51
|
Hurrell T, Naidoo J, Scholefield J. Hepatic Models in Precision Medicine: An African Perspective on Pharmacovigilance. Front Genet 2022; 13:864725. [PMID: 35495161 PMCID: PMC9046844 DOI: 10.3389/fgene.2022.864725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/29/2022] [Indexed: 01/02/2023] Open
Abstract
Pharmaceuticals are indispensable to healthcare as the burgeoning global population is challenged by diseases. The African continent harbors unparalleled genetic diversity, yet remains largely underrepresented in pharmaceutical research and development, which has serious implications for pharmaceuticals approved for use within the African population. Adverse drug reactions (ADRs) are often underpinned by unique variations in genes encoding the enzymes responsible for their uptake, metabolism, and clearance. As an example, individuals of African descent (14-34%) harbor an exclusive genetic variant in the gene encoding a liver metabolizing enzyme (CYP2D6) which reduces the efficacy of the breast cancer chemotherapeutic Tamoxifen. However, CYP2D6 genotyping is not required prior to dispensing Tamoxifen in sub-Saharan Africa. Pharmacogenomics is fundamental to precision medicine and the absence of its implementation suggests that Africa has, to date, been largely excluded from the global narrative around stratified healthcare. Models which could address this need, include primary human hepatocytes, immortalized hepatic cell lines, and induced pluripotent stem cell (iPSC) derived hepatocyte-like cells. Of these, iPSCs, are promising as a functional in vitro model for the empirical evaluation of drug metabolism. The scale with which pharmaceutically relevant African genetic variants can be stratified, the expediency with which these platforms can be established, and their subsequent sustainability suggest that they will have an important role to play in the democratization of stratified healthcare in Africa. Here we discuss the requirement for African hepatic models, and their implications for the future of pharmacovigilance on the African continent.
Collapse
Affiliation(s)
- Tracey Hurrell
- Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Jerolen Naidoo
- Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Next Generation Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
52
|
Decellularized Organ-Derived Scaffold Is a Promising Carrier for Human Induced Pluripotent Stem Cells-Derived Hepatocytes. Cells 2022; 11:cells11081258. [PMID: 35455938 PMCID: PMC9025569 DOI: 10.3390/cells11081258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising cell source for elucidating disease pathology and therapy. The mass supply of hiPSC-derived cells is technically feasible. Carriers that can contain a large number of hiPSC-derived cells and evaluate their functions in vivo-like environments will become increasingly important for understanding disease pathogenesis or treating end-stage organ failure. hiPSC-derived hepatocyte-like cells (hiPSC-HLCs; 5 × 108) were seeded into decellularized organ-derived scaffolds under circumfusion culture. The scaffolds were implanted into immunodeficient microminiature pigs to examine their applicability in vivo. The seeded hiPSC-HLCs demonstrated increased albumin secretion and up-regulated cytochrome P450 activities compared with those in standard two-dimensional culture conditions. Moreover, they showed long-term survival accompanied by neovascularization in vivo. The decellularized organ-derived scaffold is a promising carrier for hiPSC-derived cells for ex vivo and in vivo use and is an essential platform for regenerative medicine and research.
Collapse
|
53
|
Amirifar L, Shamloo A, Nasiri R, de Barros NR, Wang ZZ, Unluturk BD, Libanori A, Ievglevskyi O, Diltemiz SE, Sances S, Balasingham I, Seidlits SK, Ashammakhi N. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials 2022; 285:121531. [DOI: 10.1016/j.biomaterials.2022.121531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
|
54
|
Mihajlovic M, Vinken M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int J Mol Sci 2022; 23:ijms23063315. [PMID: 35328737 PMCID: PMC8951158 DOI: 10.3390/ijms23063315] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.
Collapse
|
55
|
Kanabekova P, Kadyrova A, Kulsharova G. Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. MICROMACHINES 2022; 13:428. [PMID: 35334720 PMCID: PMC8950395 DOI: 10.3390/mi13030428] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Mortality from liver disease conditions continues to be very high. As liver diseases manifest and progress silently, prompt measures after diagnosis are essential in the treatment of these conditions. Microfluidic organs-on-chip platforms have significant potential for the study of the pathophysiology of liver diseases in vitro. Different liver-on-a-chip microphysiological platforms have been reported to study cell-signaling pathways such as those activating stellate cells within liver diseases. Moreover, the drug efficacy for liver conditions might be evaluated on a cellular metabolic level. Here, we present a comprehensive review of microphysiological platforms used for modelling liver diseases. First, we briefly introduce the concept and importance of organs-on-a-chip in studying liver diseases in vitro, reflecting on existing reviews of healthy liver-on-a-chip platforms. Second, the techniques of cell cultures used in the microfluidic devices, including 2D, 3D, and spheroid cells, are explained. Next, the types of liver diseases (NAFLD, ALD, hepatitis infections, and drug injury) on-chip are explained for a further comprehensive overview of the design and methods of developing liver diseases in vitro. Finally, some challenges in design and existing solutions to them are reviewed.
Collapse
Affiliation(s)
- Perizat Kanabekova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Adina Kadyrova
- Department of Biological Sciences, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Gulsim Kulsharova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| |
Collapse
|
56
|
Nitsche KS, Müller I, Malcomber S, Carmichael PL, Bouwmeester H. Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review. Arch Toxicol 2022; 96:711-741. [PMID: 35103818 PMCID: PMC8850248 DOI: 10.1007/s00204-022-03234-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-chip (OoC) technology is full of engineering and biological challenges, but it has the potential to revolutionize the Next-Generation Risk Assessment of novel ingredients for consumer products and chemicals. A successful incorporation of OoC technology into the Next-Generation Risk Assessment toolbox depends on the robustness of the microfluidic devices and the organ tissue models used. Recent advances in standardized device manufacturing, organ tissue cultivation and growth protocols offer the ability to bridge the gaps towards the implementation of organ-on-chip technology. Next-Generation Risk Assessment is an exposure-led and hypothesis-driven tiered approach to risk assessment using detailed human exposure information and the application of appropriate new (non-animal) toxicological testing approaches. Organ-on-chip presents a promising in vitro approach by combining human cell culturing with dynamic microfluidics to improve physiological emulation. Here, we critically review commercial organ-on-chip devices, as well as recent tissue culture model studies of the skin, intestinal barrier and liver as the main metabolic organ to be used on-chip for Next-Generation Risk Assessment. Finally, microfluidically linked tissue combinations such as skin-liver and intestine-liver in organ-on-chip devices are reviewed as they form a relevant aspect for advancing toxicokinetic and toxicodynamic studies. We point to recent achievements and challenges to overcome, to advance non-animal, human-relevant safety studies.
Collapse
Affiliation(s)
- Katharina S Nitsche
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands.
| | - Iris Müller
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Sophie Malcomber
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Paul L Carmichael
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
| |
Collapse
|
57
|
Graffmann N, Scherer B, Adjaye J. In vitro differentiation of pluripotent stem cells into hepatocyte like cells - basic principles and current progress. Stem Cell Res 2022; 61:102763. [DOI: 10.1016/j.scr.2022.102763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
|
58
|
Buchanan BC, Yoon JY. Microscopic Imaging Methods for Organ-on-a-Chip Platforms. MICROMACHINES 2022; 13:328. [PMID: 35208453 PMCID: PMC8879989 DOI: 10.3390/mi13020328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Microscopic imaging is essential and the most popular method for in situ monitoring and evaluating the outcome of various organ-on-a-chip (OOC) platforms, including the number and morphology of mammalian cells, gene expression, protein secretions, etc. This review presents an overview of how various imaging methods can be used to image organ-on-a-chip platforms, including transillumination imaging (including brightfield, phase-contrast, and holographic optofluidic imaging), fluorescence imaging (including confocal fluorescence and light-sheet fluorescence imaging), and smartphone-based imaging (including microscope attachment-based, quantitative phase, and lens-free imaging). While various microscopic imaging methods have been demonstrated for conventional microfluidic devices, a relatively small number of microscopic imaging methods have been demonstrated for OOC platforms. Some methods have rarely been used to image OOCs. Specific requirements for imaging OOCs will be discussed in comparison to the conventional microfluidic devices and future directions will be introduced in this review.
Collapse
Affiliation(s)
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
59
|
From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:41-91. [PMID: 35094781 DOI: 10.1016/bs.pmbts.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The high failure rate in drug development is often attributed to the lack of accurate pre-clinical models that may lead to false discoveries and inconclusive data when the compounds are eventually tested in clinical phase. With the evolution of cell culture technologies, drug testing systems have widely improved, and today, with the emergence of microfluidics devices, drug screening seems to be at the dawn of an important revolution. An organ-on-chip allows the culture of living cells in continuously perfused microchambers to reproduce physiological functions of a particular tissue or organ. The advantages of such systems are not only their ability to recapitulate the complex biochemical interactions between different human cell types but also to incorporate physical forces, including shear stress and mechanical stretching or compression. To improve this model, and to reproduce the absorption, distribution, metabolism, and elimination process of an exogenous compound, organ-on-chips can even be linked fluidically to mimic physiological interactions between different organs, leading to the development of body-on-chips. Although these technologies are still at a young age and need to address a certain number of limitations, they already demonstrated their relevance to study the effect of drugs or toxins on organs, displaying a similar response to what is observed in vivo. The purpose of this review is to present the evolution from organ-on-chip to body-on-chip, examine their current use for drug testing and discuss their advantages and future challenges they will face in order to become an essential pillar of pharmaceutical research.
Collapse
|
60
|
Cousins FL, Filby CE, Gargett CE. Endometrial Stem/Progenitor Cells–Their Role in Endometrial Repair and Regeneration. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 3:811537. [PMID: 36304009 PMCID: PMC9580754 DOI: 10.3389/frph.2021.811537] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
The human endometrium is a remarkable tissue, undergoing ~450 cycles of proliferation, differentiation, shedding (menstruation), repair, and regeneration over a woman's reproductive lifespan. Post-menstrual repair is an extremely rapid and scar-free process, with re-epithelialization of the luminal epithelium completed within 48 h of initiation of shedding. Following menstruation, the functionalis grows from the residual basalis layer during the proliferative phase under the influence of rising circulating estrogen levels. The regenerative capacity of the endometrium is attributed to stem/progenitor cells which reside in both the epithelial and stromal cell compartments of the basalis layer. Finding a definitive marker for endometrial epithelial progenitors (eEPCs) has proven difficult. A number of different markers have been suggested as putative progenitor markers including, N-cadherin, SSEA-1, AXIN2, SOX-9 and ALDH1A1, some of which show functional stem cell activity in in vitro assays. Each marker has a unique location(s) in the glandular epithelium, which has led to the suggestion that a differentiation hierarchy exists, from the base of epithelial glands in the basalis to the luminal epithelium lining the functionalis, where epithelial cells express different combinations of markers as they differentiate and move up the gland into the functionalis away from the basalis niche. Perivascular endometrial mesenchymal stem cells (eMSCs) can be identified by co-expression of PDGFRβ and CD146 or by a single marker, SUSD2. This review will detail the known endometrial stem/progenitor markers; their identity, location and known interactions and hierarchy across the menstrual cycle, in particular post-menstrual repair and estrogen-driven regeneration, as well as their possible contributions to menstruation-related disorders such as endometriosis and regeneration-related disorder Asherman's syndrome. We will also highlight new techniques that allow for a greater understanding of stem/progenitor cells' role in repair and regeneration, including 3D organoids, 3D slice cultures and gene sequencing at the single cell level. Since mouse models are commonly used to study menstruation, repair and regeneration we will also detail the mouse stem/progenitor markers that have been investigated in vivo.
Collapse
Affiliation(s)
- Fiona L. Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
- *Correspondence: Fiona L. Cousins
| | - Caitlin E. Filby
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
61
|
Yamamoto C, Takemura A, Ishii S, Doi A, Saito I, Yamada H, Sakai Y, Matsunaga T, Ito K. A novel perfusion culture system for screening mitochondrial toxicity in primary mouse hepatocytes. J Toxicol Sci 2022; 47:13-18. [PMID: 34987137 DOI: 10.2131/jts.47.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The liver microphysiological system (MPS) model is an in-vitro culture method that mimics physiological blood flow, which enhances basal cellular functions. However, the liver MPS model has not been tested in the preclinical stage because of its obscure utility. It can overcome the major problem of conventional systems-rapid loss of mitochondrial activity in cultured hepatocytes due to limited oxygen supply-by supplying oxygen to cultured hepatocytes using a perfusion device. In this study, we developed a new perfusion culture system that can detect mitochondrial toxicity. Primary mouse hepatocytes were cultured under perfusion condition for 48 hr. The hepatocytes showed increased oxygen consumption and reduced lactate release. These results indicated that the ATP-production pathway was switched from glycolysis to mitochondrial oxidative phosphorylation in the perfusion culture system. Furthermore, ATP levels were considerably reduced in the perfusion culture system after exposure to phenformin, a mitochondrial complex I inhibitor. To summarize, the perfusion culture system could improve the mitochondrial activity in primary mouse hepatocytes, and thus, has potential implications in the detection of mitochondrial toxicity.
Collapse
Affiliation(s)
- Chika Yamamoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Akinori Takemura
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Sanae Ishii
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | | | | - Yoko Sakai
- Department of Clinical Pharmacy, Graduate School and Faculty of Pharmaceutical Sciences, Nagoya City University
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School and Faculty of Pharmaceutical Sciences, Nagoya City University
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
62
|
Russo M, Cejas CM, Pitingolo G. Advances in microfluidic 3D cell culture for preclinical drug development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:163-204. [PMID: 35094774 DOI: 10.1016/bs.pmbts.2021.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drug development is often a very long, costly, and risky process due to the lack of reliability in the preclinical studies. Traditional current preclinical models, mostly based on 2D cell culture and animal testing, are not full representatives of the complex in vivo microenvironments and often fail. In order to reduce the enormous costs, both financial and general well-being, a more predictive preclinical model is needed. In this chapter, we review recent advances in microfluidic 3D cell culture showing how its development has allowed the introduction of in vitro microphysiological systems, laying the foundation for organ-on-a-chip technology. These findings provide the basis for numerous preclinical drug discovery assays, which raise the possibility of using micro-engineered systems as emerging alternatives to traditional models, based on 2D cell culture and animals.
Collapse
Affiliation(s)
- Maria Russo
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France.
| | - Cesare M Cejas
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France
| | - Gabriele Pitingolo
- Bioassays, Microsystems and Optical Engineering Unit, BIOASTER, Paris France
| |
Collapse
|
63
|
Zheng YB, Ma LD, Wu JL, Wang YM, Meng XS, Hu P, Liang QL, Xie YY, Luo GA. Design and fabrication of an integrated 3D dynamic multicellular liver-on-a-chip and its application in hepatotoxicity screening. Talanta 2022; 241:123262. [DOI: 10.1016/j.talanta.2022.123262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023]
|
64
|
|
65
|
Lee SY, Kim D, Lee SH, Sung JH. Microtechnology-based in vitro models: Mimicking liver function and pathophysiology. APL Bioeng 2021; 5:041505. [PMID: 34703969 PMCID: PMC8520487 DOI: 10.1063/5.0061896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
The liver plays important roles in drug metabolism and homeostasis. The metabolism and biotransformation can not only affect the efficacy of drugs but also result in hepatotoxicity and drug-induced liver injury. Understanding the complex physiology of the liver and the pathogenetic mechanisms of liver diseases is essential for drug development. Conventional in vitro models have limitations in the ability to predict drug effects, due to the lack of physiological relevance. Recently, the liver-on-a-chip platform has been developed to reproduce the microarchitecture and in vivo environment of the liver. These efforts have improved the physiological relevance of the liver tissue used in the platform and have demonstrated its applicability to drug screening and disease models. In this review, we summarize the recent development of liver-on-a-chip models that closely mimic the in vivo liver environments and liver diseases.
Collapse
Affiliation(s)
- Seung Yeon Lee
- Department of Chemical Engineering, Hongik University, Seoul 04066, South Korea
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul 04066, South Korea
| |
Collapse
|
66
|
Protective effects of melatonin and L-carnitine against methotrexate-induced toxicity in isolated rat hepatocytes. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:87-97. [PMID: 34821957 DOI: 10.1007/s00210-021-02176-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
The present study was designed to evaluate the possible protective effects of melatonin (MEL) and/or L-carnitine (L-CAR) against methotrexate (MTX)-induced toxicity in isolated rat hepatocytes. Hepatocytes were prepared using collagenase techniques of perfusion and digestion of rat liver. Trypan blue uptake, as well as, glutathione (GSH), lipid peroxidation (LPO), nitric oxide (NO), and tumor necrosis factor-alpha (TNF-α) levels were measured. Caspase-3 activity was also assessed. Pre-incubation of hepatocytes with MEL (1 mM) and/or L-CAR (10 mM) 30 min prior to intoxication with MTX, significantly protected hepatocytes against toxicity. In addition, LPO, NO, TNF-α levels, and caspase-3 activity were decreased in comparison to the MTX-intoxicated group. Furthermore, the two drugs increased the MTX-depleted GSH level. MEL and L-CAR prevented MTX-induced hepatocytotoxicity, at least partly, by their antioxidative, antiinflammatory, and antiapoptotic effects. Further studies are recommended on the clinical pharmacologic and toxicologic effects of MEL and L-CAR in patients receiving MTX.
Collapse
|
67
|
Schofield CA, Walker TM, Taylor MA, Patel M, Vlachou DF, Macina JM, Vidgeon-Hart MP, Williams A, McGill PJ, Newman CF, Sakatis MZ. Evaluation of a Three-Dimensional Primary Human Hepatocyte Spheroid Model: Adoption and Industrialization for the Enhanced Detection of Drug-Induced Liver Injury. Chem Res Toxicol 2021; 34:2485-2499. [PMID: 34797640 DOI: 10.1021/acs.chemrestox.1c00227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Drug-induced liver injury is a leading cause of compound attrition during both preclinical and clinical drug development, and early strategies are in place to tackle this recurring problem. Human-relevant in vitro models that are more predictive of hepatotoxicity hazard identification, and that could be employed earlier in the drug discovery process, would improve the quality of drug candidate selection and help reduce attrition. We present an evaluation of four human hepatocyte in vitro models of increasing culture complexity (i.e., two-dimensional (2D) HepG2 monolayers, hepatocyte sandwich cultures, three-dimensional (3D) hepatocyte spheroids, and precision-cut liver slices), using the same tool compounds, viability end points, and culture time points. Having established the improved prediction potential of the 3D hepatocyte spheroid model, we describe implementing this model into an industrial screening setting, where the challenge was matching the complexity of the culture system with the scale and throughput required. Following further qualification and miniaturization into a 384-well, high-throughput screening format, data was generated on 199 compounds. This clearly demonstrated the ability to capture a greater number of severe hepatotoxins versus the current routine 2D HepG2 monolayer assay while continuing to flag no false-positive compounds. The industrialization and miniaturization of the 3D hepatocyte spheroid complex in vitro model demonstrates a significant step toward reducing drug attrition and improving the quality and safety of drugs, while retaining the flexibility for future improvements, and has replaced the routine use of the 2D HepG2 monolayer assay at GlaxoSmithKline.
Collapse
Affiliation(s)
- Christopher A Schofield
- Functional Genomics, Medicinal Science and Technology, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Tracy M Walker
- Oncology Cell Therapy, Oncology Therapy Area, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Maxine A Taylor
- Drug Metabolism and Pharmacokinetics, In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Ware, Herts SG12 0DP, United Kingdom
| | - Metul Patel
- Screening, Profiling and Mechanistic Biology, Medicinal Science and Technology, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Denise F Vlachou
- Molecular Design U.K., Medicinal Science and Technology, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Justyna M Macina
- Screening, Profiling and Mechanistic Biology, Medicinal Science and Technology, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Martin P Vidgeon-Hart
- Non Clinical Safety, In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Ware, Herts SG12 0DP, United Kingdom
| | - Ann Williams
- Pathology U.K., In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Ware, Herts SG12 0DP, United Kingdom
| | - Paul J McGill
- Bioimaging U.K., In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Ware, Herts SG12 0DP, United Kingdom
| | - Carla F Newman
- Bioimaging U.K., In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Stevenage, Herts SG1 2NY, United Kingdom
| | - Melanie Z Sakatis
- Non Clinical Safety, In Vitro/In Vivo Translation, GlaxoSmithKline Research and Development, Ware, Herts SG12 0DP, United Kingdom
| |
Collapse
|
68
|
Varrone F, Mandrich L, Caputo E. Melanoma Immunotherapy and Precision Medicine in the Era of Tumor Micro-Tissue Engineering: Where Are We Now and Where Are We Going? Cancers (Basel) 2021; 13:5788. [PMID: 34830940 PMCID: PMC8616100 DOI: 10.3390/cancers13225788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma still remains a cancer with very poor survival rates, although it is at the forefront of personalized medicine. Most patients show partial responses and disease progressed due to adaptative resistance mechanisms, preventing long-lasting clinical benefits to the current treatments. The response to therapies can be shaped by not only taking into account cancer cell heterogeneity and plasticity, but also by its structural context as well as the cellular component of the tumor microenvironment (TME). Here, we review the recent development in the field of immunotherapy and target-based therapy and how, in the era of tumor micro-tissue engineering, ex-vivo assays could help to enhance our melanoma biology knowledge in its complexity, translating it in the development of successful therapeutic strategies, as well as in the prediction of therapeutic benefits.
Collapse
Affiliation(s)
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystem—IRET-CNR Via Pietro Castellino 111, I-80131 Naples, Italy;
| | - Emilia Caputo
- Institute of Genetics and Biophysics—IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, I-80131 Naples, Italy
| |
Collapse
|
69
|
Ding S, Zhang H, Wang X. Microfluidic-Chip-Integrated Biosensors for Lung Disease Models. BIOSENSORS 2021; 11:456. [PMID: 34821672 PMCID: PMC8615803 DOI: 10.3390/bios11110456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 05/04/2023]
Abstract
Lung diseases (e.g., infection, asthma, cancer, and pulmonary fibrosis) represent serious threats to human health all over the world. Conventional two-dimensional (2D) cell models and animal models cannot mimic the human-specific properties of the lungs. In the past decade, human organ-on-a-chip (OOC) platforms-including lung-on-a-chip (LOC)-have emerged rapidly, with the ability to reproduce the in vivo features of organs or tissues based on their three-dimensional (3D) structures. Furthermore, the integration of biosensors in the chip allows researchers to monitor various parameters related to disease development and drug efficacy. In this review, we illustrate the biosensor-based LOC modeling, further discussing the future challenges as well as perspectives in integrating biosensors in OOC platforms.
Collapse
Affiliation(s)
- Shuang Ding
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
70
|
Sükei T, Palma E, Urbani L. Interplay between Cellular and Non-Cellular Components of the Tumour Microenvironment in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:5586. [PMID: 34771746 PMCID: PMC8583132 DOI: 10.3390/cancers13215586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. Currently, treatments available for advanced HCC provide dismal chances of survival, thus there is an urgent need to develop more effective therapeutic strategies. While much of the focus of recent decades has been on targeting malignant cells, promising results have emerged from targeting the tumour microenvironment (TME). The extracellular matrix (ECM) is the main non-cellular component of the TME and it profoundly changes during tumorigenesis to promote the growth and survival of malignant cells. Despite this, many in vitro models for drug testing fail to consider the TME leading to a high failure rate in clinical trials. Here, we present an overview of the function and properties of the ECM in the liver and how these change during malignant transformation. We also discuss the relationship between immune cells and ECM in the TME in HCC. Lastly, we present advanced, 3D culture techniques of cancer modelling and argue that the incorporation of TME components into these is essential to better recapitulate the complex interactions within the TME.
Collapse
Affiliation(s)
- Tamás Sükei
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK; (T.S.); (E.P.)
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Elena Palma
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK; (T.S.); (E.P.)
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK; (T.S.); (E.P.)
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
71
|
Ali S, Haque N, Azhar Z, Saeinasab M, Sefat F. Regenerative Medicine of Liver: Promises, Advances and Challenges. Biomimetics (Basel) 2021; 6:biomimetics6040062. [PMID: 34698078 PMCID: PMC8544204 DOI: 10.3390/biomimetics6040062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Liver tissue engineering is a rapidly developing field which combines the novel use of liver cells, appropriate biochemical factors, and engineering principles, in order to replace or regenerate damaged liver tissue or the organ. The aim of this review paper is to critically investigate different possible methods to tackle issues related with liver diseases/disorders mainly using regenerative medicine. In this work the various regenerative treatment options are discussed, for improving the prognosis of chronic liver disorders. By reviewing existing literature, it is apparent that the current popular treatment option is liver transplantation, although the breakthroughs of stem cell-based therapy and bioartificial liver technology make them a promising alternative.
Collapse
Affiliation(s)
- Saiful Ali
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
| | - Nasira Haque
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
| | - Zohya Azhar
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK
- Correspondence: ; Tel.: +44-(0)-1274-233679 or +44-(0)-781-381-7460
| |
Collapse
|
72
|
Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2632. [PMID: 34685073 PMCID: PMC8538557 DOI: 10.3390/nano11102632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Nanotheranostics constitute a novel drug delivery system approach to improving systemic, brain-targeted delivery of diagnostic imaging agents and pharmacological moieties in one rational carrier platform. While there have been notable successes in this field, currently, the clinical translation of such delivery systems for the treatment of neurological disorders has been limited by the inadequacy of correlating in vitro and in vivo data on blood-brain barrier (BBB) permeation and biocompatibility of nanomaterials. This review aims to identify the most contemporary non-invasive approaches for BBB crossing using nanotheranostics as a novel drug delivery strategy and current non-animal-based models for assessing the safety and efficiency of such formulations. This review will also address current and future directions of select in vitro models for reducing the cumbersome and laborious mandate for testing exclusively in animals. It is hoped these non-animal-based modelling approaches will facilitate researchers in optimising promising multifunctional nanocarriers with a view to accelerating clinical testing and authorisation applications. By rational design and appropriate selection of characterised and validated models, ranging from monolayer cell cultures to organ-on-chip microfluidics, promising nanotheranostic particles with modular and rational design can be screened in high-throughput models with robust predictive power. Thus, this article serves to highlight abbreviated research and development possibilities with clinical translational relevance for developing novel nanomaterial-based neuropharmaceuticals for therapy in CNS disorders. By generating predictive data for prospective nanomedicines using validated in vitro models for supporting clinical applications in lieu of requiring extensive use of in vivo animal models that have notable limitations, it is hoped that there will be a burgeoning in the nanotherapy of CNS disorders by virtue of accelerated lead identification through screening, optimisation through rational design for brain-targeted delivery across the BBB and clinical testing and approval using fewer animals. Additionally, by using models with tissue of human origin, reproducible therapeutically relevant nanomedicine delivery and individualised therapy can be realised.
Collapse
Affiliation(s)
- Mark J. Lynch
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
73
|
Faccioli LAP, Kocas-Kilicarslan ZN, Diaz-Aragon R, Motomura T, Amirneni S, Malizio MR, Coard MC, Frau C, Haep N, Florentino RM, Ostrowska A. Human Hepatocytes Isolated from Explanted Livers: A Powerful Tool to Understand End-stage Liver Disease and Drug Screening. Organogenesis 2021; 17:117-125. [PMID: 35114888 DOI: 10.1080/15476278.2021.1992216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The use of primary human hepatocytes has been hampered by limited availability of adequate numbers of fresh and viable cells due to the ongoing shortage of liver donors. Thus, there is no surplus of healthy organs from which freshly isolated cells can be prepared when needed. However, primary hepatocytes can be successfully isolated from explanted liver specimens obtained from patients receiving orthotopic liver transplantation for decompensated liver cirrhosis or for metabolic liver disease without end-stage liver disease and are a valuable resource for the pharmaceutical industry research. This review focuses on the isolation, characterization and cryopreservation of hepatocytes derived from therapeutically resected livers with various hepatic diseases.
Collapse
Affiliation(s)
- Lanuza A P Faccioli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Ricardo Diaz-Aragon
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Takashi Motomura
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sriram Amirneni
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle R Malizio
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael C Coard
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Carla Frau
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nils Haep
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rodrigo M Florentino
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Surgery, Children's Hospital of Pittsburgh of Upmc, Pittsburgh, Pennsylvania, USA
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Surgery, Children's Hospital of Pittsburgh of Upmc, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
74
|
Jiang Y, Yin Z, Zhao J, Sun J, Zhao D, Zeng XA, Li H, Huang M, Wu J. Antioxidant mechanism exploration of the tripeptide Val-Asn-Pro generated from Jiuzao and its potential application in baijiu. Food Chem Toxicol 2021; 155:112402. [PMID: 34246709 DOI: 10.1016/j.fct.2021.112402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/27/2023]
Abstract
Val-Asn-Pro (VNP) was identified from the raw material of baijiu distillation (Jiupei) and exhibit antioxidant activity in vitro. In this study, residue after baijiu distillation (Jiuzao) was used to seek the antioxidant peptide VNP with the methods reported inthe previous study. Its potential antioxidant mechanism in vivo was further assessed. Gene and protein expressions of Nrf2/Keap1-p38MAPK/PI3K-MafK signaling pathway and downstream enzymes (i.e., CAT, GPX1, SOD1, and HO-1) in AAPH-induced oxidative stress Sprague-Dawley (SD) rats were investigated. Influence of VNP on baijiu characteristics was also investigated. Based on the results, VNP was identified with a content of 5.25 mg/g Jiuzao. VNP significantly mitigated excess oxidative stress via activation of Nrf2/Keap1-p38MAPK/PI3K-MafK signaling pathway and activated downstream antioxidant enzymes. Furthermore, VNP showed unconspicuous influence on the flavor and taste of baijiu when added into baijiu and the content remained stable during storage. These results indicated that VNP is a potent antioxidant component isolated from Jiuzao that can be used in baijiu to enhance its antioxidant effect without affecting the main flavor and taste. The utilization of these functional components can also increase the added value of Jiuzao.
Collapse
Affiliation(s)
- Yunsong Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhongtian Yin
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100048, China
| | - Jiwen Zhao
- Technocal Center of Bandaojing Co.Ltd., Gaoqing, Shandong, 256300, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China.
| | - Dongrui Zhao
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hehe Li
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100048, China
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China
| | - Jihong Wu
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
75
|
Wang H, Brown PC, Chow EC, Ewart L, Ferguson SS, Fitzpatrick S, Freedman BS, Guo GL, Hedrich W, Heyward S, Hickman J, Isoherranen N, Li AP, Liu Q, Mumenthaler SM, Polli J, Proctor WR, Ribeiro A, Wang J, Wange RL, Huang S. 3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci 2021; 14:1659-1680. [PMID: 33982436 PMCID: PMC8504835 DOI: 10.1111/cts.13066] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nonclinical testing has served as a foundation for evaluating potential risks and effectiveness of investigational new drugs in humans. However, the current two-dimensional (2D) in vitro cell culture systems cannot accurately depict and simulate the rich environment and complex processes observed in vivo, whereas animal studies present significant drawbacks with inherited species-specific differences and low throughput for increased demands. To improve the nonclinical prediction of drug safety and efficacy, researchers continue to develop novel models to evaluate and promote the use of improved cell- and organ-based assays for more accurate representation of human susceptibility to drug response. Among others, the three-dimensional (3D) cell culture models present physiologically relevant cellular microenvironment and offer great promise for assessing drug disposition and pharmacokinetics (PKs) that influence drug safety and efficacy from an early stage of drug development. Currently, there are numerous different types of 3D culture systems, from simple spheroids to more complicated organoids and organs-on-chips, and from single-cell type static 3D models to cell co-culture 3D models equipped with microfluidic flow control as well as hybrid 3D systems that combine 2D culture with biomedical microelectromechanical systems. This article reviews the current application and challenges of 3D culture systems in drug PKs, safety, and efficacy assessment, and provides a focused discussion and regulatory perspectives on the liver-, intestine-, kidney-, and neuron-based 3D cellular models.
Collapse
Affiliation(s)
- Hongbing Wang
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Paul C. Brown
- Center for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Edwin C.Y. Chow
- Office of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | | | - Stephen S. Ferguson
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Suzanne Fitzpatrick
- Office of the Center DirectorCenter for Food Safety and Applied NutritionUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Benjamin S. Freedman
- Division of NephrologyDepartment of PathologyKidney Research Institute, and Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Grace L. Guo
- Department of Pharmacology and ToxicologyErnest Mario School of PharmacyRutgers UniversityPiscatawayNew JerseyUSA
| | - William Hedrich
- Pharmaceutical Candidate Optimization, Metabolism and PharmacokineticsBristol‐Myers Squibb CompanyPrincetonNew JerseyUSA
| | | | - James Hickman
- NanoScience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Nina Isoherranen
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Albert P. Li
- In Vitro ADMET LaboratoriesColumbiaMarylandUSA
- In Vitro ADMET LaboratoriesMaldenMassachusettsUSA
| | - Qi Liu
- Office of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Shannon M. Mumenthaler
- Lawrence J. Ellison Institute for Transformative MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - James Polli
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - William R. Proctor
- Predictive Toxicology, Safety AssessmentGenentech, IncSouth San FranciscoCaliforniaUSA
| | - Alexandre Ribeiro
- Office of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Jian‐Ying Wang
- Department of SurgeryCell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Ronald L. Wange
- Center for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Shiew‐Mei Huang
- Office of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| |
Collapse
|
76
|
Ya S, Ding W, Li S, Du K, Zhang Y, Li C, Liu J, Li F, Li P, Luo T, He L, Xu A, Gao D, Qiu B. On-Chip Construction of Liver Lobules with Self-Assembled Perfusable Hepatic Sinusoid Networks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32640-32652. [PMID: 34225454 DOI: 10.1021/acsami.1c00794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although various liver chips have been developed using emerging organ-on-a-chip techniques, it remains an enormous challenge to replicate the liver lobules with self-assembled perfusable hepatic sinusoid networks. Herein we develop a lifelike bionic liver lobule chip (LLC), on which the perfusable hepatic sinusoid networks are achieved using a microflow-guided angiogenesis methodology; additionally, during and after self-assembly, oxygen concentration is regulated to mimic physiologically dissolved levels supplied by actual hepatic arterioles and venules. This liver lobule design thereby produces more bionic liver microstructures, higher metabolic abilities, and longer lasting hepatocyte function than other liver-on-a-chip techniques that are able to deliver. We found that the flow through the unique micropillar design in the cell coculture zone guides the radiating assembly of the hepatic sinusoid, the oxygen concentration affects the morphology of the sinusoid by proliferation, and the oxygen gradient plays a key role in prolonging hepatocyte function. The expected breadth of applications our LLC is suited to is demonstrated by means of preliminarily testing chronic and acute hepatotoxicity of drugs and replicating growth of tumors in situ. This work provides new insights into designing more extensive bionic vascularized liver chips, while achieving longer lasting ex-vivo hepatocyte function.
Collapse
Affiliation(s)
- Shengnan Ya
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Lab for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shibo Li
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kun Du
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuanyuan Zhang
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jing Liu
- School of Biology, Food and Environment Engineering, Hefei University, Hefei, Anhui 230601, China
| | - Fenfen Li
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Lab for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Tianzhi Luo
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Liqun He
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ao Xu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Bensheng Qiu
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Lab for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
77
|
Valikhani D, Bolivar JM, Pelletier JN. An Overview of Cytochrome P450 Immobilization Strategies for Drug Metabolism Studies, Biosensing, and Biocatalytic Applications: Challenges and Opportunities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Donya Valikhani
- Department of Chemistry, Université de Montréal and Center for Green Chemistry and Catalysis (CGCC), 1375 Thérèse-Lavoie-Roux Ave., Montréal, Quebec H2 V 0B3, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec City Quebec G1 V 0A6, Canada
| | - Juan M. Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., 28040 Madrid, Spain
| | - Joelle N. Pelletier
- Department of Chemistry, Université de Montréal and Center for Green Chemistry and Catalysis (CGCC), 1375 Thérèse-Lavoie-Roux Ave., Montréal, Quebec H2 V 0B3, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec City Quebec G1 V 0A6, Canada
- Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit ave, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
78
|
Özkan A, Stolley DL, Cressman ENK, McMillin M, DeMorrow S, Yankeelov TE, Rylander MN. Tumor Microenvironment Alters Chemoresistance of Hepatocellular Carcinoma Through CYP3A4 Metabolic Activity. Front Oncol 2021; 11:662135. [PMID: 34262860 PMCID: PMC8273608 DOI: 10.3389/fonc.2021.662135] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Variations in tumor biology from patient to patient combined with the low overall survival rate of hepatocellular carcinoma (HCC) present significant clinical challenges. During the progression of chronic liver diseases from inflammation to the development of HCC, microenvironmental properties, including tissue stiffness and oxygen concentration, change over time. This can potentially impact drug metabolism and subsequent therapy response to commonly utilized therapeutics, such as doxorubicin, multi-kinase inhibitors (e.g., sorafenib), and other drugs, including immunotherapies. In this study, we utilized four common HCC cell lines embedded in 3D collagen type-I gels of varying stiffnesses to mimic normal and cirrhotic livers with environmental oxygen regulation to quantify the impact of these microenvironmental factors on HCC chemoresistance. In general, we found that HCC cells with higher baseline levels of cytochrome p450-3A4 (CYP3A4) enzyme expression, HepG2 and C3Asub28, exhibited a cirrhosis-dependent increase in doxorubicin chemoresistance. Under the same conditions, HCC cell lines with lower CYP3A4 expression, HuH-7 and Hep3B2, showed a decrease in doxorubicin chemoresistance in response to an increase in microenvironmental stiffness. This differential therapeutic response was correlated with the regulation of CYP3A4 expression levels under the influence of stiffness and oxygen variation. In all tested HCC cell lines, the addition of sorafenib lowered the required doxorubicin dose to induce significant levels of cell death, demonstrating its potential to help reduce systemic doxorubicin toxicity when used in combination. These results suggest that patient-specific tumor microenvironmental factors, including tissue stiffness, hypoxia, and CYP3A4 activity levels, may need to be considered for more effective use of chemotherapeutics in HCC patients.
Collapse
Affiliation(s)
- Alican Özkan
- Department of Mechanical Engineering, The University of Texas, Austin, TX, United States
| | - Danielle L. Stolley
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
| | - Erik N. K. Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Central Texas Veterans Health Care System, Temple, TX, United States
| | - Sharon DeMorrow
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Central Texas Veterans Health Care System, Temple, TX, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, United States
- Departments of Diagnostic Medicine, The University of Texas, Austin, TX, United States
- Department of Oncology, The University of Texas, Austin, TX, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX, United States
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, The University of Texas, Austin, TX, United States
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, United States
| |
Collapse
|
79
|
Valencia L, Canalejas-Tejero V, Clemente M, Fernaud I, Holgado M, Jorcano JL, Velasco D. A new microfluidic method enabling the generation of multi-layered tissues-on-chips using skin cells as a proof of concept. Sci Rep 2021; 11:13160. [PMID: 34162909 PMCID: PMC8222336 DOI: 10.1038/s41598-021-91875-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Microfluidic-based tissues-on-chips (TOCs) have thus far been restricted to modelling simple epithelia as a single cell layer, but likely due to technical difficulties, no TOCs have been reported to include both an epithelial and a stromal component despite the biological importance of the stroma for the structure and function of human tissues. We present, for the first time, a novel approach to generate 3D multilayer tissue models in microfluidic platforms. As a proof of concept, we modelled skin, including a dermal and an epidermal compartment. To accomplish this, we developed a parallel flow method enabling the deposition of bilayer tissue in the upper chamber, which was subsequently maintained under dynamic nutrient flow conditions through the lower chamber, mimicking the function of a blood vessel. We also designed and built an inexpensive, easy-to-implement, versatile, and robust vinyl-based device that overcomes some of the drawbacks present in PDMS-based chips. Preliminary tests indicate that this biochip will allow the development and maintenance of multilayer tissues, which opens the possibility of better modelling of the complex cell-cell and cell-matrix interactions that exist in and between the epithelium and mesenchyme, allowing for better-grounded tissue modelling and drug screening.
Collapse
Affiliation(s)
- L Valencia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - V Canalejas-Tejero
- Group of Optics, Photonics and Biophotonics (GOFB), Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Clemente
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - I Fernaud
- Laboratorio Cajal de Circuitos Corticales, Center for Biomedical Technology, Universidad Politécnica de Madrid and and Consejo Superior de Investigaciones Científicas, C.S.I.C, Campus de Montegancedo, Madrid, Spain
| | - M Holgado
- Group of Optics, Photonics and Biophotonics (GOFB), Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.
- Departamento de Física Aplicada e Ingeniería de Materiales, Escuela Técnica Superior de Ingenieros Industriales, Madrid, Spain.
- Group of Organ and Tissue on-a-chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain.
| | - J L Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain.
- Division of Epithelial Biomedicine, CIEMAT, Madrid, Spain.
| | - D Velasco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
80
|
Liu X, Fang J, Huang S, Wu X, Xie X, Wang J, Liu F, Zhang M, Peng Z, Hu N. Tumor-on-a-chip: from bioinspired design to biomedical application. MICROSYSTEMS & NANOENGINEERING 2021; 7:50. [PMID: 34567763 PMCID: PMC8433302 DOI: 10.1038/s41378-021-00277-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 05/08/2023]
Abstract
Cancer is one of the leading causes of human death, despite enormous efforts to explore cancer biology and develop anticancer therapies. The main challenges in cancer research are establishing an efficient tumor microenvironment in vitro and exploring efficient means for screening anticancer drugs to reveal the nature of cancer and develop treatments. The tumor microenvironment possesses human-specific biophysical and biochemical factors that are difficult to recapitulate in conventional in vitro planar cell models and in vivo animal models. Therefore, model limitations have hindered the translation of basic research findings to clinical applications. In this review, we introduce the recent progress in tumor-on-a-chip devices for cancer biology research, medicine assessment, and biomedical applications in detail. The emerging tumor-on-a-chip platforms integrating 3D cell culture, microfluidic technology, and tissue engineering have successfully mimicked the pivotal structural and functional characteristics of the in vivo tumor microenvironment. The recent advances in tumor-on-a-chip platforms for cancer biology studies and biomedical applications are detailed and analyzed in this review. This review should be valuable for further understanding the mechanisms of the tumor evolution process, screening anticancer drugs, and developing cancer therapies, and it addresses the challenges and potential opportunities in predicting drug screening and cancer treatment.
Collapse
Affiliation(s)
- Xingxing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Jiaru Fang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Shuang Huang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Xiaoxue Wu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Fanmao Liu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Meng Zhang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Zhenwei Peng
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ning Hu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| |
Collapse
|
81
|
Ebefors K, Lassén E, Anandakrishnan N, Azeloglu EU, Daehn IS. Modeling the Glomerular Filtration Barrier and Intercellular Crosstalk. Front Physiol 2021; 12:689083. [PMID: 34149462 PMCID: PMC8206562 DOI: 10.3389/fphys.2021.689083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
The glomerulus is a compact cluster of capillaries responsible for blood filtration and initiating urine production in the renal nephrons. A trilaminar structure in the capillary wall forms the glomerular filtration barrier (GFB), composed of glycocalyx-enriched and fenestrated endothelial cells adhering to the glomerular basement membrane and specialized visceral epithelial cells, podocytes, forming the outermost layer with a molecular slit diaphragm between their interdigitating foot processes. The unique dynamic and selective nature of blood filtration to produce urine requires the functionality of each of the GFB components, and hence, mimicking the glomerular filter in vitro has been challenging, though critical for various research applications and drug screening. Research efforts in the past few years have transformed our understanding of the structure and multifaceted roles of the cells and their intricate crosstalk in development and disease pathogenesis. In this review, we present a new wave of technologies that include glomerulus-on-a-chip, three-dimensional microfluidic models, and organoids all promising to improve our understanding of glomerular biology and to enable the development of GFB-targeted therapies. Here, we also outline the challenges and the opportunities of these emerging biomimetic systems that aim to recapitulate the complex glomerular filter, and the evolving perspectives on the sophisticated repertoire of cellular signaling that comprise the glomerular milieu.
Collapse
Affiliation(s)
- Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emelie Lassén
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ilse S Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
82
|
Clark AM, Allbritton NL, Wells A. Integrative microphysiological tissue systems of cancer metastasis to the liver. Semin Cancer Biol 2021; 71:157-169. [PMID: 32580025 PMCID: PMC7750290 DOI: 10.1016/j.semcancer.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
The liver is the most commonly involved organ in metastases from a wide variety of solid tumors. The use of biologically and cellularly complex liver tissue systems have shown that tumor cell behavior and therapeutic responses are modulated within the liver microenvironment and in ways distinct from the behaviors in the primary locations. These microphysiological systems have provided unexpected and powerful insights into the tumor cell biology of metastasis. However, neither the tumor nor the liver exist in an isolated tissue situation, having to function within a complete body and respond to systemic events as well as those in other organs. To examine the influence of one organ on the function of other tissues, microphysiological systems are being linked. Herein, we discuss extending this concept to tumor metastases by integrating complex models of the primary tumor with the liver metastatic environment. In addition, inflammatory organs and the immune system can be incorporated into these multi-organ systems to probe the effects on tumor behavior and cancer treatments.
Collapse
Affiliation(s)
- Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
83
|
The potential effect of phytochemicals and herbal plant remedies for treating drug-induced hepatotoxicity: a review. Mol Biol Rep 2021; 48:4767-4788. [PMID: 34075538 DOI: 10.1007/s11033-021-06444-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
Abstract
Drug-induced liver injury significantly caused by synthetic drugs, and other xenobiotics contribute to clinical hepatic dysfunction, which has been a substantial challenge for both patients and physicians. Traditional medicines used as an alternative therapy because of their pharmacological benefits, less or no side effects, and enormous availability in nature. Phytochemicals are essential ingredients of plants that reduce necrotic cell death, restore the antioxidant defence mechanism, limit oxidative stress, and prevent the inflammation of tissue and dysfunction of the mitochondria. In this review, we principally focused on the potential effect of the herbal plants and their phytochemicals in treating drug-induced hepatotoxicity.
Collapse
|
84
|
Yao T, Zhang Y, Lv M, Zang G, Ng SS, Chen X. Advances in 3D cell culture for liver preclinical studies. Acta Biochim Biophys Sin (Shanghai) 2021; 53:643-651. [PMID: 33973620 DOI: 10.1093/abbs/gmab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Indexed: 11/13/2022] Open
Abstract
The 3D cell culture model is an indispensable tool in the study of liver biology in the field of health and disease and the development of clinically relevant products for liver therapies. The 3D culture model captures critical factors of the microenvironmental niche required by hepatocytes for exhibiting optimal phenotypes, thus enabling the pursuit of a range of preclinical studies that are not entirely feasible in conventional 2D cell models. In this review, we highlight the major attributes associated with and the components needed for the development of a functional 3D liver culture model for a range of applications.
Collapse
Affiliation(s)
- Ting Yao
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Mengjiao Lv
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
85
|
Lombardo JA, Aliaghaei M, Nguyen QH, Kessenbrock K, Haun JB. Microfluidic platform accelerates tissue processing into single cells for molecular analysis and primary culture models. Nat Commun 2021; 12:2858. [PMID: 34001902 PMCID: PMC8128882 DOI: 10.1038/s41467-021-23238-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Tissues are complex mixtures of different cell subtypes, and this diversity is increasingly characterized using high-throughput single cell analysis methods. However, these efforts are hindered, as tissues must first be dissociated into single cell suspensions using methods that are often inefficient, labor-intensive, highly variable, and potentially biased towards certain cell subtypes. Here, we present a microfluidic platform consisting of three tissue processing technologies that combine tissue digestion, disaggregation, and filtration. The platform is evaluated using a diverse array of tissues. For kidney and mammary tumor, microfluidic processing produces 2.5-fold more single cells. Single cell RNA sequencing further reveals that endothelial cells, fibroblasts, and basal epithelium are enriched without affecting stress response. For liver and heart, processing time is dramatically reduced. We also demonstrate that recovery of cells from the system at periodic intervals during processing increases hepatocyte and cardiomyocyte numbers, as well as increases reproducibility from batch-to-batch for all tissues.
Collapse
Affiliation(s)
- Jeremy A Lombardo
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Marzieh Aliaghaei
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Quy H Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Jered B Haun
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA.
- Center for Advanced Design and Manufacturing of Integrated Microfluidics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
86
|
Gerussi A, Natalini A, Antonangeli F, Mancuso C, Agostinetto E, Barisani D, Di Rosa F, Andrade R, Invernizzi P. Immune-Mediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. Int J Mol Sci 2021; 22:4557. [PMID: 33925355 PMCID: PMC8123708 DOI: 10.3390/ijms22094557] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a challenging clinical event in medicine, particularly because of its ability to present with a variety of phenotypes including that of autoimmune hepatitis or other immune mediated liver injuries. Limited diagnostic and therapeutic tools are available, mostly because its pathogenesis has remained poorly understood for decades. The recent scientific and technological advancements in genomics and immunology are paving the way for a better understanding of the molecular aspects of DILI. This review provides an updated overview of the genetic predisposition and immunological mechanisms behind the pathogenesis of DILI and presents the state-of-the-art experimental models to study DILI at the pre-clinical level.
Collapse
Affiliation(s)
- Alessio Gerussi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Clara Mancuso
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet, L’Universite’ Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Medical Oncology and Hematology Unit, Humanitas Clinical and Research Center—IRCCS, Humanitas Cancer Center, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Donatella Barisani
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Raul Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), UGC Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Málaga, Spain;
| | - Pietro Invernizzi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
87
|
Rubiano A, Indapurkar A, Yokosawa R, Miedzik A, Rosenzweig B, Arefin A, Moulin CM, Dame K, Hartman N, Volpe DA, Matta MK, Hughes DJ, Strauss DG, Kostrzewski T, Ribeiro AJS. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation. Clin Transl Sci 2021; 14:1049-1061. [PMID: 33382907 PMCID: PMC8212739 DOI: 10.1111/cts.12969] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Liver microphysiological systems (MPSs) are promising models for predicting hepatic drug effects. Yet, after a decade since their introduction, MPSs are not routinely used in drug development due to lack of criteria for ensuring reproducibility of results. We characterized the feasibility of a liver MPS to yield reproducible outcomes of experiments assaying drug toxicity, metabolism, and intracellular accumulation. The ability of the liver MPS to reproduce hepatotoxic effects was assessed using trovafloxacin, which increased lactate dehydrogenase (LDH) release and reduced cytochrome P450 3A4 (CYP3A4) activity. These observations were made in two test sites and with different batches of Kupffer cells. Upon culturing equivalent hepatocytes in the MPS, spheroids, and sandwich cultures, differences between culture formats were detected in CYP3A4 activity and albumin production. Cells in all culture formats exhibited different sensitivities to hepatotoxicant exposure. Hepatocytes in the MPS were more functionally stable than those of other culture platforms, as CYP3A4 activity and albumin secretion remained prominent for greater than 18 days in culture, whereas functional decline occurred earlier in spheroids (12 days) and sandwich cultures (7 days). The MPS was also demonstrated to be suitable for metabolism studies, where CYP3A4 activity, troglitazone metabolites, diclofenac clearance, and intracellular accumulation of chloroquine were quantified. To ensure reproducibility between studies with the MPS, the combined use of LDH and CYP3A4 assays were implemented as quality control metrics. Overall results indicated that the liver MPS can be used reproducibly in general drug evaluation applications. Study outcomes led to general considerations and recommendations for using liver MPSs. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Microphysiological systems (MPSs) have been designed to recreate organ- or tissue-specific characteristics of extracellular microenvironments that enhance the physiological relevance of cells in culture. Liver MPSs enable long-lasting and stable culture of hepatic cells by culturing them in three-dimensions and exposing them to fluid flow. WHAT QUESTION DID THIS STUDY ADDRESS? What is the functional performance relative to other cell culture platforms and the reproducibility of a liver MPS for assessing drug development and evaluation questions, such as toxicity, metabolism, and pharmacokinetics? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? The liver MPS systematically detected the toxicity of trovafloxacin. When compared with spheroids and sandwich cultures, this system had a more stable function and different sensitivity to troglitazone, tamoxifen, and digoxin. Quantifying phase II metabolism of troglitazone and intracellular accumulation of chloroquine demonstrated the potential use of the liver MPS for studying drug metabolism and pharmacokinetics. Quality control criteria for assessing chip function were key for reliably using the liver MPS. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? Due to its functional robustness and physiological relevance (3D culture, cells expose to fluid flow and co-culture of different cell types), the liver MPS can, in a reproducible manner: (i) detect inflammatory-induced drug toxicity, as demonstrated with trovafloxacin, (ii) detect the toxicity of other drugs, such as troglitazone, tamoxifen, and digoxin, with different effects than those detected in spheroids and sandwich cultures, (iii) enable studies of hepatic function that rely on prolonged cellular activity, and (iv) detect phase II metabolites and drug accumulation to potentially support the interpretation of clinical data. The integration of MPSs in drug development will be facilitated by careful evaluation of performance and reproducibility as performed in this study.
Collapse
Affiliation(s)
- Andrés Rubiano
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amruta Indapurkar
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ryosuke Yokosawa
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Barry Rosenzweig
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ayesha Arefin
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chloe M Moulin
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Keri Dame
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Neil Hartman
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Donna A Volpe
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Murali K Matta
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - David G Strauss
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA.,Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Alexandre J S Ribeiro
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
88
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
89
|
Cho HJ, Kim HJ, Lee K, Lasli S, Ung A, Hoffman T, Nasiri R, Bandaru P, Ahadian S, Dokmeci MR, Lee J, Khademhosseini A. Bioengineered Multicellular Liver Microtissues for Modeling Advanced Hepatic Fibrosis Driven Through Non-Alcoholic Fatty Liver Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007425. [PMID: 33690979 PMCID: PMC8035291 DOI: 10.1002/smll.202007425] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Indexed: 05/30/2023]
Abstract
Despite considerable efforts in modeling liver disease in vitro, it remains difficult to recapitulate the pathogenesis of the advanced phases of non-alcoholic fatty liver disease (NAFLD) with inflammation and fibrosis. Here, a liver-on-a-chip platform with bioengineered multicellular liver microtissues is developed, composed of four major types of liver cells (hepatocytes, endothelial cells, Kupffer cells, and stellate cells) to implement a human hepatic fibrosis model driven by NAFLD: i) lipid accumulation in hepatocytes (steatosis), ii) neovascularization by endothelial cells, iii) inflammation by activated Kupffer cells (steatohepatitis), and iv) extracellular matrix deposition by activated stellate cells (fibrosis). In this model, the presence of stellate cells in the liver-on-a-chip model with fat supplementation showed elevated inflammatory responses and fibrosis marker up-regulation. Compared to transforming growth factor-beta-induced hepatic fibrosis models, this model includes the native pathological and chronological steps of NAFLD which shows i) higher fibrotic phenotypes, ii) increased expression of fibrosis markers, and iii) efficient drug transport and metabolism. Taken together, the proposed platform will enable a better understanding of the mechanisms underlying fibrosis progression in NAFLD as well as the identification of new drugs for the different stages of NAFLD.
Collapse
Affiliation(s)
- Hyun-Jong Cho
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Han-Jun Kim
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - KangJu Lee
- Department of Healthcare Medical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Soufian Lasli
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Aly Ung
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Tyler Hoffman
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Rohollah Nasiri
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Praveen Bandaru
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Samad Ahadian
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Junmin Lee
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
90
|
Sung JH. Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opin Drug Metab Toxicol 2021; 17:969-986. [PMID: 33764248 DOI: 10.1080/17425255.2021.1908996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Accurate prediction of pharmacokinetic (PK) and toxicokinetics (TK) of drugs is imperative for successful development of new pharmaceutics. Although conventional in vitro methods for predicting the PK and TK of drugs are well established, limitations still exist and more advanced chip-based in vitro platforms combined with mathematical models can help researchers overcome the limitations. Areas covered: We will review recent progress in the development of multi-organ-on-a-chip platforms for predicting PK and TK of drugs, as well as mathematical approaches that can be combined with these platforms for experiment design, data analysis and in vitro-in vivo extrapolation (IVIVE) for application to humans. Expert opinion: Although there remain some challenges to be addressed, the remarkable progress in the area of multi-organ-on-a-chip in recent years indicate that we will see tangible outcomes that can be utilized in the pharmaceutical industry in near future.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, sejong, Republic of Korea
| |
Collapse
|
91
|
Construction of cancer-on-a-chip for drug screening. Drug Discov Today 2021; 26:1875-1890. [PMID: 33731317 DOI: 10.1016/j.drudis.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/16/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
Cancer-on-a-chip has effectively contributed to the development of drug screening, holding great promise for more convenient and reliable drug development as well as personalized drug administration.
Collapse
|
92
|
Esmaeili J, Barati A, Ai J, Nooshabadi VT, Mirzaei Z. Employing hydrogels in tissue engineering approaches to boost conventional cancer-based research and therapies. RSC Adv 2021; 11:10646-10669. [PMID: 35423538 PMCID: PMC8695814 DOI: 10.1039/d1ra00855b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a complicated disease that involves the efforts of researchers to introduce and investigate novel successful treatments. Traditional cancer therapy approaches, especially chemotherapy, are prone to possible systemic side effects, such as the dysfunction of liver or kidney, neurological side effects and a decrease of bone marrow activity. Hydrogels, along with tissue engineering techniques, provide tremendous potential for scientists to overcome these issues through the release of drugs at the site of tumor. Hydrogels demonstrated competency as potent and stimulus-sensitive drug delivery systems for tumor removal, which is attributed to their unique features, including high water content, biocompatibility, and biodegradability. In addition, hydrogels have gained more attention as 3D models for easier and faster screening of cancer and tumors due to their potential in mimicking the extracellular matrix. Hydrogels as a reservoir can be loaded by an effective dosage of chemotherapeutic agents, and then deliver them to targets. In comparison to conventional procedures, hydrogels considerably decreased the total cost, duration of research, and treatment time. This study provides a general look into the potential role of hydrogels as a powerful tool to augment cancer studies for better analysis of cancerous cell functions, cell survival, angiogenesis, metastasis, and drug screening. Moreover, the upstanding application of drug delivery systems related to the hydrogel in order to sustain the release of desired drugs in the tumor cell-site were explored.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University Arak Iran
- Department of Tissue Engineering, TISSUEHUB CO. Tehran Iran
| | - Abolfazl Barati
- Department of Chemical Engineering, Faculty of Engineering, Arak University Arak Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies, Tehran University of Medical Sciences Tehran 14177-55469 Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies, Tehran University of Medical Sciences Tehran 14177-55469 Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences Semnan Iran
| | - Zeynab Mirzaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology Hafez str. 424 Tehran Iran
- Department of Tissue Engineering, TISSUEHUB CO. Tehran Iran
| |
Collapse
|
93
|
Decarli MC, do Amaral RLF, Dos Santos DP, Tofani LB, Katayama E, Rezende RA, Silva JVLD, Swiech K, Suazo CAT, Mota C, Moroni L, Moraes ÂM. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Biofabrication 2021; 13. [PMID: 33592595 DOI: 10.1088/1758-5090/abe6f2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 11/12/2022]
Abstract
Three-dimensional cell culture has tremendous advantages to closely mimic the in vivo architecture and microenvironment of healthy tissue and organs, as well as of solid tumors. Spheroids are currently the most attractive 3D model to produce uniform reproducible cell structures as well as a potential basis for engineering large tissues and complex organs. In this review we discuss, from an engineering perspective, processes to obtain uniform 3D cell spheroids, comparing dynamic and static cultures and considering aspects such as mass transfer and shear stress. In addition, computational and mathematical modelling of complex cell spheroid systems are discussed. The non-cell-adhesive hydrogel-based method and dynamic cell culture in bioreactors are focused in detail and the myriad of developed spheroid characterization techniques is presented. The main bottlenecks and weaknesses are discussed, especially regarding the analysis of morphological parameters, cell quantification and viability, gene expression profiles, metabolic behavior and high-content analysis. Finally, a vast set of applications of spheroids as tools for in vitro study model systems is examined, including drug screening, tissue formation, pathologies development, tissue engineering and biofabrication, 3D bioprinting and microfluidics, together with their use in high-throughput platforms.
Collapse
Affiliation(s)
- Monize Caiado Decarli
- School of Chemical Engineering/Department of Engineering of Materials and of Bioprocesses, University of Campinas, Av. Albert Einstein, 500 - Bloco A - Cidade Universitária Zeferino Vaz, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-852, BRAZIL
| | - Robson Luis Ferraz do Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, University of São Paulo, Avenida do Café, no number, Ribeirão Preto, SP, 14040-903, BRAZIL
| | - Diogo Peres Dos Santos
- Departament of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Larissa Bueno Tofani
- School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, University of São Paulo, Avenida do Café, no number, Ribeirão Preto, SP, 14040-903, BRAZIL
| | - Eric Katayama
- Departament of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Rodrigo Alvarenga Rezende
- Centro de Tecnologia da Informacao Renato Archer, Rod. Dom Pedro I (SP-65), km 143,6 - Amarais, Campinas, SP, 13069-901, BRAZIL
| | - Jorge Vicente Lopes da Silva
- Centro de Tecnologia da Informacao Renato Archer, Rod. Dom Pedro I (SP-65), km 143,6 - Amarais, Campinas, SP, 13069-901, BRAZIL
| | - Kamilla Swiech
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, Ribeirao Preto, SP, 14040-903, BRAZIL
| | - Cláudio Alberto Torres Suazo
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Carlos Mota
- Department of Complex Tissue Regeneration (CTR), University of Maastricht , Universiteitssingel, 40, office 3.541A, Maastricht, 6229 ER, NETHERLANDS
| | - Lorenzo Moroni
- Complex Tissue Regeneration, Maastricht University, Universiteitsingel, 40, Maastricht, 6229ER, NETHERLANDS
| | - Ângela Maria Moraes
- School of Chemical Engineering/Department of Engineering of Materials and of Bioprocesses, University of Campinas, Av. Albert Einstein, 500 - Bloco A - Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-852, BRAZIL
| |
Collapse
|
94
|
Morales X, Cortés-Domínguez I, Ortiz-de-Solorzano C. Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels. Gels 2021; 7:17. [PMID: 33673091 PMCID: PMC7930983 DOI: 10.3390/gels7010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding how cancer cells migrate, and how this migration is affected by the mechanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaffolds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration.
Collapse
Affiliation(s)
| | | | - Carlos Ortiz-de-Solorzano
- IDISNA, Ciberonc and Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; (X.M.); (I.C.-D.)
| |
Collapse
|
95
|
Chen PY, Hsieh MJ, Liao YH, Lin YC, Hou YT. Liver-on-a-chip platform to study anticancer effect of statin and its metabolites. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
96
|
Rodrigues RO, Sousa PC, Gaspar J, Bañobre-López M, Lima R, Minas G. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003517. [PMID: 33236819 DOI: 10.1002/smll.202003517] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Despite the progress achieved in nanomedicine during the last decade, the translation of new nanotechnology-based therapeutic systems into clinical applications has been slow, especially due to the lack of robust preclinical tissue culture platforms able to mimic the in vivo conditions found in the human body and to predict the performance and biotoxicity of the developed nanomaterials. Organ-on-a-chip (OoC) platforms are novel microfluidic tools that mimic complex human organ functions at the microscale level. These integrated microfluidic networks, with 3D tissue engineered models, have been shown high potential to reduce the discrepancies between the results derived from preclinical and clinical trials. However, there are many challenges that still need to be addressed, such as the integration of biosensor modules for long-time monitoring of different physicochemical and biochemical parameters. In this review, recent advances on OoC platforms, particularly on the preclinical validation of nanomaterials designed for cancer, as well as the current challenges and possible future directions for an end-use perspective are discussed.
Collapse
Affiliation(s)
- Raquel O Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Patrícia C Sousa
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - João Gaspar
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Rui Lima
- Transport Phenomena Research Center (CEFT), Faculdade de Engenharia da Universidade do Porto (FEUP), R. Dr. Roberto Frias, Porto, 4200-465, Portugal
- Mechanical Engineering and Resource Sustainability Center (MEtRICs), Mechanical Engineering Department, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| |
Collapse
|
97
|
Li W, Sun X, Ji B, Yang X, Zhou B, Lu Z, Gao X. PLGA Nanofiber/PDMS Microporous Composite Membrane-Sandwiched Microchip for Drug Testing. MICROMACHINES 2020; 11:mi11121054. [PMID: 33260653 PMCID: PMC7760955 DOI: 10.3390/mi11121054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Lung-on-a-chip devices could provide new strategies for a biomimetic lung cell microenvironment and construction of lung disease models in vitro, and are expected to greatly promote the development of drug evaluation, toxicological detection, and disease model building. In this study, we developed a novel poly (lactic-co-glycolic acid) (PLGA) nanofiber/polydimethylsiloxane (PDMS) microporous composite membrane-sandwiched lung-on-a-chip to perform anti-tumor drug testing. The composite membrane was characterized, and the results showed that it was permeable to molecules and thus could be used to study small-molecule drug diffusion. In addition, the microchip could apply perfusion fluids to simulate blood flow under extremely low fluid shear stress, and could also simulate the spherical-like shape of the alveoli by deformation of the composite membrane. Using this chip, we evaluated the anti-tumor drug efficacy of gefitinib in two kinds of non-small cell lung cancer cells, the lung adenocarcinoma NCI-H1650 cell line and the large cell lung cancer NCI-H460 cell line. We further probed the resistance of NCI-H460 cells to gefitinib under normoxic and hypoxic conditions. The established composite membrane-sandwiched lung chip can simulate more biochemical and biophysical factors in the lung physiological and pathological microenvironment, and it has important applications in the personalized treatment of lung tumors. It is expected to play a potential role in clinical diagnosis and drug screening.
Collapse
Affiliation(s)
- Wei Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; (W.L.); (X.S.); (X.Y.)
| | - Xindi Sun
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; (W.L.); (X.S.); (X.Y.)
| | - Bing Ji
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China; (B.J.); (B.Z.)
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; (W.L.); (X.S.); (X.Y.)
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China; (B.J.); (B.Z.)
| | - Zhanjun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Correspondence: (Z.L.); (X.G.)
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; (W.L.); (X.S.); (X.Y.)
- Correspondence: (Z.L.); (X.G.)
| |
Collapse
|
98
|
Haykal MM, Nahmias C, Varon C, Martin OCB. Organotypic Modeling of the Tumor Landscape. Front Cell Dev Biol 2020; 8:606039. [PMID: 33330508 PMCID: PMC7732527 DOI: 10.3389/fcell.2020.606039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer is a complex disease and it is now clear that not only epithelial tumor cells play a role in carcinogenesis. The tumor microenvironment is composed of non-stromal cells, including endothelial cells, adipocytes, immune and nerve cells, and a stromal compartment composed of extracellular matrix, cancer-associated fibroblasts and mesenchymal cells. Tumorigenesis is a dynamic process with constant interactions occurring between the tumor cells and their surroundings. Even though all connections have not yet been discovered, it is now known that crosstalk between actors of the microenvironment drives cancer progression. Taking into account this complexity, it is important to develop relevant models to study carcinogenesis. Conventional 2D culture models fail to represent the entire tumor microenvironment properly and the use of animal models should be decreased with respect to the 3Rs rule. To this aim, in vitro organotypic models have been significantly developed these past few years. These models have different levels of complexity and allow the study of tumor cells alone or in interaction with the microenvironment actors during the multiple stages of carcinogenesis. This review depicts recent insights into organotypic modeling of the tumor and its microenvironment all throughout cancer progression. It offers an overview of the crosstalk between epithelial cancer cells and their microenvironment during the different phases of carcinogenesis, from the early cell autonomous events to the late metastatic stages. The advantages of 3D over classical 2D or in vivo models are presented as well as the most promising organotypic models. A particular focus is made on organotypic models used for studying cancer progression, from the less complex spheroids to the more sophisticated body-on-a-chip. Last but not least, we address the potential benefits of these models in personalized medicine which is undoubtedly a domain paving the path to new hopes in terms of cancer care and cure.
Collapse
Affiliation(s)
- Maria M. Haykal
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | - Clara Nahmias
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | | | | |
Collapse
|
99
|
Mosavati B, Oleinikov AV, Du E. Development of an Organ-on-a-Chip-Device for Study of Placental Pathologies. Int J Mol Sci 2020; 21:E8755. [PMID: 33228194 PMCID: PMC7699553 DOI: 10.3390/ijms21228755] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
The human placenta plays a key role in reproduction and serves as a major interface for maternofetal exchange of nutrients. Study of human placenta pathology presents a great experimental challenge because it is not easily accessible. In this paper, a 3D placenta-on-a-chip model is developed by bioengineering techniques to simulate the placental interface between maternal and fetal blood in vitro. In this model, trophoblasts cells and human umbilical vein endothelial cells are cultured on the opposite sides of a porous polycarbonate membrane, which is sandwiched between two microfluidic channels. Glucose diffusion across this barrier is analyzed under shear flow conditions. Meanwhile, a numerical model of the 3D placenta-on-a-chip model is developed. Numerical results of concentration distributions and the convection-diffusion mass transport is compared to the results obtained from the experiments for validation. Finally, effects of flow rate and membrane porosity on glucose diffusion across the placental barrier are studied using the validated numerical model. The placental model developed here provides a potentially helpful tool to study a variety of other processes at the maternal-fetal interface, for example, effects of drugs or infections like malaria on transport of various substances across the placental barrier.
Collapse
Affiliation(s)
- Babak Mosavati
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Andrew V. Oleinikov
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - E. Du
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA;
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
100
|
Lohasz C, Bonanini F, Hoelting L, Renggli K, Frey O, Hierlemann A. Predicting Metabolism-Related Drug-Drug Interactions Using a Microphysiological Multitissue System. ACTA ACUST UNITED AC 2020; 4:e2000079. [PMID: 33073544 DOI: 10.1002/adbi.202000079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Drug-drug interactions (DDIs) occur when the pharmacological activity of one drug is altered by a second drug. As multimorbidity and polypharmacotherapy are becoming more common due to the increasing age of the population, the risk of DDIs is massively increasing. Therefore, in vitro testing methods are needed to capture such multiorgan events. Here, a scalable, gravity-driven microfluidic system featuring 3D microtissues (MTs) that represent different organs for the prediction of drug-drug interactions is used. Human liver microtissues (hLiMTs) are combined with tumor microtissues (TuMTs) and treated with drug combinations that are known to cause DDIs in vivo. The testing system is able to capture and quantify DDIs upon co-administration of the anticancer prodrugs cyclophosphamide or ifosfamide with the antiretroviral drug ritonavir. Dosage of ritonavir inhibits hepatic metabolization of the two prodrugs to different extents and decreases their efficacy in acting on TuMTs. The flexible MT compartment design of the system, the use of polystyrene as chip material, and the assembly of several chips in stackable plates offer the potential to significantly advance preclinical substance testing. The possibility of testing a broad variety of drug combinations to identify possible DDIs will improve the drug development process and increase patient safety.
Collapse
Affiliation(s)
- Christian Lohasz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland
| | - Flavio Bonanini
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland
| | | | - Kasper Renggli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland
| | | | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland
| |
Collapse
|