51
|
Polverino A, Sorrentino P, Pesoli M, Mandolesi L. Nutrition and cognition across the lifetime: an overview on epigenetic mechanisms. AIMS Neurosci 2021; 8:448-476. [PMID: 34877399 PMCID: PMC8611190 DOI: 10.3934/neuroscience.2021024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
The functioning of our brain depends on both genes and their interactions with environmental factors. The close link between genetics and environmental factors produces structural and functional cerebral changes early on in life. Understanding the weight of environmental factors in modulating neuroplasticity phenomena and cognitive functioning is relevant for potential interventions. Among these, nutrition plays a key role. In fact, the link between gut and brain (the gut-brain axis) is very close and begins in utero, since the Central Nervous System (CNS) and the Enteric Nervous System (ENS) originate from the same germ layer during the embryogenesis. Here, we investigate the epigenetic mechanisms induced by some nutrients on the cognitive functioning, which affect the cellular and molecular processes governing our cognitive functions. Furthermore, epigenetic phenomena can be positively affected by specific healthy nutrients from diet, with the possibility of preventing or modulating cognitive impairments. Specifically, we described the effects of several nutrients on diet-dependent epigenetic processes, in particular DNA methylation and histones post-translational modifications, and their potential role as therapeutic target, to describe how some forms of cognitive decline could be prevented or modulated from the early stages of life.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy.,Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.,Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Matteo Pesoli
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Laura Mandolesi
- Department of Humanities Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
52
|
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021; 20:221. [PMID: 34876155 PMCID: PMC8650507 DOI: 10.1186/s12934-021-01712-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.
Collapse
Affiliation(s)
- Felix Abeln
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
53
|
Hortensius LM, Hellström W, Sävman K, Heckemann RA, Björkman-Burtscher IM, Groenendaal F, Andersson MX, Nilsson AK, Tataranno ML, van Elburg RM, Hellström A, Benders MJNL. Serum docosahexaenoic acid levels are associated with brain volumes in extremely preterm born infants. Pediatr Res 2021; 90:1177-1185. [PMID: 34392310 DOI: 10.1038/s41390-021-01645-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for fetal brain growth and development. Our aim was to evaluate the association between serum DHA and AA levels and brain volumes in extremely preterm infants. METHODS Infants born at <28 weeks gestational age in 2013-2015, a cohort derived from a randomized controlled trial comparing two types of parenteral lipid emulsions, were included (n = 90). Serum DHA and AA levels were measured at postnatal days 1, 7, 14, and 28, and the area under the curve was calculated. Magnetic resonance (MR) imaging was performed at term-equivalent age (n = 66), and volumes of six brain regions were automatically generated. RESULTS After MR image quality assessment and area under the curve calculation, 48 infants were included (gestational age mean [SD] 25.5 [1.4] weeks). DHA levels were positively associated with total brain (B = 7.966, p = 0.012), cortical gray matter (B = 3.653, p = 0.036), deep gray matter (B = 0.439, p = 0.014), cerebellar (B = 0.932, p = 0.003), and white matter volume (B = 3.373, p = 0.022). AA levels showed no association with brain volumes. CONCLUSIONS Serum DHA levels during the first 28 postnatal days were positively associated with volumes of several brain structures in extremely preterm infants at term-equivalent age. IMPACT Higher serum levels of DHA in the first 28 postnatal days are positively associated with brain volumes at term-equivalent age in extremely preterm born infants. Especially the most immature infants suffer from low DHA levels in the first 28 postnatal days, with little increase over time. Future research is needed to explore whether postnatal fatty acid supplementation can improve brain development and may serve as a nutritional preventive and therapeutic treatment option in extremely preterm infants.
Collapse
Affiliation(s)
- Lisa M Hortensius
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - William Hellström
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Department of Neonatology, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rolf A Heckemann
- Department of Medical Radiation Sciences, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mats X Andersson
- Department of Biology and Environmental Sciences, The Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Anders K Nilsson
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Luisa Tataranno
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ruurd M van Elburg
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. .,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
54
|
Stephenson K, Callaghan-Gillespie M, Maleta K, Nkhoma M, George M, Park HG, Lee R, Humphries-Cuff I, Lacombe RJS, Wegner DR, Canfield RL, Brenna JT, Manary MJ. Low linoleic acid foods with added DHA given to Malawian children with severe acute malnutrition improve cognition: a randomized, triple-blinded, controlled clinical trial. Am J Clin Nutr 2021; 115:1322-1333. [PMID: 34726694 PMCID: PMC9071416 DOI: 10.1093/ajcn/nqab363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There is concern that the PUFA composition of ready-to-use therapeutic food (RUTF) for the treatment of severe acute malnutrition (SAM) is suboptimal for neurocognitive recovery. OBJECTIVES We tested the hypothesis that RUTF made with reduced amounts of linoleic acid, achieved using high-oleic (HO) peanuts without added DHA (HO-RUTF) or with added DHA (DHA-HO-RUTF), improves cognition when compared with standard RUTF (S-RUTF). METHODS A triple-blind, randomized, controlled clinical feeding trial was conducted among children with uncomplicated SAM in Malawi with 3 types of RUTF: DHA-HO-RUTF, HO-RUTF, and S-RUTF. The primary outcomes, measured in a subset of subjects, were the Malawi Developmental Assessment Tool (MDAT) global z-score and a modified Willatts problem-solving assessment (PSA) intention score for 3 standardized problems, measured 6 mo and immediately after completing RUTF therapy, respectively. MDAT domain z-scores, plasma fatty acid content, anthropometry, and eye tracking were secondary outcomes. Comparisons were made between the novel PUFA RUTFs and S-RUTF. RESULTS Among the 2565 SAM children enrolled, mean global MDAT z-scores were -0.69 ± 1.19 and -0.88 ± 1.27 for children receiving DHA-HO-RUTF and S-RUTF, respectively (difference 0.19, 95% CI: 0.01, 0.38). Children receiving DHA-HO-RUTF had higher gross motor and social domain z-scores than those receiving S-RUTF. The PSA problem 3 scores did not differ by dietary group (OR: 0.92, 95% CI: 0.67, 1.26 for DHA-HO-RUTF). After 4 wk of treatment, plasma phospholipid EPA and α-linolenic acid were greater in children consuming DHA-HO-RUTF or HO-RUTF when compared with S-RUTF (for all 4 comparisons P values < 0.001), but only plasma DHA was greater in DHA-HO-RUTF than S-RUTF (P < 0.001). CONCLUSIONS Treatment of uncomplicated SAM with DHA-HO-RUTF resulted in an improved MDAT score, conferring a cognitive benefit 6 mo after completing diet therapy. This treatment should be explored in operational settings. This trial was registered at clinicaltrials.gov as NCT03094247.
Collapse
Affiliation(s)
- Kevin Stephenson
- Department of Medicine, Washington University, St.
Louis, MO, USA
| | | | - Kenneth Maleta
- Department of Public Health, School of Public Health & Family Medicine,
Kamuzu University of Health Sciences, Blantyre,
Malawi
| | - Minyanga Nkhoma
- Department of Public Health, School of Public Health & Family Medicine,
Kamuzu University of Health Sciences, Blantyre,
Malawi
| | - Matthews George
- Department of Public Health, School of Public Health & Family Medicine,
Kamuzu University of Health Sciences, Blantyre,
Malawi
| | - Hui Gyu Park
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA
| | - Reginald Lee
- Department of Pediatrics, Washington University,
St. Louis, MO, USA
| | | | - R J Scott Lacombe
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA
| | - Donna R Wegner
- Department of Pediatrics, Washington University,
St. Louis, MO, USA
| | - Richard L Canfield
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA
| | - J Thomas Brenna
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA,Division of Nutritional Sciences, Cornell University,
Ithaca, NY, USA
| | | |
Collapse
|
55
|
Zhang L, Yu Y, Dong L, Gan J, Mao T, Liu T, Li X, He L. Effects of moderate exercise on hepatic amino acid and fatty acid composition, liver transcriptome, and intestinal microbiota in channel catfish (Ictalurus punctatus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100921. [PMID: 34607243 DOI: 10.1016/j.cbd.2021.100921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
Previous research on swimming exercise in fish has focused on muscle building and quality of flesh. However, the effects of hepatic amino acid and fatty acid composition, liver gene expression profile, and intestinal microbiota are poorly understood. In this study, channel catfish (Ictalurus punctatus) were subjected to a 4-week swimming exercise, and liver transcriptome and intestinal microbiota analyses were performed to broaden our understanding of fish under exercise. When compared to non-exercised channel catfish (N-EXF), exercised channel catfish (EXF) had improved arachidonic acid (C20:4n6; ARA), docosahexaenoic acid (C22:6n3; DHA), aspartic acid (Asp) and glycine (Gly). The liver transcriptome analysis revealed 2912 differentially expressed genes and numerous enriched signaling pathways including those involved in nutrient synthesis, such as biosynthesis of unsaturated fatty acids and amino acids; glucose metabolism, such as glycolysis/gluconeogenesis, insulin signaling, and AMPK signaling pathways; and oxygen transport, such as HIF-1, PI3K-Akt, and MAPK signaling pathways. In addition, bacterial 16S rRNA gene sequencing data revealed that long-term exercise increased bacterial diversity and richness, and changed the intestinal microbial composition in channel catfish. In summary, this study provides insights into hepatic metabolic pathways, candidate genes, and intestinal microbiota underlying the long-term exercised channel catfish.
Collapse
Affiliation(s)
- Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Yali Yu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Lixue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Tao Mao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ting Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Xiaohui Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
56
|
Longitudinal Plasma Metabolomics Profile in Pregnancy-A Study in an Ethnically Diverse U.S. Pregnancy Cohort. Nutrients 2021; 13:nu13093080. [PMID: 34578958 PMCID: PMC8471130 DOI: 10.3390/nu13093080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Amino acids, fatty acids, and acylcarnitine metabolites play a pivotal role in maternal and fetal health, but profiles of these metabolites over pregnancy are not completely established. We described longitudinal trajectories of targeted amino acids, fatty acids, and acylcarnitines in pregnancy. We quantified 102 metabolites and combinations (37 fatty acids, 37 amino acids, and 28 acylcarnitines) in plasma samples from pregnant women in the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies—Singletons cohort (n = 214 women at 10–14 and 15–26 weeks, 107 at 26–31 weeks, and 103 at 33–39 weeks). We used linear mixed models to estimate metabolite trajectories and examined variation by body mass index (BMI), race/ethnicity, and fetal sex. After excluding largely undetected metabolites, we analyzed 77 metabolites and combinations. Levels of 13 of 15 acylcarnitines, 7 of 25 amino acids, and 18 of 37 fatty acids significantly declined over gestation, while 8 of 25 amino acids and 10 of 37 fatty acids significantly increased. Several trajectories appeared to differ by BMI, race/ethnicity, and fetal sex although no tests for interactions remained significant after multiple testing correction. Future studies merit longitudinal measurements to capture metabolite changes in pregnancy, and larger samples to examine modifying effects of maternal and fetal characteristics.
Collapse
|
57
|
Gould JF, Anderson PJ, Yelland LN, Gibson RA, Makrides M. The Influence of Prenatal DHA Supplementation on Individual Domains of Behavioral Functioning in School-Aged Children: Follow-Up of a Randomized Controlled Trial. Nutrients 2021; 13:nu13092996. [PMID: 34578873 PMCID: PMC8472059 DOI: 10.3390/nu13092996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Docosahexaenoic acid (DHA) accumulates in the fetal brain during pregnancy and is thought to have a role in supporting neurodevelopment. We conducted a multicenter, double-blind, randomized controlled trial in women with a singleton pregnancy who were <21 weeks’ gestation at trial entry. Women were provided with 800 mg DHA/day or a placebo supplement from trial entry until birth. When children reached seven years of age, we invited parents to complete the Strengths and Difficulties Questionnaire (SDQ), the Behavior Rating Inventory of Executive Function (BRIEF), and the Conners 3rd Edition Attention-Deficit Hyperactivity Disorder (ADHD) Index to assess child behavior and behavioral manifestations of executive dysfunction. There were 543 parent–child pairs (85% of those eligible) that participated in the follow-up. Scores were worse in the DHA group than the placebo group for the BRIEF Global Executive, Behavioral Regulation and Metacognition Indexes, and the Shift, Inhibit, Monitor, Working Memory, and Organization of Materials scales, as well as for the Conners 3 ADHD index, and the SDQ Total Difficulties score, Hyperactivity/Inattention score, and Peer Relationship Problems score. In this healthy, largely term-born sample of children, prenatal DHA supplementation conferred no advantage to childhood behavior, and instead appeared to have an adverse effect on behavioral functioning, as assessed by standardized parental report scales.
Collapse
Affiliation(s)
- Jacqueline F. Gould
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, Adelaide 5006, Australia; (L.N.Y.); (R.A.G.); (M.M.)
- School of Psychology & Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide 5000, Australia
- Correspondence: ; Tel.: +618-128-4423
| | - Peter J. Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne 3800, Australia;
- Clinical Sciences, Murdoch Children’s Research Institute, Melbourne 3052, Australia
| | - Lisa N. Yelland
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, Adelaide 5006, Australia; (L.N.Y.); (R.A.G.); (M.M.)
- School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide 5000, Australia
| | - Robert A. Gibson
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, Adelaide 5006, Australia; (L.N.Y.); (R.A.G.); (M.M.)
- School of Agriculture, Food and Wine, Waite Campus, University of Adelaide, Adelaide 5000, Australia
| | - Maria Makrides
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, Adelaide 5006, Australia; (L.N.Y.); (R.A.G.); (M.M.)
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
58
|
Wu F, Wang DD, Shi HH, Wang CC, Xue CH, Wang YM, Zhang TT. N-3 PUFA-Deficiency in Early Life Exhibits Aggravated MPTP-Induced Neurotoxicity in Old Age while Supplementation with DHA/EPA-Enriched Phospholipids Exerts a Neuroprotective Effect. Mol Nutr Food Res 2021; 65:e2100339. [PMID: 34378848 DOI: 10.1002/mnfr.202100339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/04/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Malnutrition in early life affects the growth and development of fetus and children, which has a long-term impact on adult health. Previous studies reveal a relationship between dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) content, brain development, and the prevalence of neurodevelopmental disorders and inflammation. However, it is unclear about the effect of n-3 PUFA-deficiency in early life on the development of Parkinson's disease (PD) in old age, as well as the neuroprotective effect of DHA- and EPA-enriched phospholipids (DHA/EPA-PLs) supplemented in old age in long-term n-3 PUFA-deficient mice. METHODS AND RESULTS The PD mice induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) in n-3 PUFA-adequate (N) and -deficient (DEF) group are supplemented with a DHA/EPA-PLs diet for 2 weeks (N+DPL, DEF+DPL). DHA/EPA-PLs supplementation significantly protects against MPTP-induced impairments. The DEF+DPL group shows poorer motor performance, the loss of dopaminergic neurons, mitochondrial dysfunction, and neurodevelopment delay than the N+DPL group, and still did not recover to the Control level. CONCLUSIONS Dietary n-3 PUFA-deficiency in early life exhibits more aggravated MPTP-induced neurotoxicity in old age, than DHA/EPA-PLs supplementation recovers brain DHA levels and exerts neuroprotective effects in old age in long-term n-3 PUFA-deficient mice, which might provide a potential dietary guidance.
Collapse
Affiliation(s)
- Fang Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Dan-Dan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| |
Collapse
|
59
|
Carlson SE, Schipper L, Brenna JT, Agostoni C, Calder PC, Forsyth S, Legrand P, Abrahamse-Berkeveld M, van de Heijning BJM, van der Beek EM, Koletzko BV, Muhlhausler B. Perspective: Moving Toward Desirable Linoleic Acid Content in Infant Formula. Adv Nutr 2021; 12:2085-2098. [PMID: 34265035 PMCID: PMC8634410 DOI: 10.1093/advances/nmab076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Infant formula should provide the appropriate nutrients and adequate energy to facilitate healthy infant growth and development. If conclusive data on quantitative nutrient requirements are not available, the composition of human milk (HM) can provide some initial guidance on the infant formula composition. This paper provides a narrative review of the current knowledge, unresolved questions, and future research needs in the area of HM fatty acid (FA) composition, with a particular focus on exploring appropriate intake levels of the essential FA linoleic acid (LA) in infant formula. The paper highlights a clear gap in clinical evidence as to the impact of LA levels in HM or formula on infant outcomes, such as growth, development, and long-term health. The available preclinical information suggests potential disadvantages of high LA intake in the early postnatal period. We recommend performing well-designed clinical intervention trials to create clarity on optimal levels of LA to achieve positive impacts on both short-term growth and development and long-term functional health outcomes.
Collapse
Affiliation(s)
| | | | - J Thomas Brenna
- Department of Pediatrics, University of Texas at Austin, Austin, TX, USA,Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Carlo Agostoni
- Pediatric Area, Fondazione IRCCS Ca’Granda- Ospedale Maggiore Policlinico, Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus–French National Institute of Health and Medical Research, Rennes, France
| | | | | | - Eline M van der Beek
- Danone Nutricia Research, Utrecht, The Netherlands,Department of Pediatrics, University Medical Center, Groningen, The Netherlands
| | - Berthold V Koletzko
- Ludwig-Maximilians-Universität Munich, Department of Paediatrics, Dr von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Beverly Muhlhausler
- Nutrition and Health Program, Health and Biosecurity, CSIRO, Adelaide, Australia,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
60
|
Zou R, El Marroun H, Voortman T, Hillegers M, White T, Tiemeier H. Maternal polyunsaturated fatty acids during pregnancy and offspring brain development in childhood. Am J Clin Nutr 2021; 114:124-133. [PMID: 33742211 DOI: 10.1093/ajcn/nqab049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Emerging evidence suggests an association of maternal PUFA concentrations during pregnancy with child cognitive and neuropsychiatric outcomes such as intelligence and autistic traits. However, little is known about prenatal maternal PUFAs in relation to child brain development, which may underlie these associations. OBJECTIVES We aimed to investigate the association of maternal PUFA status during pregnancy with child brain morphology, including volumetric and white matter microstructure measures. METHODS This study was embedded in a prospective population-based study. In total, 1553 mother-child dyads of Dutch origin were included. Maternal plasma glycerophospholipid PUFAs were assessed in midpregnancy. Child brain morphologic outcomes, including total gray and white matter volumes, as well as white matter microstructure quantified by global fractional anisotropy and mean diffusivity, were measured using MRI (including diffusion tensor imaging) at age 9-11 y. RESULTS Maternal ω-3 (n-3) long-chain PUFA (LC-PUFA) concentrations during pregnancy had an inverted U-shaped relation with child total gray volume (linear term: β: 16.7; 95% CI: 2.0, 31.5; quadratic term: β: -1.1; 95% CI: -2.1, -0.07) and total white matter volume (linear term: β: 15.7; 95% CI: 3.6, 27.8; quadratic term: β: -1.0; 95% CI: -1.8, -0.16). Maternal gestational ω-6 LC-PUFA concentrations did not predict brain volumetric differences in children, albeit the linolenic acid concentration was inversely associated with child total white matter volume. Maternal PUFA status during pregnancy was not related to child white matter microstructure. CONCLUSIONS Sufficient maternal ω-3 PUFAs during pregnancy may be related to more optimal child brain development in the long term. In particular, exposure to lower ω-3 PUFA concentrations in fetal life was associated with less brain volume in childhood. Maternal ω-6 LC-PUFAs were not related to child brain morphology.
Collapse
Affiliation(s)
- Runyu Zou
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Social and Behavioral Sciences, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
61
|
Basak S, Mallick R, Banerjee A, Pathak S, Duttaroy AK. Maternal Supply of Both Arachidonic and Docosahexaenoic Acids Is Required for Optimal Neurodevelopment. Nutrients 2021; 13:2061. [PMID: 34208549 PMCID: PMC8234848 DOI: 10.3390/nu13062061] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
During the last trimester of gestation and for the first 18 months after birth, both docosahexaenoic acid,22:6n-3 (DHA) and arachidonic acid,20:4n-6 (ARA) are preferentially deposited within the cerebral cortex at a rapid rate. Although the structural and functional roles of DHA in brain development are well investigated, similar roles of ARA are not well documented. The mode of action of these two fatty acids and their derivatives at different structural-functional roles and their levels in the gene expression and signaling pathways of the brain have been continuously emanating. In addition to DHA, the importance of ARA has been much discussed in recent years for fetal and postnatal brain development and the maternal supply of ARA and DHA. These fatty acids are also involved in various brain developmental processes; however, their mechanistic cross talks are not clearly known yet. This review describes the importance of ARA, in addition to DHA, in supporting the optimal brain development and growth and functional roles in the brain.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India;
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India; (A.B.); (S.P.)
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India; (A.B.); (S.P.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
62
|
Gould JF, Roberts RM, Anderson PJ, Makrides M, Sullivan TR, Gibson RA, McPhee AJ, Doyle LW, Opie G, Travadi J, Cheong JLY, Davis PG, Sharp M, Simmer K, Tan K, Morris S, Lui K, Bolisetty S, Liley H, Stack J, Best KP, Collins CT. Protocol for assessing if behavioural functioning of infants born <29 weeks' gestation is improved by omega-3 long-chain polyunsaturated fatty acids: follow-up of a randomised controlled trial. BMJ Open 2021; 11:e044740. [PMID: 33952546 PMCID: PMC8103387 DOI: 10.1136/bmjopen-2020-044740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION During the last trimester of pregnancy, the fetal brain undergoes a rapid growth spurt and accumulates essential nutrients including docosahexaenoic acid (DHA). This takes place ex-utero for infants born <29 weeks' gestation, without the in-utero provisions of DHA. Infants born <29 weeks' are more likely to experience behavioural and emotional difficulties than their term-born counterparts. It has been hypothesised that supplementing preterm infants with dietary DHA may alleviate insufficiency and subsequently prevent or minimise behavioural problems. This protocol describes a follow-up of infants born <29 weeks gestation who were enrolled in a randomised controlled trial (RCT) of DHA supplementation. We aim to determine whether DHA supplementation improves the behaviour, and general health of these infants. METHODS AND ANALYSIS Infants born <29 weeks' gestation were enrolled in a multicentre blinded RCT of enteral DHA supplementation. Infants were randomised to receive an enteral emulsion that provided 60 mg/kg/day of DHA or a control emulsion commenced within the first 3 days of enteral feeding, until 36 weeks' postmenstrual age or discharge home, whichever occurred first. Families of surviving children (excluding those who withdrew from the study) from the Australian sites (up to 955) will be invited to complete a survey. The survey will include questions regarding child behavioural and emotional functioning, executive functioning, respiratory health and general health. We hypothesise that the DHA intervention will have a benefit on the primary outcome, parent-rated behaviour and emotional status as measured using the Total Difficulties score of the Strengths and Difficulties Questionnaire. Detecting a 2-point difference between groups (small effect size of 0.25 SD) with 90% power will require follow-up of 676 participants. ETHICS AND DISSEMINATION The Women's and Children Health Network Human Research Ethics Committee reviewed and approved the study (HREC/16/WCHN/184). Results will be disseminated in peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER ACTRN12612000503820.
Collapse
Affiliation(s)
- Jacqueline F Gould
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Psychology and Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rachel M Roberts
- School of Psychology, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Maria Makrides
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas R Sullivan
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert A Gibson
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Andrew J McPhee
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Neonatal Medicine, Women's and Children's Hospital Adelaide, North Adelaide, South Australia, Australia
| | - Lex William Doyle
- Department Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Gillian Opie
- Neonatal Services, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Javeed Travadi
- Newborn Services, John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jeanie L Y Cheong
- Neonatal Medicine, Royal Women's Hospital, Parkville, Melbourne, Australia
| | - Peter G Davis
- Neonatal Medicine, Royal Women's Hospital, Parkville, Melbourne, Australia
| | - Mary Sharp
- Neonatal Follow up, King Edward Memorial Hospital for Women Perth, Perth, Western Australia, Australia
| | - Karen Simmer
- Neonatal Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Kenneth Tan
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
- Monash Children's Hospital, Clayton, New South Wales, Australia
| | - Scott Morris
- Paediatric Neonatal Clinic, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Kei Lui
- Newborn Care Centre, Royal Hospital for Women, Randwick, New South Wales, Australia
| | - Srinivas Bolisetty
- Newborn Care Centre, Royal Hospital for Women, Randwick, New South Wales, Australia
| | - Helen Liley
- Mater Research - The Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia
| | - Jacqueline Stack
- Neonatal Intensive Care Unit, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Karen P Best
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Carmel T Collins
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Women and Kids, South Australian Health and Medical Research Institute, North Adelaide, South Australia, Australia
| |
Collapse
|
63
|
Rabow Z, Morningstar T, Showalter M, Heil H, Thongphanh K, Fan S, Chan J, Martínez-Cerdeño V, Berman R, Zagzag D, Nudler E, Fiehn O, Lechpammer M. Exposure to DMSO during infancy alters neurochemistry, social interactions, and brain morphology in long-evans rats. Brain Behav 2021; 11:e02146. [PMID: 33838015 PMCID: PMC8119844 DOI: 10.1002/brb3.2146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Dimethyl sulfoxide (DMSO) is a widely used solvent to dissolve hydrophobic substances for clinical uses and experimental in vivo purposes. While usually regarded safe, our prior studies suggest changes to behavior following DMSO exposure. We therefore evaluated the effects of a five-day, short-term exposure to DMSO on postnatal infant rats (P6-10). METHODS DMSO was intraperitoneally injected for five days at 0.2, 2.0, and 4.0 ml/kg body mass. One cohort of animals was sacrificed 24 hr after DMSO exposure to analyze the neurometabolic changes in four brain regions (cortex, hippocampus, basal ganglia, and cerebellum) by hydrophilic interaction liquid chromatography. A second cohort of animals was used to analyze chronic alterations to behavior and pathological changes to glia and neuronal cells later in life (P21-P40). RESULTS 164 metabolites, including key regulatory molecules (retinoic acid, orotic acid, adrenic acid, and hypotaurine), were found significantly altered by DMSO exposure in at least one of the brain regions at P11 (p < .05). Behavioral tests showed significant hypoactive behavior and decreased social habits to the 2.0 and 4.0 ml DMSO/kg groups (p < .01). Significant increases in number of microglia and astrocytes at P40 were observed in the 4.0 ml DMSO/kg group (at p < .015.) CONCLUSIONS: Despite short-term exposure at low, putatively nontoxic concentrations, DMSO led to changes in behavior and social preferences, chronic alterations in glial cells, and changes in essential regulatory brain metabolites. The chronic neurological effects of DMSO exposure reported here raise concerns about its neurotoxicity and consequent safety in human medical applications and clinical trials.
Collapse
Affiliation(s)
- Zachary Rabow
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA.,NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Taryn Morningstar
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Megan Showalter
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Hailey Heil
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Krista Thongphanh
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Sili Fan
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Joanne Chan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA.,MIND Institute, University of California Davis, Sacramento, CA, USA.,Institute for Pediatric Regenerative Medicine and Shriners Hospital for Children of Northern California, Sacramento, CA, USA
| | - Robert Berman
- MIND Institute, University of California Davis, Sacramento, CA, USA.,Department of Neurological Surgery, University of California Davis, Sacramento, CA, USA
| | - David Zagzag
- Departments of Pathology and Neurosurgery, Division of Neuropathology, NYU Langone Medical Center, New York, NY, USA
| | - Evgeny Nudler
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.,Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Mirna Lechpammer
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA.,MIND Institute, University of California Davis, Sacramento, CA, USA.,Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Pathology, Foundation Medicine, Inc., Cambridge, MA, USA
| |
Collapse
|
64
|
Hahn K, Hardimon JR, Caskey D, Jost DA, Roady PJ, Brenna JT, Dilger RN. Safety and Efficacy of Sodium and Potassium Arachidonic Acid Salts in the Young Pig. Nutrients 2021; 13:nu13051482. [PMID: 33925724 PMCID: PMC8145490 DOI: 10.3390/nu13051482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Arachidonic acid (ARA; 20:4n6) and docosahexaenoic acid (DHA; 22:6n3) are polyunsaturated fatty acids (FA) naturally present in breast milk and added to most North American infant formulas (IF). We investigated the safety and efficacy of novel sodium and potassium salts of arachidonic acid as bioequivalent to support tissue levels of ARA comparable to the parent oil; M. alpina oil (Na-ARA and K-ARA) and including a Na-DHA group. Pigs of both sexes were randomized to one of five dietary treatments (n = 16 per treatment; 8 male and 8 female) from postnatal day 2 to 23. ARA and DHA were included as either triglyceride (TG) or salt. Target dietary ARA/DHA concentrations as percent of total FA by weight were as follows: TT (0.47 TG/0.32 TG), NaT (0.47 Na-salt/0.32 TG), KT (0.47 K-salt/0.32 TG), and Na0 (0.47 Na-salt/0.00), NaNa (0.47 Na-salt/0.32 Na-salt). The primary outcome in this study was bioequivalence of ARA brain accretion. Growth performance; blood and tissue fatty acid levels; liver histology; complete blood cell counts; and serum chemistries were all evaluated. Overall, diets containing test sources of ARA and DHA did not affect growth performance; liver histology; or substantially influence hematological outcomes as compared with TT. The results confirm that the use of Na and K salt forms of ARA yield bioequivalent ARA accretion in the cerebral cortex and retinal tissue compared to TG-ARA. These findings confirm that use of Na-ARA and K-ARA salts in the young pig was safe and nutritionally bioequivalent to TG-ARA for critical neural tissues.
Collapse
Affiliation(s)
- Kaylee Hahn
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | | | - Doug Caskey
- Jost Chemical Co, St., Louis, MO 63114, USA; (J.R.H.); (D.C.); (D.A.J.)
| | - Douglas A. Jost
- Jost Chemical Co, St., Louis, MO 63114, USA; (J.R.H.); (D.C.); (D.A.J.)
| | - Patrick J. Roady
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - J. Thomas Brenna
- Dell Pediatric Research Institute, Department of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, Austin, TX 78723, USA;
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ryan N. Dilger
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
65
|
Martinat M, Rossitto M, Di Miceli M, Layé S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021; 13:1185. [PMID: 33918517 PMCID: PMC8065891 DOI: 10.3390/nu13041185] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
n-3 and n-6 polyunsaturated fatty acids (PUFAs) are essential fatty acids that are provided by dietary intake. Growing evidence suggests that n-3 and n-6 PUFAs are paramount for brain functions. They constitute crucial elements of cellular membranes, especially in the brain. They are the precursors of several metabolites with different effects on inflammation and neuron outgrowth. Overall, long-chain PUFAs accumulate in the offspring brain during the embryonic and post-natal periods. In this review, we discuss how they accumulate in the developing brain, considering the maternal dietary supply, the polymorphisms of genes involved in their metabolism, and the differences linked to gender. We also report the mechanisms linking their bioavailability in the developing brain, their transfer from the mother to the embryo through the placenta, and their role in brain development. In addition, data on the potential role of altered bioavailability of long-chain n-3 PUFAs in the etiologies of neurodevelopmental diseases, such as autism, attention deficit and hyperactivity disorder, and schizophrenia, are reviewed.
Collapse
|
66
|
Hellström A, Nilsson AK, Wackernagel D, Pivodic A, Vanpee M, Sjöbom U, Hellgren G, Hallberg B, Domellöf M, Klevebro S, Hellström W, Andersson M, Lund AM, Löfqvist C, Elfvin A, Sävman K, Hansen-Pupp I, Hård AL, Smith LEH, Ley D. Effect of Enteral Lipid Supplement on Severe Retinopathy of Prematurity: A Randomized Clinical Trial. JAMA Pediatr 2021; 175:359-367. [PMID: 33523106 PMCID: PMC7851754 DOI: 10.1001/jamapediatrics.2020.5653] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Lack of arachidonic acid (AA) and docosahexaenoic acid (DHA) after extremely preterm birth may contribute to preterm morbidity, including retinopathy of prematurity (ROP). OBJECTIVE To determine whether enteral supplementation with fatty acids from birth to 40 weeks' postmenstrual age reduces ROP in extremely preterm infants. DESIGN, SETTING, AND PARTICIPANTS The Mega Donna Mega trial, a randomized clinical trial, was a multicenter study performed at 3 university hospitals in Sweden from December 15, 2016, to December 15, 2019. The screening pediatric ophthalmologists were masked to patient groupings. A total of 209 infants born at less than 28 weeks' gestation were tested for eligibility, and 206 infants were included. Efficacy analyses were performed on as-randomized groups on the intention-to-treat population and on the per-protocol population using as-treated groups. Statistical analyses were performed from February to April 2020. INTERVENTIONS Infants received either supplementation with an enteral oil providing AA (100 mg/kg/d) and DHA (50 mg/kg/d) (AA:DHA group) or no supplementation within 3 days after birth until 40 weeks' postmenstrual age. MAIN OUTCOMES AND MEASURES The primary outcome was severe ROP (stage 3 and/or type 1). The secondary outcomes were AA and DHA serum levels and rates of other complications of preterm birth. RESULTS A total of 101 infants (58 boys [57.4%]; mean [SD] gestational age, 25.5 [1.5] weeks) were included in the AA:DHA group, and 105 infants (59 boys [56.2%]; mean [SD] gestational age, 25.5 [1.4] weeks) were included in the control group. Treatment with AA and DHA reduced severe ROP compared with the standard of care (16 of 101 [15.8%] in the AA:DHA group vs 35 of 105 [33.3%] in the control group; adjusted relative risk, 0.50 [95% CI, 0.28-0.91]; P = .02). The AA:DHA group had significantly higher fractions of AA and DHA in serum phospholipids compared with controls (overall mean difference in AA:DHA group, 0.82 mol% [95% CI, 0.46-1.18 mol%]; P < .001; overall mean difference in control group, 0.13 mol% [95% CI, 0.01-0.24 mol%]; P = .03). There were no significant differences between the AA:DHA group and the control group in the rates of bronchopulmonary dysplasia (48 of 101 [47.5%] vs 48 of 105 [45.7%]) and of any grade of intraventricular hemorrhage (43 of 101 [42.6%] vs 42 of 105 [40.0%]). In the AA:DHA group and control group, respectively, sepsis occurred in 42 of 101 infants (41.6%) and 53 of 105 infants (50.5%), serious adverse events occurred in 26 of 101 infants (25.7%) and 26 of 105 infants (24.8%), and 16 of 101 infants (15.8%) and 13 of 106 infants (12.3%) died. CONCLUSIONS AND RELEVANCE This study found that, compared with standard of care, enteral AA:DHA supplementation lowered the risk of severe ROP by 50% and showed overall higher serum levels of both AA and DHA. Enteral lipid supplementation with AA:DHA is a novel preventive strategy to decrease severe ROP in extremely preterm infants. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03201588.
Collapse
Affiliation(s)
- Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K. Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dirk Wackernagel
- Department of Neonatology, Karolinska University Hospital and Institute, Astrid Lindgrens Children’s Hospital, Stockholm, Sweden
| | - Aldina Pivodic
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mireille Vanpee
- Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska Univeristy Hospital, Stockholm, Sweden
| | - Ulrika Sjöbom
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Institute of Health Care Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnel Hellgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Boubou Hallberg
- Department of Pediatrics, Institution of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet and Department of Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Domellöf
- Institute of Cinical Science, Department of Pediatrics, Umeå University Hospital, Umeå, Sweden
| | - Susanna Klevebro
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Science and Education, Stockholm South General Hospital, Karolinska Institutet, Sweden
| | - William Hellström
- Institute of Clinical Sciences, Sahlgrenska Academy, Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden
| | - Mats Andersson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna-My Lund
- Region Västra Götaland, Department of Neonatology, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Chatarina Löfqvist
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Institute of Health Care Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Elfvin
- Institute of Clinical Sciences, Sahlgrenska Academy, Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden,Region Västra Götaland, Department of Neonatology, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Sävman
- Institute of Clinical Sciences, Sahlgrenska Academy, Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden,Region Västra Götaland, Department of Neonatology, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingrid Hansen-Pupp
- Department of Pediatrics, Institute of Clinical Sciences Lund, Lund University and Skane University Hospital, Lund, Sweden
| | - Anna-Lena Hård
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Ley
- Department of Pediatrics, Institute of Clinical Sciences Lund, Lund University and Skane University Hospital, Lund, Sweden
| |
Collapse
|
67
|
Sambra V, Echeverria F, Valenzuela A, Chouinard-Watkins R, Valenzuela R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021; 13:986. [PMID: 33803760 PMCID: PMC8003191 DOI: 10.3390/nu13030986] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
The role of docosahexaenoic acid (DHA) and arachidonic acid (AA) in neurogenesis and brain development throughout the life cycle is fundamental. DHA and AA are long-chain polyunsaturated fatty acids (LCPUFA) vital for many human physiological processes, such as signaling pathways, gene expression, structure and function of membranes, among others. DHA and AA are deposited into the lipids of cell membranes that form the gray matter representing approximately 25% of the total content of brain fatty acids. Both fatty acids have effects on neuronal growth and differentiation through the modulation of the physical properties of neuronal membranes, signal transduction associated with G proteins, and gene expression. DHA and AA have a relevant role in neuroprotection against neurodegenerative pathologies such as Alzheimer's disease and Parkinson's disease, which are associated with characteristic pathological expressions as mitochondrial dysfunction, neuroinflammation, and oxidative stress. The present review analyzes the neuroprotective role of DHA and AA in the extreme stages of life, emphasizing the importance of these LCPUFA during the first year of life and in the developing/prevention of neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Alfonso Valenzuela
- Faculty of Medicine, School of Nutrition, Universidad de Los Andes, Santiago 8380000, Chile;
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| |
Collapse
|
68
|
Biagetti C, Correani A, D'Ascenzo R, Ferretti E, Proietti C, Antognoli L, Giretti I, Pompilio A, Cogo P, Carnielli VP. Is intravenous fish oil associated with the neurodevelopment of extremely low birth weight preterm infants on parenteral nutrition? Clin Nutr 2021; 40:2845-2850. [PMID: 33933751 DOI: 10.1016/j.clnu.2021.02.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND & AIMS Preterm infants are at increased risk of long-term neurodevelopmental disabilities (NDD). Long chain n-3 fatty acids play a key role during the development of the central nervous system and some studies in preterm infants showed benefits of docosahexaenoic acid and arachidonic acid supplementation for visual and cognitive development. In recent years fish oil has been added to the fat blend of intravenous (IV) lipid emulsions (LE) but to date scanty data are available on neurodevelopmental outcome of preterm infants that received fish oil containing LE. We studied the effect of fish oil containing IV LE vs standard IV LE on neurodevelopment in a large cohort of preterm infants who received routine parenteral nutrition (PN) from birth. METHODS We retrospectively reviewed the neurodevelopmental outcome of 477 preterm infants (birth weight (BW): 400-1249 g and gestational age (GA) at birth: 24+0 - 35+6 weeks (W)) admitted to our NICU between Oct-2008 and June-2017, who received routine PN with different LE, with and without fish oil (IV-FO vs CNTR). We compared neurodevelopment at 2 years corrected age by the Bayley III development scale and the incidence of NDD. RESULTS Demographics, birth data and the incidence of the main clinical short-term outcomes of prematurity were similar in the two groups (IV-FO: n = 178, GA 197 ± 14 days, BW 931 ± 182 g; CNTR: n = 192, GA 198 ± 15 days, BW 944 ± 194 g). No differences were found in maternal demographics nor in parental education between the two groups. Cognitive score was not significantly different between IV-FO and CNTR (92 ± 15 vs 93 ± 13, p = 0.5). No differences were found in motor and language scores, and in the incidence of NDD in the two groups. CONCLUSIONS Contrary to our hypothesis, the use of fish oil containing LE in a large cohort of preterm infants on routine PN did not result in better neurodevelopment. Large randomized controlled trials powered for neurodevelopment are needed to clarify the impact of the widely used fish oil containing LE on neurodevelopment of preterm infants.
Collapse
Affiliation(s)
- Chiara Biagetti
- Division of Neonatology, Polytechnic University of Marche, Salesi Children's Hospital, Via Corridoni 11, 60123 Ancona, Italy.
| | - Alessio Correani
- Division of Neonatology, Polytechnic University of Marche, Salesi Children's Hospital, Via Corridoni 11, 60123 Ancona, Italy.
| | - Rita D'Ascenzo
- Division of Neonatology, Polytechnic University of Marche, Salesi Children's Hospital, Via Corridoni 11, 60123 Ancona, Italy.
| | - Enrica Ferretti
- Division of Neonatology, Polytechnic University of Marche, Salesi Children's Hospital, Via Corridoni 11, 60123 Ancona, Italy.
| | - Cecilia Proietti
- Division of Neonatology, Polytechnic University of Marche, Salesi Children's Hospital, Via Corridoni 11, 60123 Ancona, Italy.
| | - Luca Antognoli
- Division of Neonatology, Polytechnic University of Marche, Salesi Children's Hospital, Via Corridoni 11, 60123 Ancona, Italy.
| | - Ilaria Giretti
- Division of Neonatology, Polytechnic University of Marche, Salesi Children's Hospital, Via Corridoni 11, 60123 Ancona, Italy.
| | - Adriana Pompilio
- Division of Neonatology, Polytechnic University of Marche, Salesi Children's Hospital, Via Corridoni 11, 60123 Ancona, Italy.
| | - Paola Cogo
- Department of Medicine, University Hospital S. Maria Della Misericordia, University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy.
| | - Virgilio P Carnielli
- Division of Neonatology, Polytechnic University of Marche, Salesi Children's Hospital, Via Corridoni 11, 60123 Ancona, Italy.
| |
Collapse
|
69
|
Gázquez A, Giménez-Bañón MJ, Prieto-Sánchez MT, Martínez-Graciá C, Suárez C, Santaella-Pascual M, Galdo-Castiñeira L, Ballesteros-Meseguer C, Vioque J, Martínez-Villanueva M, Avilés-Plaza F, Noguera-Velasco JA, Morales E, García-Marcos L, Larqué E. Self-Reported DHA Supplementation during Pregnancy and Its Association with Obesity or Gestational Diabetes in Relation to DHA Concentration in Cord and Maternal Plasma: Results from NELA, a Prospective Mother-Offspring Cohort. Nutrients 2021; 13:843. [PMID: 33806689 PMCID: PMC8000695 DOI: 10.3390/nu13030843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal supplementation of docosahexaenoic acid (DHA) during pregnancy has been recommended due to its role in infant development, but its effect on materno-fetal DHA status is not well established. We evaluated the associations between DHA supplementation in pregnant women with obesity or gestational diabetes mellitus (GDM) and maternal and neonatal DHA status. Serum fatty acids (FA) were analyzed in 641 pregnant women (24 weeks of gestation) and in 345 venous and 166 arterial cord blood samples of participants of the NELA cohort. Obese women (n = 47) presented lower DHA in serum than those lean (n = 397) or overweight (n = 116) before pregnancy. Linoleic acid in arterial cord was elevated in obese women, which indicates lower fetal retention. Maternal DHA supplementation (200 mg/d) during pregnancy was associated with enhanced maternal and fetal DHA levels regardless of pre-pregnancy body mass index (BMI), although higher arterial DHA in overweight women indicated an attenuated response. Maternal DHA supplementation was not associated with cord venous DHA in neonates of mothers with GDM. The cord arteriovenous difference was similar for DHA between GDM and controls. In conclusion, maternal DHA supplementation during pregnancy enhanced fetal DHA status regardless of the pre-pregnancy BMI while GDM may reduce the effect of DHA supplementation in newborns.
Collapse
Affiliation(s)
- Antonio Gázquez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | - María J. Giménez-Bañón
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | - María T. Prieto-Sánchez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Carmen Martínez-Graciá
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Clara Suárez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Marina Santaella-Pascual
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Lina Galdo-Castiñeira
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Carmen Ballesteros-Meseguer
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Jesús Vioque
- Health and Biomedical Research Institute of Alicante (ISABIAL-UMH), 46020 Alicante, Spain;
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Miriam Martínez-Villanueva
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - Francisco Avilés-Plaza
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - José A. Noguera-Velasco
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Public Health Sciences, University of Murcia, 30100 Murcia, Spain
| | - Luís García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Elvira Larqué
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | | |
Collapse
|
70
|
Yoshinaga K, Ishikawa H, Beppu F, Gotoh N. Incorporation of Dietary Arachidonic and Docosatetraenoic Acid into Mouse Brain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2457-2461. [PMID: 33594883 DOI: 10.1021/acs.jafc.0c07916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is essential to analyze the metabolism of dietary polyunsaturated fatty acids in the brain for the research and development of functional foods. In this study, a single dose of 2,2-dideuterium-labeled docosatetraenoic acid ((+2)DTA) or 2,2-dideuterium-labeled arachidonic acid ((+2)AA) was orally administered to Institute of Cancer Research (ICR) mice and its metabolism in the brain was investigated. In the (+2)DTA group, the (+2)DTA content in the brain was significantly increased at 4, 8, 24, and 96 h compared to 0 h after administration, while in the (+2)AA group, the (+2)AA content was significantly increased at 4, 8, 24, and 96 h compared to 0 h. However, there was no significant difference in the content of (+2)DTA, a metabolite of (+2)AA, among all the groups. These results suggest that dietary (+2)DTA and (+2)AA pass through the blood-brain barrier and dietary (+2)AA is rather stored in the brain than converted to (+2)DTA.
Collapse
Affiliation(s)
- Kazuaki Yoshinaga
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1248, Japan
| | - Haruna Ishikawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Fumiaki Beppu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 minato, Hakodate, Hokkaido 041-8611, Japan
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
71
|
Henriksen NL, Aasmul-Olsen K, Venkatasubramanian R, Nygaard MKE, Sprenger RR, Heckmann AB, Ostenfeld MS, Ejsing CS, Eskildsen SF, Müllertz A, Sangild PT, Bering SB, Thymann T. Dairy-Derived Emulsifiers in Infant Formula Show Marginal Effects on the Plasma Lipid Profile and Brain Structure in Preterm Piglets Relative to Soy Lecithin. Nutrients 2021; 13:718. [PMID: 33668360 PMCID: PMC7996312 DOI: 10.3390/nu13030718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Breastfed infants have higher intestinal lipid absorption and neurodevelopmental outcomes compared to formula-fed infants, which may relate to a different surface layer structure of fat globules in infant formula. This study investigated if dairy-derived emulsifiers increased lipid absorption and neurodevelopment relative to soy lecithin in newborn preterm piglets. Piglets received a formula diet containing soy lecithin (SL) or whey protein concentrate enriched in extracellular vesicles (WPC-A-EV) or phospholipids (WPC-PL) for 19 days. Both WPC-A-EV and WPC-PL emulsions, but not the intact diets, increased in vitro lipolysis compared to SL. The main differences of plasma lipidomics analysis were increased levels of some sphingolipids, and lipid molecules with odd-chain (17:1, 19:1, 19:3) as well as mono- and polyunsaturated fatty acyl chains (16:1, 20:1, 20:3) in the WPC-A-EV and WPC-PL groups and increased 18:2 fatty acyls in the SL group. Indirect monitoring of intestinal triacylglycerol absorption showed no differences between groups. Diffusor tensor imaging measurements of mean diffusivity in the hippocampus were lower for WPC-A-EV and WPC-PL groups compared to SL indicating improved hippocampal maturation. No differences in hippocampal lipid composition or short-term memory were observed between groups. In conclusion, emulsification of fat globules in infant formula with dairy-derived emulsifiers altered the plasma lipid profile and hippocampal tissue diffusivity but had limited effects on other absorptive and learning abilities relative to SL in preterm piglets.
Collapse
Affiliation(s)
- Nicole L. Henriksen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Karoline Aasmul-Olsen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Ramakrishnan Venkatasubramanian
- Physiological Pharmaceutics, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark;
| | - Mikkel K. E. Nygaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, 8000 Aarhus C, Denmark; (M.K.E.N.); (S.F.E.)
| | - Richard R. Sprenger
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.R.S.); (C.S.E.)
| | - Anne B. Heckmann
- Arla Foods Ingredients, Sønderhøj 10-12, 8260 Viby J, Denmark; (A.B.H.); (M.S.O.)
| | - Marie S. Ostenfeld
- Arla Foods Ingredients, Sønderhøj 10-12, 8260 Viby J, Denmark; (A.B.H.); (M.S.O.)
| | - Christer S. Ejsing
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.R.S.); (C.S.E.)
| | - Simon F. Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, 8000 Aarhus C, Denmark; (M.K.E.N.); (S.F.E.)
| | - Anette Müllertz
- Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark;
| | - Per T. Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Stine B. Bering
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870 Frederiksberg C, Denmark; (N.L.H.); (K.A.-O.); (P.T.S.); (S.B.B.)
| |
Collapse
|
72
|
Gould JF, Makrides M, Sullivan TR, Anderson PJ, Gibson RA, Best KP, McPhee AJ, Doyle LW, Opie G, Travadi J, Cheong J, Davis PG, Sharp M, Simmer K, Collins CT. Protocol for assessing whether cognition of preterm infants <29 weeks' gestation can be improved by an intervention with the omega-3 long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA): a follow-up of a randomised controlled trial. BMJ Open 2021; 11:e041597. [PMID: 33550243 PMCID: PMC7925903 DOI: 10.1136/bmjopen-2020-041597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Docosahexaenoic acid (DHA) is an omega-3 (n-3) fatty acid that accumulates into neural tissue during the last trimester of pregnancy, as the fetal brain is undergoing a growth spurt. Infants born <29 weeks' gestation are deprived the normal in utero supply of DHA during this period of rapid brain development. Insufficient dietary DHA postnatally may contribute to the cognitive impairments common among this population. This follow-up of the N-3 fatty acids for improvement in respiratory outcomes (N3RO) randomised controlled trial aims to determine if enteral DHA supplementation in infants born <29 weeks' gestation during the first months of life improves cognitive development at 5 years of age corrected for prematurity. METHODS AND ANALYSIS N3RO was a randomised controlled trial of enteral DHA supplementation (60 mg/kg/day) or a control emulsion (without DHA) in 1273 infants born <29 weeks' gestation to determine the effect on bronchopulmonary dysplasia (BPD). We showed that DHA supplementation did not reduce the risk of BPD and may have increased the risk.In this follow-up at 5 years' corrected age, a predefined subset (n=655) of children from five Australian sites will be invited to attend a cognitive assessment with a psychologist. Children will be administered the Wechsler Preschool and Primary Scale of Intelligence (fourth edition) and a measure of inhibitory control (fruit stroop), while height, weight and head circumference will be measured.The primary outcome is full-scale IQ. To ensure 90% power, a minimum of 592 children are needed to detect a four-point difference in IQ between the groups.Research personnel and families remain blinded to group assignment. ETHICS AND DISSEMINATION The Women's and Children Health Network Human Research Ethics Committee reviewed and approved the study (HREC/17/WCHN/187). Caregivers will give informed consent prior to taking part in this follow-up study. Findings of this study will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER ACTRN12612000503820.
Collapse
Affiliation(s)
- Jacqueline F Gould
- Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Psychology & Discipline of Paediatrics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Maria Makrides
- Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas R Sullivan
- Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Public Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Robert A Gibson
- Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Karen P Best
- Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew J McPhee
- Neonatal Medicine, Women's and Children's Hospital Adelaide, North Adelaide, South Australia, Australia
| | - Lex William Doyle
- Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Gillian Opie
- Neonatal Services, Mercy Hospital for Women, Melbourne, Victoria, Australia
| | - Javeed Travadi
- Newborn Services, John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Jeanie Cheong
- Newborn Research, Royal Women's Hospital, Parkville, Victoria, Australia
- Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter G Davis
- Newborn Research, The Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Mary Sharp
- King Edward Memorial Hospital for Women Perth, Subiaco, Western Australia, Australia
| | - Karen Simmer
- Neonatal Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Carmel T Collins
- Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
73
|
Gázquez A, Larqué E. Towards an Optimized Fetal DHA Accretion: Differences on Maternal DHA Supplementation Using Phospholipids vs. Triglycerides during Pregnancy in Different Models. Nutrients 2021; 13:511. [PMID: 33557158 PMCID: PMC7913957 DOI: 10.3390/nu13020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Docosahexaenoic acid (DHA) supplementation during pregnancy has been recommended by several health organizations due to its role in neural, visual, and cognitive development. There are several fat sources available on the market for the manufacture of these dietary supplements with DHA. These fat sources differ in the lipid structure in which DHA is esterified, mainly phospholipids (PL) and triglycerides (TG) molecules. The supplementation of DHA in the form of PL or TG during pregnancy can lead to controversial results depending on the animal model, physiological status and the fat sources utilized. The intestinal digestion, placental uptake, and fetal accretion of DHA may vary depending on the lipid source of DHA ingested by the mother. The form of DHA used in maternal supplementation that would provide an optimal DHA accretion for fetal brain development, based on the available data obtained most of them from different animal models, indicates no consistent differences in fetal accretion when DHA is provided as TG or PL. Other related lipid species are under evaluation, e.g., lyso-phospholipids, with promising results to improve DHA bioavailability although more studies are needed. In this review, the evidence on DHA bioavailability and accumulation in both maternal and fetal tissues after the administration of DHA supplementation during pregnancy in the form of PL or TG in different models is summarized.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
74
|
Sass L, Bjarnadóttir E, Stokholm J, Chawes B, Vinding RK, Mora-Jensen ARC, Thorsen J, Noergaard S, Ebdrup BH, Jepsen JRM, Fagerlund B, Bønnelykke K, Lauritzen L, Bisgaard H. Fish Oil Supplementation in Pregnancy and Neurodevelopment in Childhood-A Randomized Clinical Trial. Child Dev 2021; 92:1624-1635. [PMID: 33506965 DOI: 10.1111/cdev.13541] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A double-blind randomized controlled trial of n-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) supplementation or matching placebo during third trimester of pregnancy was conducted within the COPSAC2010 mother-child cohort consisting of 736 women and their children. The objective was to determine if maternal n-3 LCPUFA pregnancy supplementation affects offspring neurodevelopment until 6 years. Neurodevelopment was evaluated in 654 children assessing age of motor milestone achievement, language development, cognitive development, general neurodevelopment, and emotional and behavioral problems. Maternal n-3 LCPUFA supplementation during pregnancy improved early language development and reduced the impact of emotional and behavioral problems. The n-3 LCPUFA supplementation was in boys associated with the earlier achievement of gross motor milestones, improved cognitive development, and a reduced impact of emotional and behavioral problems.
Collapse
|
75
|
Gould JF, Roberts RM, Makrides M. The Influence of Omega-3 Long-Chain Polyunsaturated Fatty Acid, Docosahexaenoic Acid, on Child Behavioral Functioning: A Review of Randomized Controlled Trials of DHA Supplementation in Pregnancy, the Neonatal Period and Infancy. Nutrients 2021; 13:415. [PMID: 33525526 PMCID: PMC7911027 DOI: 10.3390/nu13020415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
This is a review of randomized controlled trials using docosahexaenoic acid (DHA) interventions in the first 1000 days of life with assessments of behavioral functioning in childhood. Electronic databases were searched for trials with a DHA intervention (compared with a placebo group that received no or less DHA) at any time to either women or infants during the first 1000 days, with a subsequent assessment of child behavior. There were 25 trials involving 10,320 mother-child pairs, and 71 assessments of behavior in 6867 of the children (66.5% of those originally enrolled). From the 71 assessments administered, there were 401 comparisons between a DHA group and a control group, with most reporting a null effect. There were no findings of a positive effect of DHA, and 23 instances where the DHA group had worse scores compared with the control group. There was limited evidence that DHA supplementation had any effect on behavioral development, although two of the largest trials with behavioral measures detected adverse effects. Future trials, and future follow-ups of existing trials, should make an effort to evaluate the effect of DHA intervention on behavioral functioning.
Collapse
Affiliation(s)
- Jacqueline F. Gould
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, 5006 Adelaide, Australia;
- School of Psychology and Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, 5005 Adelaide, Australia
| | - Rachel M. Roberts
- School of Psychology, Faculty of Health and Medical Sciences, The University of Adelaide, 5005 Adelaide, Australia;
| | - Maria Makrides
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, 5006 Adelaide, Australia;
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, 5005 Adelaide, Australia
| |
Collapse
|
76
|
Analysis of Lipid Peroxidation by UPLC-MS/MS and Retinoprotective Effects of the Natural Polyphenol Pterostilbene. Antioxidants (Basel) 2021; 10:antiox10020168. [PMID: 33498744 PMCID: PMC7912566 DOI: 10.3390/antiox10020168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
The loss of redox homeostasis induced by hyperglycemia is an early sign and key factor in the development of diabetic retinopathy. Due to the high level of long-chain polyunsaturated fatty acids, diabetic retina is highly susceptible to lipid peroxidation, source of pathophysiological alterations in diabetic retinopathy. Previous studies have shown that pterostilbene, a natural antioxidant polyphenol, is an effective therapy against diabetic retinopathy development, although its protective effects on lipid peroxidation are not well known. Plasma, urine and retinas from diabetic rabbits, control and diabetic rabbits treated daily with pterostilbene were analyzed. Lipid peroxidation was evaluated through the determination of derivatives from arachidonic, adrenic and docosahexaenoic acids by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Diabetes increased lipid peroxidation in retina, plasma and urine samples and pterostilbene treatment restored control values, showing its ability to prevent early and main alterations in the development of diabetic retinopathy. Through our study, we are able to propose the use of a derivative of adrenic acid, 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF, for the first time, as a suitable biomarker of diabetic retinopathy in plasmas or urine.
Collapse
|
77
|
Gawlik NR, Makrides M, Kettler L, Yelland LN, Leemaqz S, Gould JF. The influence of DHA supplementation during pregnancy on language development across childhood: Follow-up of a randomised controlled trial. Prostaglandins Leukot Essent Fatty Acids 2020; 163:102207. [PMID: 33227646 DOI: 10.1016/j.plefa.2020.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/02/2020] [Accepted: 11/07/2020] [Indexed: 12/17/2022]
Abstract
Numerous randomised controlled trials have explored the effect of docosahexaenoic acid (DHA) supplementation in early life on neurodevelopment, with some suggested positive effects on language. Australian women with a singleton pregnancy <21 weeks' gestation were randomised to receive 800 mg DHA/day or a placebo until birth. A sample of 726 children (all n=96 born preterm, random sample of n=630 born at term) were invited to undergo assessments of language, academic, and language-based cognitive abilities at 1.5, four and seven years of age. No group differences were detected for any group comparison. Exploratory analyses for sex by treatment interactions revealed a possible adverse effect of DHA supplementation on the language of females at 1.5 years but no effects on outcomes at four or seven years. Taken as a whole, evidence of an effect of prenatal DHA supplementation on language abilities across childhood is negligible and could be a chance finding.
Collapse
Affiliation(s)
- N R Gawlik
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace Adelaide, South Australia, 5000.
| | - M Makrides
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace Adelaide, South Australia, 5000; Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, North Adelaide, South Australia, 5006.
| | - L Kettler
- Trinity College Gawler Inc, Alexander Avenue, Evanston South SA 5116; School of Psychology, The University of Adelaide, North Terrace Adelaide, South Australia, 5000.
| | - L N Yelland
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, North Adelaide, South Australia, 5006; School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace Adelaide, South Australia, 5000.
| | - S Leemaqz
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, North Adelaide, South Australia, 5006.
| | - J F Gould
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, North Adelaide, South Australia, 5006; School of Psychology & Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace Adelaide, South Australia, 5000.
| |
Collapse
|
78
|
Salvatori G, Martini L. Complementary Feeding in the Preterm Infants: Summary of Available Macronutrient Intakes and Requirements. Nutrients 2020; 12:nu12123696. [PMID: 33266017 PMCID: PMC7760975 DOI: 10.3390/nu12123696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Limited data are available regarding the nutritional needs for preterm infants. In most cases, guidelines refer to the acquisition of neuromotor skills, adequate weight and corrected chronological age. While waiting for the establishment of specific nutritional indications for premature infants we proposed the weaning recommendations for term infants of the Italian Society of Human Nutrition with LARNs (Reference intake Levels of Nutrients and energy for the Italian population) of 2014, the Dietary Reference Values for nutrients of European Food Safety Authority (EFSA) of 2017 and the Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes of 2017.
Collapse
|
79
|
Argaw A, Bouckaert KP, Wondafrash M, Kolsteren P, Lachat C, De Meulenaer B, Hanley-Cook G, Huybregts L. Effect of fish-oil supplementation on breastmilk long-chain polyunsaturated fatty acid concentration: a randomized controlled trial in rural Ethiopia. Eur J Clin Nutr 2020; 75:809-816. [PMID: 33159163 DOI: 10.1038/s41430-020-00798-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND For infants and young children in low-income settings, human milk (HM) is the main source of omega-3 (n-3) long-chain polyunsaturated fatty acids (LCPs), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). However, the n-3 LCPs concentrations of HM show wide variability, largely depending on the maternal intake of marine foods. This may put children living far from coastal areas at risk of inadequate intake. We evaluated the efficacy of fish-oil (FO) supplementation of lactating mothers on HM n-3 LCPs concentrations in a rural setting from Ethiopia. METHODS Mothers (n = 360) with children 6-12 months old were randomized to receive either intervention FO capsules (215 mg DHA + 285 mg EPA) or control corn-oil capsules (without n-3 LCPs). In a random subsample of 154 participants, we analyzed LCPs in HM and child capillary blood using gas chromatography. RESULTS Compared to the control, FO supplementation increased HM concentrations of DHA by 39.0% (95% CI: 20.6, 57.5%; P < 0.001) and EPA by 36.2% (95% CI: 16.0, 56.4%; P < 0.001), whereas the arachidonic acid (AA)/(DHA + EPA) ratio decreased by 53.5% (95% CI: -70.2, -36.7%; P < 0.001). We also found statistically significant association between the changes in (DHA + EPA)/AA ratio in HM and child capillary blood (P < 0.001). However, HM DHA concentrations remained lower than international norms after FO supplementation. CONCLUSIONS FO supplementation improves n-3 LCPs content of HM. Future studies should evaluate different doses of n-3 LCPs and consider potential effect modifiers such as genetic polymorphism and diet. This trial was registered at clinicaltrials.gov as NCT01817634.
Collapse
Affiliation(s)
- Alemayehu Argaw
- Department of Population and Family Health, Institute of Health, Jimma University, Jimma, Ethiopia. .,Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Kimberley P Bouckaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mekitie Wondafrash
- Department of Population and Family Health, Institute of Health, Jimma University, Jimma, Ethiopia.,Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Patrick Kolsteren
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bruno De Meulenaer
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Giles Hanley-Cook
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lieven Huybregts
- Poverty, Health and Nutrition Division, International Food Policy Research Institute, Washington, DC, USA
| |
Collapse
|
80
|
Verfuerden ML, Dib S, Jerrim J, Fewtrell M, Gilbert RE. Effect of long-chain polyunsaturated fatty acids in infant formula on long-term cognitive function in childhood: A systematic review and meta-analysis of randomised controlled trials. PLoS One 2020; 15:e0241800. [PMID: 33152012 PMCID: PMC7644261 DOI: 10.1371/journal.pone.0241800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/24/2020] [Indexed: 11/19/2022] Open
Abstract
STUDY REGISTRATION PROSPERO registration numbers CRD42018105196 and CRD42018088868.
Collapse
Affiliation(s)
- Maximiliane L. Verfuerden
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- * E-mail:
| | - Sarah Dib
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - John Jerrim
- University College London Institute of Education, London, United Kingdom
| | - Mary Fewtrell
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ruth E. Gilbert
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| |
Collapse
|
81
|
Torgalkar R, Shah J, Dave S, Yang J, Ostad N, Kotsopoulos K, Unger S, Kelly E, Shah PS. Fish oil-containing multicomponent lipid emulsion vs soy-based lipid emulsion and neurodevelopmental outcomes of children born < 29 weeks' gestation. J Perinatol 2020; 40:1712-1718. [PMID: 32507860 DOI: 10.1038/s41372-020-0710-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To compare neurodevelopmental outcomes of extremely preterm children who received soy-medium chain triglycerides-olive-fish oil-containing lipid emulsion (SMOF-LE) vs soy-based LE. STUDY DESIGN We conducted a pre-post comparative cohort study of children born < 29 weeks' gestation who received > 7 days of LE. Outcomes were mortality/significant neurodevelopmental impairment (NDI), mortality/any NDI, significant NDI, any NDI, and individual components of NDI. RESULTS Among children with follow-up data (Intralipid: n = 340/442, 77%; SMOF-LE: n = 214/286, 75%), baseline characteristics were comparable except for postnatal steroids. There was no significant difference in death/significant NDI between groups. Adjusted odds of death/any NDI [0.68 (95% CI 0.48, 0.97)], any NDI [0.64 (95% CI 0.44, 0.93)] and Bayley-III language score < 85 and <70 were significantly lower in the SMOF-LE group. CONCLUSIONS In extremely preterm children, a change from soy-based LE to SMOF-LE was not associated with deleterious effect on neurodevelopmental outcomes and may have been associated with some improvement.
Collapse
Affiliation(s)
- Ranjit Torgalkar
- Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jyotsna Shah
- Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shruti Dave
- Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada
| | - Junmin Yang
- Maternal-infant Care Research Centre, Mount Sinai Hospital, Toronto, ON, Canada
| | - Nastaran Ostad
- Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Sharon Unger
- Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada
| | - Edmond Kelly
- Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada
| | - Prakesh S Shah
- Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada. .,Maternal-infant Care Research Centre, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Pediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
82
|
Hahn KE, Dahms I, Butt CM, Salem N, Grimshaw V, Bailey E, Fleming SA, Smith BN, Dilger RN. Impact of Arachidonic and Docosahexaenoic Acid Supplementation on Neural and Immune Development in the Young Pig. Front Nutr 2020; 7:592364. [PMID: 33195377 PMCID: PMC7658628 DOI: 10.3389/fnut.2020.592364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Human milk contains both arachidonic acid (ARA) and docosahexaenoic acid (DHA). Supplementation of infant formula with ARA and DHA results in fatty acid (FA) profiles, neurodevelopmental outcomes, and immune responses in formula-fed infants that are more like those observed in breastfed infants. Consequently, ARA and DHA have been historically added together to infant formula. This study investigated the impact of ARA or DHA supplementation alone or in combination on tissue FA incorporation, immune responses, and neurodevelopment in the young pig. Methods: Male pigs (N = 48 total) received one of four dietary treatments from postnatal day (PND) 2–30. Treatments targeted the following ARA/DHA levels (% of total FA): CON (0.00/0.00), ARA (0.80/0.00), DHA (0.00/0.80), and ARA+DHA (0.80/0.80). Plasma, red blood cells (RBC), and prefrontal cortex (PFC) were collected for FA analysis. Blood was collected for T cell immunophenotyping and to quantify a panel of immune outcomes. Myelin thickness in the corpus callosum was measured by transmission electron microscopy and pig movement was measured by actigraphy. Results: There were no differences in formula intake or growth between dietary groups. DHA supplementation increased brain DHA, but decreased ARA, compared with all other groups. ARA supplementation increased brain ARA compared with all other groups but did not affect brain DHA. Combined supplementation increased brain DHA levels but did not affect brain ARA levels compared with the control. Pigs fed ARA or ARA+DHA exhibited more activity than those fed CON or DHA. Diet-dependent differences in activity suggested pigs fed ARA had the lowest percent time asleep, while those fed DHA had the highest. No differences were observed for immune or myelination outcomes. Conclusion: Supplementation with ARA and DHA did not differentially affect immune responses, but ARA levels in RBC and PFC were reduced when DHA was provided without ARA. Supplementation of either ARA or DHA alone induced differences in time spent asleep, and ARA inclusion increased general activity. Therefore, the current data support the combined supplementation with both ARA and DHA in infant formula and raise questions regarding the safety and nutritional suitability of ARA or DHA supplementation individually.
Collapse
Affiliation(s)
- Kaylee E Hahn
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Division of Nutrition Sciences, University of Illinois, Urbana, IL, United States
| | - Irina Dahms
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | - Norman Salem
- DSM Nutritional Products, Columbia, MD, United States
| | | | - Eileen Bailey
- DSM Nutritional Products, Columbia, MD, United States
| | - Stephen A Fleming
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Brooke N Smith
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan N Dilger
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Division of Nutrition Sciences, University of Illinois, Urbana, IL, United States.,Neuroscience Program, University of Illinois, Urbana, IL, United States
| |
Collapse
|
83
|
Tounian P, Bellaïche M, Legrand P. ARA or no ARA in infant formulae, that is the question. Arch Pediatr 2020; 28:69-74. [PMID: 33268182 DOI: 10.1016/j.arcped.2020.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/09/2020] [Accepted: 10/02/2020] [Indexed: 01/09/2023]
Abstract
Recently, the European Commission issued a Delegated Regulation updating the compositional and information requirements for infant and follow-on formulae that are to be applied at the latest in February 2021. This new regulation changes the status of docosahexaenoic acid (DHA) from an optional ingredient to a mandatory nutrient in these formulae at levels between 20 and 50mg/100kcal (0.5-1% of fatty acids). By contrast, arachidonic acid (ARA) becomes an optional nutrient. Following publication of the new regulation, global scientific experts have expressed concerns regarding the potential health risks of new infant formulae containing only DHA, especially at levels higher than those in breast milk and infant formulae marketed to date. Both DHA and ARA play a crucial role in infant development. First, breast milk, the gold standard for infant feeding, contains both DHA and ARA. Second, during development, the conversion of linoleic acid into ARA through desaturation steps is not sufficient to meet nutritional needs, especially in carriers of newly identified genetic variants in fatty acid desaturases, which weaken the biosynthetic production of ARA. Third, circulating levels of DHA and ARA in breastfed infants can only be matched with the addition of both fatty acids to formulae. And fourth, most studies performed to date have demonstrated that important physiological and developmental endpoints are sensitive to the ratio of dietary ARA:DHA. The precautionary principle applies when implementing the new EU regulation for infant and follow-on formulae. As a consequence, given the vulnerability of developing infants as well as the absence of conclusive evidence that formulae with at least 20mg DHA/100kcal, but no ARA, are safe and suitable to support the growth and development of infants similar to their breastfed peers, it remains necessary to still market formulas containing both ARA and DHA until proved otherwise.
Collapse
Affiliation(s)
- P Tounian
- Pediatric Nutrition and Gastroenterology department, Trousseau Hospital, AP-HP, Sorbonne University, 75012 Paris, France.
| | - M Bellaïche
- Pediatric Gastroenterology and Nutrition department, Robert Debré Hospital, AP-HP, 75019 Paris, France
| | - P Legrand
- Biochemistry/Human Nutrition, Agrocampus-Ouest, Rennes, 35042 Rennes, France
| |
Collapse
|
84
|
Macchi M, Bambini L, Franceschini S, Alexa ID, Agostoni C. The effect of tobacco smoking during pregnancy and breastfeeding on human milk composition-a systematic review. Eur J Clin Nutr 2020; 75:736-747. [PMID: 33087893 DOI: 10.1038/s41430-020-00784-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Tobacco smoking is still a widespread habit in pregnant and breastfeeding women. While the role of these risk factors on neonatal outcomes has been deeply studied, their effect on human milk composition is still not completely clear. This study aimed to report the most up to date evidence about the alteration of breast milk composition of smoking breastfeeding mothers compared to non-smoking ones. We performed a systematic review by searching PubMed, Embase, and Cochrane Library databases. Evaluated data were extracted and critically analyzed by two independent authors. PRISMA guidelines were applied, and the risk of bias was assessed (ROBINS), as was the methodological quality of the included studies (GRADE). After applying the inclusion criteria, we included 20 studies assessed as medium or high quality. In all the studies, we analyzed data regarding 1769 mothers (398 smokers and 971 nonsmokers). Smoking was associated with a lower content of lipids, calories, and proteins. Moreover, it was characterized by decreased antioxidant properties and an altered immune status. Smoking during pregnancy and breastfeeding is significantly associated with an alteration of milk metabolic properties. Further studies are needed to investigate how these changes can alter newborns' development and outcomes and which molecular patterns are involved.
Collapse
Affiliation(s)
- Marina Macchi
- University of Milan, Via Festa del Perdono, 7, 20122, Milano, MI, Italy.
| | - Laura Bambini
- University of Bologna, Via Zamboni, 33, 40126, Bologna, BO, Italy
| | | | | | - Carlo Agostoni
- Pediatric Intermediate Care Unit, Fondazione IRCCS, Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milano, MI, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Via Festa del Perdono, 7, 20122, Milano, MI, Italy
| |
Collapse
|
85
|
Gawlik NR, Anderson AJ, Makrides M, Kettler L, Gould JF. The Influence of DHA on Language Development: A Review of Randomized Controlled Trials of DHA Supplementation in Pregnancy, the Neonatal Period, and Infancy. Nutrients 2020; 12:E3106. [PMID: 33053714 PMCID: PMC7599780 DOI: 10.3390/nu12103106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022] Open
Abstract
This review summarizes randomized controlled trials (RCTs) assessing the effect of docosahexaenoic acid (DHA) supplementation in the first 1000 days on child language. Six databases were searched and RCTs were included if they involved supplementation with DHA during pregnancy, to preterm infants, or during the postpartum period, included a placebo group with less or no DHA, and reported a language outcome. We included 29 RCTs involving n = 10,405 participants from 49 publications. There was a total of 84 language measures at ages ranging from 3 months to 12 years. Of the 84 assessments, there were 4 instances where the DHA group had improved scores, and 2 instances where the DHA group had worse scores (with the majority of these significant effects found within one RCT). The remaining comparisons were null. A few RCTs that included subgroup analyses reported (inconsistent) effects. There was limited evidence that DHA supplementation had any effect on language development, although there were some rare instances of both possible positive and adverse effects, particularly within population subgroups. It is important that any subgroup effects are verified in future trials that are adequately powered to confirm such effects.
Collapse
Affiliation(s)
- Nicola R. Gawlik
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide 5000, Australia; (N.R.G.); (A.J.A.); (M.M.)
| | - Amanda J. Anderson
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide 5000, Australia; (N.R.G.); (A.J.A.); (M.M.)
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, North Adelaide 5006, Australia
| | - Maria Makrides
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide 5000, Australia; (N.R.G.); (A.J.A.); (M.M.)
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, North Adelaide 5006, Australia
| | - Lisa Kettler
- Trinity College Gawler Inc., Alexander Avenue, Evanston South 5116, Australia;
| | - Jacqueline F. Gould
- Women and Kids, South Australian Health and Medical Research Institute, 72 King William Road, North Adelaide 5006, Australia
- School of Psychology & Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
86
|
D'Auria E, Peroni DG, Sartorio MUA, Verduci E, Zuccotti GV, Venter C. The Role of Diet Diversity and Diet Indices on Allergy Outcomes. Front Pediatr 2020; 8:545. [PMID: 33042906 PMCID: PMC7522364 DOI: 10.3389/fped.2020.00545] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Nutrients in foods are not eaten in isolation and food intake interacts in a complex manner, affecting health and disease outcomes. For this reason, focusing on the whole "pattern" of dietary intake instead of the single nutrients or groups of nutrients when studying diseases outcomes is increasingly appealing and growing. Diet diversity refers to the variety of foods being eaten, and the terms, diversity or variety, are often used interchangeably. When the overall diet is characterized by healthy foods, diet diversity will reflect a diversity/variety of healthy foods eaten over a period of time. The introduction of solid foods in the 1st year of life is considered a measure of increased diet diversity. Consuming a diverse range of foods and food allergens in the first year of life may increase intake of important nutrients and positively affect the gut microbiome structure and function. Intake of omega-3 fatty acids and fibers/prebiotics may be particularly important but more information is required about dose and which individuals are most likely to benefit. Increased diet diversity in the first year of life is also associated with reduced food allergy outcomes. In addition to diet diversity, diet indices are considered measures of overall diet quality and can be used as a simple assessment of dietary intake. The focus of this paper is to review and critically address the current knowledge of the association between diet diversity and diet indices and allergy outcomes. Based on the current evidence, we recommend the introduction of solid foods, including common allergenic solids, during the 1st year of life, according to the infant's neuro-developmental abilities and familial or cultural habits. For infants with severe AD and/or FA, medical assessment may be advisable before introducing common food allergens into the diet. Limited evidence exist about the role of diet indices in pregnancy and allergic disease in the offspring, and the most promising results indicate a reduction in childhood wheeze and/or asthma intake.
Collapse
Affiliation(s)
- Enza D'Auria
- Pediatric Department, Vittore Buzzi Children's Hospital, Universitá degli Studi di Milano, Milan, Italy
| | - Diego G. Peroni
- Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Marco Ugo Andrea Sartorio
- Pediatric Department, Vittore Buzzi Children's Hospital, Universitá degli Studi di Milano, Milan, Italy
| | - Elvira Verduci
- Pediatric Department, Vittore Buzzi Children's Hospital, Universitá degli Studi di Milano, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Pediatric Department, Vittore Buzzi Children's Hospital, Universitá degli Studi di Milano, Milan, Italy
| | - Carina Venter
- Section of Allergy and Immunology, Children Hospital Colorado, University of Colorado, Denver, CO, United States
| |
Collapse
|
87
|
Shah VP, Raffay TM, Martin RJ, Vento M, Sánchez-Illana Á, Piñeiro-Ramos JD, Kuligowski J, Di Fiore JM. The Relationship between Oxidative Stress, Intermittent Hypoxemia, and Hospital Duration in Moderate Preterm Infants. Neonatology 2020; 117:577-583. [PMID: 32799210 PMCID: PMC7854776 DOI: 10.1159/000509038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Lipid peroxidation products are present following oxidation of polyunsaturated fatty acids in the eye, brain, and various cell membranes. Elevated levels of lipid peroxidation products and increased intermittent hypoxemia (IH) events have been associated with adverse outcomes in extremely preterm infants. The moderate preterm newborn has a still-developing oxidant defense system and immature respiratory control, but little is known about lipid peroxidation levels and IH in this larger and more common preterm population. OBJECTIVE To determine the association between oxidative stress and IH in moderate preterm infants. METHOD Oxygen saturation was continuously monitored in 51 moderate preterm infants (i.e., 31 + 0/7 to 33 + 6/7 weeks' gestation). Urine samples were collected at the end of the first and second weeks of life. Samples were analyzed for total lipid peroxidation products (neurofurans, isofurans, neuroprostanes, isoprostanes, and di-homo-isofurans). RESULT At week 1, there was a correlation between increased IH frequency and neurofurans (p < 0.04) and di-homo-isofurans (p < 0.003). At week 2, there was no correlation between IH and lipid peroxidation markers. Ele-vations in neurofurans, isofurans, neuroprostanes, and di-homo-isofurans in the first and/or second week of life were associated with a longer stay in hospital. CONCLUSION Elevations in lipid peroxidation biomarkers in moderate preterm infants during their first weeks of life are associated with a higher frequency of IH and prolonged hospitalization.
Collapse
Affiliation(s)
- Vidhi P Shah
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas M Raffay
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Richard J Martin
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | | | | | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Juliann M Di Fiore
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA,
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA,
| |
Collapse
|
88
|
Hewelt-Belka W, Garwolińska D, Młynarczyk M, Kot-Wasik A. Comparative Lipidomic Study of Human Milk from Different Lactation Stages and Milk Formulas. Nutrients 2020; 12:E2165. [PMID: 32708300 PMCID: PMC7401268 DOI: 10.3390/nu12072165] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
In this report, we present a detailed comparison of the lipid composition of human milk (HM) and formula milk (FM) targeting different lactation stages and infant age range. We studied HM samples collected from 26 Polish mothers from colostrum to 19 months of lactation, along with FM from seven brands available on the Polish market (infant formula, follow-on formula and growing-up formula). Lipid extracts were analysed using liquid chromatography coupled to high-resolution mass spectrometry (LC-Q-TOF-MS). We found that the lipid composition of FM deviates significantly from the HM lipid profile in terms of qualitative and quantitative differences. FM had contrasting lipid profiles mostly across brands and accordingly to the type of fat added but not specific to the target age range. The individual differences were dominant in HM; however, differences according to the lactation stage were also observed, especially between colostrum and HM collected in other lactation stages. Biologically and nutritionally important lipids, such as long-chain polyunsaturated fatty acids (LC-PUFAs) containing lipid species, sphingomyelines or ether analogues of glycerophosphoethanoloamines were detected in HM collected in all studied lactation stages. The observed differences concerned all the major HM lipid classes and highlight the importance of the detailed compositional studies of both HM and FM.
Collapse
Affiliation(s)
- Weronika Hewelt-Belka
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (D.G.); (M.M.); (A.K.-W.)
| | | | | | | |
Collapse
|
89
|
Relationship between Fatty Acids Composition/Antioxidant Potential of Breast Milk and Maternal Diet: Comparison with Infant Formulas. Molecules 2020; 25:molecules25122910. [PMID: 32599866 PMCID: PMC7356699 DOI: 10.3390/molecules25122910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/02/2023] Open
Abstract
The fatty acid composition of human breast milk is relevant for the energy, immunity and eicosanoid production in infants. Additionally, the antioxidant properties of foods are essential for human health. Therefore, in the present study we aimed to investigate the relationship between maternal diet and fatty acids composition as well as the antioxidant potential of breast milk from donors to human milk bank of Perugia's hospital, Italy. Results were compared with infant formulas. We observed increased levels of total fatty acids and, in particular, saturated and monounsaturated fatty acids in milk from mothers fed on a vegetable and fruit-rich diet compared with a Mediterranean diet. In the same milk, a reduced antioxidant potential was found. All infant formulas resulted in richer total fatty acid content than human breast milk. Only some formulas were qualitatively similar to breast milk. Of note, the antioxidant potential of the formulas was higher or lower than the human milk with the exception of one sample. The antioxidant potential of four formulas was very high. Dietary supplementation with antioxidants has been shown to have a teratogenic effect and to increase the formation of metastases in adult. There are no data on the effects of excess antioxidants in the infants, but the possibility that they can be harmful cannot be excluded.
Collapse
|
90
|
Sollen Säuglingsnahrungen sowohl Docosahexaensäure als auch Arachidonsäure enthalten? Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-00876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
91
|
Feltham BA, Louis XL, Eskin MNA, Suh M. Docosahexaenoic Acid: Outlining the Therapeutic Nutrient Potential to Combat the Prenatal Alcohol-Induced Insults on Brain Development. Adv Nutr 2020; 11:724-735. [PMID: 31989167 PMCID: PMC7231602 DOI: 10.1093/advances/nmz135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 01/20/2023] Open
Abstract
Brain development is markedly affected by prenatal alcohol exposure, leading to cognitive and behavioral problems in the children. Protecting neuronal damage from prenatal alcohol could improve neural connections and functioning of the brain. DHA, a n-3 (ω-3) long-chain PUFA, is involved in the development of neurons. Insufficient concentrations of DHA impair neuronal development and plasticity of synaptic junctions and affect neurotransmitter concentrations in the brain. Alcohol consumption during pregnancy decreases the maternal DHA status and reduces the placental transfer of DHA to the fetus, resulting in less DHA being available for brain development. It is important to know whether DHA could induce beneficial effects on various physiological functions that promote neuronal development. This review will discuss the current evidence for the beneficial role of DHA in protecting against neuronal damage and its potential in mitigating the teratogenic effects of alcohol.
Collapse
Affiliation(s)
- Bradley A Feltham
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Xavier L Louis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Michael N A Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
92
|
Rahmawaty S, Meyer BJ. Stunting is a recognized problem: Evidence for the potential benefits of ω-3 long-chain polyunsaturated fatty acids. Nutrition 2020; 73:110564. [DOI: 10.1016/j.nut.2019.110564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/11/2019] [Indexed: 02/06/2023]
|
93
|
Do infants of breast-feeding mothers benefit from additional long-chain PUFA from fish oil? A 6-year follow-up. Br J Nutr 2020; 124:701-708. [PMID: 32312337 DOI: 10.1017/s000711452000135x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fish-oil supplements are marketed as enhancing intelligence and cognitive performance. However, empirical data concerning the utility of these products in healthy term infants are mixed, particularly with respect to lasting effects into childhood. We evaluated whether fish-oil supplementation during infancy leads to better neurocognitive/behavioural development at 6 years. We conducted a double-blind randomised controlled trial of supplementation with n-3 long-chain PUFA in 420 healthy term infants. Infants received either fish oil (containing at least 250 mg DHA and at least 60 mg EPA) or placebo (olive oil) daily from birth to 6 months of age. Neurodevelopmental follow-up was conducted at a mean age of 6 years (sd 7 months), whereby 335 children were assessed for language, executive functioning, global intelligence quotient and behaviour. No significant differences were observed between the groups for the main neurocognitive outcomes. However in parent-report questionnaire, fish-oil supplementation was associated with negative externalising (P = 0·035, d = 0·24) and oppositional/defiant behaviour (P = 0·006, d = 0·31), particularly in boys (P = 0·01, d = 0·45; P = 0·004, d = 0·40). Our results provide evidence that fish-oil supplementation to predominantly breast-fed infants confers no significant cognitive or behavioural benefit to children at 6 years.
Collapse
|
94
|
Morton SU, Vyas R, Gagoski B, Vu C, Litt J, Larsen RJ, Kuchan MJ, Lasekan JB, Sutton BP, Grant PE, Ou Y. Maternal Dietary Intake of Omega-3 Fatty Acids Correlates Positively with Regional Brain Volumes in 1-Month-Old Term Infants. Cereb Cortex 2020; 30:2057-2069. [PMID: 31711132 PMCID: PMC8355466 DOI: 10.1093/cercor/bhz222] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 08/22/2019] [Indexed: 01/05/2023] Open
Abstract
Maternal nutrition is an important factor for infant neurodevelopment. However, prior magnetic resonance imaging (MRI) studies on maternal nutrients and infant brain have focused mostly on preterm infants or on few specific nutrients and few specific brain regions. We present a first study in term-born infants, comprehensively correlating 73 maternal nutrients with infant brain morphometry at the regional (61 regions) and voxel (over 300 000 voxel) levels. Both maternal nutrition intake diaries and infant MRI were collected at 1 month of life (0.9 ± 0.5 months) for 92 term-born infants (among them, 54 infants were purely breastfed and 19 were breastfed most of the time). Intake of nutrients was assessed via standardized food frequency questionnaire. No nutrient was significantly correlated with any of the volumes of the 61 autosegmented brain regions. However, increased volumes within subregions of the frontal cortex and corpus callosum at the voxel level were positively correlated with maternal intake of omega-3 fatty acids, retinol (vitamin A) and vitamin B12, both with and without correction for postmenstrual age and sex (P < 0.05, q < 0.05 after false discovery rate correction). Omega-3 fatty acids remained significantly correlated with infant brain volumes after subsetting to the 54 infants who were exclusively breastfed, but retinol and vitamin B12 did not. This provides an impetus for future larger studies to better characterize the effect size of dietary variation and correlation with neurodevelopmental outcomes, which can lead to improved nutritional guidance during pregnancy and lactation.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Rutvi Vyas
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Catherine Vu
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jonathan Litt
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Ryan J Larsen
- Beckman Institute, University of Illinois at Urbana—Champaign, Urbana, IL 61801, USA
| | | | | | - Brad P Sutton
- Beckman Institute, University of Illinois at Urbana—Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana—Champaign, Urbana, IL 61801, USA
| | - P Ellen Grant
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yangming Ou
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
95
|
Arachidonic Acid in Human Milk. Nutrients 2020; 12:nu12030626. [PMID: 32121018 PMCID: PMC7146261 DOI: 10.3390/nu12030626] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Breastfeeding is universally recommended as the optimal choice of infant feeding and consequently human milk has been extensively investigated to unravel its unique nutrient profile. The human milk lipid composition is unique and supplies specifically long-chain polyunsaturated fatty acids (LC-PUFAs), in particular, arachidonic acid (ARA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3). Arachidonic acid (ARA) is the most predominant long-chain polyunsaturated fatty acid in human milk, albeit at low concentrations as compared to other fatty acids. It occurs predominantly in the triglyceride form and to a lesser extent as milk fat globule membrane phospholipids. Human milk ARA levels are modulated by dietary intake as demonstrated by animal and human studies and consequently vary dependent on dietary habits among mothers and regions across the globe. ARA serves as a precursor to eicosanoids and endocannabinoids that also occur in human milk. A review of scientific and clinical studies reveals that ARA plays an important role in physiological development and its related functions during early life nutrition. Therefore, ARA is an important nutrient during infancy and childhood and, as such, appropriate attention is required regarding its nutritional status and presence in the infant diet. Data are emerging indicating considerable genetic variation in encoding for desaturases and other essential fatty acid metabolic enzymes that may influence the ARA level as well as other LC-PUFAs. Human milk from well-nourished mothers has adequate levels of both ARA and DHA to support nutritional and developmental needs of infants. In case breastfeeding is not possible and infant formula is being fed, experts recommend that both ARA and DHA are added at levels present in human milk.
Collapse
|
96
|
Wu WC, Lin HC, Liao WL, Tsai YY, Chen AC, Chen HC, Lin HY, Liao LN, Chao PM. FADS Genetic Variants in Taiwanese Modify Association of DHA Intake and Its Proportions in Human Milk. Nutrients 2020; 12:nu12020543. [PMID: 32093185 PMCID: PMC7071481 DOI: 10.3390/nu12020543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Our objective was to determine how docosahexaenoic acid (DHA) proportions in human milk are modulated by maternal FADS gene variants and dietary intake in Taiwanese women. Inclusion criteria included being healthy, 20–40 y old, having had a full-term baby that they intended to breast feed for at least 1 month, and willingness to participate in this study. Intake of DHA was assessed by food frequency questionnaire and fatty acids were analyzed in human milk samples collected 3–4 weeks postpartum. Based on multiple linear regression of data from 164 mothers that completed this study, there was 0.28% (FA%) reduction in milk DHA in high versus low genetic risk (stratified by whether minor allele numbers were ≥ 3 in rs1535 and rs174448) and 0.45% reduction in low versus high intake (stratified by whether DHA intake reached 200 mg/d). There was a significant gene–diet interaction; mothers with low genetic risk only had high milk DHA proportions with high DHA intake, whereas for mothers with high genetic risk, dietary effects were quite limited. Therefore, for FADS single nucleotide polymorphism in Taiwanese women, increasing DHA intake did not correct low milk DHA proportions in those with a high-risk genotype. Diet only conferred benefits to those with a low-risk genotype. Trial registration: This trial was retrospectively registered (Feb 12, 2019) in ClinicalTrials.gov (No. NCT03842891, https://clinicaltrials.gov/ct2/show/NCT03842891).
Collapse
Affiliation(s)
- Wen-Chieh Wu
- PhD Program for Health Science and Industry, China Medical University, Taichung 404, Taiwan;
| | - Hung-Chih Lin
- Division of Neonatology, Children’s Hospital, China Medical University, Taichung 404, Taiwan; (H.-C.L.); (H.-Y.L.)
- Asia University Hospital, Asia University, Taichung 413, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan;
- Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | | | - An-Chyi Chen
- Division of Pediatric Hepatology and Gastroenterology, Children’s Hospital, China Medical University, Taichung 404, Taiwan;
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | | | - Hsiang-Yu Lin
- Division of Neonatology, Children’s Hospital, China Medical University, Taichung 404, Taiwan; (H.-C.L.); (H.-Y.L.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Li-Na Liao
- Department of Public Health, China Medical University, Taichung 404, Taiwan
- Correspondence: (L.-N.L.); (P.-M.C.); Tel.: (+886)-4-22053366 (ext. 7509) (P.-M.C.); Fax: (+886)-4-22062891 (P.-M.C.)
| | - Pei-Min Chao
- PhD Program for Health Science and Industry, China Medical University, Taichung 404, Taiwan;
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
- Correspondence: (L.-N.L.); (P.-M.C.); Tel.: (+886)-4-22053366 (ext. 7509) (P.-M.C.); Fax: (+886)-4-22062891 (P.-M.C.)
| |
Collapse
|
97
|
Wang L, Li X, Hussain M, Liu L, Zhang Y, Zhang H. Effect of lactation stages and dietary intake on the fatty acid composition of human milk (A study in northeast China). Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
98
|
Klevebro S, Juul SE, Wood TR. A More Comprehensive Approach to the Neuroprotective Potential of Long-Chain Polyunsaturated Fatty Acids in Preterm Infants Is Needed-Should We Consider Maternal Diet and the n-6:n-3 Fatty Acid Ratio? Front Pediatr 2020; 7:533. [PMID: 31998669 PMCID: PMC6965147 DOI: 10.3389/fped.2019.00533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
There is growing evidence that long-chain polyunsaturated fatty acids (LCPUFAs) are of importance for normal brain development. Adequate supply of LCPUFAs may be particularly important for preterm infants, because the third trimester is an important period of brain growth and accumulation of arachidonic acid (n-6 LCPUFA) and docosahexaenoic acid (n-3 LCPUFA). Fatty acids from the n-6 and n-3 series, particularly, have important functions in the brain as well as in the immune system, and their absolute and relative intakes may alter both the risk of impaired neurodevelopment and response to injury. This narrative review focuses on the potential importance of the n-6:n-3 fatty acid ratio in preterm brain development. Randomized trials of post-natal LCPUFA supplementation in preterm infants are presented. Pre-clinical evidence, results from observational studies in preterm infants as well as studies in term infants and evidence related to maternal diet during pregnancy, focusing on the n-6:n-3 fatty acid ratio, are also summarized. Two randomized trials in preterm infants have compared different ratios of arachidonic acid and docosahexaenoic acid intakes. Most of the other studies in preterm infants have compared formula supplemented with arachidonic acid and docosahexaenoic acid to un-supplemented formula. No trial has had a comprehensive approach to differences in total intake of both n-6 and n-3 fatty acids during a longer period of neurodevelopment. The results from preclinical and clinical studies indicate that intake of LCPUFAs during pregnancy and post-natal development is of importance for neurodevelopment and neuroprotection in preterm infants, but the interplay between fatty acids and their metabolites is complex. The best clinical approach to LCPUFA supplementation and n-6 to n-3 fatty acid ratio is still far from evident, and requires in-depth future studies that investigate specific fatty acid supplementation in the context of other fatty acids in the diet.
Collapse
Affiliation(s)
- Susanna Klevebro
- Department of Clinical Science and Education, Stockholm South General Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sandra E. Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Thomas R. Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
99
|
Chen CT, Schultz JA, Haven SE, Wilhite B, Liu CH, Chen J, Hibbeln JR. Loss of RAR-related orphan receptor alpha (RORα) selectively lowers docosahexaenoic acid in developing cerebellum. Prostaglandins Leukot Essent Fatty Acids 2020; 152:102036. [PMID: 31835092 PMCID: PMC7041906 DOI: 10.1016/j.plefa.2019.102036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
Deficiency in retinoid acid receptor-related orphan receptor alpha (RORα) of staggerer mice results in extensive granule and Purkinje cell loss in the cerebellum as well as in learned motor deficits, cognition impairments and perseverative tendencies that are commonly observed in autistic spectrum disorder (ASD). The effects of RORα on brain lipid metabolism associated with cerebellar atrophy remain unexplored. The aim of this study is to examine the effects of RORα deficiency on brain phospholipid fatty acid concentrations and compositions. Staggerer mice (Rorasg/sg) and wildtype littermates (Rora+/+) were fed n-3 polyunsaturated fatty acids (PUFA) containing diets ad libitum. At 2 months and 7 or more months old, brain total phospholipid fatty acids were quantified by gas chromatography-flame ionization detection. In the cerebellum, all fatty acid concentrations were reduced in 2 months old mice. Since total fatty acid concentrations were significantly different at 2-month-old, we examined changes in fatty acid composition. The composition of ARA was not significantly different between genotypes; though DHA composition remained significantly lowered. Despite cerebellar atrophy at >7-months-old, cerebellar fatty acid concentrations had recovered comparably to wildtype control. Therefore, RORα may be necessary for fatty acid accretions during neurodevelopment. Specifically, the effects of RORα on PUFA metabolisms are region-specific and age-dependent.
Collapse
Affiliation(s)
- Chuck T Chen
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N-01, North Bethesda, MD 20852, United States.
| | - Joseph A Schultz
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N-01, North Bethesda, MD 20852, United States.
| | - Sophie E Haven
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N-01, North Bethesda, MD 20852, United States.
| | - Breanne Wilhite
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N-01, North Bethesda, MD 20852, United States.
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, United States.
| | - Jing Chen
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, United States.
| | - Joseph R Hibbeln
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N-01, North Bethesda, MD 20852, United States.
| |
Collapse
|
100
|
Comitini F, Peila C, Fanos V, Coscia A. The Docosahexanoic Acid: From the Maternal-Fetal Dyad to Early Life Toward Metabolomics. Front Pediatr 2020; 8:538. [PMID: 33102402 PMCID: PMC7555995 DOI: 10.3389/fped.2020.00538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/27/2020] [Indexed: 02/05/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an essential ω-3 long-chain polyunsaturated fatty acid (LCPUFA) and represents the dominant structural fatty acid in the retina and in the brain's gray matter. Due to its active participation in the development of the nervous system, DHA is one of the most studied LCPUFA and is currently considered a critical nutrient during pregnancy and breastfeeding. Increasing evidence in literature suggests that an adequate concentration of DHA is required from the fetal stage through to early life to ensure optimal neurological development. Likewise, many studies in literature demonstrated that an adequate supply of DHA during pregnancy and lactation is essential to promote proper brain development in utero and in early life. Daily supplementation of DHA in newborns has potentially stronger effects compared to maternal supplementation during pregnancy. Supplementation initiated in the second year of life in children born preterm did not result in global cognitive development improvements. Preliminary findings arising from metabolomics has reported that mother's milk and infant formula supplementation of Vitamin D associated with DHA results in a higher antioxidant and protective action, with a possible positive influence on renal function and body fat on preterm infants compared to those receiving only vitamin D. Recent applications of metabolomic studies on newborns may lead to a better understanding of the metabolic process linked to early nutrition and, subsequently, to the development of targeted and personalized nutritional strategies.
Collapse
Affiliation(s)
- Federica Comitini
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University Hospital and University of Cagliari, Monserrato, Italy
| | - Chiara Peila
- Complex Structure Neonatology Unit, Department of Public Health and Paediatric, University of Turin, Turin, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University Hospital and University of Cagliari, Monserrato, Italy
| | - Alessandra Coscia
- Complex Structure Neonatology Unit, Department of Public Health and Paediatric, University of Turin, Turin, Italy
| |
Collapse
|