence of estrogen receptor-alpha (ERalpha) with favorable prognosis. FOXA1 is a 'pioneer' factor that binds to chromatinized DNA, opens the chromatin and enhances binding of ERalpha to its target genes. It is essential for the expression of approximately 50% of ERalpha:estrogen-regulated genes. Thus, a network comprising FOXA1, ERalpha and estrogen constitutes a major proliferation and survival signal for luminal type A breast cancer. However, by controlling differentiation and by regulating the expression of cell cycle inhibitor p27kip1 and the cell adhesion molecule E-cadherin, FOXA1 may prevent metastatic progression of luminal type A breast cancer. This article reviews possible roles of FOXA family transcription factors in breast cancer initiation, hormone dependency and speculates on the potential of FOXA1 as a therapeutic target.
Collapse
Affiliation(s)
- Harikrishna Nakshatri
- Indiana University School of Medicine, Departments of Surgery, Biochemistry and Molecular Biology, Walther Oncology Center, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
63
|
Yaklichkin S, Steiner AB, Lu Q, Kessler DS. FoxD3 and Grg4 physically interact to repress transcription and induce mesoderm in Xenopus. J Biol Chem 2007; 282:2548-57. [PMID: 17138566 PMCID: PMC1780074 DOI: 10.1074/jbc.m607412200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FoxD3 is a forkhead-related transcriptional regulator that is essential for multiple developmental processes in the vertebrate embryo, including neural crest development and maintenance of mammalian stem cell lineages. Recent results demonstrate a requirement for FoxD3 in Xenopus mesodermal development. In the gastrula, FoxD3 functions as a transcriptional repressor in the Spemann organizer to maintain the expression of Nodal-related members of the transforming growth factor-beta superfamily that induce dorsal mesoderm formation. Here we report that the function of FoxD3 in mesoderm induction is dependent on the recruitment of transcriptional corepressors of the TLE/Groucho family. Structure-function analyses indicate that the transcriptional repression and mesoderm induction activities of FoxD3 are dependent on a C-terminal domain, as well as specific DNA-binding activity conferred by the forkhead domain. The C-terminal domain contains a heptapeptide similar to the eh1/GEH Groucho interaction motif. Deletion and point mutagenesis demonstrated that the FoxD3 eh1/GEH motif is required for both repression of transcription and induction of mesoderm, as well as the direct physical interaction of FoxD3 and Grg4 (Groucho-related gene-4). Consistent with a functional interaction of FoxD3 and Grg4, the transcriptional repression activity of FoxD3 is enhanced by Grg4, and reduced by Grg5, a dominant inhibitory Groucho protein. The results indicate that FoxD3 recruitment of Groucho corepressors is essential for the transcriptional repression of target genes and induction of mesoderm in Xenopus.
Collapse
Affiliation(s)
- Sergey Yaklichkin
- From the Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Aaron B. Steiner
- From the Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Qun Lu
- From the Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Daniel S. Kessler
- From the Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
64
|
Steiner AB, Engleka MJ, Lu Q, Piwarzyk EC, Yaklichkin S, Lefebvre JL, Walters JW, Pineda-Salgado L, Labosky PA, Kessler DS. FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development. Development 2006; 133:4827-38. [PMID: 17092955 PMCID: PMC1676154 DOI: 10.1242/dev.02663] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Induction and patterning of the mesodermal germ layer is a key early step of vertebrate embryogenesis. We report that FoxD3 function in the Xenopus gastrula is essential for dorsal mesodermal development and for Nodal expression in the Spemann organizer. In embryos and explants, FoxD3 induced mesodermal genes, convergent extension movements and differentiation of axial tissues. Engrailed-FoxD3, but not VP16-FoxD3, was identical to native FoxD3 in mesoderm-inducing activity, indicating that FoxD3 functions as a transcriptional repressor to induce mesoderm. Antagonism of FoxD3 with VP16-FoxD3 or morpholino-knockdown of FoxD3 protein resulted in a complete block to axis formation, a loss of mesodermal gene expression, and an absence of axial mesoderm, indicating that transcriptional repression by FoxD3 is required for mesodermal development. FoxD3 induced mesoderm in a non-cell-autonomous manner, indicating a role for secreted inducing factors in the response to FoxD3. Consistent with this mechanism, FoxD3 was necessary and sufficient for the expression of multiple Nodal-related genes, and inhibitors of Nodal signaling blocked mesoderm induction by FoxD3. Therefore, FoxD3 is required for Nodal expression in the Spemann organizer and this function is essential for dorsal mesoderm formation.
Collapse
Affiliation(s)
- Aaron B. Steiner
- Department of Cell and Developmental Biology University of Pennsylvania School of Medicine 1110 BRB 2/3, 421 Curie Boulevard Philadelphia, PA 19104, USA Tel: 215-898-1478 Fax: 215-573-7601
| | - Mark J. Engleka
- Department of Cell and Developmental Biology University of Pennsylvania School of Medicine 1110 BRB 2/3, 421 Curie Boulevard Philadelphia, PA 19104, USA Tel: 215-898-1478 Fax: 215-573-7601
| | - Qun Lu
- Department of Cell and Developmental Biology University of Pennsylvania School of Medicine 1110 BRB 2/3, 421 Curie Boulevard Philadelphia, PA 19104, USA Tel: 215-898-1478 Fax: 215-573-7601
| | - Eileen C. Piwarzyk
- Department of Cell and Developmental Biology University of Pennsylvania School of Medicine 1110 BRB 2/3, 421 Curie Boulevard Philadelphia, PA 19104, USA Tel: 215-898-1478 Fax: 215-573-7601
| | - Sergey Yaklichkin
- Department of Cell and Developmental Biology University of Pennsylvania School of Medicine 1110 BRB 2/3, 421 Curie Boulevard Philadelphia, PA 19104, USA Tel: 215-898-1478 Fax: 215-573-7601
| | - Julie L. Lefebvre
- Department of Cell and Developmental Biology University of Pennsylvania School of Medicine 1110 BRB 2/3, 421 Curie Boulevard Philadelphia, PA 19104, USA Tel: 215-898-1478 Fax: 215-573-7601
| | - James W. Walters
- Department of Cell and Developmental Biology University of Pennsylvania School of Medicine 1110 BRB 2/3, 421 Curie Boulevard Philadelphia, PA 19104, USA Tel: 215-898-1478 Fax: 215-573-7601
| | - Liliam Pineda-Salgado
- Department of Cell and Developmental Biology University of Pennsylvania School of Medicine 1110 BRB 2/3, 421 Curie Boulevard Philadelphia, PA 19104, USA Tel: 215-898-1478 Fax: 215-573-7601
| | | | | |
Collapse
|
65
|
Wijchers PJEC, Burbach JPH, Smidt MP. In control of biology: of mice, men and Foxes. Biochem J 2006; 397:233-46. [PMID: 16792526 PMCID: PMC1513289 DOI: 10.1042/bj20060387] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/04/2006] [Accepted: 05/05/2006] [Indexed: 12/11/2022]
Abstract
Forkhead proteins comprise a highly conserved family of transcription factors, named after the original forkhead gene in Drosophila. To date, over 100 forkhead genes have been identified in a large variety of species, all sharing the evolutionary conserved 'forkhead' DNA-binding domain, and the cloning and characterization of forkhead genes have continued in recent years. Forkhead transcription factors regulate the expression of countless genes downstream of important signalling pathways in most, if not all, tissues and cell types. Recent work has provided novel insights into the mechanisms that contribute to their functional diversity, including functional protein domains and interactions of forkheads with other transcription factors. Studies using loss- and gain-of-function models have elucidated the role of forkhead factors in developmental biology and cellular functions such as metabolism, cell division and cell survival. The importance of forkhead transcription factors is underlined by the developmental defects observed in mutant model organisms, and multiple human disorders and cancers which can be attributed to mutations within members of the forkhead gene family. This review provides a comprehensive overview of current knowledge on forkhead transcription factors, from structural organization and regulatory mechanisms to cellular and developmental functions in mice and humans. Finally, we will discuss how novel insights gained from involvement of 'Foxes' in the mechanisms underlying human pathology may create new opportunities for treatment strategies.
Collapse
Key Words
- cell cycle
- development
- forkhead
- fox
- immunoregulation
- transcription factor
- cbp, creb (camp-response-element-binding protein)-binding protein
- ccnb, cyclin b
- cdk, cyclin-dependent kinase
- cki, cdk inhibitor
- dyrk1a, dual-specificity tyrosine-phosphorylated and -regulated kinase 1a
- er, oestrogen receptor
- fha, forkhead-associated domain
- fm, foxh1 motif
- fox, forkhead box
- gadd45a, growth arrest and dna-damage-inducible protein 45α
- hdac, histone deacetylase
- iκb, inhibitory κb
- ikkβ, iκb kinase β
- mh domain, mothers against decapentaplegic homology domain
- nf-κb, nuclear factor κb
- nls, nuclear localization signal
- pkb, protein kinase b
- plk-1, polo-like kinase 1
- scf, skp2/cullin/f-box
- sgk, serum- and glucocorticoid-induced protein kinase
- smad, similar to mothers against decapentaplegic
- sid, smad-interaction domain
- sim, smad-interaction motif
- tgfβ, transforming growth factor β
Collapse
Affiliation(s)
- Patrick J E C Wijchers
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
66
|
Perera HK, Caldwell ME, Hayes-Patterson D, Teng L, Peshavaria M, Jetton TL, Labosky PA. Expression and shifting subcellular localization of the transcription factor, Foxd3, in embryonic and adult pancreas. Gene Expr Patterns 2006; 6:971-7. [PMID: 16750430 DOI: 10.1016/j.modgep.2006.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/08/2006] [Accepted: 04/05/2006] [Indexed: 11/27/2022]
Abstract
Multipotent progenitor cells self renew throughout an animal's lifetime and can differentiate to give rise to different cell types. Before we can fully understand the developmental potential of progenitor cells and control their differentiation both in vivo and in vitro as stem cells, identification and characterization of the genes that control stem cell fate must first be obtained. Foxd3, a member of the forkhead family of transcriptional regulators, is required for the maintenance of embryonic stem cells and trophoblast stem cells of the early mouse embryo. We describe here the expression of this protein in the developing pancreas. Foxd3 is expressed in most beta cells and infrequently in alpha and PP cells but is not expressed in somatostatin cells. The subcellular localization of Foxd3 varies with fat content in the diet; with a high fat diet the protein is found primarily in the cytoplasm while a low fat diet results in nuclear localization. Foxd3 is differentially localized in a rat model of diabetes: it is nuclear in ZDF rats but cytoplasmic in their lean counterparts. Foxd3 is nuclear in Lep(Ob/Ob) mice.
Collapse
Affiliation(s)
- Hemashi K Perera
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | |
Collapse
|