51
|
Martinez-Lopez JE, Moreno-Bravo JA, Madrigal MP, Martinez S, Puelles E. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog. Front Neuroanat 2015; 9:12. [PMID: 25741244 PMCID: PMC4330881 DOI: 10.3389/fnana.2015.00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/27/2015] [Indexed: 11/20/2022] Open
Abstract
In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh.
Collapse
Affiliation(s)
- Jesus E Martinez-Lopez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| | - Juan A Moreno-Bravo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| | - M Pilar Madrigal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| | - Salvador Martinez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain ; Instituto Murciano de Investigacion Biomedica IMIB-Arrixaca (CIBERSAM) Murcia, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| |
Collapse
|
52
|
Simão D, Pinto C, Piersanti S, Weston A, Peddie CJ, Bastos AE, Licursi V, Schwarz SC, Collinson LM, Salinas S, Serra M, Teixeira AP, Saggio I, Lima PA, Kremer EJ, Schiavo G, Brito C, Alves PM. Modeling Human Neural Functionality In Vitro: Three-Dimensional Culture for Dopaminergic Differentiation. Tissue Eng Part A 2015; 21:654-68. [DOI: 10.1089/ten.tea.2014.0079] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Daniel Simão
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Pinto
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Stefania Piersanti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Università di Roma La Sapienza, Rome, Italy
| | - Anne Weston
- Lincoln's Inn Fields Laboratories, Cancer Research UK London Research Institute, London, United Kingdom
| | - Christopher J. Peddie
- Lincoln's Inn Fields Laboratories, Cancer Research UK London Research Institute, London, United Kingdom
| | - André E.P. Bastos
- NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Valerio Licursi
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Università di Roma La Sapienza, Rome, Italy
| | | | - Lucy M. Collinson
- Lincoln's Inn Fields Laboratories, Cancer Research UK London Research Institute, London, United Kingdom
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France
- Université Montpellier I and II, Montpellier, France
| | - Margarida Serra
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P. Teixeira
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Università di Roma La Sapienza, Rome, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Università di Roma La Sapienza, Rome, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma La Sapienza, Rome, Italy
| | - Pedro A. Lima
- NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
| | - Eric J. Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France
- Université Montpellier I and II, Montpellier, France
| | - Giampietro Schiavo
- Lincoln's Inn Fields Laboratories, Cancer Research UK London Research Institute, London, United Kingdom
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Catarina Brito
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
53
|
Escobedo-Avila I, Vargas-Romero F, Molina-Hernández A, López-González R, Cortés D, De Carlos JA, Velasco I. Histamine impairs midbrain dopaminergic development in vivo by activating histamine type 1 receptors. Mol Brain 2014; 7:58. [PMID: 25112718 PMCID: PMC4237960 DOI: 10.1186/s13041-014-0058-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/30/2014] [Indexed: 12/02/2022] Open
Abstract
Background Histamine (HA) regulates the sleep-wake cycle, synaptic plasticity and memory in adult mammals. Dopaminergic specification in the embryonic ventral midbrain (VM) coincides with increased HA brain levels. To study the effect of HA receptor stimulation on dopamine neuron generation, we administered HA to dopamine progenitors, both in vitro and in vivo. Results Cultured embryonic day 12 (E12) VM neural stem/progenitor cells expressed transcripts for HA receptors H1R, H2R and H3R. These undifferentiated progenitors increased intracellular calcium upon HA addition. In HA-treated cultures, dopamine neurons significantly decreased after activation of H1R. We performed intrauterine injections in the developing VM to investigate HA effects in vivo. HA administration to E12 rat embryos notably reduced VM Tyrosine Hydroxylase (TH) staining 2 days later, without affecting GABA neurons in the midbrain, or serotonin neurons in the mid-hindbrain boundary. qRT-PCR and Western blot analyses confirmed that several markers important for the generation and maintenance of dopaminergic lineage such as TH, Lmx1a and Lmx1b were significantly diminished. To identify the cell type susceptible to HA action, we injected embryos of different developmental stages, and found that neural progenitors (E10 and E12) were responsive, whereas differentiated dopaminergic neurons (E14 and E16) were not susceptible to HA actions. Proliferation was significantly diminished, whereas neuronal death was not increased in the VM after HA administration. We injected H1R or H2R antagonists to identify the receptor responsible for the detrimental effect of HA on dopaminergic lineage and found that activation of H1R was required. Conclusion These results reveal a novel action of HA affecting dopaminergic lineage during VM development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México D,F,-04510, Mexico.
| |
Collapse
|
54
|
Roles for the TGFβ superfamily in the development and survival of midbrain dopaminergic neurons. Mol Neurobiol 2014; 50:559-73. [PMID: 24504901 DOI: 10.1007/s12035-014-8639-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/02/2014] [Indexed: 12/29/2022]
Abstract
The adult midbrain contains 75% of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson's disease. Despite 50 years of investigation, treatment for Parkinson's disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson's disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed.
Collapse
|
55
|
Hong S, Chung S, Leung K, Hwang I, Moon J, Kim KS. Functional roles of Nurr1, Pitx3, and Lmx1a in neurogenesis and phenotype specification of dopamine neurons during in vitro differentiation of embryonic stem cells. Stem Cells Dev 2013; 23:477-87. [PMID: 24172139 DOI: 10.1089/scd.2013.0406] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To elucidate detailed functional mechanisms of key fate-determining transcription factors (eg, Nurr1, Pitx3, and Lmx1a) and their functional interplay for midbrain dopamine (mDA) neurons, we developed highly efficient gain-of-function system by transducing the neural progenitors (NPs) derived from embryonic stem cells (ESCs) with retroviral vectors, allowing the analysis of downstream molecular and cellular effects. Overexpression of each factors, Nurr1, Pitx3, and Lmx1a robustly promoted the dopaminergic differentiation of ESC-NP cells exposed to sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF8). In addition, each of these factors directly interacts with potential binding sites within the tyrosine hydroxylase (TH) gene and activated its promoter activity. Interestingly, however, overexpression of Nurr1, but not of Pitx3 or Lmx1a, generated a significant number of nonneuronal TH-positive cells. In line with this, Pitx3 and Lmx1a, but not Nurr1, induced expression of the Ngn2 gene, which is critical for neurogenesis. We also observed that Pitx3 directly bound to its potential binding sites within the Ngn2 gene and the pan-neuronal marker β-tubulin III gene, suggesting that Pitx3 contributes to mDA neurogenesis by directly regulating these genes. Taken together, our data demonstrate that key mDA regulators (Nurr1, Pitx3, and Lmx1a) play overlapping as well as distinct roles during neurogenesis and neurotransmitter phenotype determination of mDA neurons.
Collapse
Affiliation(s)
- Sunghoi Hong
- 1 Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School , Belmont, Massachusetts
| | | | | | | | | | | |
Collapse
|
56
|
Joksimovic M, Awatramani R. Wnt/ -catenin signaling in midbrain dopaminergic neuron specification and neurogenesis. J Mol Cell Biol 2013; 6:27-33. [DOI: 10.1093/jmcb/mjt043] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
57
|
Momčilović O, Liu Q, Swistowski A, Russo-Tait T, Zhao Y, Rao MS, Zeng X. Genome wide profiling of dopaminergic neurons derived from human embryonic and induced pluripotent stem cells. Stem Cells Dev 2013; 23:406-20. [PMID: 24074155 DOI: 10.1089/scd.2013.0412] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent advances in human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) biology enable generation of dopaminergic neurons for potential therapy and drug screening. However, our current understanding of molecular and cellular signaling that controls human dopaminergic development and function is limited. Here, we report on a whole genome analysis of gene expression during dopaminergic differentiation of human ESC/iPSC using Illumina bead microarrays. We generated a transcriptome data set containing the expression levels of 28,688 unique transcripts by profiling five lines (three ESC and two iPSC lines) at four stages of differentiation: (1) undifferentiated ESC/iPSC, (2) neural stem cells, (3) dopaminergic precursors, and (4) dopaminergic neurons. This data set provides comprehensive information about genes expressed at each stage of differentiation. Our data indicate that distinct pathways are activated during neural and dopaminergic neuronal differentiation. For example, WNT, sonic hedgehog (SHH), and cAMP signaling pathways were found over-represented in dopaminergic populations by gene enrichment and pathway analysis, and their role was confirmed by perturbation analyses using RNAi (small interfering RNA of SHH and WNT) or small molecule [dibutyryl cyclic AMP (dcAMP)]. In summary, whole genome profiling of dopaminergic differentiation enables systematic analysis of genes/pathways, networks, and cellular/molecular processes that control cell fate decisions. Such analyses will serve as the foundation for better understanding of dopaminergic development, function, and development of future stem cell-based therapies.
Collapse
|
58
|
Yang S, Sun HM, Yan JH, Xue H, Wu B, Dong F, Li WS, Ji FQ, Zhou DS. Conditioned medium from human amniotic epithelial cells may induce the differentiation of human umbilical cord blood mesenchymal stem cells into dopaminergic neuron-like cells. J Neurosci Res 2013; 91:978-86. [PMID: 23633297 DOI: 10.1002/jnr.23225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/05/2013] [Accepted: 02/25/2013] [Indexed: 11/07/2022]
Abstract
Dopaminergic (DA) neuron therapy has been established as a new clinical tool for treating Parkinson's disease (PD). Prior to cell transplantation, there are two primary issues that must be resolved: one is the appropriate seed cell origin, and the other is the efficient inducing technique. In the present study, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) were used as the available seed cells, and conditioned medium from human amniotic epithelial cells (ACM) was used as the inducing reagent. Results showed that the proportion of DA neuron-like cells from hUCB-MSCs was significantly increased after cultured in ACM, suggested by the upregulation of DAT, TH, Nurr1, and Pitx3. To identify the process by which ACM induces DA neuron differentiation, we pretreated hUCB-MSCs with k252a, the Trk receptor inhibitor of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and found that the proportion of DA neuron-like cells was significantly decreased compared with ACM-treated hUCB-MSCs, suggesting that NGF and BDNF in ACM were involved in the differentiation process. However, we could not rule out the involvement of other unidentified factors in the ACM, because ACM + k252a treatment does not fully block DA neuron-like cell differentiation compared with control. The transplantation of ACM-induced hUCB-MSCs could ameliorate behavioral deficits in PD rats, which may be associated with the survival of engrafted DA neuron-like cells. In conclusion, we propose that hUCB-MSCs are a good source of DA neuron-like cells and that ACM is a potential inducer to obtain DA neuron-like cells from hUCB-MSCs in vitro for an ethical and legal cell therapy for PD.
Collapse
MESH Headings
- Amnion/cytology
- Analysis of Variance
- Animals
- Apomorphine
- Brain-Derived Neurotrophic Factor/pharmacology
- Cell Differentiation/drug effects
- Culture Media, Conditioned/pharmacology
- Disease Models, Animal
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dopaminergic Neurons/drug effects
- Enzyme-Linked Immunosorbent Assay
- Epithelial Cells/chemistry
- Fetal Blood/cytology
- Fetus
- Flow Cytometry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Mesenchymal Stem Cell Transplantation/methods
- Mesenchymal Stem Cells/drug effects
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Oxidopamine/toxicity
- Parkinson Disease/etiology
- Parkinson Disease/physiopathology
- Parkinson Disease/surgery
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkB/metabolism
- Stereotyped Behavior/drug effects
- Stereotyped Behavior/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Strausfeld NJ, Hirth F. Deep homology of arthropod central complex and vertebrate basal ganglia. Science 2013; 340:157-61. [PMID: 23580521 DOI: 10.1126/science.1231828] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The arthropod central complex and vertebrate basal ganglia derive from embryonic basal forebrain lineages that are specified by an evolutionarily conserved genetic program leading to interconnected neuropils and nuclei that populate the midline of the forebrain-midbrain boundary region. In the substructures of both the central complex and basal ganglia, network connectivity and neuronal activity mediate control mechanisms in which inhibitory (GABAergic) and modulatory (dopaminergic) circuits facilitate the regulation and release of adaptive behaviors. Both basal ganglia and central complex dysfunction result in behavioral defects including motor abnormalities, impaired memory formation, attention deficits, affective disorders, and sleep disturbances. The observed multitude of similarities suggests deep homology of arthropod central complex and vertebrate basal ganglia circuitries underlying the selection and maintenance of behavioral actions.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
60
|
Gasparini F, Degasperi V, Shimeld SM, Burighel P, Manni L. Evolutionary conservation of the placodal transcriptional network during sexual and asexual development in chordates. Dev Dyn 2013; 242:752-66. [DOI: 10.1002/dvdy.23957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 01/14/2023] Open
Affiliation(s)
- Fabio Gasparini
- Dipartimento di Biologia; Università degli Studi di Padova; Padova; Italy
| | | | - Sebastian M. Shimeld
- Department of Zoology; University of Oxford; South Parks Road; Oxford; United Kingdom
| | - Paolo Burighel
- Dipartimento di Biologia; Università degli Studi di Padova; Padova; Italy
| | - Lucia Manni
- Dipartimento di Biologia; Università degli Studi di Padova; Padova; Italy
| |
Collapse
|
61
|
Zhou Y, Sun M, Li H, Yan M, He Z, Wang W, Wang W, Lu S. Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy. Cytotherapy 2013; 15:467-80. [PMID: 23403361 DOI: 10.1016/j.jcyt.2013.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/12/2012] [Accepted: 01/06/2013] [Indexed: 01/27/2023]
Abstract
BACKGROUND AIMS The use of adipose mesenchymal stromal cells (ASCs) in cellular and genic therapy has attracted considerable attention as a possible treatment for neurodegenerative disorders, including Parkinson disease. However, the effects of gene therapy combined with intracerebral cell transplantation have not been well defined. Recent studies have demonstrated the respective roles of LIM homeobox transcription factor 1, alpha (LMX1A) and Neurturin (NTN) in the commitment of embryonic stem cells (ESCs) to a midbrain dopaminergic neuronal fate and the commitment of mesenchymal stromal cells to cells supporting the nutrition and protection of neurons. METHODS We investigated a novel in vitro neuronal differentiation strategy with the use of LMX1A and Neurturin. We were able to elicit a neural phenotype regarding cell morphology, specific gene/protein expression and physiological function. Neuronal-primed ASCs derived from rhesus monkey (rASCs) combined with adenovirus containing NTN and tyrosine hydroxylase (TH) (Ad-NTN-TH) were implanted into the striatum and substantia nigra of methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-lesioned hemi-parkinsonian rhesus monkeys. Monkeys were monitored with the use of behavioral tests and health measures until the fourth month after implantation. RESULTS The differentiated cells transcribed and expressed a variety of dopaminergic neuron-specific genes involved in the SHH/LMX1A pathway. Single-photon emission computed tomography analysis and postmortem analysis revealed that the grafting of rASCs combined with Ad-NTN-TH had neuroprotective effects compared with Ad-NTN-TH or rASCs alone. Behavioral measures demonstrated autograft survival and symptom amelioration. CONCLUSIONS These findings may lead to cellular sources for autologous transplantation of Parkinson disease. Combined transplantation of Ad-NTN-TH and induced rASCs expressing LMX1A and NTN may be a better therapy candidate for the treatment of Parkinson disease.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Science, Kunming, China
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Nissim-Eliraz E, Zisman S, Schatz O, Ben-Arie N. Nato3 Integrates with the Shh-Foxa2 Transcriptional Network Regulating the Differentiation of Midbrain Dopaminergic Neurons. J Mol Neurosci 2012; 51:13-27. [DOI: 10.1007/s12031-012-9939-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/06/2012] [Indexed: 11/28/2022]
|
63
|
Neto SC, Salti A, Puschban Z, Stefanova N, Nat R, Dechant G, Wenning GK. Cell fate analysis of embryonic ventral mesencephalic grafts in the 6-OHDA model of Parkinson's disease. PLoS One 2012; 7:e50178. [PMID: 23209667 PMCID: PMC3510255 DOI: 10.1371/journal.pone.0050178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Evidence from carefully conducted open label clinical trials suggested that therapeutic benefit can be achieved by grafting fetal dopaminergic (DAergic) neurons derived from ventral mesencephalon (VM) into the denervated striatum of Parkinson's disease (PD) patients. However, two double-blind trials generated negative results reporting deleterious side effects such as prominent dyskinesias. Heterogeneous composition of VM grafts is likely to account for suboptimal clinical efficacy.We consider that gene expression patterns of the VM tissue needs to be better understood by comparing the genetic signature of the surviving and functioning grafts with the cell suspensions used for transplantation. In addition, it is crucial to assess whether the grafted cells exhibit the DAergic phenotype of adult substantia nigra pars compacta (SNpc). To investigate this further, we used a GFP reporter mouse as source of VM tissue that enabled the detection and dissection of the grafts 6 weeks post implantation. A comparative gene expression analysis of the VM cell suspension and grafts revealed that VM grafts continue to differentiate post-implantation. In addition, implanted grafts showed a mature SNpc-like molecular DAergic phenotype with similar expression levels of TH, Vmat2 and Dat. However, by comparing gene expression of the adult SNpc with dissected grafts we detected a higher expression of progenitor markers in the grafts. Finally, when compared to the VM cell suspension, post-grafting there was a higher expression of markers inherent to glia and other neuronal populations.In summary, our data highlight the dynamic development of distinctive DAergic and non-DAergic gene expression markers associated with the maturation of VM grafts in vivo. The molecular signature of VM grafts and its functional relevance should be further explored in future studies aimed at the optimization of DAergic cell therapy approaches in PD.
Collapse
Affiliation(s)
- Sonya Carvalho Neto
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
64
|
Alwin Prem Anand A, Gowri Sankar S, Kokila Vani V. Immortalization of neuronal progenitors using SV40 large T antigen and differentiation towards dopaminergic neurons. J Cell Mol Med 2012; 16:2592-610. [PMID: 22863662 PMCID: PMC4118228 DOI: 10.1111/j.1582-4934.2012.01607.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
Transplantation is common in clinical practice where there is availability of the tissue and organ. In the case of neurodegenerative disease such as Parkinson's disease (PD), transplantation is not possible as a result of the non-availability of tissue or organ and therefore, cell therapy is an innovation in clinical practice. However, the availability of neuronal cells for transplantation is very limited. Alternatively, immortalized neuronal progenitors could be used in treating PD. The neuronal progenitor cells can be differentiated into dopaminergic phenotype. Here in this article, the current understanding of the molecular mechanisms involved in the differentiation of dopaminergic phenotype from the neuronal progenitors immortalized with SV40 LT antigen is discussed. In addition, the methods of generating dopaminergic neurons from progenitor cells and the factors that govern their differentiation are elaborated. Recent advances in cell-therapy based transplantation in PD patients and future prospects are discussed.
Collapse
|
65
|
Momčilović O, Montoya-Sack J, Zeng X. Dopaminergic differentiation using pluripotent stem cells. J Cell Biochem 2012; 113:3610-9. [DOI: 10.1002/jcb.24251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
66
|
Salti A, Nat R, Neto S, Puschban Z, Wenning G, Dechant G. Expression of early developmental markers predicts the efficiency of embryonic stem cell differentiation into midbrain dopaminergic neurons. Stem Cells Dev 2012; 22:397-411. [PMID: 22889265 DOI: 10.1089/scd.2012.0238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dopaminergic neurons derived from pluripotent stem cells are among the best investigated products of in vitro stem cell differentiation owing to their potential use for neurorestorative therapy of Parkinson's disease. However, the classical differentiation protocols for both mouse and human pluripotent stem cells generate a limited percentage of dopaminergic neurons and yield a considerable cellular heterogeneity comprising numerous scarcely characterized cell populations. To improve pluripotent stem cell differentiation protocols for midbrain dopaminergic neurons, we established extensive and strictly quantitative gene expression profiles, including markers for pluripotent cells, neural progenitors, non-neural cells, pan-neuronal and glial cells, neurotransmitter phenotypes, midbrain and nonmidbrain populations, floor plate and basal plate populations, as well as for Hedgehog, Fgf, and Wnt signaling pathways. The profiles were applied to discrete stages of in vitro differentiation of mouse embryonic stem cells toward the dopaminergic lineage and after transplantation into the striatum of 6-hydroxy-dopamine-lesioned rats. The comparison of gene expression in vitro with stages in the developing ventral midbrain between embryonic day 11.5 and 13.5 ex vivo revealed dynamic changes in the expression of transcription factors and signaling molecules. Based on these profiles, we propose quantitative gene expression milestones that predict the efficiency of dopaminergic differentiation achieved at the end point of the protocol, already at earlier stages of differentiation.
Collapse
Affiliation(s)
- Ahmad Salti
- Institute for Neuroscience, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
67
|
Seiz EG, Ramos-Gómez M, Courtois ET, Tønnesen J, Kokaia M, Liste Noya I, Martínez-Serrano A. Human midbrain precursors activate the expected developmental genetic program and differentiate long-term to functional A9 dopamine neurons in vitro. Enhancement by Bcl-X(L). Exp Cell Res 2012; 318:2446-59. [PMID: 22884477 DOI: 10.1016/j.yexcr.2012.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/12/2012] [Accepted: 07/24/2012] [Indexed: 12/29/2022]
Abstract
Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and pro-dopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-X(L) induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-X(L) anticipates and enhances DAn generation.
Collapse
Affiliation(s)
- Emma G Seiz
- Departmento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-C.S.I.C, Cantoblanco, 28049-Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
68
|
Schwartz CM, Tavakoli T, Jamias C, Park SS, Maudsley S, Martin B, Phillips TM, Yao PJ, Itoh K, Ma W, Rao MS, Arenas E, Mattson MP. Stromal factors SDF1α, sFRP1, and VEGFD induce dopaminergic neuron differentiation of human pluripotent stem cells. J Neurosci Res 2012; 90:1367-81. [PMID: 22535492 PMCID: PMC3350575 DOI: 10.1002/jnr.23064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/16/2012] [Indexed: 12/21/2022]
Abstract
Human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons hold potential for treating Parkinson's disease (PD) through cell replacement therapy. Generation of DA neurons from hESCs has been achieved by coculture with the stromal cell line PA6, a source of stromal cell-derived inducing activity (SDIA). However, the factors produced by stromal cells that result in SDIA are largely undefined. We previously reported that medium conditioned by PA6 cells can generate functional DA neurons from NTera2 human embryonal carcinoma stem cells. Here we show that PA6-conditioned medium can induce DA neuronal differentiation in both NTera2 cells and the hESC I6 cell line. To identify the factor(s) responsible for SDIA, we used large-scale microarray analysis of gene expression combined with mass spectrometric analysis of PA6-conditioned medium (CM). The candidate factors, hepatocyte growth factor (HGF), stromal cell-derived factor-1 α (SDF1α), secreted frizzled-related protein 1 (sFRP1), and vascular endothelial growth factor D (VEGFD) were identified, and their concentrations in PA6 CM were established by immunoaffinity capillary electrophoresis. Upon addition of SDF1α, sFRP1, and VEGFD to the culture medium, we observed an increase in the number of cells expressing tyrosine hydroxylase (a marker for DA neurons) and βIII-tubulin (a marker for immature neurons) in both the NTera2 and I6 cell lines. These results indicate that SDF1α, sFRP1, and VEGFD are major components of SDIA and suggest the potential use of these defined factors to elicit DA differentiation of pluripotent human stem cells for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Catherine M. Schwartz
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
- Department of Medical Biochemistry and Biophysics, Laboratory of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Tahereh Tavakoli
- Stem Cell Center, Developmental Biology, American Type Culture Collection, Manassas, VA
| | - Charmaine Jamias
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
| | - Sung-Soo Park
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
| | - Stuart Maudsley
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
| | - Bronwen Martin
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
| | - Terry M. Phillips
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Laboratory of Bioengineering and Physical Science, Bethesda, MD
| | - Pamela J. Yao
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
| | - Katsuhiko Itoh
- Department of Clinical Molecular Biology, Kyoto University, Kyoto, Japan
| | - Wu Ma
- Stem Cell Center, Developmental Biology, American Type Culture Collection, Manassas, VA
| | | | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Laboratory of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Mark P. Mattson
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
69
|
Ratzka A, Baron O, Stachowiak MK, Grothe C. Fibroblast growth factor 2 regulates dopaminergic neuron development in vivo. J Neurochem 2012; 122:94-105. [DOI: 10.1111/j.1471-4159.2012.07768.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
70
|
Hayes L, Zhang Z, Albert P, Zervas M, Ahn S. Timing of Sonic hedgehog and Gli1 expression segregates midbrain dopamine neurons. J Comp Neurol 2011; 519:3001-18. [PMID: 21713771 PMCID: PMC3154975 DOI: 10.1002/cne.22711] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ventral midbrain (vMb) is organized into distinct anatomical domains and contains cohorts of functionally distinct subtypes of midbrain dopamine (mDA) neurons. We tested the hypothesis that genetic history and timing of gene expression within mDA neuron progenitors impart spatial diversity. Using genetic inducible fate mapping to mark the Sonic hedgehog (Shh) and Gli1 lineages at varying embryonic stages, we performed a quantitative and qualitative comparison of the two lineages' contribution to the mDA neuron domains. Dynamic changes in Shh and Gli1 expression in the vMb primordia delineated their spatial contribution to the embryonic day 12.5 vMb: Both lineages first contributed to the medial domain, but subsequently the Gli1 lineage exclusively contributed to the lateral vMb while the Shh lineage expanded more broadly across the vMb. The contribution of both lineages to the differentiated mDA neuron domain was initially biased anteriorly and became more uniform across the anterior/posterior vMb throughout development. Our findings demonstrate that the early Shh and Gli1 lineages specify mDA neurons of the substantia nigra pars compacta while the late Shh and Gli1 lineages maintain their progenitor state longer in the posterior vMb to extend the production of mDA neurons in the ventral tegmental area. Together, our study demonstrates that the timing of gene expression along with the genetic lineage (Shh or Gli1) within the neural progenitors segregate mDA neurons into distinct spatial domains.
Collapse
Affiliation(s)
- Lindsay Hayes
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
- Brown-NIH Graduate Partnership Program, Department of Neuroscience, Brown University, Providence, RI 02906
| | - Zhiwei Zhang
- Biostatistics and Bioinformatics Branch, Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852
| | - Paul Albert
- Biostatistics and Bioinformatics Branch, Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852
| | - Mark Zervas
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02906
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
71
|
Signaling of Glial Cell Line-Derived Neurotrophic Factor and Its Receptor GFRα1 Induce Nurr1 and Pitx3 to Promote Survival of Grafted Midbrain-Derived Neural Stem Cells in a Rat Model of Parkinson Disease. J Neuropathol Exp Neurol 2011; 70:736-47. [DOI: 10.1097/nen.0b013e31822830e5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
72
|
Flames N, Hobert O. Transcriptional Control of the Terminal Fate of Monoaminergic Neurons. Annu Rev Neurosci 2011; 34:153-84. [DOI: 10.1146/annurev-neuro-061010-113824] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nuria Flames
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
- Genes & Disease Program, Center for Genomic Regulation (CRG), Barcelona, Spain E-08003;
- Present address: Instituto de Biomedicina de Valencia IBV-CSIC, E-46010 Valencia, Spain
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
| |
Collapse
|
73
|
Baizabal JM, Cano-Martínez A, Valencia C, Santa-Olalla J, Young KM, Rietze RL, Bartlett PF, Covarrubias L. Glial commitment of mesencephalic neural precursor cells expanded as neurospheres precludes their engagement in niche-dependent dopaminergic neurogenesis. Stem Cells Dev 2011; 21:1047-58. [PMID: 21615282 DOI: 10.1089/scd.2011.0241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neural precursor cells (NPCs) with high proliferative potential are commonly expanded in vitro as neurospheres. As a population, neurosphere cells show long-term self-renewal capacity and multipotentiality in vitro. These features have led to the assumption that neurosphere cells represent an expansion of the endogenous NPCs residing within the embryonic and adult brain. If this is the case, in principle, bona-fide expansion of endogenous NPCs should not significantly affect their capacity to respond to their original niche of differentiation. To address this issue, we generated primary neurospheres from the dopaminergic niche of the ventral mesencephalon and then transplanted these cells to their original niche within mesencephalic explant cultures. Primary neurosphere cells showed poor capacity to generate dopaminergic neurons in the mesencephalic niche of dopaminergic neurogenesis. Instead, most primary neurosphere cells showed glial commitment as they differentiated into astrocytes in an exclusively neurogenic niche. Subculture of primary cells demonstrated that the neurosphere assay does not amplify niche-responsive dopaminergic progenitors. Further, neurospheres cells were largely unable to acquire the endogenous positional identity within the Nkx6.1(+), Nkx2.2(+), and Pax7(+) domains of mesencephalic explants. Finally, we demonstrate that our observations are not specific for embryonic mesencephalic cells, as NPCs in the adult subventricular zone also showed an intrinsic fate switch from neuronal to glial potential upon neurosphere amplification. Our data suggest that neurosphere formation does not expand the endogenous neurogenic NPCs but rather promotes amplification of gliogenic precursors that do not respond to niche-derived signals of cellular specification and differentiation.
Collapse
Affiliation(s)
- José-Manuel Baizabal
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Krasnova IN, Ladenheim B, Hodges AB, Volkow ND, Cadet JL. Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain. PLoS One 2011; 6:e19179. [PMID: 21547080 PMCID: PMC3081849 DOI: 10.1371/journal.pone.0019179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/23/2011] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine (METH) is an addictive and neurotoxic psychostimulant widely abused in the USA and throughout the world. When administered in large doses, METH can cause depletion of striatal dopamine terminals, with preservation of midbrain dopaminergic neurons. Because alterations in the expression of transcription factors that regulate the development of dopaminergic neurons might be involved in protecting these neurons after toxic insults, we tested the possibility that their expression might be affected by toxic doses of METH in the adult brain. Male Sprague-Dawley rats pretreated with saline or increasing doses of METH were challenged with toxic doses of the drug and euthanized two weeks later. Animals that received toxic METH challenges showed decreases in dopamine levels and reductions in tyrosine hydroxylase protein concentration in the striatum. METH pretreatment protected against loss of striatal dopamine and tyrosine hydroxylase. In contrast, METH challenges caused decreases in dopamine transporters in both saline- and METH-pretreated animals. Interestingly, METH challenges elicited increases in dopamine transporter mRNA levels in the midbrain in the presence but not in the absence of METH pretreatment. Moreover, toxic METH doses caused decreases in the expression of the dopamine developmental factors, Shh, Lmx1b, and Nurr1, but not in the levels of Otx2 and Pitx3, in saline-pretreated rats. METH pretreatment followed by METH challenges also decreased Nurr1 but increased Otx2 and Pitx3 expression in the midbrain. These findings suggest that, in adult animals, toxic doses of METH can differentially influence the expression of transcription factors involved in the developmental regulation of dopamine neurons. The combined increases in Otx2 and Pitx3 expression after METH preconditioning might represent, in part, some of the mechanisms that served to protect against METH-induced striatal dopamine depletion observed after METH preconditioning.
Collapse
Affiliation(s)
- Irina N. Krasnova
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Bethesda, Maryland, United States of America
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Bethesda, Maryland, United States of America
| | - Amber B. Hodges
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Bethesda, Maryland, United States of America
- Department of Psychology, Morgan State University, Baltimore, Maryland, United States of America
| | - Nora D. Volkow
- National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), U.S. Department of Health and Human Services (DHHS), Bethesda, Maryland, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
75
|
Fujimoto E, Stevenson TJ, Chien CB, Bonkowsky JL. Identification of a dopaminergic enhancer indicates complexity in vertebrate dopamine neuron phenotype specification. Dev Biol 2011; 352:393-404. [PMID: 21276790 PMCID: PMC3069253 DOI: 10.1016/j.ydbio.2011.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 01/05/2023]
Abstract
The dopaminergic neurons of the basal ganglia play critical roles in CNS function and human disease, but specification of dopamine neuron phenotype is poorly understood in vertebrates. We performed an in vivo screen in zebrafish to identify dopaminergic neuron enhancers, in order to facilitate studies on the specification of neuronal identity, connectivity, and function in the basal ganglia. Based primarily on identification of conserved non-coding elements, we tested 54 DNA elements from four species (zebrafish, pufferfish, mouse, and rat), that included 21 genes with known or putative roles in dopaminergic neuron specification or function. Most elements failed to drive CNS expression or did not express specifically in dopaminergic neurons. However, we did isolate a discrete enhancer from the otpb gene that drove specific expression in diencephalic dopaminergic neurons, although it did not share sequence conservation with regulatory regions of otpa or other dopamine-specific genes. For the otpb enhancer, regulation of expression in dopamine neurons requires multiple elements spread across a large genomic area. In addition, we compared our in vivo testing with in silico analysis of genomic regions for genes involved in dopamine neuron function, but failed to find conserved regions that functioned as enhancers. We conclude that regulation of dopaminergic neuron phenotype in vertebrates is regulated by dispersed regulatory elements.
Collapse
Affiliation(s)
- Esther Fujimoto
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84132
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Tamara J. Stevenson
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84132
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132
| |
Collapse
|
76
|
Malgrange B, Borgs L, Grobarczyk B, Purnelle A, Ernst P, Moonen G, Nguyen L. Using human pluripotent stem cells to untangle neurodegenerative disease mechanisms. Cell Mol Life Sci 2011; 68:635-49. [PMID: 20976521 PMCID: PMC11115022 DOI: 10.1007/s00018-010-0557-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/14/2010] [Accepted: 10/04/2010] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells, including embryonic (hES) and induced pluripotent stem cells (hiPS), retain the ability to self-renew indefinitely, while maintaining the capacity to differentiate into all cell types of the nervous system. While human pluripotent cell-based therapies are unlikely to arise soon, these cells can currently be used as an inexhaustible source of committed neurons to perform high-throughput screening and safety testing of new candidate drugs. Here, we describe critically the available methods and molecular factors that are used to direct the differentiation of hES or hiPS into specific neurons. In addition, we discuss how the availability of patient-specific hiPS offers a unique opportunity to model inheritable neurodegenerative diseases and untangle their pathological mechanisms, or to validate drugs that would prevent the onset or the progression of these neurological disorders.
Collapse
|
77
|
Jeong Y, Dolson DK, Waclaw RR, Matise MP, Sussel L, Campbell K, Kaestner KH, Epstein DJ. Spatial and temporal requirements for sonic hedgehog in the regulation of thalamic interneuron identity. Development 2011; 138:531-41. [PMID: 21205797 DOI: 10.1242/dev.058917] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In caudal regions of the diencephalon, sonic hedgehog (Shh) is expressed in the ventral midline of prosomeres 1-3 (p1-p3), which underlie the pretectum, thalamus and prethalamus, respectively. Shh is also expressed in the zona limitans intrathalamica (zli), a dorsally projecting spike that forms at the p2-p3 boundary. The presence of two Shh signaling centers in the thalamus has made it difficult to determine the specific roles of either one in regional patterning and neuronal fate specification. To investigate the requirement of Shh from a focal source of expression in the ventral midline of the diencephalon, we used a newly generated mouse line carrying a targeted deletion of the 525 bp intronic sequence mediating Shh brain enhancer-1 (SBE1) activity. In SBE1 mutant mice, Shh transcription was initiated but not maintained in the ventral midline of the rostral midbrain and caudal diencephalon, yet expression in the zli was unaffected. In the absence of ventral midline Shh, rostral thalamic progenitors (pTH-R) adopted the molecular profile of a more caudal thalamic subtype (pTH-C). Surprisingly, despite their early mis-specification, neurons derived from the pTH-R domain continued to migrate to their proper thalamic nucleus, extended axons along their normal trajectory and expressed some, but not all, of their terminal differentiation markers. Our results, and those of others, suggest a model whereby Shh signaling from distinct spatial and temporal domains in the diencephalon exhibits unique and overlapping functions in the development of discrete classes of thalamic interneurons.
Collapse
Affiliation(s)
- Yongsu Jeong
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Modulation of the generation of dopaminergic neurons from human neural stem cells by Bcl-X(L): mechanisms of action. VITAMINS AND HORMONES 2011; 87:175-205. [PMID: 22127243 DOI: 10.1016/b978-0-12-386015-6.00029-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the developmental mechanisms governing dopaminergic neuron generation and maintenance is crucial for the development of neuronal replacement therapeutic procedures, like in Parkinson's disease (PD), but also for research aimed at drug screening and pharmacology. In the present chapter, we review the present situation using stem cells of different origins (pluripotent and multipotent) and summarize current manipulations of stem cells for the enhancement of dopaminergic neuron generation, focusing on the actions of Bcl-X(L). Bcl-X(L) not only enhances dopaminergic neuron survival but also augments the expression of key developmental and maintenance genes, and, through the lengthening of the cell cycle early during differentiation, regulates cell fate decisions, producing a net enhancement of neurogenesis. The relevance of these findings is discussed in the context of basic neurogenesis and also for the development of efficient cell therapy in PD.
Collapse
|
79
|
Thomas M. Role of transcription factors in cell replacement therapies for neurodegenerative conditions. Regen Med 2010; 5:441-50. [PMID: 20455654 DOI: 10.2217/rme.10.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease is the second most common neurological condition, behind dementia, for which there is currently no cure. A promising curative treatment approach is cell replacement therapy, which involves the introduction of new dopaminergic cells into a degenerative Parkinson's disease brain. The future progression of this field into a clinically viable treatment option is reliant on generating replacement dopaminergic cells. Furthermore, as the ability of transplanted dopaminergic neurons to form connections with host tissue is dependent on where the cells are derived from, the replacement dopaminergic cells will need to be phenotypically similar to substantia nigra dopaminergic neurons. This article focuses on how developmental transcription factors have been utilized to assist the progression of stem cell therapies for Parkinson's disease. Key transcription factor-mediated stages of substantia nigra dopaminergic neuronal development is described in the belief that a comprehensive understanding of this specific dopaminergic differentiation pathway is necessary for the progression of successful cell therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Meghan Thomas
- Parkinson's Center (ParkC), Vario Health Institute, Edith Cowan University, Perth, Australia.
| |
Collapse
|
80
|
Greenbaum L, Alkelai A, Rigbi A, Kohn Y, Lerer B. Evidence for association of the GLI2
gene with tardive dyskinesia in patients with chronic schizophrenia. Mov Disord 2010; 25:2809-17. [DOI: 10.1002/mds.23377] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
81
|
Differentiation of non-mesencephalic neural stem cells towards dopaminergic neurons. Neuroscience 2010; 170:417-28. [PMID: 20643196 DOI: 10.1016/j.neuroscience.2010.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 12/22/2022]
Abstract
Neural stem cells (NSCs), either isolated from fetal or adult human brain or derived from induced pluripotent stem cells, are now considered major candidates for in vitro generation of transplantable dopaminergic (DA) neurons and modeling of Parkinson's disease. It is generally thought that in vitro differentiation of neural stem cells into meso-diencephalic dopaminergic neurons, requires recapitulation of dopaminergic differentiation pathway normally occurring in the ventral mesencephalon during embryogenesis. This dopaminergic pathway is partially activated by a combination of the extracellular induction factors Sonic Hedgehog (Shh), Fibroblast Growth Factor 8 (FGF8) and Wnt1 that trigger specific intracellular transcription cascades. In vitro mimicking of these embryonic ventral mesencephalic conditions has been successful for dopaminergic differentiation of embryonic stem cells and ventral mesencephalic NSCs. Dopaminergic differentiation of non-mesencephalic NSCs (nmNSCs), however, is considered arduous. Here we examine whether Shh, FGF8 and Wnt1 can activate typical dopaminergic transcription factors, such as Lmx1a, Msx1 and Otx2 in nmNSCs. We found that Shh, FGF8 and Wnt1 induced the expression of Lmx1a and Otx2 in nmNSCs resulting in the differentiation of up to 39% of the nmNSCs into neurons expressing Pitx3. However, only a low number ( approximately 13%) of these cells became more DA-like neurons also expressing tyrosine hydroxylase (TH). The histone deacetylase (HDAC)-inhibitor trichostatin A combined with Shh, FGF8 and Wnt1 caused orchestrated induction of Lmx1a, Otx2, Msx1 plus the early DA transcription factor En1. Now significantly increased numbers of TH ( approximately 22%) and Pitx3 ( approximately 33%) neurons were observed. Most of these cells coexpressed the DA markers DAT and Vmat2. Taken together, we demonstrate that nmNSCs indeed can be differentiated towards DA-like neurons, but this differentiation is far from complete in comparison to ventral mesencephalic NSCs and embryonic stem cells; most likely, the nmNSCs lack the proper "primed" epigenetic state of these cells for DA differentiation facilitating the induction of DA specific transcription factors.
Collapse
|
82
|
Nobre A, Kalve I, Cesnulevicius K, Ragancokova D, Rangancokova D, Ratzka A, Halfer N, Wesemann M, Krampfl K, Claus P, Grothe C. Characterization and differentiation potential of rat ventral mesencephalic neuronal progenitor cells immortalized with SV40 large T antigen. Cell Tissue Res 2010; 340:29-43. [PMID: 20177706 DOI: 10.1007/s00441-010-0933-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/19/2010] [Indexed: 01/01/2023]
Abstract
Neuronal progenitor cells (NPCs) possess high potential for use in regenerative medicine. To overcome their limited mitotic competence, various immortalization strategies have been applied that allow their prolonged maintenance and expansion in vitro. Such immortalized cells can be used for the design and discovery of new cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. We immortalized rat ventral mesencephalic NPCs by using SV40 large T antigen (SV40Tag). All cell clones displayed a two- to three-fold higher proliferation rate compared with the primary cells. In order to induce dopaminergic differentiation of generated cell clones, both glial-derived neurotrophic factor and di-butyryl cyclic adenosine monophosphate were applied. Treated cells were then characterized regarding the expression of dopaminergic lineage markers, differentiation of various cell populations, calcium imaging in the presence of kainate, and immunohistochemistry after intrastriatal transplantation. Treated cells displayed morphological maturation, and calcium imaging revealed neuronal properties in the presence of kainate. These cells also expressed low mRNA levels of the dopamine transporter and tyrosine hydroxylase (TH), although no TH-immunopositive neurons were found. Intrastriatal transplantation into the neurotoxin-lesioned rats did not induce further differentiation. As an alternative approach, we silenced SV40Tag with short interfering RNA, but this was not sufficient to trigger differentiation into dopaminergic neurons. Nevertheless, neuronal and glial cells were detected as shown by beta-tubulin type III and glial fibrillary acidic protein staining, respectively. SV40Tag cells are suitable for carrying out controlled genetic modifications as shown by overexpression of enhanced green fluorescence protein after efficient non-viral transfection.
Collapse
Affiliation(s)
- André Nobre
- Institute of Neuroanatomy, Hannover Medical School, 30625, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M. Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Methods 2009; 186:60-7. [PMID: 19903493 DOI: 10.1016/j.jneumeth.2009.11.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 10/06/2009] [Accepted: 11/04/2009] [Indexed: 01/19/2023]
Abstract
Neuro 2A (N2a) is a mouse neural crest-derived cell line that has been extensively used to study neuronal differentiation, axonal growth and signaling pathways. A convenient characteristic of these cells is their ability to differentiate into neurons within a few days. However, most differentiation methods reported for N2a cells do not provide information about the neuronal types obtained after each treatment. In this study, we evaluated the generation of N2a dopamine neurons following treatment with a number of factors known to induce neuronal differentiation. Our results showed that N2a cells express Nurr-related factor 1 (Nurr1) and produce low levels of tyrosine hydroxylase (TH) and dopamine. Both TH and dopamine levels were significantly enhanced in the presence of dibutyryl cyclic adenosine monophosphate (dbcAMP), as evidenced by Western blot, immunocytochemistry and high performance liquid chromatography (HPLC). In contrast to dbcAMP, other factors such as transforming growth factor beta1 (TGF beta 1), bone morphogenetic protein 4 (BMP4), glial cell-derived neurotrophic factor (GDNF) and retinoic acid (RA) did not increase TH expression. Further investigation confirmed that the effect of dbcAMP on production of TH-positive neurons was mediated through cyclic AMP (cAMP) responsive element binding protein (CREB) and it was antagonized by RA. Thus, although various treatments can be used to generate N2a neurons, only dbcAMP significantly enhanced the formation of dopamine neurons. Taken together, this study provided a simple and reliable method to generate dopamine neurons for rapid and efficient physiological and pharmacological assays.
Collapse
Affiliation(s)
- Roger G Tremblay
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
84
|
Differentiation of dopaminergic neurons from human embryonic stem cells: modulation of differentiation by FGF-20. J Biosci Bioeng 2009; 107:447-54. [PMID: 19332307 DOI: 10.1016/j.jbiosc.2008.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 12/12/2008] [Accepted: 12/15/2008] [Indexed: 11/22/2022]
Abstract
Derivation of midbrain dopaminergic (DA) neurons from human embryonic stem (hES) cells has been of particular interest because of the clinical potential for DA neuron transplantation in patients with Parkinson's disease (PD). Several protocols for DA neuron differentiation from mouse embryonic stem cells and hES cells have been reported: however, protocols involving hES cells have yet to be improved. Here, we used a slightly modified stromal cell-derived inducing activity method, consisting four different culture stages, to show that KhES-1 cells differentiate into tyrosine hydroxylase (TH)-positive DA neurons. Quantitative real-time PCR analysis showed a marked induction of the DA neuron marker genes NURR1, paired-like homeodomain transcription factor 3 (PITX3), LIM homeobox transcription- factor 1, beta (LMX1B), engrailed-1 (EN1), dopamine transporter (DAT), and aromatic amino acid decarboxylase (AADC) during differentiation. Treatment with fibroblast growth factor (FGF)-20 and FGF-2 at the final differentiation stage induced the increase of DA neuron development-related transcription factors such as NURR1, PITX3, LMX1B, and EN1. FGF-20 and FGF-2 enhanced DA neuron differentiation from hES cell-derived neural progenitor cells directly without any soluble factors from PA6 cells. These results provide valuable information that will assist in efficient DA neuron differentiation from hES cells and for future transplant application.
Collapse
|
85
|
Barzilay R, Ben-Zur T, Bulvik S, Melamed E, Offen D. Lentiviral delivery of LMX1a enhances dopaminergic phenotype in differentiated human bone marrow mesenchymal stem cells. Stem Cells Dev 2009; 18:591-601. [PMID: 19298173 DOI: 10.1089/scd.2008.0138] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) reside in the bone marrow and are known for their ability to differentiate along the mesenchymal lineage (fat, bone, and cartilage). Recent works have suggested the possibility that these cells are also capable of differentiating toward the neuroectodermal lineage. Using lentiviral gene delivery, we sought to reprogram the bone marrow-derived MSCs toward dopaminergic differentiation through delivery of LMX1a, which was reported to be a key player in dopaminergic differentiation in both developmental animal models and embryonic stem cells. Transduction of cells with fluorescent reporter genes confirmed efficiency of gene delivery. On incubation of the LMX1a transduced cells in differentiation medium, the LMX1a protein was concentrated in the cells' nuclei and specific dopaminergic developmental genes were upregulated. Moreover, the transduced cells expressed higher levels of tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis, and secreted significantly higher level of dopamine in comparison to nontransduced cells. We hereby present a novel strategy to facilitate the dopaminergic differentiation of bone marrow-derived MSCs as a possible cell source for autologous transplantation for Parkinsonian patients in the future.
Collapse
Affiliation(s)
- Ran Barzilay
- Department of Neurology, Laboratory of Neurosciences, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Sackler School of Medicine, Petah-Tikva, Israel
| | | | | | | | | |
Collapse
|
86
|
Perez-Balaguer A, Puelles E, Wurst W, Martinez S. Shh dependent and independent maintenance of basal midbrain. Mech Dev 2009; 126:301-13. [DOI: 10.1016/j.mod.2009.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 12/21/2022]
|
87
|
Flames N, Hobert O. Gene regulatory logic of dopamine neuron differentiation. Nature 2009; 458:885-9. [PMID: 19287374 PMCID: PMC2671564 DOI: 10.1038/nature07929] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 02/26/2009] [Indexed: 01/25/2023]
Abstract
Dopamine signalling regulates a variety of complex behaviours, and defects in dopamine neuron function or survival result in severe human pathologies, such as Parkinson's disease. The common denominator of all dopamine neurons is the expression of dopamine pathway genes, which code for a set of phylogenetically conserved proteins involved in dopamine synthesis and transport. Gene regulatory mechanisms that result in the direct activation of dopamine pathway genes and thereby ultimately determine the identity of dopamine neurons are poorly understood in all systems studied so far. Here we show that a simple cis-regulatory element, the dopamine (DA) motif, controls the expression of all dopamine pathway genes in all dopaminergic cell types in Caenorhabditis elegans. The DA motif is activated by the ETS transcription factor AST-1. Loss of ast-1 results in the failure of all distinct dopaminergic neuronal subtypes to terminally differentiate. Ectopic expression of ast-1 is sufficient to activate the dopamine pathway in some cellular contexts. Vertebrate dopamine pathway genes also contain phylogenetically conserved DA motifs that can be activated by the mouse ETS transcription factor Etv1 (also known as ER81), and a specific class of dopamine neurons fails to differentiate in mice lacking Etv1. Moreover, ectopic Etv1 expression induces dopaminergic fate marker expression in neuronal primary cultures. Mouse Etv1 can also functionally substitute for ast-1 in C. elegans. Our studies reveal a simple and apparently conserved regulatory logic of dopamine neuron terminal differentiation and may provide new entry points into the diagnosis or therapy of conditions in which dopamine neurons are defective.
Collapse
Affiliation(s)
- Nuria Flames
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
88
|
Ceballos-Picot I, Mockel L, Potier MC, Dauphinot L, Shirley TL, Torero-Ibad R, Fuchs J, Jinnah HA. Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease pathogenesis. Hum Mol Genet 2009; 18:2317-27. [PMID: 19342420 DOI: 10.1093/hmg/ddp164] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency results in Lesch-Nyhan disease (LND), where affected individuals exhibit a characteristic neurobehavioral disorder that has been linked with dysfunction of dopaminergic pathways of the basal ganglia. Since the functions of HPRT, a housekeeping enzyme responsible for recycling purines, have no direct relationships with the dopaminergic pathways, the mechanisms whereby HPRT deficiency affect them remain unknown. The current studies demonstrate that HPRT deficiency influences early developmental processes controlling the dopaminergic phenotype, using several different cell models for HPRT deficiency. Microarray methods and quantitative PCR were applied to 10 different HPRT-deficient (HPRT(-)) sublines derived from the MN9D cell line. Despite the variation inherent in such mutant sublines, several consistent abnormalities were evident. Most notable were increases in the mRNAs for engrailed 1 and 2, transcription factors known to play a key role in the specification and survival of dopamine neurons. The increases in mRNAs were accompanied by increases in engrailed proteins, and restoration of HPRT reverted engrailed expression towards normal levels, demonstrating a functional relationship between HPRT and engrailed. The functional relevance of the abnormal developmental molecular signature of the HPRT(-) MN9D cells was evident in impoverished neurite outgrowth when the cells were forced to differentiate chemically. To verify that these abnormalities were not idiosyncratic to the MN9D line, HPRT(-) sublines from the SK-N-BE(2) M17 human neuroblastoma line were evaluated and an increased expression of engrailed mRNAs was also seen. Over-expression of engrailed occurred even in primary fibroblasts from patients with LND in a manner that suggested a correlation with disease severity. These results provide novel evidence that HPRT deficiency may affect dopaminergic neurons by influencing early developmental mechanisms.
Collapse
|
89
|
Yamauchi K, Mizushima S, Tamada A, Yamamoto N, Takashima S, Murakami F. FGF8 signaling regulates growth of midbrain dopaminergic axons by inducing semaphorin 3F. J Neurosci 2009; 29:4044-55. [PMID: 19339600 PMCID: PMC6665371 DOI: 10.1523/jneurosci.4794-08.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/28/2009] [Accepted: 02/11/2009] [Indexed: 11/21/2022] Open
Abstract
Accumulating evidence indicates that signaling centers controlling the dorsoventral (DV) polarization of the neural tube, the roof plate and the floor plate, play crucial roles in axon guidance along the DV axis. However, the role of signaling centers regulating the rostrocaudal (RC) polarization of the neural tube in axon guidance along the RC axis remains unknown. Here, we show that a signaling center located at the midbrain-hindbrain boundary (MHB) regulates the rostrally directed growth of axons from midbrain dopaminergic neurons (mDANs). We found that beads soaked with fibroblast growth factor 8 (FGF8), a signaling molecule that mediates patterning activities of the MHB, repelled mDAN axons that extended through the diencephalon. This repulsion may be mediated by semaphorin 3F (sema3F) because (1) FGF8-soaked beads induced an increase in expression of sema3F, (2) sema3F expression in the midbrain was essentially abolished by the application of an FGF receptor tyrosine kinase inhibitor, and (3) mDAN axonal growth was also inhibited by sema3F. Furthermore, mDAN axons expressed a sema3F receptor, neuropilin-2 (nrp2), and the removal of nrp-2 by gene targeting caused caudal growth of mDAN axons. These results indicate that the MHB signaling center regulates the growth polarity of mDAN axons along the RC axis by inducing sema3F.
Collapse
Affiliation(s)
- Kenta Yamauchi
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Shigeki Mizushima
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Atsushi Tamada
- Division of Behavior and Neurobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan, and
| | - Nobuhiko Yamamoto
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Seiji Takashima
- Department of Molecular Cardiology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Fujio Murakami
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Division of Behavior and Neurobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan, and
| |
Collapse
|
90
|
Weidong Le, Shen Chen, Jankovic J. Etiopathogenesis of Parkinson disease: a new beginning? Neuroscientist 2008; 15:28-35. [PMID: 19008336 DOI: 10.1177/1073858408319974] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson disease (PD) probably represents a syndrome of different disorders and origins converging into a relatively uniform neurodegenerative process. Although clinical-pathological studies have suggested that the presymptomatic phase of PD may be relatively short, perhaps less than a decade, the authors postulate that the pathogenic mechanisms may begin much earlier, possibly even in the prenatal period. Thus, some patients with PD may be born with a fewer than normal number of dopaminergic (and nondopaminergic) neurons as a result of genetic or other abnormalities sustained during the prenatal or perinatal period; as a result of normal age-related neuronal attrition, they eventually reach the critical threshold (60% or more) of neuronal loss needed for onset of PD to become clinically manifest. The authors review the emerging evidence that genetic disruption of normal development, coupled with subsequent environmental factors (the so called multiple-hit hypothesis), plays an important role in the etiopathogenesis of PD.
Collapse
Affiliation(s)
- Weidong Le
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
91
|
Doitsidou M, Flames N, Lee AC, Boyanov A, Hobert O. Automated screening for mutants affecting dopaminergic-neuron specification in C. elegans. Nat Methods 2008; 5:869-72. [PMID: 18758453 PMCID: PMC2693092 DOI: 10.1038/nmeth.1250] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 07/29/2008] [Indexed: 12/11/2022]
Abstract
We describe an automated method to isolate mutant Caenorhabditis elegans that do not appropriately execute cellular differentiation programs. We used a fluorescence-activated sorting mechanism implemented in the COPAS Biosort machine to isolate mutants with subtle alterations in the cellular specificity of GFP expression. This methodology is considerably more efficient than comparable manual screens and enabled us to isolate mutants in which dopamine neurons do not differentiate appropriately.
Collapse
Affiliation(s)
- Maria Doitsidou
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
92
|
Varga BV, Hádinger N, Gócza E, Dulberg V, Demeter K, Madarász E, Herberth B. Generation of diverse neuronal subtypes in cloned populations of stem-like cells. BMC DEVELOPMENTAL BIOLOGY 2008; 8:89. [PMID: 18808670 PMCID: PMC2556672 DOI: 10.1186/1471-213x-8-89] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 09/22/2008] [Indexed: 11/25/2022]
Abstract
Background The central nervous tissue contains diverse subtypes of neurons with characteristic morphological and physiological features and different neurotransmitter phenotypes. The generation of neurons with defined neurotransmitter phenotypes seems to be governed by factors differently expressed along the anterior-posterior and dorsal-ventral body axes. The mechanisms of the cell-type determination, however, are poorly understood. Selected neuronal phenotypes had been generated from embryonic stem (ES) cells, but similar results were not obtained on more restricted neural stem cells, presumably due to the lack of homogeneous neural stem cell populations as a starting material. Results In the presented work, the establishment of different neurotransmitter phenotypes was investigated in the course of in vitro induced neural differentiation of a one-cell derived neuroectodermal cell line, in conjunction with the activation of various region-specific genes. For comparison, similar studies were carried out on the R1 embryonic stem (ES) and P19 multipotent embryonic carcinoma (EC) cells. In response to a short treatment with all-trans retinoic acid, all cell lines gave rise to neurons and astrocytes. Non-induced neural stem cells and self-renewing cells persisting in differentiated cultures, expressed "stemness genes" along with early embryonic anterior-dorsal positional genes, but did not express the investigated CNS region-specific genes. In differentiating stem-like cell populations, on the other hand, different region-specific genes, those expressed in non-overlapping regions along the body axes were activated. The potential for diverse regional specifications was induced in parallel with the initiation of neural tissue-type differentiation. In accordance with the wide regional specification potential, neurons with different neurotransmitter phenotypes developed. Mechanisms inherent to one-cell derived neural stem cell populations were sufficient to establish glutamatergic and GABAergic neuronal phenotypes but failed to manifest cathecolaminergic neurons. Conclusion The data indicate that genes involved in positional determination are activated along with pro-neuronal genes in conditions excluding any outside influences. Interactions among progenies of one cell derived neural stem cells are sufficient for the activation of diverse region specific genes and initiate different routes of neuronal specification.
Collapse
Affiliation(s)
- Balázs V Varga
- Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine of Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
93
|
Parga J, Rodriguez-Pallares J, Blanco V, Guerra MJ, Labandeira-Garcia JL. Different effects of anti-sonic hedgehog antibodies and the hedgehog pathway inhibitor cyclopamine on generation of dopaminergic neurons from neurospheres of mesencephalic precursors. Dev Dyn 2008; 237:909-17. [DOI: 10.1002/dvdy.21481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
94
|
Abstract
The dopaminergic neurons in the midbrain region of the central nervous system project an extensive network of connections throughout the forebrain, including the neocortex. The midbrain-forebrain dopaminergic circuits are thought to regulate a diverse set of behaviors, from the control of movement to modulation of cognition and desire--because they relate to mood, attention, reward, and addiction. Defects in these pathways, including neurodegeneration, are implicated in a variety of psychiatric and neurological diseases, such as schizophrenia, attention-deficit/hyperactivity disorder, drug addiction, and Parkinson disease. Based on the importance of the midbrain dopaminergic neurons to normal and pathological brain function, there is considerable interest in the molecular mechanisms that regulate their development. The goal of this short review is to outline new methods and recent advances in identifying the molecular networks that regulate midbrain dopaminergic neuron differentiation and fate. Midbrain dopaminergic neurons are descended from progenitor cells located near the ventral midline of the neural tube floor plate around the cephalic flexure. It is now clear that their initial formation is dependent on interactions between the signaling molecules Sonic hedgehog, WINGLESS 1, and FIBROBLAST growth factor 8, but there is still an extensive wider network of molecular interactions that must be resolved before the complete picture of dopaminergic neuron development can be described.
Collapse
Affiliation(s)
- Roy V. Sillitoe
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021
| | - Michael W. Vogel
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228,To whom correspondence should be addressed; tel: 410-402-7756, fax: 410-402-6066, e-mail:
| |
Collapse
|
95
|
|