51
|
Ma Q, Li PL, Hua YL, Ji P, Yao WL, Zhang XS, Zhong LJ, Wei YM. Effects of Tao-Hong-Si-Wu decoction on acute blood stasis in rats based on a LC-Q/TOF-MS metabolomics and network approach. Biomed Chromatogr 2017; 32. [PMID: 29149492 DOI: 10.1002/bmc.4144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
A novel approach using metabolomics coupled with a metabolic network was used to investigate the effects of Tao-Hong-Si-Wu decoction (THSWD) on the rat model of acute blood stasis syndrome. Acute blood stasis syndrome was induced by placing the rats in ice-cold water following two injections with epinephrine. The hemorheological indicators [whole blood viscosity (WBV) and plasma viscosity (PV)] and the blood coagulation indicators [thrombin time (TT), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen (FIB)] were detected. The nonparametric univariate method and multivariate statistical analysis were performed for determining the potential biomarkers. A correlation map was structured between biochemical indicators and hub metabolites to explain the effects mechanism of THSWD. After the administration of THSWD, the levels of WBV, PV, TT, APTT and FIB returned to levels observed in the control group. According to metabolomics coupled with metabolic network analysis, the intervention of THSWD in rats with acute blood stasis syndrome induced substantial and characteristic changes in their metabolic profiles. Fifteen metabolites were screened, which mainly involved 10 pathways and five hub metabolites, namely, l-glutamate, l-phenylalanine, N-acylsphingosine, arachidonic acid and phosphatidate. The biochemical indicators and hub metabolites could be adjusted to close to normal levels by THSWD. Therefore, combining metabolomics and metabolic network helped to evaluate the effects of THSWD on acute blood stasis.
Collapse
Affiliation(s)
- Qi Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Peng-Ling Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Li-Jia Zhong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
52
|
Novakovic A, Marinko M, Jankovic G, Stojanovic I, Milojevic P, Nenezic D, Kanjuh V, Yang Q, He GW. Endothelium-dependent vasorelaxant effect of procyanidin B2 on human internal mammary artery. Eur J Pharmacol 2017; 807:75-81. [PMID: 28414054 DOI: 10.1016/j.ejphar.2017.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to investigate and characterize vasorelaxant effect of procyanidin B2 on human internal mammary artery (HIMA) as one of the mechanisms of its protective effect against vascular risk. Procyanidin B2 induced strong concentration-dependent relaxation of HIMA rings pre-contracted by phenylephrine. Pretreatment with L-NAME, a NO synthase inhibitor, hydroxocobalamin, a NO scavenger, and ODQ, an inhibitor of soluble guanylate cyclase, significantly inhibited procyanidin B2-induced relaxation of HIMA, while indomethacin, a cyclooxygenase inhibitor, considerably reduced effects of low concentrations. Among K+ channel blockers, iberiotoxin, a selective blocker of large conductance Ca2+-activated K+ channels (BKCa), abolished procyanidin B2-induced relaxation, glibenclamide, a selective ATP-sensitive K+(KATP) channels blocker, induced partial inhibition, while 4-aminopyridine, a blocker of voltage-gated K+(KV) channels, and TRAM-34, an inhibitor of intermediate-conductance Ca2+-activated K+(IKCa) channels, slightly reduced maximal relaxation of HIMA. Further, procyanidin B2 relaxed contraction induced by phenylephrine in Ca2+-free Krebs solution, but had no effect on contraction induced by caffeine. Finally, thapsigargin, a sarcoplasmic reticulum Ca2+-ATPase inhibitor, significantly reduced relaxation of HIMA produced by procyanidin B2. These results demonstrate that procyanidin B2 produces endothelium-dependent relaxation of HIMA pre-contracted by phenylephrine. This effect is primarily the result of an increased NO synthesis and secretion by endothelial cells and partially of prostacyclin, although it involves activation of BKCa and KATP, as well as KV and IKCa channels in high concentrations of procyanidin B2.
Collapse
Affiliation(s)
- Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Goran Jankovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ivan Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Predrag Milojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Dragoslav Nenezic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | | | - Qin Yang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong; TEDA International Cardiovascular Hospital, Tianjin, China
| | - Guo-Wei He
- TEDA International Cardiovascular Hospital, Tianjin, China
| |
Collapse
|
53
|
Ma F, Zhang Y, Liu N, Zhang J, Tan G, Kannan B, Liu X, Bell AE. Rheological properties of polysaccharides from Dioscorea opposita Thunb. Food Chem 2017; 227:64-72. [DOI: 10.1016/j.foodchem.2017.01.072] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/20/2016] [Accepted: 01/15/2017] [Indexed: 12/01/2022]
|
54
|
Boonprom P, Boonla O, Chayaburakul K, Welbat JU, Pannangpetch P, Kukongviriyapan U, Kukongviriyapan V, Pakdeechote P, Prachaney P. Garcinia mangostana pericarp extract protects against oxidative stress and cardiovascular remodeling via suppression of p47 phox and iNOS in nitric oxide deficient rats. Ann Anat 2017; 212:27-36. [PMID: 28455132 DOI: 10.1016/j.aanat.2017.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/17/2017] [Accepted: 03/31/2017] [Indexed: 11/30/2022]
Abstract
Nω-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension and cardiovascular remodeling are associated with oxidative stress and inflammation. Garcinia mangostana Linn., has been reported to have antioxidant and anti-inflammatory properties. This study investigated whether G. mangostana pericarp extract (GME) could prevent l-NAME-induced hemodynamic alterations, cardiovascular remodeling, oxidative stress and inflammation in rats. Male Sprague-Dawley rats were given 40mg/kg/day of l-NAME in drinking water to induce hypertension, and were simultaneously treated with GME at a dose of 200mg/kg/day. Rats that received l-NAME for five weeks had high blood pressure, left ventricular hypertrophy and thickening of aortic wall. Vascular superoxide production, plasma malondialdehyde (MDA), and plasma tumor necrosis factor alpha (TNF-α) were significantly increased in l-NAME-hypertensive rats (p<0.05). This was consistent with up-regulation of the p47phox NADPH oxidase subunit and iNOS protein expression in aortic tissues (p<0.05). Low levels of plasma nitric oxide metabolites were observed in l-NAME hypertension. GME prevented the development of hypertension and cardiovascular remodeling induced by l-NAME with reduced oxidative stress and inflammation. These data suggest that GME had a protective effect against l-NAME-induced hypertension and cardiovascular remodeling via suppressing p47phox NADPH oxidase subunit and iNOS protein expression resulting in enhancing NO bioavailability.
Collapse
Affiliation(s)
- Pattanapong Boonprom
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Orachorn Boonla
- Faculty of Allied Health Science, Burapha University, Chonburi 20130, Thailand
| | - Kanokporn Chayaburakul
- Department of Medical Science, Faculty of Science, Rangsit University, Patumthani 12000, Thailand
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Parichat Prachaney
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
55
|
Abstract
The pathogenesis of pulmonary arterial hypertension remains undefined. Changes in the expression and effects mediated by a number of vasoactive factors have been implicated to play a role in the onset and progression of the disease. The source of many of these mediators, such as nitric oxide (NO), prostacyclin and endothelin-1 (ET-1), is the pulmonary endothelium. This article focus in the role of nitric oxide in PAH, reviewing the evidence for its involvement in regulation of pulmonary a vascular tone under physiological conditions, the mechanisms by which it can contribute to the pathological changes seen in PAH and strategies for the use of NO as a therapy for treatment of the disease.
Collapse
Affiliation(s)
- Adrian H Chester
- National Heart & Lung Institute, Imperial College London, Heart Science Centre, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Magdi H Yacoub
- National Heart & Lung Institute, Imperial College London, Heart Science Centre, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Salvador Moncada
- School of Medical Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M20 4QL, United Kingdom
| |
Collapse
|
56
|
MCL Plays an Anti-Inflammatory Role in Mycobacterium tuberculosis-Induced Immune Response by Inhibiting NF- κB and NLRP3 Inflammasome Activation. Mediators Inflamm 2017. [PMID: 28642632 PMCID: PMC5470027 DOI: 10.1155/2017/2432904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a significant menace to global health as it induces granulomatous lung lesions and systemic inflammatory responses during active tuberculosis (TB). Micheliolide (MCL), a sesquiterpene lactone, was recently reported to have a function of relieving LPS-induced inflammatory response, but the regulative role of MCL on the immunopathology of TB still remains unknown. In this experiment, we examined the inhibitory effect of MCL on Mtb-induced inflammatory response in mouse macrophage-like cell line Raw264.7 by downregulating the activation of nuclear factor kappa B (NF-κB) and NLRP3 inflammasome. Evidences showed that MCL decreased the secretion of Mtb-induced inflammatory cytokines (IL-1β and TNF-α) in a dose-dependent manner. Meanwhile, MCL dramatically suppressed Mtb-induced activation of iNOS and COX2 as well as subsequent production of NO. Furthermore, MCL inhibited Mtb-induced phosphorylation of Akt (Ser 473) in Raw264.7. According to our results, MCL plays an important role in modulating Mtb-induced inflammatory response through PI3K/Akt/NF-κB pathway and subsequently downregulating the activation of NLRP3 inflammasome. Therefore, MCL may represent as a potential drug candidate in the adjuvant treatment of TB by regulating host immune response.
Collapse
|
57
|
Liu X, Hill AM, West SG, Gabauer RM, McCrea CE, Fleming JA, Kris-Etherton PM. Acute Peanut Consumption Alters Postprandial Lipids and Vascular Responses in Healthy Overweight or Obese Men. J Nutr 2017; 147:835-840. [PMID: 28356431 PMCID: PMC5404215 DOI: 10.3945/jn.116.246785] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/09/2017] [Accepted: 03/02/2017] [Indexed: 12/25/2022] Open
Abstract
Background: Postprandial hyperlipidemia is associated with impaired endothelial function. Peanut consumption favorably affects the lipid and lipoprotein profile; however, the effects on endothelial function remain unclear.Objective: The purpose of the study was to evaluate the effects of acute peanut consumption as part of a high-fat meal on postprandial endothelial function.Methods: We conducted a randomized, controlled, crossover postprandial study to evaluate the effect of acute peanut consumption on postprandial lipids and endothelial function as assessed by flow-mediated dilatation (FMD) of the brachial artery in 15 healthy overweight or obese men [mean age: 26.7 y; mean body mass index (in kg/m2): 31.4]. Participants consumed, in a randomized order, a peanut meal containing 3 ounces (85 g) ground peanuts (1198 kcal; 40.0% carbohydrate, 47.7% fat, 19.4% saturated fat, 13.2% protein) and a control meal matched for energy and macronutrient content. Meals were in the form of a shake, scheduled ≥1 wk apart. Lipids, lipoproteins, glucose, and insulin were measured at baseline (0 min) and at 30, 60, 120, and 240 min after shake consumption. FMD was measured at baseline and at 240 min.Results: Acute peanut consumption blunted the serum triglyceride (TG) response 120 and 240 min after consumption compared with the control meal (means ± SEMs-120 min: 188.9 ± 19.4 compared with 197.5 ± 20.7 mg/dL; 240 min: 189.9 ± 24.3 compared with 197.3 ± 18.4 mg/dL; P < 0.05 for both). Total, LDL, and HDL cholesterol and glucose and insulin responses were similar between the test meals. Compared with baseline, only the control meal significantly decreased FMD at 240 min (control: -1.2% ± 0.5%; P = 0.029; peanut: -0.6% ± 0.5%; P = 0.3). Participants with higher baseline total (>150 mg/dL) and LDL (>100 mg/dL)-cholesterol concentrations showed a significant decrease in FMD after the control meal (-1.8%, P = 0.017; -2.0%, P = 0.038), whereas the peanut meal maintained endothelial function in all participants irrespective of total- and LDL-cholesterol concentrations.Conclusion: The inclusion of 85 g peanuts (3 ounces) as part of a high-fat meal improved the postprandial TG response and preserved endothelial function in healthy overweight or obese men. This trial was registered at clinicaltrials.gov as NCT01405300.
Collapse
Affiliation(s)
| | - Alison M Hill
- Departments of Nutritional Sciences and.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sheila G West
- Departments of Nutritional Sciences and.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | - Cindy E McCrea
- Departments of Nutritional Sciences and.,Biobehavioral Health, The Pennsylvania State University, State College, PA; and
| | | | | |
Collapse
|
58
|
Lu Y, Wang A, Shi P, Zhang H. A Theoretical Study on the Antioxidant Activity of Piceatannol and Isorhapontigenin Scavenging Nitric Oxide and Nitrogen Dioxide Radicals. PLoS One 2017; 12:e0169773. [PMID: 28068377 PMCID: PMC5222500 DOI: 10.1371/journal.pone.0169773] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/21/2016] [Indexed: 11/26/2022] Open
Abstract
The antioxidant activity of naturally occurring stilbene compounds piceatannol (PIC) and isorhapontigenin (ISO) scavenging two free radicals (NO and NO2) were studied using density functional theory (DFT) method. Four reaction mechanisms have been considered: hydrogen atom transfer (HAT), radical adduct formation (RAF), single electron transfer (SET), and sequential proton loss electron transfer (SPLET). The reaction channels in water solution were traced independently, and the respective thermodynamic and kinetic parameters were obtained. We found PIC and ISO scavenge NO mainly through RAF mechanism, and scavenge NO2 through HAT mechanism. The capacity of PIC scavenging NO2 is much higher than ISO, but the reactivity of scavenging NO is lower than ISO.
Collapse
Affiliation(s)
- Yang Lu
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin, People’s Republic of China
| | - AiHua Wang
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin, People’s Republic of China
| | - Peng Shi
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin, People’s Republic of China
| | - Hui Zhang
- College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, People’s Republic of China
- * E-mail:
| |
Collapse
|
59
|
Wang YX, Xiang C, Liu B, Zhu Y, Luan Y, Liu ST, Qin KR. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells. Biomed Eng Online 2016; 15:154. [PMID: 28155716 PMCID: PMC5259904 DOI: 10.1186/s12938-016-0273-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. METHODS The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. RESULTS Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. CONCLUSION The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.
Collapse
Affiliation(s)
- Yan-Xia Wang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Cheng Xiang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Bo Liu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Yong Zhu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Yong Luan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shu-Tian Liu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Kai-Rong Qin
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, China.
| |
Collapse
|
60
|
Grau M, Friederichs P, Krehan S, Koliamitra C, Suhr F, Bloch W. Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage. Clin Hemorheol Microcirc 2016; 60:215-29. [PMID: 24928922 DOI: 10.3233/ch-141850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During storage, red blood cells (RBC) become more susceptible to hemolysis and it has also been shown that RBC deformability, which is influenced by RBC nitric oxide synthase (RBC-NOS) activity, decreases during blood storage while a correlation between these two parameters under storage conditions has not been investigated so far. Therefore, blood from 15 male volunteers was anticoagulated, leuko-reduced and stored as either concentrated RBC or RBC diluted in saline-adenine-glucose-mannitol (SAGM) for eight weeks at 4°C and results were compared to data obtained from freshly drawn blood. During storage, decrease of RBC deformability was related to increased mean cellular volume and increased cell lysis but also to a decrease in RBC-NOS activation. The changes were more pronounced in concentrated RBC than in RBC diluted in SAGM suggesting that the storage method affects the quality of blood. These data shed new light on mechanisms underlying the phenomenon of storage lesion and reveal that RBC-NOS activation and possibly nitric oxide production in RBC are key elements that are influenced by storage and in turn alter deformability. Further studies should therefore also focus on improving these parameters during storage to improve the quality of stored blood with respect to blood transfusion.
Collapse
|
61
|
Dhillon J, Tan SY, Mattes RD. Almond Consumption during Energy Restriction Lowers Truncal Fat and Blood Pressure in Compliant Overweight or Obese Adults. J Nutr 2016; 146:2513-2519. [PMID: 27807041 DOI: 10.3945/jn.116.238444] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/04/2016] [Accepted: 10/05/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The inclusion of almonds in an energy-restricted diet has been reported both to enhance or to have no effect on weight loss. Their effects specifically on visceral body fat stores during energy restriction have not been widely examined. In addition, almond consumption has been associated with reduced blood pressure (BP), but whether this is linked to or independent of changes in body composition has to our knowledge not been examined. OBJECTIVE We evaluated the effects of consuming almonds as part of an energy-restricted diet on body composition, specifically visceral adipose tissue (VAT) and BP, compared to a nut-free energy-restricted diet. METHODS A randomized controlled 12-wk clinical trial of 86 healthy adults [body mass index (in kg/m2): 25-40] was conducted. Participants were randomly assigned to 1 of 2 energy-restricted (500-kcal deficit/d) diets: an almond-enriched diet (AED) (15% energy from almonds) or a nut-free diet (NFD). A linear mixed-model analysis on primary outcomes such as body weight, body fat, VAT, and BP was performed on all participants [intention-to-treat (ITT) analysis] and compliant participants (complier analysis). RESULTS Body weight, truncal and total fat percentage, VAT, and systolic BP decreased after 12 wk of energy restriction in both the ITT and complier analyses (P < 0.05). The complier analysis (but not the ITT analysis) indicated a greater mean ± SEM reduction in truncal fat (AED: -1.21% ± 0.26%; NFD: -0.48% ± 0.24%; P = 0.025), total fat (AED: -1.79% ± 0.36%; NFD: -0.74% ± 0.33%; P = 0.035), and diastolic BP (AED: -2.71 ± 1.2 mm Hg; NFD: 0.815 ± 1.1 mm Hg; P = 0.029), and a greater tendency for VAT loss (AED: -8.19 ± 1.8 cm2; NFD: -3.99 ± 1.7 cm2; P = 0.09) over time in the AED group than the NFD group. CONCLUSIONS Moderate almond consumption by compliant overweight and obese individuals during energy restriction results in greater proportional reductions of truncal and total body fat as well as diastolic BP and hence may help to reduce metabolic disease risk in obesity. This trial was registered at clinicaltrials.gov as NCT02360787.
Collapse
Affiliation(s)
- Jaapna Dhillon
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | - Sze-Yen Tan
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
62
|
Grau M, Lauten A, Hoeppener S, Goebel B, Brenig J, Jung C, Bloch W, Suhr F. Regulation of red blood cell deformability is independent of red blood cell-nitric oxide synthase under hypoxia. Clin Hemorheol Microcirc 2016; 63:199-215. [DOI: 10.3233/ch-162044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marijke Grau
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
- The German Research Center of Elite Sport (momentum), German Sport University Cologne, Germany
| | - Alexander Lauten
- Department of Internal Medicine I (Cardiology, Angiology, Pneumology), Friedrich-Schiller University, Jena, Germany
| | - Steffen Hoeppener
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
| | - Bjoern Goebel
- Department of Internal Medicine I (Cardiology, Angiology, Pneumology), Friedrich-Schiller University, Jena, Germany
| | - Julian Brenig
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
| | - Christian Jung
- Department of Internal Medicine I (Cardiology, Angiology, Pneumology), Friedrich-Schiller University, Jena, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
- The German Research Center of Elite Sport (momentum), German Sport University Cologne, Germany
| | - Frank Suhr
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
- The German Research Center of Elite Sport (momentum), German Sport University Cologne, Germany
| |
Collapse
|
63
|
Han Y, Li Y, Wang Y, Gao J, Xia L, Hong Y. Comparison of fresh, dried and stir-frying gingers in decoction with blood stasis syndrome in rats based on a GC-TOF/MS metabolomics approach. J Pharm Biomed Anal 2016; 129:339-349. [PMID: 27454085 DOI: 10.1016/j.jpba.2016.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022]
Abstract
In China, ginger (Zingiberofficinale Rosc.) and its processed products, such as dried ginger and stir-frying ginger are commonly applied in traditional Chinese medicine (TCM). The paper presents the research on the effects of fresh ginger, dried ginger and stir-frying ginger extracts in blood stasis syndrome. First, a blood stasis syndrome rats model was established and then the hemorheological and blood coagulation activities were analyzed. Third, a sensitive, simple, and valid gas chromatography combined with time-of-flight mass spectrometry (GC-TOF/MS) method was established to compare the metabolic fingerprint coupled with multivariate analysis. The total 27 metabolites (16 in serum and 11 in urine) were identified and contributed to the blood stasis progress. These metabolites mainly involve six metabolism pathways in different impact-value. The altered efficacy index and metabolites can be regulated to normal levels by fresh ginger (FG), dried ginger (DG) and stir-frying ginger (SG). FG is the most effective as shown by the efficacy index, similarity analysis and peak intensity. The result presented here shows that metabolomics equipped with efficacy index makes it possible to study the blood stasis syndrome and to compare the effect and metabolites in fresh, dried and stir-frying gingers. The metabolomics approach can be recommended to study the pharmacological effect and mechanism of herbal drugs.
Collapse
Affiliation(s)
- YanQuan Han
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - YuXin Li
- Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - YongZhong Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - JiaRong Gao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - LunZhu Xia
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Yan Hong
- Anhui University of Chinese Medicine, Hefei, Anhui 230000, China.
| |
Collapse
|
64
|
Kirkby NS, Tesfai A, Ahmetaj-Shala B, Gashaw HH, Sampaio W, Etelvino G, Leão NM, Santos RA, Mitchell JA. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis. FASEB J 2016; 30:4172-4179. [PMID: 27601438 PMCID: PMC5102117 DOI: 10.1096/fj.201600647r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 01/10/2023]
Abstract
Nonsteroidal antiinflammatory drugs, including ibuprofen, are among the most commonly used medications and produce their antiinflammatory effects by blocking cyclooxygenase (COX)-2. Their use is associated with increased risk of heart attacks caused by blocking COX-2 in the vasculature and/or kidney, with our recent work implicating the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA), a cardiotoxic hormone whose effects can be prevented by l-arginine. The ibuprofen salt ibuprofen arginate (Spididol) was created to increase solubility but we suggest that it could also augment the NO pathway through codelivery of arginine. Here we investigated the idea that ibuprofen arginate can act to simultaneously inhibit COX-2 and preserve the NO pathway. Ibuprofen arginate functioned similarly to ibuprofen sodium for inhibition of mouse/human COX-2, but only ibuprofen arginate served as a substrate for NOS. Ibuprofen arginate but not ibuprofen sodium also reversed the inhibitory effects of ADMA and NG-nitro-l-arginine methyl ester on inducible NOS (macrophages) and endothelial NOS in vitro (aorta) and in vivo (blood pressure). These observations show that ibuprofen arginate provides, in one preparation, a COX-2 inhibitor and NOS substrate that could act to negate the harmful cardiovascular consequences mediated by blocking renal COX-2 and increased ADMA. While remarkably simple, our findings are potentially game-changing in the nonsteroidal antiinflammatory drug arena.-Kirkby, N. S., Tesfai, A., Ahmetaj-Shala, B., Gashaw, H. H., Sampaio, W., Etelvino, G., Leão, N. M., Santos, R. A., Mitchell, J. A. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis.
Collapse
Affiliation(s)
- Nicholas S Kirkby
- Vascular Biology Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Abel Tesfai
- Vascular Biology Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Blerina Ahmetaj-Shala
- Vascular Biology Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Hime H Gashaw
- Vascular Biology Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Walkyria Sampaio
- Department of Physiology and Biophysics, National Institute in Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gisele Etelvino
- Department of Physiology and Biophysics, National Institute in Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nádia Miricéia Leão
- Department of Physiology and Biophysics, National Institute in Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson A Santos
- Department of Physiology and Biophysics, National Institute in Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jane A Mitchell
- Vascular Biology Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
65
|
Nava E, Llorens S. The paracrine control of vascular motion. A historical perspective. Pharmacol Res 2016; 113:125-145. [PMID: 27530204 DOI: 10.1016/j.phrs.2016.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 12/26/2022]
Abstract
During the last quarter of the past century, the leading role the endocrine and nervous systems had on the regulation of vasomotion, shifted towards a more paracrine-based regulation. This begun with the recognition of endothelial cells as active players of vascular control, when the vessel's intimal layer was identified as the main source of prostacyclin and was followed by the discovery of an endothelium-derived smooth muscle cell relaxing factor (EDRF). The new position acquired by endothelial cells prompted the discovery of other endothelium-derived regulatory products: vasoconstrictors, generally known as EDCFs, endothelin, and other vasodilators with hyperpolarizing properties (EDHFs). While this research was taking place, a quest for the discovery of the nature of EDRF carried back to a research line commenced a decade earlier: the recently found intracellular messenger cGMP and nitrovasodilators. Both were smooth muscle relaxants and appeared to interact in a hormonal fashion. Prejudice against an unconventional gaseous molecule delayed the acceptance that EDRF was nitric oxide (NO). When this happened, a new era of research that exceeded the vascular field commenced. The discovery of the pathway for NO synthesis from L-arginine involved the clever assembling of numerous unrelated observations of different areas of knowledge. The last ten years of research on the paracrine regulation of the vascular wall has shifted to perivascular fat (PVAT), which is beginning to be regarded as the fourth layer of the vascular wall. Starting with the discovery of an adipose-derived relaxing substance (ADRF), the role that different adipokines have on the paracrine control of vasomotion is now filling the research activity of many vascular pharmacology labs, and surprising interactions between the endothelium, PVAT and smooth muscle are being unveiled.
Collapse
Affiliation(s)
- Eduardo Nava
- Area of Physiology, Department of Medical Sciences, University of Castilla-La Mancha, School of Medicine and Regional Centre for Biomedical Research (CRIB), Albacete, Spain.
| | - Silvia Llorens
- Area of Physiology, Department of Medical Sciences, University of Castilla-La Mancha, School of Medicine and Regional Centre for Biomedical Research (CRIB), Albacete, Spain
| |
Collapse
|
66
|
Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016; 535:85-93. [PMID: 27383983 PMCID: PMC5114849 DOI: 10.1038/nature18849] [Citation(s) in RCA: 915] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/22/2016] [Indexed: 02/07/2023]
Abstract
The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.
Collapse
Affiliation(s)
- Andreas J Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis, School of Medicine, Davis, California 95616, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9048, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA
| |
Collapse
|
67
|
Sokolowska E, Kalaska B, Miklosz J, Mogielnicki A. The toxicology of heparin reversal with protamine: past, present and future. Expert Opin Drug Metab Toxicol 2016; 12:897-909. [DOI: 10.1080/17425255.2016.1194395] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Emilia Sokolowska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Mogielnicki
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
68
|
Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development. Molecules 2016; 21:molecules21050615. [PMID: 27187323 PMCID: PMC6273216 DOI: 10.3390/molecules21050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO) production, mediated via its biochemical interaction with the nitric oxide synthase (NOS) family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.
Collapse
|
69
|
Lushchak VI. Contaminant-induced oxidative stress in fish: a mechanistic approach. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:711-747. [PMID: 26607273 DOI: 10.1007/s10695-015-0171-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called "oxidative stress." Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms' response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
70
|
Dubó S, Gallegos D, Cabrera L, Sobrevia L, Zúñiga L, González M. Cardiovascular Action of Insulin in Health and Disease: Endothelial L-Arginine Transport and Cardiac Voltage-Dependent Potassium Channels. Front Physiol 2016; 7:74. [PMID: 27014078 PMCID: PMC4791397 DOI: 10.3389/fphys.2016.00074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Impairment of insulin signaling on diabetes mellitus has been related to cardiovascular dysfunction, heart failure, and sudden death. In human endothelium, cationic amino acid transporter 1 (hCAT-1) is related to the synthesis of nitric oxide (NO) and insulin has a vascular effect in endothelial cells through a signaling pathway that involves increases in hCAT-1 expression and L-arginine transport. This mechanism is disrupted in diabetes, a phenomenon potentiated by excessive accumulation of reactive oxygen species (ROS), which contribute to lower availability of NO and endothelial dysfunction. On the other hand, electrical remodeling in cardiomyocytes is considered a key factor in heart failure progression associated to diabetes mellitus. This generates a challenge to understand the specific role of insulin and the pathways involved in cardiac function. Studies on isolated mammalian cardiomyocytes have shown prolongated action potential in ventricular repolarization phase that produces a long QT interval, which is well explained by attenuation in the repolarizing potassium currents in cardiac ventricles. Impaired insulin signaling causes specific changes in these currents, such a decrease amplitude of the transient outward K(+) (Ito) and the ultra-rapid delayed rectifier (IKur) currents where, together, a reduction of mRNA and protein expression levels of α-subunits (Ito, fast; Kv 4.2 and IKs; Kv 1.5) or β-subunits (KChIP2 and MiRP) of K(+) channels involved in these currents in a MAPK mediated pathway process have been described. These results support the hypothesis that lack of insulin signaling can produce an abnormal repolarization in cardiomyocytes. Furthermore, the arrhythmogenic potential due to reduced Ito current can contribute to an increase in the incidence of sudden death in heart failure. This review aims to show, based on pathophysiological models, the regulatory function that would have insulin in vascular system and in cardiac electrophysiology.
Collapse
Affiliation(s)
- Sebastián Dubó
- Department of Kinesiology, Faculty of Medicine, Universidad de Concepción Concepción, Chile
| | - David Gallegos
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Lissette Cabrera
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Department of Morphophysiology, Faculty of Medicine, Universidad Diego PortalesSantiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de SevillaSeville, Spain; Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of QueenslandHerston, QLD, Queensland, Australia
| | - Leandro Zúñiga
- Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca Talca, Chile
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS-Health)Chillán, Chile
| |
Collapse
|
71
|
Xuan C, Tian QW, Li H, Zhang BB, He GW, Lun LM. Levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, and risk of coronary artery disease: A meta-analysis based on 4713 participants. Eur J Prev Cardiol 2016; 23:502-510. [PMID: 25956428 DOI: 10.1177/2047487315586094] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 04/20/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide synthase by competing with L-arginine. As a result, the expression of nitric oxide decreases and endothelial dysfunction occurs. Studies have evaluated the association between the serum ADMA level and risk of coronary artery disease. However, conflicting results have been obtained. METHODS Pubmed, Web of Science, Embase, Ovid, Cochrane databases were searched to identify eligible studies published in English until December 2014. Association was assessed on the basis of weighted mean differences (WMD) with 95% confidence intervals (CIs). Publication bias was analysed using Begg's and Egger's tests. Sensitivity analysis was performed to evaluate result stability. RESULTS A total of 16 case-control studies with 2939 patients and 1774 controls were included in the meta-analysis. Pooled result indicated that patients with coronary artery disease yielded a higher ADMA level than healthy controls (WMD: 0.248, 95% CI: 0.156-0.340; p = 1.16 e-7). Sensitivity analysis suggested that our meta-analysis result was stable. Subgroup analysis found a similar pattern in patients with myocardial infarction (WMD: 0.397, 95% CI: 0.112-0.683; p = 0.0106), stable angina pectoris (WMD: 0.197, 95% CI: 0.031-0.364; p = 0.02) and unstable angina pectoris (WMD: 0.857, 95% CI: 0.293-1.420; p = 0.003). CONCLUSIONS Meta-analysis results indicated that an increased ADMA level is associated with an increased risk of coronary artery disease.
Collapse
Affiliation(s)
- Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, China
| | - Qing-Wu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, China
| | - Hui Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, China
| | - Bei-Bei Zhang
- Department of Molecular Microbiology, Oslo University Hospital, Norway
| | - Guo-Wei He
- TEDA International Cardiovascular Hospital, Tianjin; The Affiliated Hospital of Hangzhou Normal University, China Department of Surgery, Oregon Health and Science University, Portland, USA
| | - Li-Min Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, China
| |
Collapse
|
72
|
Gkaliagkousi E, Gavriilaki E, Triantafyllou A, Douma S. Clinical Significance of Endothelial Dysfunction in Essential Hypertension. Curr Hypertens Rep 2016; 17:85. [PMID: 26371063 DOI: 10.1007/s11906-015-0596-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endothelium is recognized as a major determinant of vascular physiology and pathophysiology. Over the last few decades, a plethora of studies have implicated endothelial dysfunction in the progression of atherosclerosis and the subclinical target organ damage observed in essential hypertension. However, the clinical significance of diagnosing endothelial dysfunction in patients with essential hypertension remains under investigation. Although a number of vascular and non-vascular markers of endothelial dysfunction have been proposed, there is an ongoing quest for a marker in the clinical setting that is optimal, inexpensive, and reproducible. In addition, endothelial dysfunction emerges as a promising therapeutic target of agents that are readily available in clinical practice. In this context, a better understanding of its role in essential hypertension becomes of great importance. Here, we aim to investigate the clinical significance of endothelial dysfunction in essential hypertension by accumulating novel data on (a) early diagnosis using robust markers with prognostic value in cardiovascular risk prediction, (b) the association of endothelial dysfunction with subclinical vascular organ damage, and (c) potential therapeutic targets.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece.
| | - Eleni Gavriilaki
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece
| | - Areti Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece
| | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece
| |
Collapse
|
73
|
Tanaka Y, Toyama T, Wada-Takahashi S, Sasaki H, Miyamoto C, Maehata Y, Yoshino F, Yoshida A, Takahashi SS, Watanabe K, Lee MCI, Todoki K, Hamada N. Protective effects of (6R)-5,6,7,8-tetrahydro-l-biopterin on local ischemia/reperfusion-induced suppression of reactive hyperemia in rat gingiva. J Clin Biochem Nutr 2015; 58:69-75. [PMID: 26798200 PMCID: PMC4706094 DOI: 10.3164/jcbn.15-69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022] Open
Abstract
We herein investigated the regulatory mechanism in the circulation responsible for rat gingival reactive hyperemia (RH) associated with ischemia/reperfusion (I/R). RH was analyzed using a laser Doppler flowmeter. RH and I/R were elicited by gingival compression and release with a laser Doppler probe. RH increased in a time-dependent manner when the duration of compression was between 30 s and 20 min. This increase was significantly suppressed by Nω-nitro-l-arginine-methyl-ester (l-NAME), 7-nitroindazole (7-NI), and 2,4-diamino-6-hydroxypyrimidine (DAHP). However, RH was markedly inhibited following 60 min of compression. This inhibition was significantly decreased by treatments with superoxide dismutase (SOD), (6R)-5,6,7,8-tetrahydro-l-biopterin (BH4), and sepiapterin. The luminescent intensity of superoxide anion (O2•−)-induced 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo-[1,2-a] pyrazine-3-one (MCLA) was markedly decreased by SOD and BH4, but only slightly by sepiapterin. BH4 significantly decreased O2•− scavenging activity in a time-dependent manner. These results suggested that nitric oxide (NO) secreted by the nitrergic nerve played a role in regulating local circulation in rat gingiva. This NO-related regulation of local circulation was temporarily inhibited in the gingiva by the I/R treatment. The decrease observed in the production of NO, which was caused by suppression of NO synthase (NOS) activity subsequent to depletion of the NOS co-factor BH4 by O2•−, played a partial role in this inhibition.
Collapse
Affiliation(s)
- Yusaku Tanaka
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Toshizo Toyama
- Division of Microbiology, Department of Infection Control, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Satoko Wada-Takahashi
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Haruka Sasaki
- Division of Microbiology, Department of Infection Control, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Chihiro Miyamoto
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Yojiro Maehata
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Fumihiko Yoshino
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Ayaka Yoshida
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Shun-Suke Takahashi
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Kiyoko Watanabe
- Division of Microbiology, Department of Infection Control, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Masaichi-Chang-Il Lee
- Yokosuka-Shonan Disaster Health Emergency Research Center & ESR Laboratories, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Kazuo Todoki
- Department of Health Science, School of Nursing, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Nobushiro Hamada
- Division of Microbiology, Department of Infection Control, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
74
|
Zamani Taghizadeh Rabe S, Iranshahi M, Mahmoudi M. In vitro anti-inflammatory and immunomodulatory properties of umbelliprenin and methyl galbanate. J Immunotoxicol 2015; 13:209-16. [DOI: 10.3109/1547691x.2015.1043606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | | |
Collapse
|
75
|
Całkosiński I, Dobrzyński M, Rosińczuk J, Dudek K, Chrószcz A, Fita K, Dymarek R. The use of infrared thermography as a rapid, quantitative, and noninvasive method for evaluation of inflammation response in different anatomical regions of rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:972535. [PMID: 25834830 PMCID: PMC4365338 DOI: 10.1155/2015/972535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 11/17/2022]
Abstract
PURPOSE Thermographic assessment of temperature distribution within the examined tissues allows a quick, noncontact, noninvasive measurement of their temperature. The aim of the study was to evaluate the usefulness of digital infrared imaging in monitoring experimental inflammation of pleura (PL), lower lip (LL), and left paw (LP) and right paw (RP) of lower limbs in rats. MATERIALS AND METHODS The inflammatory reaction was induced by injection of 1% carrageenin solution into pleural cavity, lip, or paws. With the use of digital infrared imaging temperature measurement was conducted at 0 to 72 hours of the inflammatory reaction. RESULTS The temperature decrease was observed at the site of injection directly afterwards. Next, it was gradually increasing and it reached the maximum on the third day of the inflammatory reaction. Statistically significant changes were observed after 48-hour period in PL and LL regions, as well as after 72-hour period in LP and RP regions (P < 0.005). CONCLUSION It was found that thermographic examination allows for indicating the presence of inflammatory reaction within examined tissues and determining the dynamics of this process. This method could be used as alternative procedure that allows using fewer animals for experiments.
Collapse
Affiliation(s)
- Ireneusz Całkosiński
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, The Faculty of Dentistry, Wroclaw Medical University, 26 Krakowska Street, 50-425 Wroclaw, Poland
| | - Joanna Rosińczuk
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| | - Krzysztof Dudek
- Institute of Machines Design and Operation, Technical University of Wrocław, 7/9 Łukasiewicza Street, 50-371 Wroclaw, Poland
| | - Aleksander Chrószcz
- Department of Animal Physiology and Biostructure, The Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 1/3 Kożuchowska Street, 51-631 Wroclaw, Poland
| | - Katarzyna Fita
- Department of Conservative Dentistry and Pedodontics, The Faculty of Dentistry, Wroclaw Medical University, 26 Krakowska Street, 50-425 Wroclaw, Poland
| | - Robert Dymarek
- Department of Nervous System Diseases, The Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| |
Collapse
|
76
|
Wobst J, Kessler T, Dang TA, Erdmann J, Schunkert H. Role of sGC-dependent NO signalling and myocardial infarction risk. J Mol Med (Berl) 2015; 93:383-94. [PMID: 25733135 DOI: 10.1007/s00109-015-1265-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 12/19/2022]
Abstract
The NO/cGMP pathway plays an important role in many physiological functions and pathophysiological conditions. In the last few years, several genetic and functional studies pointed to an underestimated role of this pathway in the development of atherosclerosis. Indeed, several genetic variants of key enzymes modulating the generation of NO and cGMP have been strongly associated with coronary artery disease and myocardial infarction risk. In this review, we aim to place the genomic findings on components of the NO/cGMP pathway, namely endothelial nitric oxide synthase, soluble guanylyl cyclase and phosphodiesterase 5A, in context of preventive and therapeutic strategies for treating atherosclerosis and its sequelae.
Collapse
Affiliation(s)
- Jana Wobst
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany
| | | | | | | | | |
Collapse
|
77
|
Li S, Lin H, Tang Y, Li W, Shen J, Kai J, Yue S, Shang G, Zhu Z, Shang E, Zhang C, Zhang L, Yan H, Liu P, Duan JA. Comparative metabolomics analysis on invigorating blood circulation for herb pair Gui-Hong by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry and pattern recognition approach. J Pharm Biomed Anal 2015; 107:456-63. [DOI: 10.1016/j.jpba.2015.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 02/08/2023]
|
78
|
Wobst J, Rumpf PM, Dang TA, Segura-Puimedon M, Erdmann J, Schunkert H. Molecular variants of soluble guanylyl cyclase affecting cardiovascular risk. Circ J 2015; 79:463-9. [PMID: 25746521 DOI: 10.1253/circj.cj-15-0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Soluble guanylyl cyclase (sGC) is the physiological receptor for nitric oxide (NO) and NO-releasing drugs, and is a key enzyme in several cardiovascular signaling pathways. Its activation induces the synthesis of the second messenger cGMP. cGMP regulates the activity of various downstream proteins, including cGMP-dependent protein kinase G, cGMP-dependent phosphodiesterases and cyclic nucleotide gated ion channels leading to vascular relaxation, inhibition of platelet aggregation, and modified neurotransmission. Diminished sGC function contributes to a number of disorders, including cardiovascular diseases. Knowledge of its regulation is a prerequisite for understanding the pathophysiology of deficient sGC signaling. In this review we consolidate the available information on sGC signaling, including the molecular biology and genetics of sGC transcription, translation and function, including the effect of rare variants, and present possible new targets for the development of personalized medicine in vascular diseases.
Collapse
Affiliation(s)
- Jana Wobst
- Department of Cardiovascular Diseases, German Heart Center Munich, Technical University Munich
| | | | | | | | | | | |
Collapse
|
79
|
Borgquist A, Meza C, Wagner EJ. Role of neuronal nitric oxide synthase in the estrogenic attenuation of cannabinoid-induced changes in energy homeostasis. J Neurophysiol 2014; 113:904-14. [PMID: 25392169 DOI: 10.1152/jn.00615.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since estradiol attenuates cannabinoid-induced increases in energy intake, energy expenditure, and transmission at proopiomelanocortin (POMC) synapses in the hypothalamic arcuate nucleus (ARC), we tested the hypothesis that neuronal nitric oxide synthase (nNOS) plays an integral role. To this end, whole animal experiments were carried out in gonadectomized female guinea pigs. Estradiol benzoate (EB; 10 μg sc) decreased incremental food intake as well as O2 consumption, CO2 production, and metabolic heat production as early as 2 h postadministration. This was associated with increased phosphorylation of nNOS (pnNOS), as evidenced by an elevated ratio of pnNOS to nNOS in the ARC. Administration of the cannabinoid receptor agonist WIN 55,212-2 (3 μg icv) into the third ventricle evoked hyperphagia as early as 1 h postadministration, which was blocked by EB and restored by the nonselective NOS inhibitor N-nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μg icv) when the latter was combined with the steroid. Whole cell patch-clamp recordings showed that 17β-estradiol (E2; 100 nM) rapidly diminished cannabinoid-induced decreases in miniature excitatory postsynaptic current frequency, which was mimicked by pretreatment with the NOS substrate L-arginine (30 μM) and abrogated by L-NAME (300 μM). Furthermore, E2 antagonized endocannabinoid-mediated depolarization-induced suppression of excitation, which was nullified by the nNOS-selective inhibitor N5-[imino(propylamino)methyl]-L-ornithine hydrochloride (10 μM). These effects occurred in a sizable number of identified POMC neurons. Taken together, the estradiol-induced decrease in energy intake is mediated by a decrease in cannabinoid sensitivity within the ARC feeding circuitry through the activation of nNOS. These findings provide compelling evidence for the need to develop rational, gender-specific therapies to help treat metabolic disorders such as cachexia and obesity.
Collapse
Affiliation(s)
- Amanda Borgquist
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Cecilia Meza
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Edward J Wagner
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| |
Collapse
|
80
|
Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 2014; 224:164-75. [PMID: 25452175 DOI: 10.1016/j.cbi.2014.10.016] [Citation(s) in RCA: 975] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine.
| |
Collapse
|
81
|
Toda N, Okamura T. Recent advances in research on nitrergic nerve-mediated vasodilatation. Pflugers Arch 2014; 467:1165-78. [PMID: 25339222 DOI: 10.1007/s00424-014-1621-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 12/29/2022]
Abstract
Cerebral vascular resistance and blood flow were widely considered to be regulated solely by tonic innervation of vasoconstrictor adrenergic nerves. However, pieces of evidence suggesting that parasympathetic nitrergic nerve activation elicits vasodilatation in dog and monkey cerebral arteries were found in 1990. Nitric oxide (NO) as a neurotransmitter liberated from parasympathetic postganglionic neurons decreases cerebral vascular tone and resistance and increases cerebral blood flow, which overcome vasoconstrictor responses to norepinephrine liberated from adrenergic nerves. Functional roles of nitrergic vasodilator nerves are found also in peripheral vasculature, including pulmonary, renal, mesenteric, hepatic, ocular, uterine, nasal, skeletal muscle, and cutaneous arteries and veins; however, adrenergic nerve-induced vasoconstriction is evidently greater than nitrergic vasodilatation in these vasculatures. In coronary arteries, neurogenic NO-mediated vasodilatation is not clearly noted; however, vasodilatation is induced by norepinephrine released from adrenergic nerves that activates β1-adrenoceptors. Impaired actions of NO liberated from the endothelium and nitrergic neurons are suggested to participate in cerebral hypoperfusion, leading to brain dysfunction, like that in Alzheimer's disease. Nitrergic neural dysfunction participates in impaired circulation in peripheral organs and tissues and also in systemic blood pressure increase. NO and vasodilator peptides, as sensory neuromediators, are involved in neurogenic vasodilatation in the skin. Functioning of nitrergic vasodilator nerves is evidenced not only in a variety of mammals, including humans and monkeys, but also in non-mammals. The present review article includes recent advances in research on the functional importance of nitrergic nerves concerning the control of cerebral blood flow, as well as other regions, and vascular resistance. Although information is still insufficient, the nitrergic nerve histology and function in vasculatures of non-mammals are also summarized.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Cho-me, Azuchi-machi, Chuo-ku, Osaka, 541-0052, Japan,
| | | |
Collapse
|
82
|
Hwang MH, Kim S. Type 2 Diabetes: Endothelial dysfunction and Exercise. J Exerc Nutrition Biochem 2014; 18:239-47. [PMID: 25566460 PMCID: PMC4241901 DOI: 10.5717/jenb.2014.18.3.239] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/16/2014] [Accepted: 09/26/2014] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Vascular endothelial dysfunction is an early marker of atherosclerosis characterized by decreased nitric oxide bioavailability in the vascular endothelium and smooth muscle cells. Recently, some animal models and in vitro trials demonstrated that excessive superoxide production from mitochondria within vascular endothelial cells played a role in the pathogenesis of atherosclerosis in type 2 diabetes. This review provides a systematic assessment of the effectiveness of exercise to identify effective approaches to recognize diabetes risk and prevent progression to heart disease. METHODS A systematic literature search was conducted to retrieve articles from 1979 to 2013 using the following databases: the MEDLINE, PubMed. Articles had to describe an intervention that physical activity and exercise to identify effective approaches to heart and vascular endothelium. RESULTS Currently, physical activity and exercise guidelines aimed to improve cardiovascular health in patients with type 2 diabetes are nonspecific. Benefit of aerobic exercise training on vascular endothelial function in type 2 diabetic patients is still controversial. CONCLUSION it is necessary to demonstrate the mechanism of endothelial dysfunction from live human tissues so that we can provide more specific exercise training regimens to enhance cardiovascular health in type 2 diabetic patients.
Collapse
Affiliation(s)
- Moon-Hyon Hwang
- Division of Clinical and Translational Science, Georgia Regents University, Georgia, USA
| | - Sangho Kim
- School of Global Sport Studies, Korea University, Sejong, Korea
| |
Collapse
|
83
|
Li Y, Zhou X, Wei QW, Huang RH, Shi FX. Cell-specific expression and immunolocalization of nitric oxide synthase isoforms and soluble guanylyl cyclase α and β subunits in postnatal porcine uteri. Acta Histochem 2014; 116:466-73. [PMID: 24238988 DOI: 10.1016/j.acthis.2013.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 01/21/2023]
Abstract
The aim of the present study was to investigate the cellular expression and immunolocalization of nitric oxide synthase (NOS) isoforms and soluble guanylyl cyclase (sGC) subunits in postnatal porcine uteri. Immunohistochemical experiments showed that three isoforms of NOS were mainly localized in the uterine luminal and glandular epithelium and myometrium, and the intensity of immunostaining for iNOS and eNOS was increased gradually with temporal development of the postnatal uterus. In addition, sGC subunits, sGCα1 and β, were present in the uterine luminal and glandular epithelium, myometrium and stromal cells. The uterine NOS activity data showed that the total NOS and iNOS activities were significantly increased at postnatal days 21 and 35. Although constitutive NOS activity was increased at postnatal day 21, it decreased subsequently at postnatal day 35. Immunoblot analysis revealed that iNOS protein expression was significantly increased at postnatal days 21 and 35. Furthermore, sGCα1 protein expression was not significantly changed throughout days 7 to 35. Collectively, our findings suggest that NO/cGMP signaling is involved in the process of postnatal porcine uterine development.
Collapse
|
84
|
Chatpun S, Cabrales P. Nitric oxide synthase inhibition attenuates cardiac response to hemodilution with viscogenic plasma expander. Korean Circ J 2014; 44:105-12. [PMID: 24653740 PMCID: PMC3958604 DOI: 10.4070/kcj.2014.44.2.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Increased vascular wall shear stress by elevated plasma viscosity significantly enhances the endothelial nitric oxide synthase (eNOS) activity during an acute isovolemic hemodilution. Also the modulation of plasma viscosity has effects on the cardiac function that were revealed if a left ventricular (LV) pressure-volume (PV) measurement was used. The aim of this study was to assess cardiac function responses to nitric oxide synthase (NOS) inhibitors with the presence of an elevated plasma viscosity but a low hematocrit level. Furthermore, systemic parameters were monitored in a murine model. MATERIALS AND METHODS As test group five anesthetized hamsters were administered with N(G)-nitro-L-arginine methyl ester (L-NAME), NOS inhibitor, whereas five other hamsters were used as control group without L-NAME infusion. The dosage of L-NAME was 10 mg/kg. An isovolemic hemodilution was performed by 40% of estimated blood volume with 6% w/v dextran 2000 kDa, high viscosity plasma expanders (PEs) with viscosity 6.34 cP. LV function was measured and assessed using a 1.4 Fr PV conductance catheter. RESULTS The study results demonstrated that NOS inhibition prevented the normal cardiac adaptive response after hemodilution. The endsystolic pressure increased 14% after L-NAME infusion and maintained higher than at the baseline after hemodilution, whereas it gradually decreased in the animals without L-NAME infusion. The admission of L-NAME significantly decreased the maximum rate of ventricular pressure rise (+dP/dtmax), stroke volume and cardiac output after hemodilution if compared to the control group (p<0.05). CONCLUSION This finding supports the presumption that nitric oxide induced by an increased plasma viscosity with the use of a high viscosity PE plays a major role in the cardiac function during an acute isovolemic hemodilution.
Collapse
Affiliation(s)
- Surapong Chatpun
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA, USA
| |
Collapse
|
85
|
Allu PKR, Chirasani VR, Ghosh D, Mani A, Bera AK, Maji SK, Senapati S, Mullasari AS, Mahapatra NR. Naturally occurring variants of the dysglycemic peptide pancreastatin: differential potencies for multiple cellular functions and structure-function correlation. J Biol Chem 2014; 289:4455-69. [PMID: 24338022 PMCID: PMC3924307 DOI: 10.1074/jbc.m113.520916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/08/2013] [Indexed: 12/16/2022] Open
Abstract
Pancreastatin (PST), a chromogranin A-derived peptide, is a potent physiological inhibitor of glucose-induced insulin secretion. PST also triggers glycogenolysis in liver and reduces glucose uptake in adipocytes and hepatocytes. Here, we probed for genetic variations in PST sequence and identified two variants within its functionally important carboxyl terminus domain: E287K and G297S. To understand functional implications of these amino acid substitutions, we tested the effects of wild-type (PST-WT), PST-287K, and PST-297S peptides on various cellular processes/events. The rank order of efficacy to inhibit insulin-stimulated glucose uptake was: PST-297S > PST-287K > PST-WT. The PST peptides also displayed the same order of efficacy for enhancing intracellular nitric oxide and Ca(2+) levels in various cell types. In addition, PST peptides activated gluconeogenic genes in the following order: PST-297S ≈ PST-287K > PST-WT. Consistent with these in vitro results, the common PST variant allele Ser-297 was associated with significantly higher (by ∼17 mg/dl, as compared with the wild-type Gly-297 allele) plasma glucose level in our study population (n = 410). Molecular modeling and molecular dynamics simulations predicted the following rank order of α-helical content: PST-297S > PST-287K > PST-WT. Corroboratively, circular dichroism analysis of PST peptides revealed significant differences in global structures (e.g. the order of propensity to form α-helix was: PST-297S ≈ PST-287K > PST-WT). This study provides a molecular basis for enhanced potencies/efficacies of human PST variants (likely to occur in ∼300 million people worldwide) and has quantitative implications for inter-individual variations in glucose/insulin homeostasis.
Collapse
Affiliation(s)
- Prasanna K. R. Allu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Venkat R. Chirasani
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Dhiman Ghosh
- the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, and
| | - Anitha Mani
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Amal K. Bera
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Samir K. Maji
- the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, and
| | - Sanjib Senapati
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Ajit S. Mullasari
- the Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai 600037, India
| | - Nitish R. Mahapatra
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| |
Collapse
|
86
|
Freestone B, Krishnamoorthy S, Lip GYH. Assessment of endothelial dysfunction. Expert Rev Cardiovasc Ther 2014; 8:557-71. [DOI: 10.1586/erc.09.184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
87
|
Abstract
The cerebrovascular regulation involves highly complex mechanisms to assure that the brain is perfused at all times. These mechanisms depend on all components of the neurovascular units: neurons, glia, and vascular cells. All these cell types can produce nitric oxide (NO), a powerful vasodilator through different NO synthases. Many studies underlined the key role of NO in the maintenance of resting cerebral blood flow (CBF) as well as in the mechanisms that control cerebrovascular tone: autoregulation and neurovascular coupling. However, although the role of NO in the control of CBF has been largely investigated, the complexity of the NO system and the lack of specific NO synthase inhibitors led to still unresolved questions such as the origin of NO and the pathways by which it controls the vascular tone. In this chapter, the role of NO in the regulation of CBF is critically reviewed and discussed in the context of the neurovascular unit and the general principles of cerebrovascular regulation.
Collapse
|
88
|
Dhawan V. Reactive Oxygen and Nitrogen Species: General Considerations. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2014. [DOI: 10.1007/978-1-4939-0497-6_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
89
|
Mejía-García TA, Portugal CC, Encarnação TG, Prado MAM, Paes-de-Carvalho R. Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells. Cell Signal 2013; 25:2424-39. [DOI: 10.1016/j.cellsig.2013.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/07/2013] [Accepted: 08/10/2013] [Indexed: 02/07/2023]
|
90
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Alteplase treatment does not increase brain injury after mechanical middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 2013; 33:e1-7. [PMID: 23963368 PMCID: PMC3824188 DOI: 10.1038/jcbfm.2013.148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/19/2013] [Indexed: 11/08/2022]
Abstract
Recanalization of an occluded vessel with recombinant tissue plasminogen activator is an effective strategy for treating acute ischemic stroke. Recombinant tissue plasminogen activator is administered as alteplase, a formulation containing many excipients including L-arginine, the substrate for nitric oxide production. Most studies fail to compare the effects of alteplase on brain injury to its L-arginine carrier solution. This study aimed to verify the previously reported detrimental effects of alteplase after cerebral ischemia and delineate the contribution of L-arginine. Male Wistar rats, subjected to 90 minutes of intraluminal middle cerebral artery occlusion (MCAO), were administered alteplase, the carrier solution or saline upon reperfusion. Neither alteplase nor the carrier affected cerebral blood flow (CBF) restoration throughout the first 60 minutes of reperfusion. Alteplase treatment was associated with increased mortality after MCAO. Twenty-four hours after MCAO, neurologic function and infarct volume did not differ between rats treated with alteplase, the carrier solution, or saline. Irrespective of treatment group, infarct volume was correlated with CBF during reperfusion, neuroscore, and peri-infarct depolarizations. These results suggest that alteplase treatment, independent of thrombolysis, does not cause increased ischemic injury compared with its appropriate carrier solution, supporting the continued use of alteplase in eligible ischemic stroke patients.
Collapse
|
92
|
The role of the vessel wall. Methods Mol Biol 2013; 992:31-46. [PMID: 23546703 DOI: 10.1007/978-1-62703-339-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of the vessel wall is complex and its effects are wide-ranging. The vessel wall, specifically the endothelial monolayer that lines the inner lumen, possesses the ability to influence various physiological states both locally and systemically by controlling vascular tone, basement membrane component synthesis, angiogenesis, haemostatic properties, and immunogenicity. This is an overview of the function and structure of the vessel wall and how disruption and dysfunction in any of these regulatory roles can lead to disease states.
Collapse
|
93
|
Mitić SS, Miletić GŽ, Pavlović AN, Tošić SB, Velimirović DS. Development and Evaluation of a Kinetic-Spectrophotometric Method for Determination of Arginine. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200700009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
94
|
UPLC Q-TOF/MS-Based Metabolic Profiling of Urine Reveals the Novel Antipyretic Mechanisms of Qingkailing Injection in a Rat Model of Yeast-Induced Pyrexia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:864747. [PMID: 23840267 PMCID: PMC3690234 DOI: 10.1155/2013/864747] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022]
Abstract
Fever is one of the most common clinical symptoms of many diseases. Qingkailing (QKL) injection is widely used in China as a clinical emergency medicine due to its good antipyretic effects. It is a herbal formula which is composed by eight kinds of traditional Chinese medicines (TCM). As a kind of typical multiple constituents and multiple actions of TCM, it is very difficult to elaborate the antipyretic mechanism by conventional pharmacological method. Metabonomics technique provides beneficial tool for this challenge. In this study, an ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC Q-TOF/MS) metabonomics method was developed to explore the changing process of biochemical substances in rats of yeast-induced pyrexia. Partial least squares discriminate analysis (PLS-DA) was used to distinguish the normal control group, the pyrexia model group, and the pyrexia model group treated by QKL injection. The potential biomarkers related to pyrexia were confirmed and identified. MetPA was used to find the possible metabolic pathways. The results indicated that the antipyretic effect of QKL injection on yeast-induced pyrexia rats was performed by repairing the perturbed metabolism of amino acids.
Collapse
|
95
|
Wang Y, Kibbe MR, Ameer GA. Photo-crosslinked Biodegradable Elastomers for Controlled Nitric Oxide Delivery. Biomater Sci 2013; 1:625-632. [PMID: 24707352 PMCID: PMC3972038 DOI: 10.1039/c3bm00169e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The delivery of nitric oxide (NO) has important applications in medicine, especially for procedures that involve the vasculature. We report photo-curable biodegradable poly(diol citrate) elastomers capable of slow release of NO. A methacrylated poly(diol citrate) macromonomer was prepared by polycondensation of citric acid with 1, 8-octanediol or 1, 12-dodecanediol followed by functionalization with 2-aminoethyl methacrylate. A miscible NO donor, diazeniumdiolated N, N-diethyldiethylenetriamine, was synthesized and incorporated into the polymer matrix. An elastomeric network was obtained via photo-polymerization of macromonomers upon UV irradiation within three minutes. Films and tubes of the NO-releasing crosslinked macromonomers exhibited strong tensile strength and radial compressive strength, respectively. They also exhibited cell compatibility and biodegradability in vitro. Sustained NO release under physiological conditions was achieved for at least one week. NO release enhanced the proliferation of human umbilical vein endothelial cells but inhibited the proliferation of human aortic smooth muscle cells. Photo-polymerizable NO-releasing materials provide a new approach for the localized and sustained delivery of NO to treat thrombosis and restenosis in the vasculature.
Collapse
Affiliation(s)
- Ying Wang
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208
| | - Melina R. Kibbe
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University Chicago, IL 60611
- Institute for Bionanotechnology in Medicine, Northwestern University, Chicago, IL 60611
| | - Guillermo A. Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University Chicago, IL 60611
- Institute for Bionanotechnology in Medicine, Northwestern University, Chicago, IL 60611
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208
| |
Collapse
|
96
|
Pinto V, Pinho MJ, Soares-da-Silva P. Renal amino acid transport systems and essential hypertension. FASEB J 2013; 27:2927-38. [PMID: 23616567 DOI: 10.1096/fj.12-224998] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several clinical and animal studies suggest that "blood pressure goes with the kidney," that is, a normotensive recipient of a kidney genetically programmed for hypertension will develop hypertension. Intrarenal dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport. The candidate transport systems for L-DOPA, the source for dopamine, include the sodium-dependent systems B(0), B(0,+), and y(+)L, and the sodium-independent systems L (LAT1 and LAT2) and b(0,+). Renal LAT2 is overexpressed in the prehypertensive spontaneously hypertensive rat (SHR), which might contribute to enhanced L-DOPA uptake in the proximal tubule and increased dopamine production, as an attempt to overcome the defect in D1 receptor function. On the other hand, it has been recently reported that impaired arginine transport contributes to low renal nitric oxide bioavailability observed in the SHR renal medulla. Here we review the importance of renal amino acid transporters in the kidney and highlight pathophysiological changes in the expression and regulation of these transporters in essential hypertension. The study of the regulation of renal amino acid transporters may help to define the underlying mechanisms predisposing individuals to an increased risk for development of hypertension.
Collapse
Affiliation(s)
- Vanda Pinto
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
97
|
Skeletal muscle function during exercise-fine-tuning of diverse subsystems by nitric oxide. Int J Mol Sci 2013; 14:7109-39. [PMID: 23538841 PMCID: PMC3645679 DOI: 10.3390/ijms14047109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise), additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology.
Collapse
|
98
|
Toda N. [Nitrergic cerebrovascular regulation as affected by donepezil]. Nihon Yakurigaku Zasshi 2013; 141:150-4. [PMID: 23470480 DOI: 10.1254/fpj.141.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
99
|
Alterations in the redox state and liver damage: hints from the EASL Basic School of Hepatology. J Hepatol 2013; 58:365-74. [PMID: 23023012 DOI: 10.1016/j.jhep.2012.09.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/27/2012] [Accepted: 09/19/2012] [Indexed: 12/19/2022]
Abstract
The importance of a correct balance between oxidative and reductive events has been shown to have a paramount effect on cell function for quite a long time. However, in spite of this body of rapidly growing evidence, the implication of the alteration of the redox state in human disease has been so far much less appreciated. Liver diseases make no exception. Although not fully comprehensive, this article reports what discussed during an EASL Basic School held in 2012 in Trieste, Italy, where the effect of the alteration of the redox state was addressed in different experimental and human models. This translational approach resulted in further stressing the concept that this topic should be expanded in the future not only to better understand how oxidative stress may be linked to a liver damage but also, perhaps more important, how this may be the target for better, more focused treatments. In parallel, understanding how alteration of the redox balance may be associated with liver damage may help define sensitive and ideally early biomarkers of the disorder.
Collapse
|
100
|
L-NAME in the cardiovascular system - nitric oxide synthase activator? Pharmacol Rep 2013; 64:511-20. [PMID: 22814004 DOI: 10.1016/s1734-1140(12)70846-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/14/2012] [Indexed: 11/21/2022]
Abstract
L-arginine analogues are widely used inhibitors of nitric oxide synthase (NOS) activity both in vitro and in vivo, with N(ω)-nitro-L-arginine methyl ester (L-NAME) being at the head. On the one hand, acute and chronic L-NAME treatment leads to changes in blood pressure and vascular reactivity due to decreased nitric oxide (NO) bioavailability. However, lower doses of L-NAME may also activate NO production via feedback regulatory mechanisms if administered for longer time. Such L-NAME-induced activation has been observed in both NOS expression and activity and revealed considerable differences in regulatory mechanisms of NO production between particular tissues depending on the amount of L-NAME. Moreover, feedback activation of NO production by L-NAME seems to be regulated diversely under conditions of hypertension. This review summarizes the mechanisms of NOS regulation in order to better understand the apparent discrepancies found in the current literature.
Collapse
|