51
|
van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36:246-70. [PMID: 19900963 PMCID: PMC2833124 DOI: 10.1093/schbul/sbp132] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, there have been huge advances in the use of genetically modified mice to study pathophysiological mechanisms involved in schizophrenia. This has allowed rapid progress in our understanding of the role of several proposed gene mechanisms in schizophrenia, and yet this research has also revealed how much still remains unresolved. Behavioral studies in genetically modified mice are reviewed with special emphasis on modeling psychotic-like behavior. I will particularly focus on observations on locomotor hyperactivity and disruptions of prepulse inhibition (PPI). Recommendations are included to address pharmacological and methodological aspects in future studies. Mouse models of dopaminergic and glutamatergic dysfunction are then discussed, reflecting the most important and widely studied neurotransmitter systems in schizophrenia. Subsequently, psychosis-like behavior in mice with modifications in the most widely studied schizophrenia susceptibility genes is reviewed. Taken together, the available studies reveal a wealth of available data which have already provided crucial new insight and mechanistic clues which could lead to new treatments or even prevention strategies for schizophrenia.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Mental Health Research Institute of Victoria, Parkville, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
52
|
Jones JD, Hall FS, Uhl GR, Riley AL. Dopamine, norepinephrine and serotonin transporter gene deletions differentially alter cocaine-induced taste aversion. Pharmacol Biochem Behav 2010; 94:580-7. [PMID: 19969013 PMCID: PMC3104319 DOI: 10.1016/j.pbb.2009.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/23/2009] [Accepted: 11/30/2009] [Indexed: 11/16/2022]
Abstract
Although cocaine is primarily known for its powerful hedonic effects, there is evidence that its affective experience has a notable aversive component that is less well understood. A variety of pharmacological and molecular approaches have implicated enhanced monoamine (MA) neurotransmission in the aversive effects of cocaine. Although numerous studies have yielded data supportive of the role of the monoamines (indirectly and directly), the specific system suggested to be involved differs across studies and paradigms (Freeman et al., 2005b; Grupp, 1997; Roberts and Fibiger, 1997). Monoamine transporter knockout mice have been useful in the study of many different aspects of cocaine effects relevant to human drug use and addiction, yet an assessment of the effects of deletion of the genes for the dopamine, norepinephrine and serotonin transporters (DAT, NET, and SERT, respectively) on cocaine's aversive properties has yet to be performed (Uhl et al., 2002). In the current investigation, the strength of cocaine-induced aversions was compared among three groups of transgenic mice with deletions of the genes responsible for the production of one of the monoamine transporters. When compared to their respective WT controls, dopamine transporter deletion slightly attenuated cocaine-induced aversion while deletion of SERT or NET resulted in a more significant delay in the onset and strength of cocaine-induced taste aversions. The data lead us to conclude that the action of cocaine to inhibit NET contributes most substantially to its aversive effects, with some involvement of SERT and minimal contribution of DAT.
Collapse
Affiliation(s)
- Jermaine D Jones
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, D.C., USA.
| | | | | | | |
Collapse
|
53
|
El-Ghundi MB, Fan T, Karasinska JM, Yeung J, Zhou M, O’Dowd BF, George SR. Restoration of amphetamine-induced locomotor sensitization in dopamine D1 receptor-deficient mice. Psychopharmacology (Berl) 2010; 207:599-618. [PMID: 19830406 PMCID: PMC3518283 DOI: 10.1007/s00213-009-1690-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 09/28/2009] [Indexed: 11/25/2022]
Abstract
RATIONALE AND OBJECTIVES Amphetamine-induced sensitization is thought to involve dopamine D(1) receptors. Using mice lacking dopamine D(1) receptors (D (1) (-/-) ), we found that they exhibited blunted sensitization to low doses of amphetamine, while others using different treatment and testing regimens reported inconsistent results. We investigated whether experimental variables, alteration in gene expression or cholinergic input played a role in amphetamine-induced responses. METHODS D (1) (-/-) and wild-type (D (1) (+/+) ) mice pretreated with amphetamine (1 mg/kg, 3-7 days) or various doses of nicotine (chronically but intermittently) were challenged with amphetamine (0.7 and/or 1 mg/kg) after short and long abstinence periods. Expression of brain-derived neurotrophic factor (BDNF) and phosphorylated c-AMP response element binding protein (p-CREB) genes were measured under basal conditions and after acute or repeated amphetamine treatments. RESULTS D (1) (-/-) mice failed to exhibit amphetamine-induced sensitization following short-term treatments and long abstinence periods, but expressed sensitization following prolonged amphetamine treatment or a shorter abstinence period. Basal expression of p-CREB (but not BDNF) was higher in D (1) (-/-) than D (1) (+/+) mice and was reduced after amphetamine treatment. Prolonged nicotine pretreatment augmented locomotor responses to amphetamine in both genotypes and restored sensitization in D (1) (-/-) mice. CONCLUSIONS D(1) receptors were necessary for induction, but may not be necessary for expression of amphetamine-induced sensitization at low doses. The manifestation of amphetamine sensitization depended on the duration of treatment and length of the withdrawal period. Cholinergic-nicotinic stimulation restored amphetamine-induced sensitization in D (1) (-/-) mice. Enhanced basal expression of p-CREB in D (1) (-/-) mice may represent an adaptive mechanism related to lack of D(1) receptors.
Collapse
Affiliation(s)
- Mufida B. El-Ghundi
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Theresa Fan
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Joanna M. Karasinska
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - John Yeung
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Millee Zhou
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Brian F. O’Dowd
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8. Centre for Addiction and Mental Health, Toronto, ON, Canada M5T 1R8
| | - Susan R. George
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8. Department of Medicine, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8. Centre for Addiction and Mental Health, Toronto, ON, Canada M5T 1R8. Department of Pharmacology and Medicine, University of Toronto, Medical Sciences Building, Room 4358, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
54
|
Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Hervé D, Girault JA. Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology 2010; 35:401-15. [PMID: 19759531 PMCID: PMC2794893 DOI: 10.1038/npp.2009.143] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A single exposure to psychostimulants or morphine is sufficient to induce persistent locomotor sensitization, as well as neurochemical and electrophysiological changes in rodents. Although it provides a unique model to study the bases of long-term behavioral plasticity, sensitization mechanisms remain poorly understood. We investigated in the mouse, a species suited for transgenic studies, the mechanisms of locomotor sensitization showed by the increased response to a second injection of drug (two-injection protocol of sensitization, TIPS). The first cocaine injection induced a locomotor sensitization that was completely context-dependent, increased during the first week, and persisted 3 months later. The induction of sensitized responses to cocaine required dopamine D1 and glutamate NMDA receptors. A single injection of the selective dopamine transporter blocker GBR12783 was sufficient to activate extracellular signal-regulated kinase (ERK) in the striatum to the same level as cocaine and to induce sensitization to cocaine, but not to itself. The induction of sensitization was sensitive to protein synthesis inhibition by anisomycin after cocaine administration. Morphine induced a pronounced context-dependent sensitization that crossed with cocaine. Sensitization to morphine injection was prevented in knockin mutant mice bearing a Thr-34-Ala mutation of DARPP-32, which suppresses its ability to inhibit protein phosphatase-1 (PP1), but not mutation of Thr-75 or Ser-130. These results combined with previous ones show that TIPS in mouse is a context-dependent response, which involves an increase in extracellular dopamine, stimulation of D1 and NMDA receptors, regulation of the cAMP-dependent and ERK pathways, inhibition of PP1, and protein synthesis. It provides a simple and sensitive paradigm to study the mechanisms of long-term effects of drugs of abuse.
Collapse
Affiliation(s)
- Emmanuel Valjent
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Jesus Bertran-Gonzalez
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Benjamin Aubier
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Denis Hervé
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France,Inserm UMR-S 839, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France, Tel: +33 1 45 87 61 52, Fax: +33 1 45 87 61 59, E-mail:
| |
Collapse
|
55
|
Uslaner JM, Smith SM, Huszar SL, Pachmerhiwala R, Hinchliffe RM, Vardigan JD, Hutson PH. Combined administration of an mGlu2/3 receptor agonist and a 5-HT 2A receptor antagonist markedly attenuate the psychomotor-activating and neurochemical effects of psychostimulants. Psychopharmacology (Berl) 2009; 206:641-51. [PMID: 19707745 DOI: 10.1007/s00213-009-1644-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/08/2009] [Indexed: 12/22/2022]
Abstract
RATIONALE It was recently reported that administration of the metabotropic glutamate 2 and 3 (mGlu2/3) receptor agonist prodrug LY2140023 to schizophrenic patients decreased positive symptoms. However, at the single, potentially suboptimal, dose that was tested, LY2140023 trended towards being inferior to olanzapine on several indices of efficacy within the Positive and Negative Syndrome Scale. OBJECTIVES In this study, we examined whether the antipsychotic potential of mGlu2/3 receptor agonism can be enhanced with 5-HT(2A) receptor antagonism. MATERIALS AND METHODS Specifically, we characterized the effects of co-administering submaximally effective doses of the 5-HT(2A) receptor antagonist M100907 (0.2 mg/kg) and the mGlu2/3 receptor agonist LY379268 (1 mg/kg) on amphetamine-induced and MK-801-induced psychomotor activity in rats, an assay sensitive to antipsychotics. We also determined the effects of co-administering these two compounds on MK-801-induced dopamine and norepinephrine efflux in the nucleus accumbens (NAc). RESULTS At the submaximally effective doses tested, the effects of M100907 and LY379268 on amphetamine-induced and MK-801-induced psychomotor activity were significantly greater when given together than when given separately. Furthermore, coadministration of these doses of M100907 and LY379268 reduced MK-801-induced dopamine efflux in the NAc. This effect on dopamine release was not observed with the administration of either compound alone, even at higher doses that attenuated MK-801-induced psychomotor activity. CONCLUSIONS Our results suggest that a single compound having both mGlu2/3 receptor agonist and 5-HT(2A) receptor antagonist activity, or coadministration of two compounds selective for these receptors, could be superior in terms of efficacy and/or reduced side-effect liability relative to an mGlu2/3 receptor agonist alone.
Collapse
Affiliation(s)
- Jason M Uslaner
- Department of Schizophrenia Research, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA.
| | | | | | | | | | | | | |
Collapse
|
56
|
Boeuf J, Trigo JM, Moreau PH, Lecourtier L, Vogel E, Cassel JC, Mathis C, Klosen P, Maldonado R, Simonin F. Attenuated behavioural responses to acute and chronic cocaine in GASP-1-deficient mice. Eur J Neurosci 2009; 30:860-8. [PMID: 19712096 DOI: 10.1111/j.1460-9568.2009.06865.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
G protein-coupled receptor (GPCR) associated sorting protein 1 (GASP-1) interacts with GPCRs and is implicated in their postendocytic sorting. Recently, GASP-1 has been shown to regulate dopamine (D(2)) and cannabinoid (CB1) receptor signalling, suggesting that preventing GASP-1 interaction with GPCRs might provide a means to limit the decrease in receptor signalling upon sustained agonist treatment. In order to test this hypothesis, we have generated and behaviourally characterized GASP-1 knockout (KO) mice and have examined the consequences of the absence of GASP-1 on chronic cocaine treatments. GASP-1 KO and wild-type (WT) mice were tested for sensitization to the locomotor effects of cocaine. Additional mice were trained to acquire intravenous self-administration of cocaine on a fixed ratio 1 schedule of reinforcement, and the motivational value of cocaine was then assessed using a progressive ratio schedule of reinforcement. The dopamine and muscarinic receptor densities were quantitatively evaluated in the striatum of WT and KO mice tested for sensitization and self-administration. Acute and sensitized cocaine-locomotor effects were attenuated in KO mice. A decrease in the percentage of animals that acquired cocaine self-administration was also observed in GASP-1-deficient mice, which was associated with pronounced down-regulation of dopamine and muscarinic receptors in the striatum. These data indicate that GASP-1 participates in acute and chronic behavioural responses induced by cocaine and are in agreement with a role of GASP-1 in postendocytic sorting of GPCRs. However, in contrast to previous studies, our data suggest that upon sustained receptor stimulation GASP-1 stimulates recycling rather than receptor degradation.
Collapse
Affiliation(s)
- Julien Boeuf
- Institut de Recherche de l'ESBS, Centre National de la Recherche Scientifique, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Jones JD, Hall FS, Uhl GR, Rice K, Riley AL. Differential involvement of the norepinephrine, serotonin and dopamine reuptake transporter proteins in cocaine-induced taste aversion. Pharmacol Biochem Behav 2009; 93:75-81. [PMID: 19376154 PMCID: PMC3089432 DOI: 10.1016/j.pbb.2009.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 11/16/2022]
Abstract
Despite the impact of cocaine's aversive effects on its abuse potential, the neurochemical basis of these aversive effects remains poorly understood. By blocking the reuptake of the monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) into the presynaptic terminal, cocaine acts as a potent indirect agonist of each of these systems. The following studies attempted to assess the extent of monoaminergic mediation of cocaine's aversive effects using conditioned taste aversion (CTA) learning [Garcia, J., Kimeldorf, D.J., Koelling, R.A., Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 1955;122:157-158.]. Specifically, Experiment 1 assessed the ability of selective monoamine transporter inhibitors, e.g., DAT (vanoxerine), NET (nisoxetine) and SERT (fluoxetine), to induce taste aversions (relative to cocaine). Only the NET inhibitor approximated the aversive strength of cocaine. Experiment 2 compared the effects of pretreatment of each of these transport inhibitors on the development of a cocaine-induced CTA. Pretreatment with nisoxetine and fluoxetine both attenuated cocaine-induced aversions in a manner comparable to that produced by cocaine itself. The DAT inhibitor was without effect. Combined, the results of these investigations indicate little or no involvement of dopaminergic systems in cocaine's aversive effects while NE appears to contribute most substantially, with a possible modulatory involvement by serotonin.
Collapse
Affiliation(s)
- Jermaine D Jones
- Substance Use Research Center, New York State Psychiatric Institute/Columbia University, 1051 Riverside Dr., New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
58
|
Harrison SJ, Nobrega JN. Differential susceptibility to ethanol and amphetamine sensitization in dopamine D3 receptor-deficient mice. Psychopharmacology (Berl) 2009; 204:49-59. [PMID: 19096829 DOI: 10.1007/s00213-008-1435-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 12/02/2008] [Indexed: 11/30/2022]
Abstract
RATIONALE Dopamine D3 receptors (D3Rs) have been implicated in behavioral sensitization to various drugs of abuse, but their role in ethanol (EtOH) sensitization has not been directly examined. We used D3R knockout (D3 KO) mice to examine whether the D3R plays a permissive role in EtOH and amphetamine (AMPH) sensitization. We also investigated whether EtOH sensitization is accompanied by alterations in D3R mRNA expression or binding. MATERIALS AND METHODS After comparing EtOH sensitization in C57Bl/6 mice and DBA/2 mice, D3 KO, wild type (WT), and for comparison, D1 and D2 KOs received five biweekly injections of EtOH (2.2 g/kg, i.p.) or saline. Another group of D3 KOs and WT controls received six times AMPH (1.5 mg/kg, i.p.). D3R mRNA and binding were measured in EtOH-sensitized DBA/2 mice with in situ hybridization and [(125)I]-7-OH-PIPAT autoradiography, respectively. RESULTS C57Bl/6 mice expressed EtOH sensitization albeit to a lesser extent than DBA/2 mice. Compared to WT mice, D3 KOs were resistant to EtOH sensitization. The behavioral profile of D3 KOs was more similar to D1 KOs than D2 KOs, which also failed to develop EtOH sensitization. However, D3 KOs developed AMPH sensitization normally. EtOH sensitization was not accompanied by changes in either D3R mRNA or D3R binding in the islands of Calleja, nucleus accumbens, dorsal striatum, or cerebellum. CONCLUSIONS These results suggest a necessary role for the D3R in EtOH but not AMPH sensitization, possibly through postreceptor intracellular mechanisms. Results also suggest that different neurochemical mechanisms underlie sensitization to different drugs of abuse.
Collapse
|
59
|
Hu XT, Nasif FJ, Zhang J, Xu M. Fos regulates neuronal activity in the nucleus accumbens. Neurosci Lett 2008; 448:157-60. [PMID: 18938216 PMCID: PMC2605784 DOI: 10.1016/j.neulet.2008.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/04/2008] [Accepted: 10/07/2008] [Indexed: 02/03/2023]
Abstract
Repeated exposure to drugs of abuse induces a variety of persistent changes in the brain and the dopamine D1 receptor plays a major role in the process. To understand intracellular mechanisms contributing to cocaine-induced neuroadaptations, we previously examined the role of the immediate early gene Fos using a mouse in which Fos is disrupted primarily in D1 receptor-expressing neurons in the brain. We found that both dendritic remodeling of medium spiny neurons and behavioral sensitization induced by repeated exposure to cocaine are attenuated in the mutant mice. Moreover, the expression of genes encoding several transcription factors, neurotransmitter receptors and intracellular signaling molecules following repeated cocaine administration is altered in the mutant mice compared to that in wild-type mice. In the present study, we have investigated the role of Fos in regulating neuronal excitability at a cellular level and found that medium spiny nucleus accumbens neurons in the mutant mice exhibit increased excitability and attenuated inhibitory responses to stimulation of D1 receptors compared to those in wild-type mice. Our findings suggest that Fos functions in D1 receptor-bearing neurons to regulate neuronal activity which may contribute to the persistence of drug-induced changes.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Pharmacology and Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fernando J. Nasif
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Jianhua Zhang
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ming Xu
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60615, USA
| |
Collapse
|
60
|
Dobbs LK, Mark GP. Comparison of systemic and local methamphetamine treatment on acetylcholine and dopamine levels in the ventral tegmental area in the mouse. Neuroscience 2008; 156:700-11. [PMID: 18760336 PMCID: PMC2644326 DOI: 10.1016/j.neuroscience.2008.07.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/08/2008] [Accepted: 07/22/2008] [Indexed: 11/21/2022]
Abstract
Acetylcholine (ACh) is an important mediator of dopamine (DA) release and the behavioral reinforcing characteristics of drugs of abuse in the mesocorticolimbic pathway. Within the ventral tegmental area (VTA), the interaction of DA with ACh appears to be integral in mediating motivated behaviors. However, the effects of methamphetamine on VTA ACh and DA release remain poorly characterized. The current investigation performed microdialysis to evaluate the effects of methamphetamine on extracellular levels of ACh and DA. Male C57BL/6J mice received an i.p. injection (saline, 2 mg/kg, or 5 mg/kg) and an intra-VTA infusion (vehicle, 100 microM or 1 mM) of methamphetamine. Locally perfused methamphetamine resulted in no change in extracellular ACh compared with vehicle, but caused a strong, immediate and dose-dependent increase in extrasynaptic DA levels (1240% and 2473% of baseline, respectively) during the 20-min pulse perfusion. An i.p. injection of methamphetamine increased extrasynaptic DA to 275% and 941% of baseline (2 mg/kg and 5 mg/kg, respectively). Systemic methamphetamine significantly increased ACh levels up to 275% of baseline for 40-60 min (2 mg/kg) and 397% of baseline for 40-160 min (5 mg/kg) after injection. ACh remained elevated above baseline for 2-3 h post injection, depending on the methamphetamine dose. Methamphetamine-induced locomotor activity was dose-dependently correlated with extrasynaptic VTA ACh, but not DA levels. These data suggest that methamphetamine acts in the VTA to induce a robust and short-lived increase in extracellular DA release but acts in an area upstream from the VTA to produce a prolonged increase in ACh release in the VTA. We conclude that methamphetamine may activate a recurrent loop in the mesocorticolimbic DA system to stimulate pontine cholinergic nuclei and produce a prolonged ACh release in the VTA.
Collapse
Affiliation(s)
- Lauren K. Dobbs
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, OR 97239
| | - Gregory P. Mark
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, OR 97239
| |
Collapse
|
61
|
Doherty JM, Masten VL, Powell SB, Ralph RJ, Klamer D, Low MJ, Geyer MA. Contributions of dopamine D1, D2, and D3 receptor subtypes to the disruptive effects of cocaine on prepulse inhibition in mice. Neuropsychopharmacology 2008; 33:2648-56. [PMID: 18075489 DOI: 10.1038/sj.npp.1301657] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Deficits in prepulse inhibition (PPI) of startle, an operational measure of sensorimotor gating, are characteristics of schizophrenia and related neuropsychiatric disorders. Previous studies in mice demonstrate a contribution of dopamine (DA) D(1)-family receptors in modulating PPI and DA D(2) receptors (D2R) in mediating the PPI-disruptive effects of amphetamine. To examine further the contributions of DA receptor subtypes in PPI, we used a combined pharmacological and genetic approach. In congenic C57BL/6 J wild-type mice, we tested whether the D1R antagonist SCH23390 or the D2/3R antagonist raclopride would attenuate the effects of the indirect DA agonist cocaine (40 mg/kg). Both the D1R and D2/3R antagonists attenuated the cocaine-induced PPI deficit. We also tested the effect of cocaine on PPI in wild-type and DA D1R, D2R, or D3R knockout mice. The cocaine-induced PPI deficit was influenced differently by the three DA receptor subtypes, being absent in D1R knockout mice, partially attenuated in D2R knockout mice, and exaggerated in D3R knockout mice. Thus, the D1R is necessary for the PPI-disruptive effects of cocaine, while the D2R partially contributes to these effects. Conversely, the D3R appears to inhibit the PPI-disruptive effects of cocaine. Uncovering neural mechanisms involved in PPI will further our understanding of substrates of sensorimotor gating and could lead to better therapeutics to treat complex cognitive disorders such as schizophrenia.
Collapse
Affiliation(s)
- James M Doherty
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093-0804, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Development of drug addiction is accompanied by the induction of long-lasting neurobiological changes. Dopamine D1 receptors are involved in mediating cocaine-induced neuroadaptation, yet the underlying intracellular mechanisms remain less clear. Using a genetically modified mouse in which Fos is primarily mutated in D1 receptor-bearing neurons in the brain, we examined a potential role of the immediate early gene Fos, which is rapidly induced by cocaine via D1 receptors, in mediating cocaine-induced persistent neurobiological changes. We found that the composition of AP-1 transcription complexes and expression levels of AP-1 complexes, and several transcription factors, neurotransmitter receptors as well as intracellular signaling molecules following repeated cocaine administration are altered in Fos-deficient brains. Moreover, dendritic reorganization of medium spiny neurons induced by repeated exposure to cocaine is attenuated in the mutant brains. The mutant mice also exhibit reduced behavioral sensitization after repeated cocaine administration. These findings suggest that c-Fos expressed in D1 receptor-bearing neurons mediates cocaine-induced persistent changes.
Collapse
Affiliation(s)
- Ming Xu
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
63
|
Karlsson RM, Hefner KR, Sibley DR, Holmes A. Comparison of dopamine D1 and D5 receptor knockout mice for cocaine locomotor sensitization. Psychopharmacology (Berl) 2008; 200:117-27. [PMID: 18600316 PMCID: PMC2586326 DOI: 10.1007/s00213-008-1165-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 04/06/2008] [Indexed: 02/03/2023]
Abstract
RATIONALE There is compelling support for the contribution of dopamine and the D1R-like (D1R, D5R) receptor subfamily to the behavioral and neural effects of psychostimulant drugs of abuse. The relative roles of D1R and D5R subtypes in mediating these effects are not clear. OBJECTIVES The objectives of this study are to directly compare (C57BL/6J congenic) D1R knockout (KO) and D5R KO mice for baseline locomotor exploration, acute locomotor responses to cocaine, and locomotor sensitization to repeated cocaine administration, and to examine cocaine conditioned place preference (CPP) in D5R KO. MATERIALS AND METHODS D1R KO, D5R KO, and wild-type (WT) were assessed for baseline open field exploration, locomotor-stimulating effects of 15 mg/kg acute cocaine and sensitized locomotor responses to cocaine after repeated home cage treatment with 20 or 30 mg/kg cocaine. D5R KO and WT were tested for CPP to 15 mg/kg cocaine. RESULTS D1R KO showed modest basal hyperactivity and increased center exploration relative to WT. Acute locomotor responses to cocaine were consistently absent in D1R KO, but intact in D5R KO. D5R KO showed normal locomotor sensitization to cocaine and normal cocaine CPP. D1R KO failed to show a sensitized locomotor response to 30 mg/kg cocaine. Failure to sensitize in D1R KO was not because of excessive stereotypies. Surprisingly, D1R KO showed a strong trend for sensitization to 20 mg/kg cocaine. CONCLUSIONS D5R KO does not alter acute or sensitized locomotor responses to cocaine or cocaine CPP. D1R KO abolishes acute locomotor response to cocaine, but does not fully prevent locomotor sensitization to cocaine at all doses.
Collapse
Affiliation(s)
- Rose-Marie Karlsson
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
| | - Kathryn R. Hefner
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disease and Stroke, National Institute of Mental Health
| | - Andrew Holmes
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
| |
Collapse
|
64
|
Kelly MA, Low MJ, Rubinstein M, Phillips TJ. Role of dopamine D1-like receptors in methamphetamine locomotor responses of D2 receptor knockout mice. GENES, BRAIN, AND BEHAVIOR 2008; 7:568-77. [PMID: 18363855 PMCID: PMC2741405 DOI: 10.1111/j.1601-183x.2008.00392.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Behavioral sensitization to psychostimulants manifests as an increased locomotor response with repeated administration. Dopamine systems are accepted to play a fundamental role in sensitization, but the role of specific dopamine receptor subtypes has not been completely defined. This study used the combination of dopamine D2 receptor-deficient mice and a D1-like antagonist to examine dopamine D1 and D2 receptor involvement in acute and sensitized locomotor responses to methamphetamine. Absence of the dopamine D2 receptor resulted in attenuation of the acute stimulant effects of methamphetamine. Mutant and wild-type mice exhibited sensitization that lasted longer within the time period of the challenge test in the mutant animals. Pretreatment with the D1-like receptor antagonist SCH 23390 produced more potent reductions in the acute and sensitized locomotor responses to methamphetamine in D2 receptor-deficient mice than in wild-type mice; however, the expression of locomotor sensitization when challenged with methamphetamine alone was equivalently attenuated by previous treatment with SCH 23390. These data suggest that dopamine D2 receptors play a key role in the acute stimulant and sensitizing effects of methamphetamine and act in concert with D1-like receptors to influence the acquisition of methamphetamine-induced behavioral sensitization, traits that may influence continued methamphetamine use.
Collapse
Affiliation(s)
- M. A. Kelly
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - M. J. Low
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Center for the Study of Weight Regulation, Oregon Health & Science University, Portland, OR, USA
| | - M. Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET and Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, Argentina
- Centro de Estudios Científicos, Valdivia, Chile
| | - T. J. Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
65
|
Jang EY, Choe ES, Hwang M, Kim SC, Lee JR, Kim SG, Jeon JP, Buono RJ, Yang CH. Isoliquiritigenin suppresses cocaine-induced extracellular dopamine release in rat brain through GABA(B) receptor. Eur J Pharmacol 2008; 587:124-8. [PMID: 18495107 DOI: 10.1016/j.ejphar.2008.03.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 02/28/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
Glycyrrhizae radix (licorice) comprises a variety of flavonoids as major constituents including isoliquiritigenin, liquiritin, liquiritigenin, and glycyrrihizin. It has shown various biological activities such as anti-inflammatory, anti-carcinogenic and antihistamic. As very little is known in regard to drug addiction, we carried out a study on the effect of G. radix and its active component, isoliquiritigenin, on acute cocaine-induced extracellular dopamine release in moving rats. Male Sprague-Dawley rats were orally administered with methanolic extracts of G. radix or isoliquiritigenin 1 h prior to an injection of cocaine (20 mg/kg, intraperitoneal (i.p.)). Extracellular dopamine was measured by in vivo microdialysis. Extract of G. radix and isoliquiritigenin inhibited cocaine-induced extracellular dopamine level in the nucleus accumbens by dose-dependent manner. Inhibition of dopamine release by isoliquiritigenin resulted in attenuation of the expression of c-Fos, an immediately early gene induced by cocaine. Effect of isoliquiritigenin was completely prevented by a GABA(B) receptor antagonist. Thus, these results showed that G. radix and isoliquiritigenin inhibit cocaine-induced dopamine release by modulating GABA(B) receptor, suggesting that isoliquiritigenin might be effective in blocking the reinforcing effects of cocaine.
Collapse
Affiliation(s)
- Eun Young Jang
- Department of Physiology, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Phillips TJ, Kamens HM, Wheeler JM. Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 2007; 32:707-59. [PMID: 18207241 PMCID: PMC2360482 DOI: 10.1016/j.neubiorev.2007.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 09/28/2007] [Accepted: 10/28/2007] [Indexed: 11/24/2022]
Abstract
Amphetamines, including methamphetamine, pose a significant cost to society due to significant numbers of amphetamine-abusing individuals who suffer major health-related consequences. In addition, methamphetamine use is associated with heightened rates of violent and property-related crimes. The current paper reviews the existing literature addressing genetic differences in mice that impact behavioral responses thought to be relevant to the abuse of amphetamine and amphetamine-like drugs. Summarized are studies that used inbred strains, selected lines, single-gene knockouts and transgenics, and quantitative trait locus (QTL) mapping populations. Acute sensitivity, neuroadaptive responses, rewarding and conditioned effects are among those reviewed. Some gene mapping work has been accomplished, and although no amphetamine-related complex trait genes have been definitively identified, translational work leading from results in the mouse to studies performed in humans is beginning to emerge. The majority of genetic investigations have utilized single-gene knockout mice and have concentrated on dopamine- and glutamate-related genes. Genes that code for cell support and signaling molecules are also well-represented. There is a large behavioral genetic literature on responsiveness to amphetamines, but a considerably smaller literature focused on genes that influence the development and acceleration of amphetamine use, withdrawal, relapse, and behavioral toxicity. Also missing are genetic investigations into the effects of amphetamines on social behaviors. This information might help to identify at-risk individuals and in the future to develop treatments that take advantage of individualized genetic information.
Collapse
|
67
|
Caine SB, Thomsen M, Gabriel KI, Berkowitz JS, Gold LH, Koob GF, Tonegawa S, Zhang J, Xu M. Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice. J Neurosci 2007; 27:13140-50. [PMID: 18045908 PMCID: PMC2747091 DOI: 10.1523/jneurosci.2284-07.2007] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/27/2007] [Accepted: 10/14/2007] [Indexed: 11/21/2022] Open
Abstract
Evidence suggests a critical role for dopamine in the reinforcing effects of cocaine in rats and primates. However, self-administration has been less often studied in the mouse species, and, to date, "knock-out" of individual dopamine-related genes in mice has not been reported to reduce the reinforcing effects of cocaine. We studied the dopamine D1 receptor and cocaine self-administration in mice using a combination of gene-targeted mutation and pharmacological tools. Two cohorts with varied breeding and experimental histories were tested, and, in both cohorts, there was a significant decrease in the number of D1 receptor knock-out mice that met criteria for acquisition of cocaine self-administration (2 of 23) relative to wild-type mice (27 of 32). After extinction of responding with saline self-administration, dose-response studies showed that cocaine reliably and dose dependently maintained responding greater than saline in all wild-type mice but in none of the D1 receptor knock-out mice. The D1-like agonist SKF 82958 (2,3,4,5,-tetrahydro-6-chloro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrobromide) and the D2-like agonist quinelorane both functioned as positive reinforcers in wild-type mice but not in D1 receptor mutant mice, whereas food and intravenous injections of the opioid agonist remifentanil functioned as positive reinforcers in both genotypes. Finally, pretreatment with the D1-like antagonist SCH 23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-01] produced surmountable antagonism of the reinforcing effects of cocaine in the commonly used strain C57BL/6J. We conclude that D1 receptor knock-out mice do not reliably self-administer cocaine and that the D1 receptor is critical for the reinforcing effects of cocaine and other dopamine agonists, but not food or opioids, in mice.
Collapse
Affiliation(s)
- S Barak Caine
- Alcohol and Drug Abuse Research Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Jiao H, Zhang L, Gao F, Lou D, Zhang J, Xu M. Dopamine D(1) and D(3) receptors oppositely regulate NMDA- and cocaine-induced MAPK signaling via NMDA receptor phosphorylation. J Neurochem 2007; 103:840-8. [PMID: 17897358 DOI: 10.1111/j.1471-4159.2007.04840.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Development of drug addiction involves complex molecular changes in the CNS. The mitogen-activated protein kinase (MAPK) signaling pathway plays a key role in mediating neuronal activation induced by dopamine, glutamate, and drugs of abuse. We previously showed that dopamine D(1) and D(3) receptors play different roles in regulating cocaine-induced MAPK activation. Although there are functional and physical interactions between dopamine and glutamate receptors, little is known regarding the involvement of D(1) and D(3) receptors in modulating glutamate-induced MAPK activation and underlying mechanisms. In this study, we show that D(1) and D(3) receptors play opposite roles in regulating N-methyl-d-aspartate (NMDA) -induced activation of extracellular signal-regulated kinase (ERK) in the caudate putamen (CPu). D(3) receptors also inhibit NMDA-induced activation of the c-Jun N-terminal kinase and p38 kinase in the CPu. NMDA-induced activation of the NMDA-receptor R1 subunit (NR1), Ca(2+)/calmodulin-dependent protein kinase II and the cAMP-response element binding protein (CREB), and cocaine-induced CREB activation in the CPu are also oppositely regulated by dopamine D(1) and D(3) receptors. Finally, the blockade of NMDA-receptor reduces cocaine-induced ERK activation, and inhibits phosphorylation of NR1, Ca(2+)/calmodulin-dependent protein kinase II, and CREB, while inhibiting ERK activation attenuates cocaine-induced CREB phosphorylation in the CPu. These results suggest that dopamine D(1) and D(3) receptors oppositely regulate NMDA- and cocaine-induced MAPK signaling via phosphorylation of NR1.
Collapse
Affiliation(s)
- Hongyuan Jiao
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
69
|
Corvol JC, Valjent E, Pascoli V, Robin A, Stipanovich A, Luedtke RR, Belluscio L, Girault JA, Hervé D. Quantitative changes in Galphaolf protein levels, but not D1 receptor, alter specifically acute responses to psychostimulants. Neuropsychopharmacology 2007; 32:1109-21. [PMID: 17063155 DOI: 10.1038/sj.npp.1301230] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Striatal dopamine D1 receptors (D1R) are coupled to adenylyl cyclase through Galphaolf. Although this pathway is involved in important brain functions, the consequences of quantitative alterations of its components are not known. We explored the biochemical and behavioral responses to cocaine and D-amphetamine (D-amph) in mice with heterozygous mutations of genes encoding D1R and Galphaolf (Drd1a+/- and Gnal+/-), which express decreased levels of the corresponding proteins in the striatum. Dopamine-stimulated cAMP production in vitro and phosphorylation of AMPA receptor GluR1 subunit in response to D-amph in vivo were decreased in Gnal+/-, but not Drd1a+/- mice. Acute locomotor responses to D1 agonist SKF81259, D-amph and cocaine were altered in Gnal+/- mice, and not in Drd1a+/- mice. This haploinsufficiency showed that Galphaolf but not D1R protein levels are limiting for D1R-mediated biochemical and behavioral responses. Gnal+/- mice developed pronounced locomotor sensitization and conditioned locomotor responses after repeated injections of D-amph (2 mg/kg) or cocaine (20 mg/kg). They also developed normal D-amph-conditioned place preference. The D1R/cAMP pathway remained blunted in repeatedly treated Gnal+/- mice. In contrast, D-amph-induced ERK activation was normal in the striatum of these mice, possibly accounting for the normal development of long-lasting behavioral responses to psychostimulants. Our results clearly dissociate biochemical mechanisms involved in acute and delayed behavioral effects of psychostimulants. They identify striatal levels of Galphaolf as a key factor for acute responses to psychostimulants and suggest that quantitative alterations of its expression may alter specific responses to drugs of abuse, or possibly other behavioral responses linked to dopamine function.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Central Nervous System Stimulants/pharmacology
- Cocaine/pharmacology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/physiopathology
- Cyclic AMP/metabolism
- Dextroamphetamine/pharmacology
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Uptake Inhibitors/pharmacology
- Extracellular Signal-Regulated MAP Kinases/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- GTP-Binding Protein alpha Subunits/genetics
- GTP-Binding Protein alpha Subunits/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/physiology
- Phosphorylation/drug effects
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
|
70
|
Zhang J, Xu M. Opposite regulation of cocaine-induced intracellular signaling and gene expression by dopamine D1 and D3 receptors. Ann N Y Acad Sci 2007; 1074:1-12. [PMID: 17105899 DOI: 10.1196/annals.1369.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Repeated exposure to cocaine induces persistent neuroadaptations that involve alterations in cellular signaling and gene expression mediated by dopamine (DA) receptors in the brain. Both dopamine D1 and D3 receptors mediate cocaine-induced behaviors and they are also coexpressed in the same neurons in the nucleus accumbens (NAc) and caudoputamen (CPu). We have investigated whether these two receptors coordinately regulate intracellular signaling and gene expression after acute and repeated cocaine administration. We found that extracellular signal-regulated kinase (ERK) activation and c-fos induction in the CPu following an acute cocaine administration is mediated by the D1 receptor and inhibited by the D3 receptor. ERK activation is necessary for acute cocaine-induced expression of fos family genes that include c-fos, fosB, and fra2. Furthermore, potential target genes of cAMP response element-binding (CREB) protein and/or AP-1 transcription complex, including dynorphin, neogenin, and synaptotagmin VII, are also oppositely regulated by D1 and D3 receptors after repeated cocaine injections. Lastly, such regulation requires proper ERK activation. These results suggest that D1 and D3 receptors oppositely regulate target gene expression by regulating ERK activation after cocaine administration.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
71
|
Zhang J, Zhang L, Jiao H, Zhang Q, Zhang D, Lou D, Katz JL, Xu M. c-Fos facilitates the acquisition and extinction of cocaine-induced persistent changes. J Neurosci 2007; 26:13287-96. [PMID: 17182779 PMCID: PMC6675013 DOI: 10.1523/jneurosci.3795-06.2006] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of drug addiction involves persistent neurobiological changes. The dopamine D1 receptor is involved in mediating cocaine-induced neuroadaptation, yet the underlying intracellular mechanisms remain unclear. We examined a potential role of the immediate early gene Fos, which is robustly and rapidly induced by cocaine via D1 receptors, in mediating cocaine-induced persistent neurobiological changes by creating and analyzing a mouse in which Fos is primarily disrupted in D1 receptor-expressing neurons in the brain. We show that the expression levels of several transcription factors, neurotransmitter receptors, and intracellular signaling molecules induced by repeated cocaine administration are altered in Fos-deficient brains. Dendritic remodeling of medium spiny neurons induced by repeated exposure to cocaine is blunted in the mutant mice. The mutant mice exhibit attenuated behavioral sensitization after repeated exposure to cocaine and more persistent memory of cocaine-induced conditioned place preference. Our findings indicate that c-Fos produced in D1 receptor-expressing neurons integrates mechanisms to facilitate both the acquisition and extinction of cocaine-induced persistent changes.
Collapse
MESH Headings
- Animals
- Behavior, Addictive/genetics
- Behavior, Addictive/metabolism
- Behavior, Addictive/physiopathology
- Cocaine
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Dopamine Agonists/pharmacology
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Genes, fos/drug effects
- Genes, fos/physiology
- Male
- Mice
- Mice, Transgenic
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/biosynthesis
Collapse
Affiliation(s)
- Jianhua Zhang
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Lu Zhang
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637, and
| | - Hongyuan Jiao
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637, and
| | - Qi Zhang
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637, and
| | - Dongsheng Zhang
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637, and
| | - Danwen Lou
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637, and
| | - Jonathan L. Katz
- Medications Discovery Research Branch, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Ming Xu
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637, and
| |
Collapse
|
72
|
Chen PC, Lao CL, Chen JC. Dual alteration of limbic dopamine D1receptor-mediated signalling and the Akt/GSK3 pathway in dopamine D3receptor mutants during the development of methamphetamine sensitization. J Neurochem 2007; 100:225-41. [PMID: 17101033 DOI: 10.1111/j.1471-4159.2006.04203.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central dopamine system plays significant roles in motor activity and drug-induced behavioural sensitization. Our goal was to determine the significance of dopamine D(3) receptors in the development of behavioural sensitization to methamphetamine, assessed with D(3) receptor mutant mice. The absence of D(3) receptors significantly increased the behavioural responses to acute methamphetamine and evoked a faster rate of behavioural sensitization to chronic methamphetamine. In addition, both D(3) receptor protein and mRNA levels in the limbic forebrain decreased in sensitized wild-type mice. Further analyses indicated that D(1)-dependent behavioural sensitization and the number of limbic D(1) receptors increased in sensitized D(3) mutants as compared with sensitized wild-type mice. Consistent with this finding, we observed higher levels of D(1) receptor-evoked cAMP accumulation and basal phosphoDARPP-32/Thr34 in the limbic forebrain of D(3) mutants than wild-type mice and the difference was more pronounced after chronic methamphetamine treatment. We also observed an increase in phospho-extracellular signal-regulated kinase 2 but a decrease in phosphoAkt/Ser473 and phosphoglycogen synthase kinase 3 (GSK3)-alpha/beta in the limbic forebrain of D(3) mutants compared with wild-type mice after methamphetamine treatment. The convergent results implicate D(3) receptors as a negative regulator of the development of methamphetamine sensitization. A compensatory up-regulation of D(1) receptor-mediated signals, in addition to an altered Akt/GSK3 pathway, could contribute to the accelerated development of behavioural sensitization.
Collapse
Affiliation(s)
- Pei-Chun Chen
- Laboratory of Neuropharmacology, Department of Physiology and Pharmacology, Chang-Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
73
|
Ehrman LA, Williams MT, Schaefer TL, Gudelsky GA, Reed TM, Fienberg AA, Greengard P, Vorhees CV. Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice. GENES BRAIN AND BEHAVIOR 2006; 5:540-51. [PMID: 17010100 DOI: 10.1111/j.1601-183x.2006.00209.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mice lacking phosphodiesterase 1B (PDE1B) exhibit an exaggerated locomotor response to D-methamphetamine and increased in vitro phosphorylation of DARPP32 (dopamine- and cAMP-regulated phosphoprotein, M r 32 kDa) at Thr34 in striatal brain slices treated with the D1 receptor agonist, SKF81297. These results indicated a possible regulatory role for PDE1B in pathways involving DARPP32. Here, we generated PDE1B x DARPP32 double-knockout (double-KO) mice to test the role of PDE1B in DARPP32-dependent pathways in vivo. Analysis of the response to d-methamphetamine on locomotor activity showed that the hyperactivity experienced by PDE1B mutant mice was blocked in PDE1B-/- x DARPP32-/- double-KO mice, consistent with participation of PDE1B and DARPP32 in the same pathway. Further behavioral testing in the elevated zero-maze revealed that DARPP32-/- mice showed a less anxious phenotype that was nullified in double-mutant mice. In contrast, in the Morris water maze, double-KO mice showed deficits in spatial reversal learning not observed in either single mutant compared with wild-type mice. The data suggest a role for PDE1B in locomotor responses to psychostimulants through modulation of DARPP32-dependent pathways; however, this modulation does not necessarily impact other behaviors, such as anxiety or learning. Instead, the phenotype of double-KOs observed in these latter tasks may be mediated through independent pathways.
Collapse
Affiliation(s)
- L A Ehrman
- Division of Developmental Biology, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Risbrough VB, Masten VL, Caldwell S, Paulus MP, Low MJ, Geyer MA. Differential contributions of dopamine D1, D2, and D3 receptors to MDMA-induced effects on locomotor behavior patterns in mice. Neuropsychopharmacology 2006; 31:2349-58. [PMID: 16855533 DOI: 10.1038/sj.npp.1301161] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MDMA or 'ecstasy' (3,4-methylenedioxymethamphetamine) is a commonly used psychoactive drug that has unusual and distinctive behavioral effects in both humans and animals. In rodents, MDMA administration produces a unique locomotor activity pattern, with high activity characterized by smooth locomotor paths and perseverative thigmotaxis. Although considerable evidence supports a major role for serotonin release in MDMA-induced locomotor activity, dopamine (DA) receptor antagonists have recently been shown to attenuate these effects. Here, we tested the hypothesis that DA D1, D2, and D3 receptors contribute to MDMA-induced alterations in locomotor activity and motor patterns. DA D1, D2, or D3 receptor knockout (KO) and wild-type (WT) mice received vehicle or (+/-)-MDMA and were tested for 60 min in the behavioral pattern monitor (BPM). D1 KO mice exhibited significant increases in MDMA-induced hyperactivity in the late testing phase as well as an overall increase in straight path movements. In contrast, D2 KO mice exhibited reductions in MDMA-induced hyperactivity in the late testing phase, and exhibited significantly less sensitivity to MDMA-induced perseverative thigmotaxis. At baseline, D2 KO mice also exhibited reduced activity and more circumscribed movements compared to WT mice. Female D3 KO mice showed a slight reduction in MDMA-induced hyperactivity. These results confirm differential modulatory roles for D1 and D2 and perhaps D3 receptors in MDMA-induced hyperactivity. More specifically, D1 receptor activation appears to modify the type of activity (linear vs circumscribed), whereas D2 receptor activation appears to contribute to the repetitive circling behavior produced by MDMA.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Dose-Response Relationship, Drug
- Female
- Hallucinogens/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- N-Methyl-3,4-methylenedioxyamphetamine/pharmacology
- Receptors, Dopamine/deficiency
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/deficiency
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/deficiency
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/deficiency
- Receptors, Dopamine D3/physiology
- Sex Factors
- Time Factors
Collapse
Affiliation(s)
- Victoria B Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093-0804, USA
| | | | | | | | | | | |
Collapse
|
75
|
Huang CC, Lin HJ, Hsu KS. Repeated cocaine administration promotes long-term potentiation induction in rat medial prefrontal cortex. Cereb Cortex 2006; 17:1877-88. [PMID: 17050645 DOI: 10.1093/cercor/bhl096] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although drug-induced adaptations in the prefrontal cortex (PFC) may contribute to several core aspects of addictive behaviors, it is not clear yet whether drugs of abuse elicit changes in synaptic plasticity at the PFC excitatory synapses. Here we report that, following repeated cocaine administration (15 mg/kg/day intraperitoneal injection for 5 consecutive days) with a 3-day withdrawal, excitatory synapses to layer V pyramidal neurons in rat medial prefrontal cortex (mPFC) become highly sensitive to the induction of long-term potentiation (LTP) by repeated correlated presynaptic and postsynaptic activity. This promoted LTP induction is caused by cocaine-induced reduction of gamma-aminobutyric acid (GABA)(A) receptor-mediated inhibition of mPFC pyramidal neurons. In contrast, in slices from rats treated with saline or a single dose of cocaine, the same LTP induction protocol did not induce significant LTP unless the blockade of GABA(A) receptors. Blockade of the D1-like receptors specifically prevented the cocaine-induced enhancement of LTP. Repeated cocaine exposure reduced the GABA(A) receptor-mediated synaptic currents in mPFC pyramidal neurons. Biotinylation experiments revealed a significant reduction of surface GABA(A) receptor alpha1 subunit expression in mPFC slices from repeated cocaine-treated rats. These findings support an important role for cocaine-induced enhancement of synaptic plasticity in the PFC in the development of drug-associated behavioral plasticity.
Collapse
Affiliation(s)
- Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
76
|
Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, McKnight GS, Roder JC, Quirion R, Boksa P, Srivastava LK, Yanai K, Weinshenker D, Sumiyoshi T. Psychosis pathways converge via D2high dopamine receptors. Synapse 2006; 60:319-46. [PMID: 16786561 DOI: 10.1002/syn.20303] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The objective of this review is to identify a target or biomarker of altered neurochemical sensitivity that is common to the many animal models of human psychoses associated with street drugs, brain injury, steroid use, birth injury, and gene alterations. Psychosis in humans can be caused by amphetamine, phencyclidine, steroids, ethanol, and brain lesions such as hippocampal, cortical, and entorhinal lesions. Strikingly, all of these drugs and lesions in rats lead to dopamine supersensitivity and increase the high-affinity states of dopamine D2 receptors, or D2High, by 200-400% in striata. Similar supersensitivity and D2High elevations occur in rats born by Caesarian section and in rats treated with corticosterone or antipsychotics such as reserpine, risperidone, haloperidol, olanzapine, quetiapine, and clozapine, with the latter two inducing elevated D2High states less than that caused by haloperidol or olanzapine. Mice born with gene knockouts of some possible schizophrenia susceptibility genes are dopamine supersensitive, and their striata reveal markedly elevated D2High states; suchgenes include dopamine-beta-hydroxylase, dopamine D4 receptors, G protein receptor kinase 6, tyrosine hydroxylase, catechol-O-methyltransferase, the trace amine-1 receptor, regulator of G protein signaling RGS9, and the RIIbeta form of cAMP-dependent protein kinase (PKA). Striata from mice that are not dopamine supersensitive did not reveal elevated D2High states; these include mice with knockouts of adenosine A2A receptors, glycogen synthase kinase GSK3beta, metabotropic glutamate receptor 5, dopamine D1 or D3 receptors, histamine H1, H2, or H3 receptors, and rats treated with ketanserin or aD1 antagonist. The evidence suggests that there are multiple pathways that convergetoelevate the D2High state in brain regions and that this elevation may elicit psychosis. This proposition is supported by the dopamine supersensitivity that is a common feature of schizophrenia and that also occurs in many types of genetically altered, drug-altered, and lesion-altered animals. Dopamine supersensitivity, in turn, correlates with D2High states. The finding that all antipsychotics, traditional and recent ones, act on D2High dopamine receptors further supports the proposition.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, and Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Stanwood GD, Parlaman JP, Levitt P. Genetic or pharmacological inactivation of the dopamine D
1
receptor differentially alters the expression of regulator of G‐protein signalling (Rgs) transcripts. Eur J Neurosci 2006; 24:806-18. [PMID: 16930410 DOI: 10.1111/j.1460-9568.2006.04970.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysregulation of dopamine (DA) receptor signalling induces specific changes in behaviour, neuronal circuitry and gene expression in the mammalian forebrain. In order to better understand signalling adaptations at the molecular level, we used high-density oligonucleotide microarrays (Codelink Mouse 20K) to define alterations in the expression of transcripts encoding regulator of G-protein coupled receptor signalling in dopamine D1 receptor knockout mice (Drd1a-KO). Regulator of G-protein signalling (Rgs) 2, Rgs4, and Rgs9 were significantly decreased in the striatum (STR) of Drd1a-KO mice. These changes were confirmed by in situ hybridization, and were also observed in the nucleus accumbens (NAc). In contrast, analysis of the medial frontal cortex (MFC) revealed a significant decrease in Rgs17 expression exclusively, and a modest up-regulation of Rgs5 transcript. The expression of these gene products were not significantly altered in the dopamine-poor visual cortex (VC). The Drd1a-KO mouse, and a rabbit model of in utero cocaine exposure, in which D1R signalling is permanently reduced, possess analogous morphological and functional alterations in dopamine-modulated brain circuits; thus we also examined long-lasting changes in RGS transcript expression following prenatal exposure to cocaine. In sharp contrast to the Drd1a-KO, Rgs2 and Rgs4 were unchanged, and Rgs9 and Rgs17 transcripts were increased in prenatal cocaine-exposed progeny. These data suggest that an absolute absence of D1R signalling (Drd1a-KO) and hypomorphic D1R signalling (prenatal cocaine) produce common alterations in neuronal morphology, but distinct outcomes in molecular neuroadaptations.
Collapse
Affiliation(s)
- Gregg D Stanwood
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville TN 37203, USA.
| | | | | |
Collapse
|
78
|
Chen J, Lipska BK, Weinberger DR. Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biol Psychiatry 2006; 59:1180-8. [PMID: 16631133 DOI: 10.1016/j.biopsych.2006.02.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 12/19/2005] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
Translation of human genetic mutations into genetic mouse models is an important strategy to study the pathogenesis of schizophrenia, identify potential drug targets, and test new drugs for new antipsychotic treatments. Although it is impossible to recapitulate the full spectrum of schizophrenia symptoms in animal models, hypothesis-driven genetic mouse models have been successful in reproducing several schizophrenia-like behaviors and uncovering the roles of specific genes in dopamine and glutamine neurotransmission systems in mediating schizophrenia-like behaviors. Recent discoveries of susceptibility genes for schizophrenia and recognition of cognitive dysfunction as a core feature of schizophrenia and a phenotype of susceptibility for schizophrenia offer opportunities to develop newer genetic mouse models based on susceptibility. This new generation of genetic mouse models could shed light on the etiology of schizophrenia and lead us to new hypotheses, novel diagnostic tools, and more effective therapy.
Collapse
Affiliation(s)
- Jingshan Chen
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
79
|
Shuto T, Kuroiwa M, Hamamura M, Yabuuchi K, Shimazoe T, Watanabe S, Nishi A, Yamamoto T. Reversal of methamphetamine-induced behavioral sensitization by repeated administration of a dopamine D1 receptor agonist. Neuropharmacology 2006; 50:991-7. [PMID: 16563442 DOI: 10.1016/j.neuropharm.2006.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 12/26/2005] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
Repeated intermittent administration of methamphetamine (MAP) produces an enduring hypersensitivity to the motor stimulant effect of MAP, termed behavioral sensitization. Dopamine plays a critical role in the development and expression of behavioral sensitization. Here, we investigated whether a dopamine D1 receptor agonist could reverse behavioral sensitization to MAP. Administration of MAP (1.0 mg/kg, i.p.) to rats once every 3 days for a total of 5 times (days 1-13) induced the enhancement of locomotor activity after MAP challenge (0.5 mg/kg, i.p.) on day 20, verifying the development of behavioral sensitization. The MAP-sensitized rats then received a dopamine D1 agonist, R-(+)-SKF38393 (3.0 mg/kg, i.p.), once a day for 7 consecutive days (days 21-27). Behavioral analysis on days 30 and 41 revealed that the enhanced locomotor activity was reversed by repeated R-(+)-SKF38393 administration. Moreover, repeated R-(+)-SKF38393 administration reversed the increased dopamine release in the striatum after MAP challenge on day 41. Thus, repeated administration of the dopamine D1 receptor agonist induces the reversal of established behavioral sensitization to MAP and of increased dopamine release in the striatum, lasting for at least 2 weeks. Dopamine D1 receptor agonists may be useful therapeutic agents for the treatment of psychostimulant addiction.
Collapse
Affiliation(s)
- Takahide Shuto
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
McDougall SA, Reichel CM, Cyr MC, Karper PE, Nazarian A, Crawford CA. Importance of D(1) receptors for associative components of amphetamine-induced behavioral sensitization and conditioned activity: a study using D(1) receptor knockout mice. Psychopharmacology (Berl) 2005; 183:20-30. [PMID: 16136298 DOI: 10.1007/s00213-005-0146-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Accepted: 07/26/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Repeated exposure to psychostimulant drugs results in conditioned activity and behavioral sensitization. Nonassociative cellular changes are necessary for behavioral sensitization, while associative processes appear to modify the sensitized response. OBJECTIVE The purpose of the present study was to determine whether the absence of the D(1) receptor would disrupt associative processes modulating sensitization and conditioned activity. METHODS Wild-type and D(1) receptor knockout mice (i.e., D(1)-deficient mice) were injected with amphetamine (AMPH; 8 mg/kg, IP) before being placed in a previously novel test chamber (AMPH-Test group) or before being returned to the home cage (AMPH-Home group). Separate groups of mice were injected with saline (SAL) at the same time points. Distance traveled was measured 60 min each day, with the preexposure phase lasting 1 or 7 days. Sensitization was subsequently assessed after an injection of AMPH (1 mg/kg, IP), while conditioned activity was assessed after an injection of SAL. RESULTS After a 1-day preexposure phase, wild-type and D(1)-deficient mice exhibited similar patterns of sensitization and conditioned activity. After a 7-day preexposure phase, (1) D(1)-deficient mice exhibited more robust context-specific sensitization than wild-type mice, (2) only D(1)-deficient mice showed context-independent sensitization, and (3) only D(1)-deficient mice showed conditioned activity. CONCLUSIONS Repeatedly treating D(1)-deficient mice with AMPH appears to cause a general increase in responsivity. The reason for this hyper-responsivity is uncertain, but it is possible that cues from the testing environment were unable to inhibit responding (i.e., associative processes were disrupted). Alternatively, compensatory mechanisms (e.g., increases in D(2)-like receptors) may affect processes underlying sensitization and conditioned activity.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, San Bernardino, CA 92407, USA.
| | | | | | | | | | | |
Collapse
|
81
|
Waddington JL, O'Tuathaigh C, O'Sullivan G, Tomiyama K, Koshikawa N, Croke DT. Phenotypic studies on dopamine receptor subtype and associated signal transduction mutants: insights and challenges from 10 years at the psychopharmacology-molecular biology interface. Psychopharmacology (Berl) 2005; 181:611-38. [PMID: 16041535 DOI: 10.1007/s00213-005-0058-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mutants with targeted gene deletion ('knockout') or insertion (transgenic) of D1, D2, D3, D4 and D5 dopamine (DA) receptor subtypes are complemented by an increasing variety of double knockout and transgenic-'knockout' models, together with knockout of critical components of DA receptor signalling cascades such as G alpha(olf)[G gamma7], adenylyl cyclase type 5, PKA [RIIbeta] and DARPP-32. However, it is increasingly recognised that these molecular techniques have a number of inherent limitations. Furthermore, there are poorly understood methodological factors that contribute to inconsistent phenotypic findings between laboratories. OBJECTIVE This review seeks to document the impact of DA receptor subtype and related transduction mutants on our understanding of the behavioural roles of these entities, primarily at the level of unconditioned psychomotor behaviour. METHODS It includes ethologically based and orofacial movement studies in our own laboratories, since these are the only studies to systematically compare each of the D1, D2, D3, D4 and D5 receptor and DARPP-32 signal transduction 'knockouts'. DISCUSSION There is a particular emphasis on identifying methodological factors that might influence phenotypic effects and account for inconsistencies. The findings are offered empirically to (1) specify the extent of phenotypic diversity among individual DA receptor subtypes and transduction components and (2) indicate relationships between D1, D2, D3, D4 and D5 receptor subtype proteins, associated G alpha(i)/G alpha(s)/G alpha(olf)[G gamma7]-adenylyl cyclase type 5-PKA [RIIbeta]-DARPP-32 signalling cascades and behaviour. The findings are also offered heuristically as a base for such phenotypic comparisons at additional levels of behaviour so that a yet more complete phenotypic profile might emerge.
Collapse
Affiliation(s)
- John L Waddington
- Institute of Biopharmaceutical Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
82
|
Festa ED, Jenab S, Weiner J, Nazarian A, Niyomchai T, Russo SJ, Kemen LM, Akhavan A, Wu HBK, Quinones-Jenab V. Cocaine-induced sex differences in D1 receptor activation and binding levels after acute cocaine administration. Brain Res Bull 2005; 68:277-84. [PMID: 16377433 DOI: 10.1016/j.brainresbull.2005.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/29/2005] [Indexed: 11/18/2022]
Abstract
Although it is established that female rats have a more robust behavioral response to acute cocaine administration than male rats, the neurobiological mechanisms underlying these differences remain unclear. The purpose of the present study was to determine whether dopamine (DA) receptor activation influences sex differences in cocaine-induced behaviors. A second study was performed to determine sex differences in D1/D2 receptor levels prior to and post-cocaine administration. Male and female Fischer rats were pre-treated with the D1 antagonist SCH-23390 (0.05, 0.1, and 0.25 mg/kg, i.p.), the D2 antagonist eticlopride (0.03, 0.1 mg/kg, i.p.), or vehicle (saline) 15 min before acute cocaine (20 mg/kg, i.p.) or saline administration. Cocaine-induced ambulatory and rearing activity was greater in female than male rats. Pre-treatment with SCH-23390 affected cocaine-induced ambulatory, rearing, and stereotypic activity in a sex-dependent manner; cocaine-induced ambulatory and stereotypic behavior in female rats was reduced by the lowest dose of SCH-23390. Eticlopride did not alter behavioral responses to cocaine in male or female rats. These results suggest that in both male and female rats, activation of the D1, but not the D2, receptor modulates cocaine's motor effects. There were no sex differences in baseline levels of D1, D2, and DA transporter binding in the caudate putamen (CPu) and the nucleus accumbens (NAc). Cocaine administration reduced D1 binding levels in the CPu only in male rats. Our findings suggest that the regulation of striatal D1 binding levels after acute cocaine administration is a sexually dimorphic process. We also hypothesize that the greater sensitivity to D1 receptor blockade in female rats, as compared to male rats, may contribute to their overall increased hyperactivity in response to acute cocaine. Taken together, the D1 receptor may be an important substrate in the regulation of sex differences to cocaine-induced locomotor activity.
Collapse
Affiliation(s)
- Eugene D Festa
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Smith DG, Tzavara ET, Shaw J, Luecke S, Wade M, Davis R, Salhoff C, Nomikos GG, Gehlert DR. Mesolimbic dopamine super-sensitivity in melanin-concentrating hormone-1 receptor-deficient mice. J Neurosci 2005; 25:914-22. [PMID: 15673672 PMCID: PMC6725636 DOI: 10.1523/jneurosci.4079-04.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Melanin-concentrating hormone (MCH) neurons and MCH-1 receptors (MCH1r) densely populate mesolimbic dopaminergic brain regions such as the nucleus accumbens (NAc). The regulation of dopamine by MCH1r was suggested to be an important mechanism underlying the hyperactive phenotype of MCH1r knock-out (ko) mice. However, MCH1r modulation of monoamine neurotransmission has yet to be examined. We tested whether dopamine, norepinephrine, and serotonin function is dysregulated in MCH1r ko and wild-type (wt) mice. MCH1r ko mice exhibited robust hyperactivity in a novel or familiar environment and were super-sensitive to the locomotor activating effects of d-amphetamine and the D1 agonist 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl. The D2 agonist, quinpirole, decreased locomotion similarly in both ko and wt mice. Tissue contents of dopamine within the NAc and caudate-putamen were not significantly different in ko compared with wt mice. Basal and amphetamine-evoked NAc dopamine, norepinephrine, and serotonin efflux, as measured using in vivo microdialysis, were not significantly different between genotypes. In contrast, D1-like and D2-like receptor binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core and shell of ko mice. Norepinephrine transporter (NET) binding was significantly elevated within the NAc shell and globus pallidus of ko mice, whereas serotonin transporter binding was decreased in the NAc shell. Thus, deletion of MCH1r results in an upregulation of mesolimbic dopamine receptors and NET, indicating that MCH1r may negatively modulate mesolimbic monoamine function. MCH1r may be an important therapeutic target for neuropsychiatric disorders involving dysregulation of limbic monoamine systems.
Collapse
Affiliation(s)
- Daniel G Smith
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Zhang D, Zhang L, Tang Y, Zhang Q, Lou D, Sharp FR, Zhang J, Xu M. Repeated cocaine administration induces gene expression changes through the dopamine D1 receptors. Neuropsychopharmacology 2005; 30:1443-54. [PMID: 15770241 DOI: 10.1038/sj.npp.1300680] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug addiction involves compulsive drug-seeking and drug-taking despite known adverse consequences. The enduring nature of drug addiction suggests that repeated exposure to abused drugs leads to stable alterations that likely involve changes in gene expression in the brain. The dopamine D1 receptor has been shown to mediate the long-term behavioral effects of cocaine. To examine how the persistent behavioral effects of cocaine correlate with underlying changes in gene expression, we have used D1 receptor mutant and wild-type mice to identify chronic cocaine-induced gene expression changes mediated via the D1 receptors. We focused on the caudoputamen and nucleus accumbens, two key brain regions that mediate the long-term effects of cocaine. Our analyses demonstrate that repeated cocaine administration induces changes in the expression of 109 genes, including those encoding the stromal cell-derived factor I, insulin-like growth factor binding protein 6, sigma 1 receptor, regulators of G-protein signaling protein 4, Wnt1 responsive Cdc42 homolog, Ca2+/calmodulin-dependent protein kinase II alpha subunit, and cyclin D2, via the D1 receptors. Moreover, the seven genes contain AP-1 binding sites in their promoter regions. These results suggest that genes encoding certain extracellular factors, membrane receptors and modulators, and intracellular signaling molecules, among others, are regulated by cocaine via the D1 receptor, and these AP-1 transcription complex-regulated genes might contribute to persistent cocaine-induced behavioral changes.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Holmes A, Lachowicz JE, Sibley DR. Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 2005; 47:1117-34. [PMID: 15567422 DOI: 10.1016/j.neuropharm.2004.07.034] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 06/20/2004] [Accepted: 07/28/2004] [Indexed: 12/11/2022]
Abstract
The functional specificity of dopamine receptor subtypes remains incompletely understood, in part due to the absence of highly selective agonists and antagonists. Phenotypic analysis of dopamine receptor knockout mice has been instrumental in identifying the role of dopamine receptor subtypes in mediating dopamine's effects on motor function, cognition, reward, and emotional behaviors. In this article, we provide an update of recent studies in dopamine receptor knockout mice and discuss the limitations and future promise of this approach.
Collapse
Affiliation(s)
- Andrew Holmes
- Section on Behavioral Science and Genetics, National Institute of Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
86
|
Corda MG, Piras G, Lecca D, Fernández-Teruel A, Driscoll P, Giorgi O. The psychogenetically selected Roman rat lines differ in the susceptibility to develop amphetamine sensitization. Behav Brain Res 2005; 157:147-56. [PMID: 15617781 DOI: 10.1016/j.bbr.2004.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 06/18/2004] [Accepted: 06/23/2004] [Indexed: 11/19/2022]
Abstract
The mesolimbic dopamine system is considered to play a pivotal role in the locomotor activation produced by psychostimulants and in the augmentation of this effect observed upon repeated drug administration, a process denominated behavioral sensitization. The selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats, respectively, for rapid versus poor active avoidance acquisition has resulted in two phenotypes that differ in the functional properties of the mesolimbic dopamine system and in their behavioral and neurochemical responses to addictive drugs, including psychostimulants and opiates. Hence, the present study was designed to compare the ability of these lines to develop behavioral sensitization to psychostimulants. To this aim, the acute effects of amphetamine (0.125 or 0.25 mg/kg, s.c.) on locomotion were assessed in RHA and RLA rats prior to and subsequent to 10 daily doses of either amphetamine (1 mg/kg, s.c.) or saline (1 ml/kg, s.c.). In the RHA line, the locomotor activation produced by either challenge dose of amphetamine was more pronounced in rats that had been repeatedly treated with amphetamine versus the respective saline treated controls. In contrast, no significant change in locomotor activity was observed in RLA rats. Likewise, repeated amphetamine caused an increased frequency of sniffing, rearing, licking/gnawing, and grooming versus the control, repeated saline, group only in the RHA line. The results show that the repeated treatment regimen used in this study induced behavioral sensitization to amphetamine in RHA rats, but not in their RLA counterparts, and underscore the utility of these lines for studying the influence of neural substrates and genetic make up on the individual vulnerability to addiction.
Collapse
Affiliation(s)
- Maria G Corda
- Department of Toxicology, University of Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
87
|
Kafkafi N, Elmer GI. Activity density in the open field: a measure for differentiating the effect of psychostimulants. Pharmacol Biochem Behav 2005; 80:239-49. [PMID: 15680177 DOI: 10.1016/j.pbb.2004.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 11/01/2004] [Accepted: 11/16/2004] [Indexed: 11/16/2022]
Abstract
Traditional open-field activity measures do not provide a sharp behavioral differentiation across psychomotor stimulants such as d-amphetamine (AMPH) and cocaine (COC) in the mouse. We used Software for the Exploration of Exploration (SEE) to investigate and develop a novel behavioral endpoint to characterize the "structure" of AMPH- and COC-induced locomotor behavior in two inbred strains of mouse, C57BL/6 (B6) and DBA/2 (D2). We suggest a measure we term "activity density" as a means to differentiate the behavioral effects of COC and AMPH. Activity density is defined as the activity divided by the range over which it took place. It characterizes the restriction of behavioral repertoire that does not result merely from inactivity. In both the B6 and D2 mice, AMPH increased activity density in a dose-dependent fashion by restricting the range of activity compared with COC doses producing the same level of activity. While AMPH restricted the range in both genotypes, characterizing the geographical region in which the restriction took place further differentiated the genotypes. The newly developed activity density measure thus provides a more general measure than stereotypy of the path, and can differentiate the effects of AMPH and COC both within and across genotypes.
Collapse
Affiliation(s)
- Neri Kafkafi
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Maple and Locust Sts., P.O. Box 21247, Baltimore, MD 21228, USA.
| | | |
Collapse
|
88
|
Stanwood GD, Parlaman JP, Levitt P. Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine D1 receptor mutant mice. J Comp Neurol 2005; 487:270-82. [PMID: 15892099 DOI: 10.1002/cne.20548] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Alteration of dopamine neurotransmission during development can induce specific changes in neuronal structure and function. Here, we report specific morphological and neurochemical changes of projection neurons and interneurons of the medial frontal cortex of the dopamine D(1) receptor null mouse. Using immunostaining of cytoskeletal proteins and a crossbred D(1) receptor null:YFP transgenic reporter line, we demonstrate that the apical dendrites of pyramidal cells are abnormally organized in the prefrontal and anterior cingulate cortices of mice lacking the D(1) receptor. Neuronal processes exhibit a decrease in bundling and an increase in irregular, tortuous patterning as they weave a course towards the pial surface. In addition, there is increased parvalbumin staining of the dendrites of cortical interneurons in D(1) receptor null mice. Both pyramidal and interneuron alterations are evident by the early postnatal period and persist into adulthood. The alterations show regional specificity, in that dendritic profiles of projection neurons and interneurons in somatosensory and visual cortices develop normally. The abnormalities are reminiscent of those induced by prenatal exposure to cocaine in rabbits, an insult which has been shown to produce an attenuation of D(1) receptor-mediated responses through G(salpha). These results suggest that loss of D(1) receptor-mediated signaling during development produces permanent alterations in the cellular organization of specific cortical areas involved in attention, cognition, and emotion. Pharmacological and behavioral studies in the D(1) null mouse should be interpreted in the context of possible altered circuitry, given the presence of these developmental defects in the organization of dopaminoceptive regions of the cerebral cortex.
Collapse
Affiliation(s)
- Gregg D Stanwood
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37203, USA.
| | | | | |
Collapse
|
89
|
Mohn AR, Yao WD, Caron MG. Genetic and genomic approaches to reward and addiction. Neuropharmacology 2004; 47 Suppl 1:101-10. [PMID: 15464129 DOI: 10.1016/j.neuropharm.2004.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/14/2004] [Accepted: 07/20/2004] [Indexed: 11/15/2022]
Abstract
Drug addiction is recognized as a mental disease affecting the brain's natural reward system. Drugs of abuse strongly activate reward structures in the brain and induce lasting changes in behavior that reflect changes in neuron physiology and biochemistry. With the ultimate goal of developing therapeutic interventions, it is of interest to determine the molecular and cellular components of motivation and reward, and identify those gene products that contribute to the process of drug addiction. Our laboratory has chosen three general genetic approaches to examine reward and addiction: reverse genetics to assess the role of candidate genes in drug responsiveness, forward genetics to discover novel regulators of dopamine transmission, and gene expression profiling to define gene sets in different brain structures that contribute to the molecular and neurobiological basis of reward.
Collapse
Affiliation(s)
- Amy R Mohn
- Department of Cell Biology, HHMI Laboratories, Duke University Medical Centre, Box 3287, CARL Building, Durham, NC 27710, USA
| | | | | |
Collapse
|
90
|
Zhang L, Lou D, Jiao H, Zhang D, Wang X, Xia Y, Zhang J, Xu M. Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J Neurosci 2004; 24:3344-54. [PMID: 15056714 PMCID: PMC6730011 DOI: 10.1523/jneurosci.0060-04.2004] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repeated exposure to cocaine can induce neuroadaptations in the brain. One mechanism by which persistent changes occur involves alterations in gene expression mediated by the dopamine receptors. Both the dopamine D1 and D3 receptors have been shown to mediate gene expression changes. Moreover, the D1 and D3 receptors are also coexpressed in the same neurons, particularly in the nucleus accumbens and also caudoputamen (CPu). Little is known however, whether these two receptors coordinately regulate gene expression after cocaine administration and the underlying mechanisms. We have used various gene mutant mice to address this issue. We show that extracellular signal-regulated kinase (ERK) activation and c-fos induction in the CPu in response to acute cocaine administration is mediated by the D1 receptor and inhibited by the D3 receptor. Moreover, ERK activation mediates acute cocaine-induced expression of Fos family genes, including c-fos, fosB and fra2. Interestingly, dynorphin, neogenin, and synaptotagmin VII, genes that possess cAMP-response element binding protein and AP-1 transcription complex-binding consensus sequences in their promoters, are also oppositely regulated by the D1 and D3 receptors after repeated exposure to cocaine. Furthermore, such regulation depends on proper ERK activation and c-fos function. These results suggest that the D1 and D3 receptors elicit opposite regulation of target gene expression by regulating ERK activation and c-fos induction after acute and chronic cocaine treatment.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Machado-Vieira R, Kapczinski F, Soares JC. Perspectives for the development of animal models of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:209-24. [PMID: 14751416 DOI: 10.1016/j.pnpbp.2003.10.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bipolar disorder (BD) has been a particularly challenging illness for the development of adequate animal models for neurobiological studies. These difficulties are largely related to the peculiar clinical characteristics of this illness, with an intriguing alternation of mania, depression, euthymia, and mixed states. The etiology and brain mechanisms involved in this several mental illness remain unknown. Preclinical studies with animal models of mania or depression have been developed to evaluate the potential efficacy of new psychotropic drugs and generate information concerning the biochemical effects of these drugs on specific targets. These models try to mimic the behavioral components of mania and depression in human subjects and examine the pharmacological responses and mechanisms of action of potentially new therapeutic agents. The main limitation is that there is currently no model that would mimic mood cyclicity, which is a hallmark feature of BD. Thus, these models do not represent valid paradigms for the study of this illness, because they do not address key questions regarding cyclicity. In this review, we propose that new genetics approaches involving potential animal models of BD are a promising new area for further development.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Laboratory of Experimental Psychiatry, Hospital de Clínicas de Porto Alegre, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | |
Collapse
|
92
|
|
93
|
Tan S, Hermann B, Borrelli E. Dopaminergic mouse mutants: investigating the roles of the different dopamine receptor subtypes and the dopamine transporter. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 54:145-97. [PMID: 12785287 DOI: 10.1016/s0074-7742(03)54005-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shirlee Tan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142 Illkirch, C.U. de Strasbourg, France
| | | | | |
Collapse
|
94
|
Kitaichi K, Morishita Y, Doi Y, Ueyama J, Matsushima M, Zhao YL, Takagi K, Hasegawa T. Increased plasma concentration and brain penetration of methamphetamine in behaviorally sensitized rats. Eur J Pharmacol 2003; 464:39-48. [PMID: 12600693 DOI: 10.1016/s0014-2999(03)01321-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exposure to methamphetamine causes behavioral sensitization in experimental animals. However, the precise mechanism of this behavioral sensitization has not yet been fully elucidated. Accordingly, we evaluated the pharmacokinetic properties of methamphetamine in rats behaviorally sensitized to methamphetamine following its repeated administration (6 mg/kg, i.p., once a day for 5 days followed by a 21-day drug abstinence period). In the sensitized rats, methamphetamine (0.8 mg/kg)-induced locomotor activity was significantly enhanced, suggesting the successful establishment of behavioral sensitization to methamphetamine. Significant increases in the concentrations of methamphetamine in plasma and brain dialysate, as well as the delayed disappearance of methamphetamine from plasma, were observed in the sensitized rats after intravenous injection of methamphetamine (5 mg/kg). The tissue to plasma concentration ratio (Kp) of methamphetamine in lung and heart decreased in the sensitized rats. The renal excretion of methamphetamine, which is sensitive to several cations, was also decreased in the sensitized rats. Moreover, in the sensitized rats, the expression of organic cation transporter 3 (OCT3) mRNA was decreased in kidney, brain and heart as measured by reverse transcriptase-polymerase chain reaction (RT-PCR). Taken together, these results suggest that the behavioral outcome of sensitization to methamphetamine might, in part, be due to the increased levels of methamphetamine in plasma and brain extracellular areas, as well as an altered tissue distribution of methamphetamine associated with changes in the cation transport system.
Collapse
Affiliation(s)
- Kiyoyuki Kitaichi
- Department of Medical Technology, Nagoya University School of Health Sciences, 1-1-20 Daikominami, Higashi-ku, 461-8673, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Cocaine administration has previously been reported to alter the levels of prepro-TRH mRNA and TRH (pGlu-His-Pro-NH(2)) in the limbic system of rats (J. Neurochem. 60 (1993) 1151). We have now demonstrated that a previously unrecognized family of TRH-like peptides is involved in the actions of cocaine. We treated young adult male Sprague-Dawley rats (five per group, 250g body weight at sacrifice) for 2 weeks with either twice daily injections of saline (control group), twice daily injections of 15mg/kg cocaine until sacrifice (chronic group), single injection of 15mg/kg cocaine 2h prior to sacrifice (acute group) or chronic cocaine injections replaced by saline injections 72h prior to sacrifice (withdrawal group (WD)). Twelve different brain regions were dissected and immunoreactivity for TRH (TRH-IR), EEP (pGlu-Glu-Pro-NH(2); EEP-IR) and related peptides were measured by radioimmunoassay (RIA). High pressure liquid chromatography (HPLC) revealed that in many brain regions EEP-IR and TRH-IR consisted of a mixture of TRH, and other TRH-like peptides including EEP, pGlu-Val-Pro-NH(2) (Val(2)-TRH), pGlu-Tyr-Pro-NH(2) (Tyr(2)-TRH), pGlu-Leu-Pro-NH(2) (Leu(2)-TRH), and pGlu-Phe-Pro-NH(2) (Phe(2)-TRH). Following i.p. injection, these TRH-like peptides readily crossed the blood-brain barrier but cleared very slowly from brain tissues. Acute cocaine produced a 4.1-fold increase in Val(2)-TRH level in medulla while Val(2)-TRH and Tyr(2)-TRH, increased 6.2- and 2.9-fold, respectively in pyriform cortex PYR. TRH and Leu(2)-TRH, decreased 47 and 93%, respectively in the nucleus accumbens (AM) while other EEP-IR peaks decreased 50-100% consistent with the significant decrease in total EEP-IR in the AMs following acute cocaine treatment. Because 2h is too short a time to alter levels of neuropeptides via changes in the rate of biosynthesis, the acute cocaine-induced elevation or reduction in TRH and related peptides is most likely due to suppression or stimulation, respectively, of the corresponding peptide secretion rate. Because TRH and TRH-like peptides have antidepressant, analeptic and euphorigenic properties, we conclude that these endogenous substances are potential mediators of both the cocaine "high" and withdrawal symptoms.
Collapse
Affiliation(s)
- A Eugene Pekary
- Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
96
|
Abstract
Drugs of abuse are able to elicit compulsive drug-seeking behaviors upon repeated administration, which ultimately leads to the phenomenon of addiction. Evidence indicates that the susceptibility to develop addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. Addiction is hypothesized to be a cycle of progressive dysregulation of the brain reward system that results in the compulsive use and loss of control over drug taking and the initiation of behaviors associated with drug seeking. The view that addiction represents a pathological state of reward provides an approach to identifying the factors that contribute to vulnerability, addiction, and relapse in genetic animal models.
Collapse
Affiliation(s)
- Aki Laakso
- Howard Hughes Medical Institute Laboratories, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
97
|
Zhang D, Zhang L, Lou DW, Nakabeppu Y, Zhang J, Xu M. The dopamine D1 receptor is a critical mediator for cocaine-induced gene expression. J Neurochem 2002; 82:1453-64. [PMID: 12354293 DOI: 10.1046/j.1471-4159.2002.01089.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dopamine D1 receptor plays a major role in mediating behavioral responses to cocaine administration. The time course for the acquisition and the relative stability for the expression of behavioral responses suggest the involvement of enduring neuroadaptations in response to repeated cocaine exposure. Changes in gene expression through the D1 receptors may accompany and mediate the development of such neuroadaptations to repeated cocaine stimulation. To test this possibility, we systematically compared the expression of the fos and Jun family immediate early genes in the nucleus accumbens and caudoputamen in D1 receptor mutant and wild-type control mice after acute and repeated cocaine exposure. Moreover, we compared the expression of three molecules that have been implicated in mediating the actions of cocaine, Galphaolf, beta-catenin and brain-derived neurotrophic factor, in the two groups of mice before and after cocaine administration. We found that there is a lack of induction of c-Fos, FosB, Fra-2 and JunB by acute cocaine exposure, and of DeltaFosB by repeated cocaine administration in both the NAc and CPu of D1 receptor mutant mice compared with wild-type control mice. Moreover, the D1 receptor is differentially required for mediating Galphaolf, beta-catenin and BDNF expression in the NAc and CPu upon cocaine exposure. These results suggest that the D1 receptor is a critical mediator for cocaine-induced expression of these genes.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
98
|
Stephens DN, Mead AN, Ripley TL. Studying the neurobiology of stimulant and alcohol abuse and dependence in genetically manipulated mice. Behav Pharmacol 2002; 13:327-45. [PMID: 12394407 DOI: 10.1097/00008877-200209000-00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ability to manipulate the genetic makeup of organisms by specific targeting of selected genes has provided a novel means of investigating the neurobiological mechanisms underlying drug abuse and dependence. However, as with other techniques, there are a number of potential pitfalls in the use of genetically manipulated animals (usually mice) in behavioural experiments. This review discusses the techniques involved in creating genetically manipulated mice, and points to opportunities and insights into addictive processes provided by the new science, while illustrating some of the potential problems encountered in interpretation of data obtained from such animals. The use of the mouse as an experimental animal also raises some specific problems which limit the usefulness of the technique at present. Examples taken from research into alcohol and psychostimulant abuse and dependence are used to illustrate the usefulness of genetically manipulated animals in addiction research, the problems of interpretation which sometimes arise, and how techniques are being developed to overcome present limitations to this exciting area of research.
Collapse
|
99
|
Wang Q, Bardgett ME, Wong M, Wozniak DF, Lou J, McNeil BD, Chen C, Nardi A, Reid DC, Yamada K, Ornitz DM. Ataxia and paroxysmal dyskinesia in mice lacking axonally transported FGF14. Neuron 2002; 35:25-38. [PMID: 12123606 DOI: 10.1016/s0896-6273(02)00744-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fibroblast growth factor 14 (FGF14) belongs to a distinct subclass of FGFs that is expressed in the developing and adult CNS. We disrupted the Fgf14 gene and introduced an Fgf14(N-beta-Gal) allele that abolished Fgf14 expression and generated a fusion protein (FGF14N-beta-gal) containing the first exon of FGF14 and beta-galactosidase. Fgf14-deficient mice were viable, fertile, and anatomically normal, but developed ataxia and a paroxysmal hyperkinetic movement disorder. Neuropharmacological studies showed that Fgf14-deficient mice have reduced responses to dopamine agonists. The paroxysmal hyperkinetic movement disorder phenocopies a form of dystonia, a disease often associated with dysfunction of the putamen. Strikingly, the FGF14N-beta-gal chimeric protein was efficiently transported into neuronal processes in the basal ganglia and cerebellum. Together, these studies identify a novel function for FGF14 in neuronal signaling and implicate FGF14 in axonal trafficking and synaptosomal function.
Collapse
Affiliation(s)
- Qing Wang
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Zhang J, Zhang D, Xu M. Identification of chronic cocaine-induced gene expression through dopamine d1 receptors by using cDNA microarrays. Ann N Y Acad Sci 2002; 965:1-9. [PMID: 12105080 DOI: 10.1111/j.1749-6632.2002.tb04146.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A major goal of drug abuse research is to understand the molecular mechanisms underlying the behavioral changes caused by repeated exposure to cocaine. Enduring behavioral changes, such as behavioral sensitization, can be induced in rodents by repeated cocaine administration. The neurobiological mechanisms underlying such behavioral changes are associated with the brain mesocorticolimbic dopamine (DA) pathway. Moreover, the DA D1 receptors are involved in mediating the long-term behavioral effects of cocaine. The long-lasting behavioral effects of repeated cocaine exposure are highly likely to be associated with underlying changes in gene expression. To examine this possibility, we have started to combine the use of D1 receptor mutant mice with cDNA microarrays to identify gene expression changes mediated through the D1 receptors induced by repeated cocaine administration. Our initial experiments focused on a target of the mesocorticolimbic DA pathway, the nucleus accumbens (NAc), which is the primary neural substrate for mediating the long-term effects of cocaine. We found that multiple genes are differentially expressed in wild-type and D1 receptor mutant mice after chronic cocaine treatment. Further studies are in progress to determine the physiological significance of the differential expression of these genes in chronic cocaine-induced behaviors.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | |
Collapse
|