51
|
Schulz-Schaeffer WJ. The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia. Acta Neuropathol 2010; 120:131-43. [PMID: 20563819 PMCID: PMC2892607 DOI: 10.1007/s00401-010-0711-0] [Citation(s) in RCA: 437] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 05/31/2010] [Accepted: 06/11/2010] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are usually associated with loss of dopaminergic neurons. Loss of substantia nigra neurons and presence of Lewy body inclusions in some of the remaining neurons are the hallmark pathology seen in the final stages of the disease. Attempts to correlate Lewy body pathology to either cell death or severity of clinical symptoms, however, have not been successful. While the pathophysiology of the neurodegenerative process can hardly be explained by Lewy bodies, the clinical symptoms do indicate a degenerative process located at the presynapse resulting in a neurotransmitter deficiency. Recently it was shown that 90% or even more of alpha-synuclein aggregates in DLB cases were located at the presynapses in the form of very small deposits. In parallel, dendritic spines are retracted, whereas the presynapses are relatively preserved, suggesting a neurotransmitter deprivation. The same alpha-synuclein pathology can be demonstrated for PD. These findings give rise to the notion that not cell death but rather alpha-synuclein aggregate-related synaptic dysfunction causes the neurodegeneration. This opens new perspectives for understanding PD and DLB. If presynaptic alpha-synuclein aggregation, not neuronal loss, is the key issue of the neurodegenerative process, then PD and DLB may eventually be treatable in the future. The disease may progress via trans-synaptical spread, suggesting that stem cell transplants are of limited use. Future therapies may focus on the regeneration of synapses.
Collapse
Affiliation(s)
- Walter J Schulz-Schaeffer
- Department of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany.
| |
Collapse
|
52
|
Alladi PA, Mahadevan A, Vijayalakshmi K, Muthane U, Shankar SK, Raju TR. Ageing enhances alpha-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians. Neurochem Int 2010; 57:530-9. [PMID: 20615443 DOI: 10.1016/j.neuint.2010.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/26/2010] [Accepted: 06/28/2010] [Indexed: 12/14/2022]
Abstract
Accumulating evidences suggest that dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc) during ageing and in Parkinson's disease (PD) is linked to neurodegenerative changes like exponential increase in alpha-synuclein expression and protein misfolding. Lewy body formation is also a quintessential observation in neurodegeneration and PD. In experimental models of PD, GRP78 a neuroprotective endoplasmic reticulum (ER) chaperone protein targets misfolded proteins for degradation and prevents release of caspase12 from the ER. Release of active caspase12 and its translocation to the nucleus induces ER mediated apoptosis. The effect of ageing on these proteins in human nigra is not known. We evaluated alpha-synuclein, caspase12, GRP78 and ubiquitin expression in the SNpc of Asian Indians, using immunohistochemistry and stereology. The number of alpha-synuclein and caspase12 immunoreactive neurons increased gradually with age whereas the number of GRP78-labeled neurons remained stable. In contrast, GRP78 protein expression was significantly upregulated with age, while alpha-synuclein and caspase12 increased slightly. An increase in the size and numbers of marinesco bodies was prominent after the sixth decade. The mild increase in alpha-synuclein expression and occurrence of marinesco bodies suggests ageing induced protein misfolding and GRP78 upregulation indicates presence of ER stress. The logarithmic upregulation of GRP78 could even be an indicator of neuroprotective or neuromodulatory response of ER to protein misfolding and initiation of unfolded protein response pathway. Since dopaminergic neurons are preserved in ageing Asian Indians, our study possibly signifies better proteasomal or ER response and partially explains the lower prevalence of PD in them.
Collapse
Affiliation(s)
- Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.
| | | | | | | | | | | |
Collapse
|
53
|
Ahn TB. Clinicopathological correlates of lewy body disease: fundamental issues. J Mov Disord 2010; 3:11-4. [PMID: 24868372 PMCID: PMC4027657 DOI: 10.14802/jmd.10003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 04/20/2010] [Indexed: 12/13/2022] Open
Abstract
Lewy body pathology (LBP) is the pathological hallmark of Lewy body diseases, such as Parkinson's disease and Lewy body dementia. Recent studies have shed new light on the role of LBP, the interactions of LBP with concomitant pathologies, and the propagation of LBP from the olfactory bulb and enteric nervous system to the central nervous system. The intrinsic difficulty with identifying clinicopathological correlates could be overcome by improving our understanding of the pathological evolution of LBP.
Collapse
Affiliation(s)
- Tae-Beom Ahn
- Department of Neurology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
54
|
Thaler A, Ash E, Gan-Or Z, Orr-Urtreger A, Giladi N. The LRRK2 G2019S mutation as the cause of Parkinson's disease in Ashkenazi Jews. J Neural Transm (Vienna) 2010; 116:1473-82. [PMID: 19756366 DOI: 10.1007/s00702-009-0303-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/22/2009] [Indexed: 11/25/2022]
Abstract
Mutations in the leucine rich repeat kinase 2 gene (LRRK2) are recognized as the most common cause of genetic Parkinsonism to date. The G2019S mutation has been implicated as an important determinant of Parkinson's disease (PD) in both Ashkenazi Jewish and North African Arab populations with carrier frequency of 29.7% among familial and 6% in sporadic Ashkenazi Jewish PD cases. PD patients with the G2019S mutation display similar clinical characteristics to patients with sporadic PD. While the function of the LRRK2 protein has yet to be fully determined, its distribution coincides with brain areas most affected by PD. The G2019S mutation is believed to be responsible for up-regulation of LRRK2 kinase activity, which may ultimately play a role in neuronal loss. The utility of LRRK2 G2019S screening in family members of Ashkenazi PD patients is discussed. LRRK2 G2019S mutation carriers without PD may be an ideal population for the study of possible neuroprotective strategies as they become available, and for furthering the understanding of the pathogenesis and long-term clinical outcomes of the disease.
Collapse
Affiliation(s)
- Avner Thaler
- Department of Neurology, Sourasky Medical Center, Tel-Aviv, Israel.
| | | | | | | | | |
Collapse
|
55
|
Tinsley RB, Bye CR, Parish CL, Tziotis-Vais A, George S, Culvenor JG, Li QX, Masters CL, Finkelstein DI, Horne MK. Dopamine D2 receptor knockout mice develop features of Parkinson disease. Ann Neurol 2009; 66:472-84. [PMID: 19847912 DOI: 10.1002/ana.21716] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study questions whether increased dopamine (DA) turnover in nigral neurons leads to formation of Lewy bodies (LBs), the characteristic alpha-synuclein-containing cytoplasmic inclusion of Parkinson disease (PD). METHODS Mice with targeted deletion of the dopamine D(2) receptor gene (D(2)R[-/-]) have higher striatal and nigral dopamine turnover and elevated oxidative stress. These mice were examined for evidence of histological, biochemical, and gene expression changes consistent with a synucleinopathy. RESULTS LB-like cytoplasmic inclusions containing alpha-synuclein and ubiquitin were present in substantia nigra pars compacta (SNpc) neurons of older D(2)R(-/-) mice, and were also occasionally seen in aged wild-type mice. These inclusions displaced the nucleus of affected cells and were eosinophilic. Diffuse cytosolic alpha-synuclein immunoreactivity in SNpc neurons increased with age in both wild-type and D(2)R(-/-) mice, most likely because of redistribution of alpha-synuclein from striatal terminals to SNpc cell bodies. Gene and protein expression studies indicated endoplasmic reticulum (ER) stress and changes in trafficking and autophagic pathways in D(2)R(-/-) SNpc. These changes were accompanied by a loss of DA terminals in the dorsal striatum, although there was no evidence of progressive cell death in the SNpc. INTERPRETATION Increased sprouting and DA turnover, as observed in PD and D(2)R(-/-) mice, augments LB-like inclusions and axonal degeneration of dopaminergic neurons. These changes are associated with ER stress and autophagy.
Collapse
Affiliation(s)
- Rogan B Tinsley
- Howard Florey Institute, the University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Uversky VN, Eliezer D. Biophysics of Parkinson's disease: structure and aggregation of alpha-synuclein. Curr Protein Pept Sci 2009; 10:483-99. [PMID: 19538146 PMCID: PMC3786709 DOI: 10.2174/138920309789351921] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 02/05/2009] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a slowly progressive movement disorder that results from the loss of dopaminergic neurons in the substantia nigra, a small area of cells in the mid-brain. PD is a multifactorial disorder with unknown etiology, in which both genetic and environmental factors play important roles. Substantial evidence links alpha-synuclein, a small highly conserved presynaptic protein with unknown function, to both familial and sporadic PD. Rare familial cases of PD are associated with missense point mutations in alpha-synuclein, or with the hyper-expression of the wild type protein due to its gene duplication/triplication. Furthermore, alpha-synuclein was identified as the major component of amyloid fibrils found in Lewy body and Lewy neurites, the characteristic proteinaceous deposits that are the diagnostic hallmarks of PD. alpha-Synuclein is abundant in various regions of the brain and has two closely related homologs, beta-synuclein and gamma-synuclein. When isolated in solution, the protein is intrinsically disordered, but in the presence of lipid surfaces alpha-synuclein adopts a highly helical structure that is believed to mediate its normal function(s). A number of different conformational states of alpha-synuclein have been observed. Besides the membrane-bound form, other critical conformations include a partially-folded state that is a key intermediate in aggregation and fibrillation, various oligomeric species, and fibrillar and amorphous aggregates. A number of intrinsic and extrinsic factors that either accelerate or inhibit the rate of alpha-synuclein aggregation and fibrillation in vitro are known. There is a strong correlation between the conformation of alpha-synuclein (induced by various factors) and its rate of fibrillation. The aggregation process appears to be branched, with one pathway leading to fibrils and another to oligomeric intermediates that may ultimately form amorphous deposits. The molecular basis of Parkinson's disease appears to be tightly coupled to the aggregation of alpha-synuclein and the factors that affect its conformation. This review focuses on the contributions of Prof. Anthony L. Fink to the field and presents some recent developments in this exciting area.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Institite for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - David Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York 10021, USA
| |
Collapse
|
57
|
Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH. Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 2009; 35:385-98. [PMID: 19505575 DOI: 10.1016/j.nbd.2009.05.023] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/28/2009] [Accepted: 05/30/2009] [Indexed: 01/02/2023] Open
Abstract
We explored the relationship between ubiquitin proteasome system (UPS) and lysosomal markers and the formation of alpha-synuclein (alpha-syn) inclusions in nigral neurons in Parkinson disease (PD). Lysosome Associated Membrane Protein 1(LAMP1), Cathepsin D (CatD), and Heat Shock Protein73 (HSP73) immunoreactivity were significantly decreased within PD nigral neurons when compared to age-matched controls. This decrease was significantly greater in nigral neurons that contained alpha-syn inclusions. Immunoreactivity for 20S proteasome was similarly reduced in PD nigral neurons, but only in cells that contained inclusions. In aged control brains, there is staining for alpha-syn protein, but it is non-aggregated and there is no difference in LAMP1, CatD, HSP73 or 20S proteasome immunoreactivity between alpha-syn positive or negative neuromelanin-laden nigral neurons. Targeting over-expression of mutant human alpha-syn in the rat substantia nigra using viral vectors revealed that lysosomal and proteasomal markers were significantly decreased in the neurons that displayed alpha-syn-ir inclusions. These findings suggest that alpha-syn aggregation is a key feature associated with decline of proteasome and lysosome and support the hypothesis that cell degeneration in PD involves proteosomal and lysosomal dysfunction, impaired protein clearance, and protein accumulation and aggregation leading to cell death.
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
58
|
Abstract
Protein aggregation as a result of misfolding is a common theme underlying neurodegenerative diseases. In Parkinson's disease (PD), research on protein misfolding and aggregation has taken center stage following the association of alpha-synuclein gene mutations with familial forms of the disease, and importantly, the identification of the protein as a major component of Lewy bodies, a pathological hallmark of PD. Fueling this excitement is the subsequent identification of another PD-linked gene, parkin, as a ubiquitin ligase associated with the proteasome, a major intracellular protein degradation machinery that destroys unwanted, albeit mainly soluble, proteins. Notably, a role for parkin in the clearance of insoluble protein aggregates via macroautophagy has also been implicated by more recent studies. Paradoxically, like alpha-synuclein, parkin is also prone to misfolding, especially in the presence of age-related stress. Similarly, protein misfolding can also affect the function of other key PD-linked genes such as DJ-1, PINK1, and perhaps also LRRK2. Here, we discuss the role of protein misfolding and aggregation in PD, and how impairments of the various cellular protein quality systems could precipitate these events and lead to neuronal demise. Towards the end of our discussion, we also revisited the role of Lewy body formation in PD.
Collapse
Affiliation(s)
- Jeanne M M Tan
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
| | | | | |
Collapse
|
59
|
Genetic models of Parkinson disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:604-15. [DOI: 10.1016/j.bbadis.2008.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/18/2008] [Accepted: 10/07/2008] [Indexed: 02/02/2023]
|
60
|
The role of molecular chaperones in human misfolding diseases. FEBS Lett 2009; 583:2647-53. [DOI: 10.1016/j.febslet.2009.04.029] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/17/2009] [Indexed: 11/23/2022]
|
61
|
Molecular pathology of Lewy body diseases. Int J Mol Sci 2009; 10:724-45. [PMID: 19399218 PMCID: PMC2671999 DOI: 10.3390/ijms10030724] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/03/2009] [Accepted: 02/23/2009] [Indexed: 11/16/2022] Open
Abstract
Lewy body diseases are characterized by the presence of Lewy bodies, alpha-synuclein(AS)-positive inclusions in the brain. Since their main component is conformationally modified AS, aggregation of the latter is thought to be a key pathogenic event in these diseases. The analysis of inclusion body constituents gives additional information about pathways also involved in the pathology of synucleinopathies. Widespread mitochondrial dysfunction is very closely related to disease development. The impairment of protein degradation pathways, including both the ubiquitin-proteasome system and the autophagy-lysosome pathway also play an important role during the development of Lewy body diseases. Finally, differential expression changes of isoforms corresponding to genes primarily involved in Lewy body formation point to alternative splicing as another important mechanism in the development of Parkinson’s disease, as well as dementia with Lewy bodies. The present paper attempts to give an overview of recent molecular findings related to the pathogenesis of Lewy body diseases.
Collapse
|
62
|
Alladi PA, Mahadevan A, Yasha TC, Raju TR, Shankar SK, Muthane U. Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: relevance to lower incidence of Parkinson's disease. Neuroscience 2008; 159:236-45. [PMID: 19135503 DOI: 10.1016/j.neuroscience.2008.11.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/15/2008] [Accepted: 11/18/2008] [Indexed: 12/14/2022]
Abstract
Age-related loss of melanized nigral neurons reported in the British Caucasians is not observed in Asian Indian, American and French adults. In the Americans, loss of dopaminergic phenotype occurs from midlife, without frank neurodegeneration. Here, we investigated whether nigral dopaminergic neurons in Asian Indians are lost with age or undergo morphological or biochemical dysfunction. Using unbiased stereology we estimated volume, number of melanized, borderline/non-melanized (n=34, 28 gestational weeks to 80 years) and tyrosine hydroxylase (TH)-Nurr1 co-labeled neurons (n=32, 28 gestational weeks to 80 years) in substantia nigra pars compacta. We quantified Nurr1 and TH proteins by immunoblotting (n=18, 28 gestational weeks to 69 years) and apoptotic neurons by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Nuclear and soma size was estimated by morphometry. There was no age-related decline in volume, neuronal density, neuronal numbers and TH-Nurr1 co-labeled neurons. TH and Nurr1 protein expression remained stable. Lack of TUNEL-TH co-labeled cells confirmed absence of neuronal apoptosis. The neuronal size remained unaltered. Our findings of preserved nigral dopaminergic neurons suggest no age-related loss of nigral function in Asian Indians, unlike the Americans. This may explain the lower incidence of Parkinson's disease in Asian Indians.
Collapse
Affiliation(s)
- P A Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India.
| | | | | | | | | | | |
Collapse
|
63
|
Mallory-Denk-bodies: lessons from keratin-containing hepatic inclusion bodies. Biochim Biophys Acta Mol Basis Dis 2008; 1782:764-74. [PMID: 18805482 DOI: 10.1016/j.bbadis.2008.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 01/08/2023]
Abstract
Inclusion bodies are characteristic morphological features of various neuronal, muscular and other human disorders. They share common molecular constituents such as p62, chaperones and proteasome subunits. The proteins within aggregates are misfolded with increased beta-sheet structure, they are heavily phosphorylated, ubiquitinylated and partially degraded. Furthermore, involvement of proteasomal system represents a common feature of virtually all inclusions. Multiple aggregates contain intermediate filament proteins as their major constituents. Among them, Mallory-Denk bodies (MDBs) are the best studied. MDBs represent hepatic inclusions observed in diverse chronic liver diseases such as alcoholic and non-alcoholic steatohepatitis, chronic cholestasis, metabolic disorders and hepatocellular neoplasms. MDBs are induced in mice fed griseofulvin or 3,5-diethoxycarbonyl-1,4-dihydrocollidine and resolve after discontinuation of toxin administration. The availability of a drug-induced model makes MDBs a unique tool for studying inclusion formation. Our review summarizes the recent advances gained from this model and shows how they relate to observations in other aggregates. The MDB formation-underlying mechanisms include protein misfolding, chaperone alterations, disproportional protein expression with keratin 8>keratin 18 levels and subsequent keratin 8 crosslinking via transglutaminase. p62 presence is crucial for MDB formation. Proteasome inhibitors precipitate MDB formation, whereas stimulation of autophagy with rapamycin attenuates their formation.
Collapse
|
64
|
MANDEL SILVIA, GRUNBLATT EDNA, RIEDERER PETER, AMARIGLIO NINETTE, HIRSCH JASMINEJACOB, RECHAVI GIDEON, YOUDIM MOUSSABH. Gene Expression Profiling of Sporadic Parkinson's Disease Substantia Nigra Pars Compacta Reveals Impairment of Ubiquitin-Proteasome Subunits, SKP1A, Aldehyde Dehydrogenase, and Chaperone HSC-70. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.2005.tb00044.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
65
|
Braak H, Del Tredici K. Reply to “Controversies over the staging of α-synuclein pathology in Parkinson’s disease”. Acta Neuropathol 2008. [DOI: 10.1007/s00401-008-0399-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
66
|
Hely MA, Reid WGJ, Adena MA, Halliday GM, Morris JGL. The Sydney multicenter study of Parkinson's disease: The inevitability of dementia at 20 years. Mov Disord 2008; 23:837-44. [PMID: 18307261 DOI: 10.1002/mds.21956] [Citation(s) in RCA: 1530] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mariese A Hely
- Department of Neurology, Westmead Hospital, Westmead, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
67
|
Halliday GM, McCann H. Human-based studies on α-synuclein deposition and relationship to Parkinson's disease symptoms. Exp Neurol 2008; 209:12-21. [PMID: 17706644 DOI: 10.1016/j.expneurol.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 06/30/2007] [Accepted: 07/05/2007] [Indexed: 11/28/2022]
Abstract
This article reviews the current knowledge on alpha-synuclein and its cellular locations in studies using human brain tissue. Alterations in the conformation and distribution of alpha-synuclein are examined in Parkinson's disease and the relationship between clinical symptoms and pathology explored. alpha-Synuclein as a molecular chaperone has several isoforms and is known to have different environment-dependent conformations. Processing methods for studying human brain tissue significantly impact on the conformational type of alpha-synuclein analysed, and antibody species used for the in situ detection of alpha-synuclein give variable results depending on the epitope visualised. Human studies show that alpha-synuclein is not isolated to neurons, but is also found in glia, making the interpretation of studies using brain tissue homogenates less clearly related to neurons. These methodological issues impact significantly on our understanding of the form, location, and therefore function of alpha-synuclein in normal human brain tissue. There are less methodological issues regarding highly aggregated alpha-synuclein found in the major hallmark of Parkinson's disease, the Lewy body. However, it remains unclear whether these alpha-synuclein inclusions are harmful to host neurons or provide protection. Several correlations exist between the clinical symptoms of Parkinson's disease and the distribution of Lewy pathology, the strongest being the association between limbic and cortical Lewy bodies and well-formed visual hallucinations. Further correlation studies in prospectively-followed patients and, perhaps more importantly, controls are required in order to determine normal versus pathologic alpha-synuclein and how to detect such differences in clinical situations.
Collapse
Affiliation(s)
- Glenda M Halliday
- Prince of Wales, Medical Research Institute, Randwick, NSW, Australia.
| | | |
Collapse
|
68
|
Affiliation(s)
- David Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Medical College of Cornell University, New York, NY 10021 , USA.
| |
Collapse
|
69
|
Mori F, Nishie M, Kakita A, Yoshimoto M, Takahashi H, Wakabayashi K. Relationship Among α-Synuclein Accumulation, Dopamine Synthesis, and Neurodegeneration in Parkinson Disease Substantia Nigra. J Neuropathol Exp Neurol 2006; 65:808-15. [PMID: 16896314 DOI: 10.1097/01.jnen.0000230520.47768.1a] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The histologic hallmark of Parkinson disease (PD) is loss of pigmented neurons in the substantia nigra (SN) and locus ceruleus (LC) with accumulation of alpha-synuclein (alphaS). It has been reported that tyrosine hydroxylase (TH)-negative pigmented neurons are present in these nuclei of patients with PD. However, the relationship between TH immunoreactivity and alphaS accumulation remains uncertain. We immunohistochemically examined the SN and LC from patients with PD (n = 10) and control subjects (n = 7). A correlation study indicated a close relationship among decreased TH immunoreactivity, alphaS accumulation, and neuronal loss. In addition, 10% of pigmented neurons in the SN and 54.9% of those in the LC contained abnormal alphaS aggregates. Moreover, 82.3% of pigmented neurons bearing alphaS aggregates in the SN and 39.2% of those in the LC lacked TH immunoreactivity, suggesting that pigmented neurons in the SN have a greater tendency to lack TH activity than those in the LC. Recent studies have shown that this decrease of TH activity leads to a decrease of cytotoxic substances and that decreased dopamine synthesis leads to a reduction of cytotoxic alphaS oligomers. Therefore, the decrease of TH immunoreactivity in pigmented neurons demonstrated here can be considered to represent a cytoprotective mechanism in PD.
Collapse
Affiliation(s)
- Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
70
|
Muqit MMK, Abou-Sleiman PM, Saurin AT, Harvey K, Gandhi S, Deas E, Eaton S, Payne Smith MD, Venner K, Matilla A, Healy DG, Gilks WP, Lees AJ, Holton J, Revesz T, Parker PJ, Harvey RJ, Wood NW, Latchman DS. Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. J Neurochem 2006; 98:156-69. [PMID: 16805805 DOI: 10.1111/j.1471-4159.2006.03845.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Following our identification of PTEN-induced putative kinase 1 (PINK1) gene mutations in PARK6-linked Parkinson's disease (PD), we have recently reported that PINK1 protein localizes to Lewy bodies (LBs) in PD brains. We have used a cellular model system of LBs, namely induction of aggresomes, to determine how a mitochondrial protein, such as PINK1, can localize to aggregates. Using specific polyclonal antibodies, we firstly demonstrated that human PINK1 was cleaved and localized to mitochondria. We demonstrated that, on proteasome inhibition with MG-132, PINK1 and other mitochondrial proteins localized to aggresomes. Ultrastructural studies revealed that the mechanism was linked to the recruitment of intact mitochondria to the aggresome. Fractionation studies of lysates showed that PINK1 cleavage was enhanced by proteasomal stress in vitro and correlated with increased expression of the processed PINK1 protein in PD brain. These observations provide valuable insights into the mechanisms of LB formation in PD that should lead to a better understanding of PD pathogenesis.
Collapse
Affiliation(s)
- Miratul M K Muqit
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Ahn TB, Jeon BS. Protective role of heat shock and heat shock protein 70 in lactacystin-induced cell death both in the rat substantia nigra and PC12 cells. Brain Res 2006; 1087:159-67. [PMID: 16626658 DOI: 10.1016/j.brainres.2006.02.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/20/2006] [Accepted: 02/22/2006] [Indexed: 11/25/2022]
Abstract
Proteasomal dysfunction plays an important role in the pathogenesis of Parkinson disease (PD). Although clinical and experimental evidence continues to accumulate indicating heat shock protein 70 (HSP70) is significant in the pathogenesis of PD, few studies have been made to investigate the role of HSP70 under the condition of proteasome dysfunction. In in vivo study, we infused lactacystin into the unilateral substantia nigra (SN) of Sprague-Dawley rats with or without preceding whole body hyperthermia (WBH). Immunohistochemical studies showed the death of dopaminergic neurons and activated microglia in the SN. Lactacystin with prior WBH increased the expression of HSP70 more than did lactacystin alone and decreased lactacystin-induced dopaminergic neuronal death in the SN. In PC12 cells, heat shock pretreatment decreased lactacystin-induced cell death. Although additional treatment of nocodazole, ammonium chloride, and 3-methyladenine augmented cell death by lactacystin, heat shock pretreated to these drugs offsets their additional toxicity. These results indicate that heat shock proteins, especially HSP70, could play an important role under the condition of proteasome dysfunction in part by fostering aggresome formation and lysosome-mediated autophagy.
Collapse
Affiliation(s)
- Tae-Beom Ahn
- Department of Neurology, Kyung Hee University College of Medicine, South Korea
| | | |
Collapse
|
72
|
McNaught KSP, Olanow CW. Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease. Neurobiol Aging 2006; 27:530-45. [PMID: 16207501 DOI: 10.1016/j.neurobiolaging.2005.08.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/25/2005] [Accepted: 08/20/2005] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a slowly progressive, age-related, neurodegenerative disorder. The cause and mechanism of neuronal death have been elusive. However, recent genetic, postmortem and experimental evidence show that protein accumulation and aggregation are prominent occurrences in both sporadic and familial PD. The relevance of these events to other cellular and biochemical changes, and to the neurodegenerative process, is being unraveled. It is increasingly evident that one or a combination of defects, including mutations, oxidative stress, mitochondrial impairment and dysfunction of the ubiquitin-proteasome system, lead to an excess production and aggregation of abnormal proteins in PD. In this respect, altered protein handling appears to be a central factor in the pathogenic process occurring in the various hereditary and sporadic forms of PD. This suggests that manipulation of proteolytic systems is a rational approach in the development of neuroprotective therapies that could modify the pathological course of PD.
Collapse
Affiliation(s)
- Kevin St P McNaught
- Department of Neurology, Mount Sinai School of Medicine, Annenberg 14-73, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
73
|
Abstract
Lewy bodies (LB) in the substantia nigra are a cardinal pathological feature of Parkinson's disease, but they occur in a number of neurodegenerative diseases and can be widespread in the nervous system. The characteristics, locations, and composition of LB are reviewed, with particular attention to alpha-synuclein (alpha-SYN), which appears to be the major component of LB. The propensity for alpha-SYN, a presynaptic protein widely expressed in the brain, to aggregate is because of an amyloidogenic central region. The factors that favor the aggregation of alpha-SYN and mechanisms of toxicity are examined, and a mechanism through which aggregates of alpha-SYN could induce mitochondrial dysfunction and/or release of proapoptotic molecules is proposed.
Collapse
Affiliation(s)
- Clifford W Shults
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
74
|
Potashkin JA, Meredith GE. The role of oxidative stress in the dysregulation of gene expression and protein metabolism in neurodegenerative disease. Antioxid Redox Signal 2006; 8:144-51. [PMID: 16487048 DOI: 10.1089/ars.2006.8.144] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There are few examples for which the genetic basis for neurodegenerative disease has been identified. For the majority of these disorders, the key to their understanding lies in knowledge of the molecular changes that contribute to altered gene expression and the translational modification of the protein products. Environmental factors play a role in the development and chronicity of neurodegenerative disorders. Environmental stimuli such as hypoxia, toxins, or heavy metals, increase production of reactive oxygen species and lower energy reserves. Chronic exposure to oxidative radicals can adversely affect gene expression and proteolysis. This review summarizes what is currently known about some of the changes in gene expression and protein metabolism that occur after oxidative stress which contribute to neurodegeneration, and reveals areas where more research is clearly needed.
Collapse
Affiliation(s)
- Judith A Potashkin
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | | |
Collapse
|
75
|
Parkkinen L, Pirttilä T, Tervahauta M, Alafuzoff I. Widespread and abundant alpha-synuclein pathology in a neurologically unimpaired subject. Neuropathology 2005; 25:304-14. [PMID: 16382779 DOI: 10.1111/j.1440-1789.2005.00644.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intracytoplasmic aggregation of alpha-synuclein (alphaS) protein is a common denominator for a group of neurodegenerative disorders currently known as synucleinopathies. It is generally assumed that the incorporation of alphaS protein into compact inclusions compromises the function and viability of its host cell via mechanical disruption. Herein, we report a widespread and abundant alphaS pathology in an elderly subject, whose medical history gave no indication of any neurodegenerative disease. We compared neuronal and glial components in this neurologically unimpaired subject with a patient with a clinical syndrome of dementia with Lewy bodies (DLB) by using a range of antigenic determinants and an in situ end-labeling technique. We detected no differences in vascular pathologies, in gliosis, or in apoptosis that would have explained the incompatible clinical end-points. With respect to the Alzheimer's disease-related changes, the only differences noted were the beta-amyloid aggregates in the putamen found in the DLB patient alone. Our findings suggest that there must be some currently unidentified factors rather than alphaS-positive inclusions that are responsible for the neuronal dysfunction. The alphaS-positive inclusions may well represent detoxified reserves that cells can tolerate for years, and thus prevention of their development could actually accelerate the diseases process.
Collapse
Affiliation(s)
- Laura Parkkinen
- Department of Neuroscience and Neurology, Kuopio University, Kuopio, Finland
| | | | | | | |
Collapse
|
76
|
Lu L, Neff F, Alvarez-Fischer D, Henze C, Xie Y, Oertel WH, Schlegel J, Hartmann A. Gene expression profiling of Lewy body-bearing neurons in Parkinson's disease. Exp Neurol 2005; 195:27-39. [PMID: 15944136 DOI: 10.1016/j.expneurol.2005.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/02/2005] [Accepted: 04/20/2005] [Indexed: 12/21/2022]
Abstract
Lewy bodies (LB) are a pathological hallmark of Parkinson's disease (PD). Whether LBs are neuroprotective, cytotoxic, or an age-related epiphenomenon is still debated. In the present study, the genetic fingerprints of mesencephalic dopaminergic (DA) neurons containing LBs versus mesencephalic DA neurons not containing LBs were compared in five PD patients. Total RNA from single neurons of both neuronal subpopulations was obtained by immuno-laser capture microdissection. Subsequently, RNA arbitrarily primed PCR was employed to generate expression profiles from the extracted RNA. Differentially displayed polymorphic fragments were dissected from silver-stained polyacrylamide gels. Most of these expressed sequence tags (ESTs) were homologous to known human sequences (56/64, 87.5%). Based on the potential significance of individual ESTs in neurodegenerative disorders, 5 ESTs of interest were selected for further quantitative expression analysis by real-time quantitative reverse transcription PCR (rtq RT-PCR). DA neurons without LBs preferentially expressed molecules beneficial for cell survival, whereas genes preferentially expressed in DA neurons containing LBs may support a cytotoxic role of LBs. Thus, we favor the view that LB-positive DA neurons are sicker than their LB-negative counterparts, and that inhibition of LB formation may indeed represent a therapeutic strategy in PD.
Collapse
Affiliation(s)
- Lixia Lu
- Department of Neurology, Philipps-Universität Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Neurodegenerative diseases typically involve deposits of inclusion bodies that contain abnormal aggregated proteins. Therefore, it has been suggested that protein aggregation is pathogenic. However, several lines of evidence indicate that inclusion bodies are not the main cause of toxicity, and probably represent a cellular protective response. Aggregation is a complex multi-step process of protein conformational change and accretion. The early species in this process might be most toxic, perhaps through the exposure of buried moieties such as main chain NH and CO groups that could serve as hydrogen bond donors or acceptors in abnormal interactions with other cellular proteins. This model implies that the pathogenesis of diverse neurodegenerative diseases arises by common mechanisms, and might yield common therapeutic targets.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry at Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
78
|
Mukai H, Isagawa T, Goyama E, Tanaka S, Bence NF, Tamura A, Ono Y, Kopito RR. Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells. Proc Natl Acad Sci U S A 2005; 102:10887-92. [PMID: 16040812 PMCID: PMC1182404 DOI: 10.1073/pnas.0409283102] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease is a progressive neurodegenerative disorder caused by a polyglutamine repeat expansion in the first exon of the huntingtin (Htt) protein. N-terminal Htt peptides with polyglutamine tracts in the pathological range (51-122 glutamines) form high-molecular-weight protein aggregates with fibrillar morphology in vitro, and they form discrete inclusion bodies in a cell-culture model. However, in some studies, formation of discrete Htt inclusions does not correlate well with cell death. We coexpressed N-terminal Htt fragments containing 91 glutamines fused to different affinity tags in HEK293 cells, and we isolated small aggregates by double sequential-affinity chromatography to assure the isolation of multimeric molecules. Transmission electron microscopy and atomic force microscopy revealed the isolated aggregates as globules or clusters of globules 4-50 nm in diameter without any detectable fibrillar species. Because small nonfibrillar oligomers, not mature fibrils, recently have been suggested to be the principal cytotoxic species in neurodegenerative disease, these Htt globular aggregates formed in cells may represent the pathogenic form of mutant Htt.
Collapse
Affiliation(s)
- Hideyuki Mukai
- Biosignal Research Center and Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
79
|
von Bohlen und Halbach O, Minichiello L, Unsicker K. Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in the substantia nigra. FASEB J 2005; 19:1740-2. [PMID: 16037097 DOI: 10.1096/fj.05-3845fje] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote survival and differentiation of midbrain dopaminergic (DAergic) neurons in vitro and in vivo. This is consistent with their expression and that of their cognate receptors, trkB and trkC, in the nigrostriatal system. Degeneration of DAergic neurons of the substantia nigra and alpha-synuclein-positive aggregates in the remaining substantia nigra (SN) neurons are hallmarks of Parkinson's disease (PD). Reduced expression of BDNF has been reported in the SN from PD patients. Moreover, mutations in the BDNF gene have been found to play a role in the development of familial PD. We show now that haploinsufficiencies of the neurotrophin receptors trkB and/or trkC cause a reduction in numbers of SN neurons in aged (21-23 month old) mice, which is accompanied by a reduced density in striatal tyrosine hydroxylase immunoreactive (TH-ir) fibers. These aged mutant mice, in contrast to wild-type littermates, display an accumulation of alpha-synuclein in the remaining TH-positive neurons of the SN. We conclude that impairment in trkB and/or trkC signaling induces a phenotype in the aged SN, which includes two hallmarks of PD, losses of TH positive neurons and axons along with massive neuronal deposits of alpha-synuclein.
Collapse
Affiliation(s)
- Oliver von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany.
| | | | | |
Collapse
|
80
|
Pathophysiology: biochemistry of Parkinson's disease. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
81
|
Abstract
Many neurodegenerative disorders are characterized by conformational changes in proteins that result in misfolding, aggregation and intra- or extra-neuronal accumulation of amyloid fibrils. Molecular chaperones provide a first line of defence against misfolded, aggregation-prone proteins and are among the most potent suppressors of neurodegeneration known for animal models of human disease. Recent studies have investigated the role of molecular chaperones in amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and polyglutamine diseases. We propose that molecular chaperones are neuroprotective because of their ability to modulate the earliest aberrant protein interactions that trigger pathogenic cascades. A detailed understanding of the molecular basis of chaperone-mediated protection against neurodegeneration might lead to the development of therapies for neurodegenerative disorders that are associated with protein misfolding and aggregation.
Collapse
Affiliation(s)
- Paul J Muchowski
- Department of Pharmacology, The Center for Neurogenetics and Neurotherapeutics, University of Washington, Seattle, Washington 98195-7280, USA.
| | | |
Collapse
|
82
|
Lee JC, Langen R, Hummel PA, Gray HB, Winkler JR. Alpha-synuclein structures from fluorescence energy-transfer kinetics: implications for the role of the protein in Parkinson's disease. Proc Natl Acad Sci U S A 2004; 101:16466-71. [PMID: 15536128 PMCID: PMC534538 DOI: 10.1073/pnas.0407307101] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease is associated with the deposition and accumulation of alpha-synuclein fibrils in the brain. A30P and A53T mutations have been linked to the early-onset familial disease state. Time-resolved tryptophan fluorescence energy-transfer measurements have been used to probe the structures of pseudo-wild-type and mutant (A30P) alpha-synucleins at physiological pH (7.4), in acidic pH (4.4) solutions, and in the presence of SDS micelles, a membrane mimic. Fluorescent donor-energy acceptor (DA) distance distributions for six different tryptophan/3-nitro-tyrosine pairs reveal the presence of compact, intermediate, and extended conformations of the protein. CD spectra indicate that the protein develops substantial helical structure in the presence of SDS micelles. DA distributions show that micelles induce compaction in the N-terminal region and expansion of the acidic C terminus. In acidic solutions, there is an increased population of collapsed structures in the C-terminal region. Energy-transfer measurements demonstrate that the average DA distances for the W4-Y19 and Y19-W39 pairs are longer in one of the two disease-related mutants (A30P).
Collapse
Affiliation(s)
- Jennifer C Lee
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125-7400, USA.
| | | | | | | | | |
Collapse
|
83
|
Hasegawa T, Matsuzaki M, Takeda A, Kikuchi A, Akita H, Perry G, Smith MA, Itoyama Y. Accelerated alpha-synuclein aggregation after differentiation of SH-SY5Y neuroblastoma cells. Brain Res 2004; 1013:51-9. [PMID: 15196967 DOI: 10.1016/j.brainres.2004.04.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2004] [Indexed: 11/17/2022]
Abstract
Alpha-synuclein (alpha-syn) is a major component of inclusion bodies in Parkinson's disease (PD) and other synucleinopathies. To clarify the possible roles of alpha-syn in the molecular pathogenesis of neurodegenerative diseases, we have established a novel cellular model based on the differentiation of SH-SY5Y cells that overexpress alpha-syn. In the presence of ferrous iron, differentiation of the cells led to the formation of large perinuclear inclusion bodies, which developed from scattered small aggregates seen in undifferentiated cells. The iron-induced alpha-syn-positive inclusions co-localized largely with ubiquitin, and some of them were positive for nitrotyrosine, lipid, gamma-tubulin and dynein. Notably, treatment with nocodazole, a microtubule depolymerizing agent, interrupted the aggregate formation but led to a concomitant increase of apoptotic cells. Therefore, it appears that an intracellular retrograde transport system via microtubules plays a crucial role in the aggregate formation and also that the aggregates may represent a cytoprotective response against noxious stimuli. This cellular model will enable better understanding of the molecular pathomechanisms of synucleinopathy.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Rochet JC, Outeiro TF, Conway KA, Ding TT, Volles MJ, Lashuel HA, Bieganski RM, Lindquist SL, Lansbury PT. Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson's disease. J Mol Neurosci 2004; 23:23-34. [PMID: 15126689 DOI: 10.1385/jmn:23:1-2:023] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 06/30/2003] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurologic disorder resulting from the loss of dopaminergic neurons in the brain. Two lines of evidence suggest that the protein alpha-synuclein plays a role in the pathogenesis of PD: Fibrillar alpha-synuclein is a major component of Lewy bodies in diseased neurons, and two mutations in alpha-synuclein are linked to early-onset disease. Accordingly, the fibrillization of alpha-synuclein is proposed to contribute to neurodegeneration in PD. In this report, we provide evidence that oligomeric intermediates of the alpha-synuclein fibrillization pathway, termed protofibrils, might be neurotoxic. Analyses of protofibrillar alpha-synuclein by atomic force microscopy and electron microscopy indicate that the oligomers consist of spheres, chains, and rings. alpha-Synuclein protofibrils permeabilize synthetic vesicles and form pore-like assemblies on the surface of brain-derived vesicles. Dopamine reacts with alpha-synuclein to form a covalent adduct that slows the conversion of protofibrils to fibrils. This finding suggests that cytosolic dopamine in dopaminergic neurons promotes the accumulation of toxic alpha-synuclein protofibrils, which might explain why these neurons are most vulnerable to degeneration in PD. Finally, we note that aggregation of alpha-synuclein likely occurs via different mechanisms in the cell versus the test tube. For example, the binding of alpha-synuclein to cellular membranes might influence its self-assembly. To address this point, we have developed a yeast model that might enable the selection of random alpha-synuclein mutants with different membrane-binding affinities. These variants might be useful to test whether membrane binding by alpha-synuclein is necessary for neurodegeneration in transgenic animal models of PD.
Collapse
Affiliation(s)
- Jean-Christophe Rochet
- Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Olanow CW, Perl DP, DeMartino GN, McNaught KSP. Lewy-body formation is an aggresome-related process: a hypothesis. Lancet Neurol 2004; 3:496-503. [PMID: 15261611 DOI: 10.1016/s1474-4422(04)00827-0] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder that is associated with the formation of intracytoplasmic protein aggregates (Lewy-body inclusions) in neurons of the substantia nigra pars compacta and other brain areas. These inclusions were discovered over 90 years ago, but the mechanism underlying their formation and their relevance to the neurodegenerative process are unknown. Recent studies have begun to shed light on the biogenesis of Lewy bodies and suggest that they are related to aggresomes. Aggresomes are cytoprotective proteinaceous inclusions formed at the centrosome that segregate and facilitate the degradation of excess amounts of unwanted and possibly cytotoxic proteins. The concept of Lewy bodies as aggresome-related inclusions fits well with ongoing discoveries suggesting that altered protein handling might contribute to the neurodegenerative process in familial and sporadic forms of PD.
Collapse
Affiliation(s)
- C Warren Olanow
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
86
|
von Bohlen Und Halbach O. Synucleins and their relationship to Parkinson’s disease. Cell Tissue Res 2004; 318:163-74. [PMID: 15503152 DOI: 10.1007/s00441-004-0921-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 05/17/2004] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative motor disorders, marked by chronic progressive loss of neurons in the substantia nigra. It has long been believed that PD is caused by environmental factors. The discovery of genetic factors involved in PD has improved the understanding of the pathology of the disease. The first gene found to be mutated in PD encodes for the presynaptic protein alpha-synuclein. alpha-Synuclein is a major component of Lewy bodies and Lewy neurites, which represent the morphological hallmarks of the disease. The mechanisms by which alpha-synuclein is involved in nigral cell death remain poorly understood. Moreover, the factors triggering the formation of alpha-synuclein-positive inclusion bodies remain enigmatic. Indeed, even the normal cellular functions of alpha-synuclein and of the other synucleins (beta-synuclein and gamma-synuclein) are still unknown. Several lines of evidence suggest that they play a role in the regulation of vesicular turnover under normal nonpathological conditions.
Collapse
Affiliation(s)
- Oliver von Bohlen Und Halbach
- Interdisciplinary Center for Neurosciences, Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|
87
|
von Bohlen und Halbach O, Schober A, Krieglstein K. Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 2004; 73:151-77. [PMID: 15236834 DOI: 10.1016/j.pneurobio.2004.05.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 05/11/2004] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder. The etiology of PD is likely due to combinations of environmental and genetic factors. In addition to the loss of neurons, including dopaminergic neurons in the substantia nigra pars compacta, a further morphologic hallmark of PD is the presence of Lewy bodies and Lewy neurites. The formation of these proteinaceous inclusions involves interaction of several proteins, including alpha-synuclein, synphilin-1, parkin and UCH-L1. Animal models allow to get insight into the mechanisms of several symptoms of PD, allow investigating new therapeutic strategies and, in addition, provide an indispensable tool for basic research. In animals PD does not arise spontaneously, thus, characteristic and specific functional changes have to be mimicked by application of neurotoxic agents or by genetic manipulations. In this review we will focus on genes and gene loci involved in PD, the functions of proteins involved in the formation of cytoplasmatic inclusions, their interactions, and their possible role in PD. In addition, we will review the current animal models of PD.
Collapse
Affiliation(s)
- O von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
88
|
Trimmer PA, Borland MK, Keeney PM, Bennett JP, Parker WD. Parkinson's disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem 2004; 88:800-12. [PMID: 14756800 DOI: 10.1046/j.1471-4159.2003.02168.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many models of Parkinson's disease (PD) have succeeded in replicating dopaminergic neuron loss or alpha-synuclein aggregation but not the formation of classical Lewy bodies, the pathological hallmark of PD. Our cybrid model of sporadic PD was created by introducing the mitochondrial genes from PD patients into neuroblastoma cells that lack mitochondrial DNA. Previous studies using cybrids have shown that information encoded by mitochondrial DNA in patients contributes to many pathogenic features of sporadic PD. In this paper, we report the generation of fibrillar and vesicular inclusions in a long-term cybrid cell culture model that replicates the essential antigenic and structural features of Lewy bodies in PD brain without the need for exogenous protein expression or inhibition of mitochondrial or proteasomal function. The inclusions generated by PD cybrid cells stained with eosin, thioflavin S, and antibodies to alpha-synuclein, ubiquitin, parkin, synphilin-1, neurofilament, beta-tubulin, the proteasome, nitrotyrosine, and cytochrome c. Future studies of these cybrids will enable us to better understand how Lewy bodies form and what role they play in the pathogenesis of PD.
Collapse
Affiliation(s)
- Patricia A Trimmer
- Center for the Study of Neurodegenerative Diseases and Department of Neurology, University of Virginia, School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
89
|
Tanaka M, Kim YM, Lee G, Junn E, Iwatsubo T, Mouradian MM. Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem 2003; 279:4625-31. [PMID: 14627698 DOI: 10.1074/jbc.m310994200] [Citation(s) in RCA: 308] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lewy bodies (LBs), which are the hallmark pathologic features of Parkinson's disease and of dementia with LBs, have several morphologic and molecular similarities to aggresomes. Whether such cytoplasmic inclusions contribute to neuronal death or protect cells from the toxic effects of misfolded proteins remains controversial. In this report, the role of aggresomes in cell viability was addressed in the context of over-expressing alpha-synuclein and its interacting partner synphilin-1 using engineered 293T cells. Inhibition of proteasome activity elicited the formation of juxtanuclear aggregates with characteristics of aggresomes including immunoreactivity for vimentin, gamma-tubulin, ubiquitin, proteasome subunit, and hsp70. As expected from the properties of aggresomes, the microtubule disrupting agents, vinblastin and nocodazole, markedly prevented the formation of these inclusions. Similar to LBs, the phosphorylated form of alpha-synuclein co-localized in these synphilin-1-containing aggresomes. Although the caspase inhibitor z-VAD-fmk significantly reduced the number of apoptotic cells, it had no impact on the percentage of aggresome-positive cells. Finally, quantitative analysis revealed aggresomes in 60% of nonapoptotic cells but only in 10% of apoptotic cells. Additionally, alpha-synuclein-induced apoptosis was not coupled with increased prevalence of aggresome-bearing cells. Taken together, these observations indicate a disconnection between aggresome formation and apoptosis, and support a protective role for these inclusions from the toxicity associated with the combined over-expression of alpha-synuclein and synphilin-1.
Collapse
Affiliation(s)
- Mikiei Tanaka
- Genetic Pharmacology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1406, USA
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal populations of the central nervous system, often associated with cytoskeletal protein aggregates forming intracytoplasmic and/or intranuclear inclusions in neurons and/or glial cells. Most neurodegenerative disorders are now classified either according to the hitherto known genetic mechanisms or to the major components of their cellular protein inclusions. The major basic processes inducing neurodegeneration are considered multifactorial ones caused by genetic, environmental, and endogenous factors. They include abnormal protein dynamics with defective protein degradation and aggregation, many of them related to the ubiquitin-proteasomal system, oxidative stress and free radical formation, impaired bioenergetics and mitochondrial dysfunctions, and "neuroinflammatory" processes. These mechanisms that are usually interrelated in complex vitious circles finally leading to programmed cell death cascades are briefly discussed with reference to their pathogenetic role in many, albeit diverse neurodegenerative diseases, like Alzheimer disease, synucleinopathies, tauopathies, and polyglutamine disorders. The impact of protein inclusions on cell dysfunction, activation or prevention of cell death cascades are discussed, but the molecular basis for the underlying disease mechanisms remains to be elucidated.
Collapse
Affiliation(s)
- K A Jellinger
- Institute of Clinical Neurobiology, Vienna, Austria.
| |
Collapse
|
91
|
Volles MJ, Lansbury PT. Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson's disease. Biochemistry 2003; 42:7871-8. [PMID: 12834338 DOI: 10.1021/bi030086j] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is linked to mutations in the protein alpha-synuclein, which can exist in vitro in several aggregation states, including a natively unfolded monomer, a beta-sheet rich oligomer, or protofibril, and a stable amyloid fibril. This work reviews the current literature that is relevant to two linked questions: which of these species is pathogenic, and what is the mechanism of neurotoxicity? The amyloid fibril, fibrillar aggregates, Lewy bodies, and the alpha-synuclein monomer, which is normally expressed at high levels, are all unlikely to be pathogenic, for reasons discussed here. We therefore favor a toxic protofibril scenario, and propose that the pathogenic species is transiently populated during the process of fibrillization. Toxicity may arise from pore-like protofibrils that cause membrane permeabilization. An approach to testing this hypothesis is discussed.
Collapse
Affiliation(s)
- Michael J Volles
- Center for Neurologic Diseases, Brigham and Women's Hospital, and Department of Neurology, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
92
|
Colosimo C, Hughes AJ, Kilford L, Lees AJ. Lewy body cortical involvement may not always predict dementia in Parkinson's disease. J Neurol Neurosurg Psychiatry 2003; 74:852-6. [PMID: 12810766 PMCID: PMC1738521 DOI: 10.1136/jnnp.74.7.852] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The presence of Lewy bodies (LB) in the neocortex and limbic system in patients with Parkinson's disease (PD) is commonly thought to be linked with cognitive impairment. The authors present here a series of patients with diagnosis of PD in life and no significant cognitive impairment who, at necropsy, satisfied the current neuropathological criteria for dementia with Lewy bodies (DLB). METHODS Two hundred and seventy six brains with PD pathology were examined at the Queen Square Brain Bank in London between 1993 and 1999. The neuropathological diagnosis was PD, but 117 patients also had sufficient LB involvement above the brain stem to satisfy the current neuropathological criteria for DLB (50 patients had a neuropathological picture consistent with the limbic category of DLB and 67 with neocortical DLB). Forty eight cases were excluded who developed early cognitive impairment together with motor features of parkinsonism, 12 cases for lack of detailed clinical history, and 19 cases with coexistent features of advanced Alzheimer's disease changes. Thirty eight patients (13.8% of the total with PD pathology and 32.5 % of the total with DLB pathology) were found where there was no or very late cognitive impairment reported in the clinical records. RESULTS Selected cases were 24 men and 14 women, with a mean (SD) age at onset of parkinsonian symptoms of 60.1 (10.1) years and a mean disease duration of 15.3 (5.5) years. At some time during the evolution of the disease 21 patients developed different degrees of cognitive impairment (after a mean disease duration of 12.2 (4.8) years). Clinical diagnosis at death was PD in 10 cases and PD with dementia in 11. In the remaining 17 patients no history of cognitive impairment was ever recorded in life and all of them had a clinical diagnosis of PD at death; in this subgroup, nine patients later revealed a neuropathological picture consistent with limbic (or transitional) category of DLB and eight with neocortical DLB. Interestingly, in all these patients the parkinsonian features including the response to dopaminergic drugs were indistinguishable from classic brain stem PD. CONCLUSIONS The authors demonstrate that the classic pathology of DLB can commonly be seen outside the generally accepted clinical spectrum for DLB and that important factors other than the absolute number of LB in the neocortex and limbic system influence the development of cognitive impairment in PD. Furthermore, the pathology of PD may be indistinguishable from that reported in DLB, suggesting that the two clinicopathological syndromes may be attributable to the same biological abnormality.
Collapse
Affiliation(s)
- C Colosimo
- Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, London, UK
| | | | | | | |
Collapse
|
93
|
Kim HJ, Chae SC, Lee DK, Chromy B, Lee SC, Park YC, Klein WL, Krafft GA, Hong ST. Selective neuronal degeneration induced by soluble oligomeric amyloid beta protein. FASEB J 2003; 17:118-120. [PMID: 12424218 DOI: 10.1096/fj.01-0987fje] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The prevailing amyloid hypothesis for Alzheimer's disease (AD) holds that amyloid beta-protein (Abeta) causes neuronal degeneration by forming neurotoxic fibrillar structures. Yet, many aspects of AD pathology and symptoms are not well explained by this hypothesis. Here, we present evidence that neurotoxicity of soluble oligomeric Abeta closely corresponds to the selective neurodegeneration so distinctly manifest in AD. Selectivity was first observed in vitro, where only the human central nervous system neuronal cells were susceptible to soluble oligomeric Abeta. Furthermore, in mouse cerebral slice treated with soluble oligomeric Abeta, selective regiospecific toxicity was evident in the hippocampal CA1, a division important for memory, but not in the CA3 subfield. The fibrillar Abeta, however, killed neurons in all regions of the cerebral slice cultures and also in cerebellar slices. Remarkably, even at the highest soluble oligomeric Abeta concentrations, cerebellar neurons were completely spared, consistent with one of the hallmark features of AD pathology. Our observation of the selective neurodegeneration of soluble oligomeric Abeta to neurons involved in cognitive function may provide a new opportunity for the development of an effective AD therapy as well as elucidating the pathological mechanism of AD.
Collapse
Affiliation(s)
- Hyeon-Jin Kim
- Research Division, Jinis Biopharmaceuticals Co., Chonju, Chonbuk, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Affiliation(s)
- Claudio Soto
- Serono International, 15 Chemin des Mines, Geneva, Switzerland.
| |
Collapse
|
95
|
Lotharius J, Brundin P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 2002; 3:932-42. [PMID: 12461550 DOI: 10.1038/nrn983] [Citation(s) in RCA: 897] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julie Lotharius
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, BMC A10, 221 84 Lund, Sweden.
| | | |
Collapse
|
96
|
Neumann M, Kahle PJ, Giasson BI, Ozmen L, Borroni E, Spooren W, Müller V, Odoy S, Fujiwara H, Hasegawa M, Iwatsubo T, Trojanowski JQ, Kretzschmar HA, Haass C. Misfolded proteinase K–resistant hyperphosphorylated α-synuclein in aged transgenic mice with locomotor deterioration and in human α-synucleinopathies. J Clin Invest 2002. [DOI: 10.1172/jci200215777] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
97
|
Neumann M, Kahle PJ, Giasson BI, Ozmen L, Borroni E, Spooren W, Müller V, Odoy S, Fujiwara H, Hasegawa M, Iwatsubo T, Trojanowski JQ, Kretzschmar HA, Haass C. Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. J Clin Invest 2002; 110:1429-39. [PMID: 12438441 PMCID: PMC151810 DOI: 10.1172/jci15777] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pathological modifications of alpha-synuclein (alphaS) in Parkinson disease and related diseases are poorly understood. We have detected misfolded alphaS in situ based on the proteinase K resistance (PK resistance) of alphaS fibrils, and using specific antibodies against S129-phosphorylated alphaS as well as oxidized alphaS. Unexpectedly massive neuritic pathology was found in affected human brain regions, in addition to classical alphaS pathology. PK resistance and abnormal phosphorylation of alphaS developed with increasing age in (Thy1)-h[A30P] alphaS transgenic mice, concomitant with formation of argyrophilic, thioflavin S-positive, and electron-dense inclusions that were occasionally ubiquitinated. alphaS pathology in the transgenic mice was predominantly in the brainstem and spinal cord. Astrogliosis was found in these heavily affected tissues. Homozygous mice showed the same pathology approximately one year earlier. The transgenic mice showed a progressive deterioration of locomotor function. Thus, misfolding and hyperphosphorylation of alphaS may cause dysfunction of affected brain regions.
Collapse
Affiliation(s)
- Manuela Neumann
- Department of Neuropathology, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 2002; 277:38884-94. [PMID: 12145295 DOI: 10.1074/jbc.m205518200] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mutations in alpha-synuclein have been linked to rare, autosomal dominant forms of Parkinson's disease. Despite its ubiquitous expression, mutant alpha-synuclein primarily leads to the loss of dopamine-producing neurons in the substantia nigra. alpha-Synuclein is a presynaptic nerve terminal protein of unknown function, although several studies suggest it is important for synaptic plasticity and maintenance. The present study utilized a new human mesencephalic cell line, MESC2.10, to study the effect of A53T mutant alpha-synuclein on dopamine homeostasis. In addition to expressing markers of mature dopamine neurons, differentiated MESC2.10 cells are electrically active, produce dopamine, and express wild-type human alpha-synuclein. Lentivirus-induced overexpression of A53T mutant alpha-synuclein in differentiated MESC2.10 cells resulted in down-regulation of the vesicular dopamine transporter (VMAT2), decreased potassium-induced and increased amphetamine-induced dopamine release, enhanced cytoplasmic dopamine immunofluorescence, and increased intracellular levels of superoxide. These results suggest that mutant alpha-synuclein leads to an impairment in vesicular dopamine storage and consequent accumulation of dopamine in the cytosol, a pathogenic mechanism that underlies the toxicity of the psychostimulant amphetamine and the parkinsonian neurotoxin 1-methyl-4-phenylpyridinium. Interestingly, cells expressing A53T mutant alpha-synuclein were resistant to amphetamine-induced toxicity. Because extravesicular, cytoplasmic dopamine can be easily oxidized into reactive oxygen species and other toxic metabolites, mutations in alpha-synuclein might lead to Parkinson's disease by triggering protracted, low grade dopamine toxicity resulting in terminal degeneration and ultimately cell death.
Collapse
Affiliation(s)
- Julie Lotharius
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, Lund 221 84, Sweden.
| | | | | | | | | | | |
Collapse
|
99
|
Dahlgren KN, Manelli AM, Stine WB, Baker LK, Krafft GA, LaDu MJ. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 2002; 277:32046-53. [PMID: 12058030 DOI: 10.1074/jbc.m201750200] [Citation(s) in RCA: 1145] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Genetic evidence predicts a causative role for amyloid-beta (A beta) in Alzheimer's disease. Recent debate has focused on whether fibrils (amyloid) or soluble oligomers of A beta are the active species that contribute to neurodegeneration and dementia. We developed two aggregation protocols for the consistent production of stable oligomeric or fibrillar preparations of A beta-(1-42). Here we report that oligomers inhibit neuronal viability 10-fold more than fibrils and approximately 40-fold more than unaggregated peptide, with oligomeric A beta-(1-42)-induced inhibition significant at 10 nm. Under A beta-(1-42) oligomer- and fibril-forming conditions, A beta-(1-40) remains predominantly as unassembled monomer and had significantly less effect on neuronal viability than preparations of A beta-(1-42). We applied the aggregation protocols developed for wild type A beta-(1-42) to A beta-(1-42) with the Dutch (E22Q) or Arctic (E22G) mutations. Oligomeric preparations of the mutations exhibited extensive protofibril and fibril formation, respectively, but were not consistently different from wild type A beta-(1-42) in terms of inhibition of neuronal viability. However, fibrillar preparations of the mutants appeared larger and induced significantly more inhibition of neuronal viability than wild type A beta-(1-42) fibril preparations. These data demonstrate that protocols developed to produce oligomeric and fibrillar A beta-(1-42) are useful in distinguishing the structural and functional differences between A beta-(1-42) and A beta-(1-40) and genetic mutations of A beta-(1-42).
Collapse
Affiliation(s)
- Karie N Dahlgren
- Department of Medicine, Evanston Northwestern Healthcare Research Institute, Evanston, Illinois 60201, USA
| | | | | | | | | | | |
Collapse
|
100
|
Ding TT, Lee SJ, Rochet JC, Lansbury PT. Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 2002; 41:10209-17. [PMID: 12162735 DOI: 10.1021/bi020139h] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Parkinson's disease substantia nigra is characterized by the loss of dopaminergic neurons and the presence of cytoplasmic fibrillar Lewy bodies in surviving neurons. The major fibrillar protein of Lewy bodies is alpha-synuclein. Two point mutations in the alpha-synuclein gene are associated with autosomal-dominant Parkinson's disease (FPD). Studies of the in vitro fibrillization behavior of the mutant proteins suggest that fibril precursors, or alpha-synuclein protofibrils, rather than the fibrils, may be pathogenic. Atomic force microscopy (AFM) revealed two distinct forms of protofibrillar alpha-synuclein: rapidly formed spherical protofibrils and annular protofibrils, which were produced on prolonged incubation of spheres. The spherical protofibrils bound to brain-derived membrane fractions much more tightly than did monomeric or fibrillar alpha-synuclein, and membrane-associated annular protofibrils were observed. The structural features of alpha-synuclein annular protofibrils are reminiscent of bacterial pore-forming toxins and are consistent with their porelike activity in vitro. Thus, abnormal membrane permeabilization may be a pathogenic mechanism in PD.
Collapse
Affiliation(s)
- Tomas T Ding
- Center for Neurologic Diseases, Brigham and Women's Hospital, and Department of Neurology, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|