51
|
Hao HB, Webb SE, Yue J, Moreau M, Leclerc C, Miller AL. TRPC3 is required for the survival, pluripotency and neural differentiation of mouse embryonic stem cells (mESCs). SCIENCE CHINA. LIFE SCIENCES 2018; 61:253-265. [PMID: 29392682 DOI: 10.1007/s11427-017-9222-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
Abstract
Transient receptor potential canonical subfamily member 3 (TRPC3) is known to be important for neural development and the formation of neuronal networks. Here, we investigated the role of TRPC3 in undifferentiated mouse embryonic stem cells (mESCs) and during the differentiation of mESCs into neurons. CRISPR/Cas9-mediated knockout (KO) of TRPC3 induced apoptosis and the disruption of mitochondrial membrane potential both in undifferentiated mESCs and in those undergoing neural differentiation. In addition, TRPC3 KO impaired the pluripotency of mESCs. TRPC3 KO also dramatically repressed the neural differentiation of mESCs by inhibiting the expression of markers for neural progenitors, neurons, astrocytes and oligodendrocytes. Taken together, our new data demonstrate an important function of TRPC3 with regards to the survival, pluripotency and neural differentiation of mESCs.
Collapse
Affiliation(s)
- Helen Baixia Hao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Marc Moreau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, F-31062, France
| | - Catherine Leclerc
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, F-31062, France
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
52
|
Corsinotti A, Wong FC, Tatar T, Szczerbinska I, Halbritter F, Colby D, Gogolok S, Pantier R, Liggat K, Mirfazeli ES, Hall-Ponsele E, Mullin NP, Wilson V, Chambers I. Distinct SoxB1 networks are required for naïve and primed pluripotency. eLife 2017; 6:27746. [PMID: 29256862 PMCID: PMC5758114 DOI: 10.7554/elife.27746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Deletion of Sox2 from mouse embryonic stem cells (ESCs) causes trophectodermal differentiation. While this can be prevented by enforced expression of the related SOXB1 proteins, SOX1 or SOX3, the roles of SOXB1 proteins in epiblast stem cell (EpiSC) pluripotency are unknown. Here, we show that Sox2 can be deleted from EpiSCs with impunity. This is due to a shift in the balance of SoxB1 expression in EpiSCs, which have decreased Sox2 and increased Sox3 compared to ESCs. Consistent with functional redundancy, Sox3 can also be deleted from EpiSCs without eliminating self-renewal. However, deletion of both Sox2 and Sox3 prevents self-renewal. The overall SOXB1 levels in ESCs affect differentiation choices: neural differentiation of Sox2 heterozygous ESCs is compromised, while increased SOXB1 levels divert the ESC to EpiSC transition towards neural differentiation. Therefore, optimal SOXB1 levels are critical for each pluripotent state and for cell fate decisions during exit from naïve pluripotency.
Collapse
Affiliation(s)
- Andrea Corsinotti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Frederick Ck Wong
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Tülin Tatar
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Iwona Szczerbinska
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Florian Halbritter
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Sabine Gogolok
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Raphaël Pantier
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Kirsten Liggat
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Elham S Mirfazeli
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Elisa Hall-Ponsele
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Nicholas P Mullin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
53
|
Alsanie WF, Niclis JC, Hunt CP, De Luzy IR, Penna V, Bye CR, Pouton CW, Haynes J, Firas J, Thompson LH, Parish CL. Specification of murine ground state pluripotent stem cells to regional neuronal populations. Sci Rep 2017; 7:16001. [PMID: 29167563 PMCID: PMC5700195 DOI: 10.1038/s41598-017-16248-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/08/2017] [Indexed: 11/20/2022] Open
Abstract
Pluripotent stem cells (PSCs) are a valuable tool for interrogating development, disease modelling, drug discovery and transplantation. Despite the burgeoned capability to fate restrict human PSCs to specific neural lineages, comparative protocols for mouse PSCs have not similarly advanced. Mouse protocols fail to recapitulate neural development, consequently yielding highly heterogeneous populations, yet mouse PSCs remain a valuable scientific tool as differentiation is rapid, cost effective and an extensive repertoire of transgenic lines provides an invaluable resource for understanding biology. Here we developed protocols for neural fate restriction of mouse PSCs, using knowledge of embryonic development and recent progress with human equivalents. These methodologies rely upon naïve ground-state PSCs temporarily transitioning through LIF-responsive stage prior to neural induction and rapid exposure to regional morphogens. Neural subtypes generated included those of the dorsal forebrain, ventral forebrain, ventral midbrain and hindbrain. This rapid specification, without feeder layers or embryoid-body formation, resulted in high proportions of correctly specified progenitors and neurons with robust reproducibility. These generated neural progenitors/neurons will provide a valuable resource to further understand development, as well disorders affecting specific neuronal subpopulations.
Collapse
Affiliation(s)
- Walaa F Alsanie
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.,The Department of Medical Laboratories, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Jonathan C Niclis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Cameron P Hunt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Isabelle R De Luzy
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Vanessa Penna
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Christopher R Bye
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - John Haynes
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Jaber Firas
- The Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
54
|
Hirabayashi M, Hara H, Goto T, Takizawa A, Dwinell MR, Yamanaka T, Hochi S, Nakauchi H. Haploid embryonic stem cell lines derived from androgenetic and parthenogenetic rat blastocysts. J Reprod Dev 2017; 63:611-616. [PMID: 28824040 PMCID: PMC5735273 DOI: 10.1262/jrd.2017-074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study was conducted to establish haploid embryonic stem (ES) cell lines using fluorescent marker-carrying rats. In the first series, 7 ES cell lines were established from 26 androgenetic
haploid blastocysts. However, only 1 ES cell line (ahES-2) was found to contain haploid cells (1n = 20 + X) by fluorescence-activated cell sorting (FACS) and karyotypic analyses. No chimeras were detected among the 10
fetuses and 41 offspring derived from blastocyst injection with the FACS-purified haploid cells. In the second series, 2 ES cell lines containing haploid cells (13% in phES-1 and 1% in phES-2) were established from 2
parthenogenetic haploid blastocysts. Only the phES-2 cell population was purified by repeated FACS to obtain 33% haploid cells. Following blastocyst injection with the FACS-purified haploid cells, no chimera was observed
among the 11 fetuses; however, 1 chimeric male was found among the 47 offspring. Although haploid rat ES cell lines can be established from both blastocyst sources, FACS purification may be necessary for maintenance and
chimera production.
Collapse
Affiliation(s)
- Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies, Aichi 444-8787, Japan.,Department of Physiology, Medical College of Wisconsin, WI 53226, USA
| | - Hiromasa Hara
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan.,Present: Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Teppei Goto
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Akiko Takizawa
- Department of Physiology, Medical College of Wisconsin, WI 53226, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, WI 53226, USA
| | - Takahiro Yamanaka
- Graduate School of Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Shinichi Hochi
- Graduate School of Science and Technology, Shinshu University, Nagano 386-8567, Japan.,Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Hiromitsu Nakauchi
- Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.,Stanford University School of Medicine, CA 94305, USA
| |
Collapse
|
55
|
Andergassen D, Dotter CP, Wenzel D, Sigl V, Bammer PC, Muckenhuber M, Mayer D, Kulinski TM, Theussl HC, Penninger JM, Bock C, Barlow DP, Pauler FM, Hudson QJ. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression. eLife 2017; 6. [PMID: 28806168 PMCID: PMC5555720 DOI: 10.7554/elife.25125] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/14/2017] [Indexed: 01/02/2023] Open
Abstract
To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta. DOI:http://dx.doi.org/10.7554/eLife.25125.001
Collapse
Affiliation(s)
- Daniel Andergassen
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph P Dotter
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniel Wenzel
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Verena Sigl
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp C Bammer
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Markus Muckenhuber
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniela Mayer
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tomasz M Kulinski
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Denise P Barlow
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian M Pauler
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Quanah J Hudson
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
56
|
Kim DS, Kim JY, Kang M, Cho MS, Kim DW. Derivation of Functional Dopamine Neurons from Embryonic Stem Cells. Cell Transplant 2017. [DOI: 10.3727/000000007783464650] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective degeneration of dopaminergic (DA) neurons in the substantia nigra of the midbrain. Pharmacological treatment of PD has been a prevailing strategy. However, it has some limitations because its effectiveness gradually decreases and side effects develop. As an alternative, cell transplantation therapy has been tried. Although transplantation of fetal ventral mesencephalic cells looks promising for the treatment of PD in some cases, ethical and technical problems in obtaining large numbers of human fetal brain tissues also lead to difficulty in its clinical application. Our recent studies showed that a high yield of DA neurons could be derived from embryonic stem (ES) cells and they efficiently induced behavioral recovery in a PD animal model. Here we summarize methods for generation of functional DA neurons from ES cells for application to PD models.
Collapse
Affiliation(s)
- Dae-Sung Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | - Minkyung Kang
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
57
|
Hartley BJ, Brennand KJ. Neural organoids for disease phenotyping, drug screening and developmental biology studies. Neurochem Int 2017; 106:85-93. [PMID: 27744003 PMCID: PMC5389930 DOI: 10.1016/j.neuint.2016.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 02/01/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) can theoretically yield limitless supplies of cells fated to any cell type that comprise the human organism, making them a new tool by which to potentially overcome caveats in current biomedical research. In vitro derivation of central nervous system (CNS) cell types has the potential to provide material for drug discovery and validation, safety and toxicity assays, cell replacement therapy and the elucidation of previously unknown disease mechanisms. However, current two-dimensional (2D) CNS differentiation protocols do not faithfully recapitulate the spatial organization of heterogeneous tissue, nor the cell-cell interactions, cell-extracellular matrix interactions, or specific physiological functions generated within complex tissue such as the brain. In an effort to overcome 2D protocol limitations, there have been advancements in deriving highly complicated 3D neural organoid structures. Herein we provide a synopsis of the derivation and application of neural organoids and discuss recent advancements and remaining challenges on the full potential of this novel technological platform.
Collapse
Affiliation(s)
- Brigham J Hartley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States.
| |
Collapse
|
58
|
Li N, Du Z, Shen Q, Lei Q, Zhang Y, Zhang M, Hua J. Resveratrol Enhances Self-Renewal of Mouse Embryonic Stem Cells. J Cell Biochem 2017; 118:1928-1935. [PMID: 28230281 DOI: 10.1002/jcb.25942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
Resveratrol (RSV) has been shown to affect the differentiation of several types of stem cells, while the detailed mechanism is elusive. Here, we aim to investigate the function of RSV in self-renewal of mouse embryonic stem cells (ESCs) and the related mechanisms. In contrast with its reported roles, we found unexpectedly that differentiated ESCs or iPSCs treated by RSV would not show further differentiation, but regained a naïve pluripotency state with higher expressions of core transcriptional factors and with the ability to differentiate into all three germ layers when transplanted in vivo. In accordance with these findings, RSV also enhanced cell cycle progression of ESCs via regulating cell cycle-related proteins. Finally, enhanced activation of JAK/STAT3 signaling pathway and suppressed activation of mTOR were found essential in enhancing the self-renewal of ESCs by RSV. Our finding discovered a novel function of RSV in enhancing the self-renewal of ESCs, and suggested that the timing of treatment and concentration of RSV determined the final effect of it. Our work may contribute to understanding of RSV in the self-renewal maintenance of pluripotent stem cells, and may also provide help to the generation and maintenance of iPSCs in vitro. J. Cell. Biochem. 118: 1928-1935, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Na Li
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaoyu Du
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qijing Lei
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
59
|
Kandasamy M, Roll L, Langenstroth D, Brüstle O, Faissner A. Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs). Cell Tissue Res 2017; 368:531-549. [DOI: 10.1007/s00441-017-2594-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
|
60
|
Jang S, Choubey S, Furchtgott L, Zou LN, Doyle A, Menon V, Loew EB, Krostag AR, Martinez RA, Madisen L, Levi BP, Ramanathan S. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. eLife 2017; 6:20487. [PMID: 28296635 PMCID: PMC5352225 DOI: 10.7554/elife.20487] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development. DOI:http://dx.doi.org/10.7554/eLife.20487.001
Collapse
Affiliation(s)
- Sumin Jang
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Sandeep Choubey
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Leon Furchtgott
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Biophysics Program, Harvard University, Cambridge, United States
| | - Ling-Nan Zou
- FAS Center for Systems Biology, Harvard University, Cambridge, United States
| | - Adele Doyle
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Vilas Menon
- Allen Institute for Brain Science, Seattle, United States
| | - Ethan B Loew
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | | | | | - Linda Madisen
- Allen Institute for Brain Science, Seattle, United States
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, United States
| | - Sharad Ramanathan
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Allen Institute for Brain Science, Seattle, United States.,School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, United States
| |
Collapse
|
61
|
Bento AR, Quelhas P, Oliveira MJ, Pêgo AP, Amaral IF. Three-dimensional culture of single embryonic stem-derived neural/stem progenitor cells in fibrin hydrogels: neuronal network formation and matrix remodelling. J Tissue Eng Regen Med 2016; 11:3494-3507. [PMID: 28032468 DOI: 10.1002/term.2262] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 06/15/2016] [Accepted: 07/03/2016] [Indexed: 12/20/2022]
Abstract
In an attempt to improve the efficacy of neural stem/progenitor cell (NSPC) based therapies, fibrin hydrogels are being explored to provide a favourable microenvironment for cell survival and differentiation following transplantation. In the present work, the ability of fibrin to support the survival, proliferation, and neuronal differentiation of NSPCs derived from embryonic stem (ES) cells under monolayer culture was explored. Single mouse ES-NSPCs were cultured within fibrin (fibrinogen concentration: 6 mg/ml) under neuronal differentiation conditions up to 14 days. The ES-NSPCs retained high cell viability and proliferated within small-sized spheroids. Neuronal differentiation was confirmed by an increase in the levels of βIII-tubulin and NF200 over time. At day 14, cell-matrix constructs mainly comprised NSPCs and neurons (46.5% βIII-tubulin+ cells). Gamma-aminobutyric acid (GABA)ergic and dopaminergic/noradrenergic neurons were also observed, along with a network of synaptic proteins. The ES-NSPCs expressed matriptase and secreted MMP-2/9, with MMP-2 activity increasing along time. Fibronectin, laminin and collagen type IV deposition was also detected. Fibrin gels prepared with higher fibrinogen concentrations (8/10 mg/ml) were less permissive to neurite extension and neuronal differentiation, possibly owing to their smaller pore area and higher rigidity. Overall, it is shown that ES-NSPCs within fibrin are able to establish neuronal networks and to remodel fibrin through MMP secretion and extracellular matrix (ECM) deposition. This three-dimensional (3D) culture system was also shown to support cell viability, neuronal differentiation and ECM deposition of human ES-NSPCs. The settled 3D platform is expected to constitute a valuable tool to develop fibrin-based hydrogels for ES-NSPC delivery into the injured central nervous system. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ana R Bento
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Pedro Quelhas
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Maria J Oliveira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Departamento de Patologia e Oncologia da Faculdade de Medicina da Universidade do Porto de Medicina da Universidade do Porto, Portugal
| | - Ana P Pêgo
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Isabel F Amaral
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Portugal
| |
Collapse
|
62
|
Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling. Proc Natl Acad Sci U S A 2016; 113:E8267-E8276. [PMID: 27930333 DOI: 10.1073/pnas.1617802113] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TET-family dioxygenases catalyze conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and oxidized methylcytosines in DNA. Here, we show that mouse embryonic stem cells (mESCs), either lacking Tet3 alone or with triple deficiency of Tet1/2/3, displayed impaired adoption of neural cell fate and concomitantly skewed toward cardiac mesodermal fate. Conversely, ectopic expression of Tet3 enhanced neural differentiation and limited cardiac mesoderm specification. Genome-wide analyses showed that Tet3 mediates cell-fate decisions by inhibiting Wnt signaling, partly through promoter demethylation and transcriptional activation of the Wnt inhibitor secreted frizzled-related protein 4 (Sfrp4). Tet1/2/3-deficient embryos (embryonic day 8.0-8.5) showed hyperactivated Wnt signaling, as well as aberrant differentiation of bipotent neuromesodermal progenitors (NMPs) into mesoderm at the expense of neuroectoderm. Our data demonstrate a key role for TET proteins in modulating Wnt signaling and establishing the proper balance between neural and mesodermal cell fate determination in mouse embryos and ESCs.
Collapse
|
63
|
Choi HW, Joo JY, Hong YJ, Kim JS, Song H, Lee JW, Wu G, Schöler HR, Do JT. Distinct Enhancer Activity of Oct4 in Naive and Primed Mouse Pluripotency. Stem Cell Reports 2016; 7:911-926. [PMID: 28157483 PMCID: PMC5106531 DOI: 10.1016/j.stemcr.2016.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 02/02/2023] Open
Abstract
Naive and primed pluripotent stem cells (PSCs) and germ cells express the Oct4 gene. The Oct4 gene contains two cis-regulatory elements, the distal enhancer (DE) and proximal enhancer (PE), which differentially control Oct4 expression in a cell-type-specific and stage-specific manner. Here, we generated double transgenic mice carrying both Oct4-ΔPE-GFP and Oct4-ΔDE-tdTomato (RFP), enabling us to simultaneously monitor the activity of DE and PE. Oct4 expression is stage-specifically regulated by DE and PE during embryonic and germ cell development. Using this dual reporter system, we successfully cultured pure populations of naive (GFP+RFP−) and primed (GFP−RFP+) PSCs. We found that GFP+RFP− cells were metastable (not naive) in serum-containing medium; stable naive pluripotent cells were observed in medium containing two inhibitors (Meki and GSKi) but lacked serum. Finally, we suggest that the activity of Oct4 DE and PE is regulated by the repressive histone marks and DNA methylation in a cell-type-specific manner. A defined model for Oct4 enhancer activity in the totipotent cycle Culturing pure populations of naive and primed PSCs by a double reporter system Altering Oct4 enhancer activity in PSCs by changing culture conditions Histone modification and DNA methylation regulate Oct4 enhancer activity
Collapse
Affiliation(s)
- Hyun Woo Choi
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea; Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Jin Young Joo
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea; Dream-i Infertility Clinic, 45-17 Huimang-ro, 46 Beon-gil Baebang-eup, Asan-si 31470, Chungcheongnam-do, Republic of Korea
| | - Yean Ju Hong
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jong Soo Kim
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jeong Woong Lee
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
64
|
Khalfallah O, Jarjat M, Davidovic L, Nottet N, Cestèle S, Mantegazza M, Bardoni B. Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis. Stem Cells 2016; 35:374-385. [PMID: 27664080 DOI: 10.1002/stem.2505] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 08/07/2016] [Accepted: 08/30/2016] [Indexed: 01/14/2023]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, βIII-tubulin, p27kip1 , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.
Collapse
Affiliation(s)
- Olfa Khalfallah
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Marielle Jarjat
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Laetitia Davidovic
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Nicolas Nottet
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Sandrine Cestèle
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Massimo Mantegazza
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Barbara Bardoni
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| |
Collapse
|
65
|
Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms. Proc Natl Acad Sci U S A 2016; 113:12202-12207. [PMID: 27729528 DOI: 10.1073/pnas.1608679113] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic memory, in particular DNA methylation, is established during development in differentiating cells and must be erased to create naïve (induced) pluripotent stem cells. The ten-eleven translocation (TET) enzymes can catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives, thereby actively removing this memory. Nevertheless, the mechanism by which the TET enzymes are regulated, and the extent to which they can be manipulated, are poorly understood. Here we report that retinoic acid (RA) or retinol (vitamin A) and ascorbate (vitamin C) act as modulators of TET levels and activity. RA or retinol enhances 5hmC production in naïve embryonic stem cells by activation of TET2 and TET3 transcription, whereas ascorbate potentiates TET activity and 5hmC production through enhanced Fe2+ recycling, and not as a cofactor as reported previously. We find that both ascorbate and RA or retinol promote the derivation of induced pluripotent stem cells synergistically and enhance the erasure of epigenetic memory. This mechanistic insight has significance for the development of cell treatments for regenenerative medicine, and enhances our understanding of how intrinsic and extrinsic signals shape the epigenome.
Collapse
|
66
|
Differentiation of Spermatogonia Stem Cells into Functional Mature Neurons Characterized with Differential Gene Expression. Mol Neurobiol 2016; 54:5676-5682. [PMID: 27644129 DOI: 10.1007/s12035-016-0097-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/01/2016] [Indexed: 01/02/2023]
Abstract
Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B27, N2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.
Collapse
|
67
|
Rahim AB, Vardy LA. Analysis of mRNA Translation Rate in Mouse Embryonic Stem Cells. Methods Mol Biol 2016; 1341:143-55. [PMID: 26084596 DOI: 10.1007/7651_2015_233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Regulation of gene expression is essential to enable embryonic stem cells (ESCs) to either self-renew or to differentiate. Translational regulation of mRNA plays a major role in regulating gene expression and has been shown to be important for ESC differentiation. Sucrose gradients can be used to separate mRNAs based on the number of associated ribosomes and this can be used as a readout of the rate of translation. Following centrifugation through a sucrose gradient, mRNAs can be recovered, purified, and analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) to determine their ribosomal load in different cell states. Here, we describe how to differentiate mouse ESCs to Neural Precursor Cells (NPCs) and analyze the rate of translation of individual mRNAs by qRT-PCR following polysome fractionation.
Collapse
Affiliation(s)
- Anisa B Rahim
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Leah A Vardy
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
68
|
Abdolazimi Y, Stojanova Z, Segil N. Selection of cell fate in the organ of Corti involves the integration of Hes/Hey signaling at the Atoh1 promoter. Development 2016; 143:841-50. [PMID: 26932672 DOI: 10.1242/dev.129320] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Determination of cell fate within the prosensory domain of the developing cochlear duct relies on the temporal and spatial regulation of the bHLH transcription factor Atoh1. Auditory hair cells and supporting cells arise in a wave of differentiation that patterns them into discrete rows mediated by Notch-dependent lateral inhibition. However, the mechanism responsible for selecting sensory cells from within the prosensory competence domain remains poorly understood. We show in mice that rather than being upregulated in rows of cells, Atoh1 is subject to transcriptional activation in groups of prosensory cells, and that highly conserved sites for Hes/Hey repressor binding in the Atoh1 promoter are needed to select the hair cell and supporting cell fate. During perinatal supporting cell transdifferentiation, which is a model of hair cell regeneration, we show that derepression is sufficient to induce Atoh1 expression, suggesting a mechanism for priming the 3' Atoh1 autoregulatory enhancer needed for hair cell expression.
Collapse
Affiliation(s)
- Yassan Abdolazimi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USC, 1425 San Pablo St., Los Angeles, CA 90033, USA GMCB Graduate Program, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USC, 1425 San Pablo St., Los Angeles, CA 90033, USA
| | - Zlatka Stojanova
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USC, 1425 San Pablo St., Los Angeles, CA 90033, USA
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USC, 1425 San Pablo St., Los Angeles, CA 90033, USA Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine of the University of Southern California, 1450 San Pablo St., Suite 5100, Los Angeles, CA 90033, USA
| |
Collapse
|
69
|
Choy FC, Klarić TS, Koblar SA, Lewis MD. miR-744 and miR-224 Downregulate Npas4 and Affect Lineage Differentiation Potential and Neurite Development During Neural Differentiation of Mouse Embryonic Stem Cells. Mol Neurobiol 2016; 54:3528-3541. [PMID: 27189618 DOI: 10.1007/s12035-016-9912-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/03/2016] [Indexed: 12/11/2022]
Abstract
Neuronal PAS domain protein 4 (Npas4) is a brain-specific transcription factor whose expression is enriched in neurogenic regions of the brain. In addition, it was demonstrated that Npas4 expression is dynamic and highly regulated during neural differentiation of embryonic stem cells (ESCs). While these findings implicate a role for Npas4 in neurogenesis, the underlying mechanisms of regulation remain unknown. Given that growing evidence suggests that microRNAs (miRNAs) play important roles in both embryonic and adult neurogenesis, we reasoned that miRNAs are good candidates for regulating Npas4 expression during neural differentiation of ESCs. In this study, we utilized the small RNA sequencing method to profile miRNA expression during neural differentiation of mouse ESCs. Two differentially expressed miRNAs were identified to be able to significantly reduce reporter gene activity by targeting the Npas4 3'UTR, namely miR-744 and miR-224. More importantly, ectopic expression of these miRNAs during neural differentiation resulted in downregulation of endogenous Npas4 expression. Subsequent functional analysis revealed that overexpression of either miR-744 or miR-224 delayed early neural differentiation, reduced GABAergic neuron production and inhibited neurite outgrowth. Collectively, our findings indicate that Npas4 not only functions at the early stages of neural differentiation but may also, in part, contribute to neuronal subtype specification and neurite development.
Collapse
Affiliation(s)
- Fong Chan Choy
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Thomas S Klarić
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Simon A Koblar
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Martin D Lewis
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia. .,South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| |
Collapse
|
70
|
Hao B, Webb SE, Miller AL, Yue J. The role of Ca(2+) signaling on the self-renewal and neural differentiation of embryonic stem cells (ESCs). Cell Calcium 2016; 59:67-74. [PMID: 26973143 DOI: 10.1016/j.ceca.2016.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/05/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) are promising resources for both scientific research and clinical regenerative medicine. With regards to the latter, ESCs are especially useful for treating several neurodegenerative disorders. Two significant characteristics of ESCs, which make them so valuable, are their capacity for self-renewal and their pluripotency, both of which are regulated by the integration of various signaling pathways. Intracellular Ca(2+) signaling is involved in several of these pathways. It is known to be precisely controlled by different Ca(2+) channels and pumps, which play an important role in a variety of cellular activities, including proliferation, differentiation and apoptosis. Here, we provide a review of the recent work conducted to investigate the function of Ca(2+) signaling in the self-renewal and the neural differentiation of ESCs. Specifically, we describe the role of intracellular Ca(2+) mobilization mediated by RyRs (ryanodine receptors); by cADPR (cyclic adenosine 5'-diphosphate ribose) and CD38 (cluster of differentiation 38/cADPR hydrolase); and by NAADP (nicotinic acid adenine dinucleotide phosphate) and TPC2 (two pore channel 2). We also discuss the Ca(2+) influx mediated by SOCs (store-operated Ca(2+) channels), TRPCs (transient receptor potential cation channels) and LTCC (L-type Ca(2+) channels) in the pluripotent ESCs as well as in neural differentiation of ESCs. Moreover, we describe the integration of Ca(2+) signaling in the other signaling pathways that are known to regulate the fate of ESCs.
Collapse
Affiliation(s)
- Baixia Hao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
71
|
Liu Y, Duong W, Krawczyk C, Bretschneider N, Borbély G, Varshney M, Zinser C, Schär P, Rüegg J. Oestrogen receptor β regulates epigenetic patterns at specific genomic loci through interaction with thymine DNA glycosylase. Epigenetics Chromatin 2016; 9:7. [PMID: 26889208 PMCID: PMC4756533 DOI: 10.1186/s13072-016-0055-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/27/2016] [Indexed: 02/08/2023] Open
Abstract
Background DNA methylation is one way to encode epigenetic information and plays a crucial role in regulating gene expression during embryonic development. DNA methylation marks are established by the DNA methyltransferases and, recently, a mechanism for active DNA demethylation has emerged involving the ten-eleven translocator proteins and thymine DNA glycosylase (TDG). However, so far it is not clear how these enzymes are recruited to, and regulate DNA methylation at, specific genomic loci. A number of studies imply that sequence-specific transcription factors are involved in targeting DNA methylation and demethylation processes. Oestrogen receptor beta (ERβ) is a ligand-inducible transcription factor regulating gene expression in response to the female sex hormone oestrogen. Previously, we found that ERβ deficiency results in changes in DNA methylation patterns at two gene promoters, implicating an involvement of ERβ in DNA methylation. In this study, we set out to explore this involvement on a genome-wide level, and to investigate the underlying mechanisms of this function. Results Using reduced representation bisulfite sequencing, we compared genome-wide DNA methylation in mouse embryonic fibroblasts derived from wildtype and ERβ knock-out mice, and identified around 8000 differentially methylated positions (DMPs). Validation and further characterisation of selected DMPs showed that differences in methylation correlated with changes in expression of the nearest gene. Additionally, re-introduction of ERβ into the knock-out cells could reverse hypermethylation and reactivate expression of some of the genes. We also show that ERβ is recruited to regions around hypermethylated DMPs. Finally, we demonstrate here that ERβ interacts with TDG and that TDG binds ERβ-dependently to hypermethylated DMPs. Conclusion We provide evidence that ERβ plays a role in regulating DNA methylation at specific genomic loci, likely as the result of its interaction with TDG at these regions. Our findings imply a novel function of ERβ, beyond direct transcriptional control, in regulating DNA methylation at target genes. Further, they shed light on the question how DNA methylation is regulated at specific genomic loci by supporting a concept in which sequence-specific transcription factors can target factors that regulate DNA methylation patterns. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0055-7) contains supplementary material, which is available to authorised users.
Collapse
Affiliation(s)
- Yun Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
| | - William Duong
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.,Novartis Institutes for BioMedical Research, Novartis Pharma AG, Werk Klybeck, 4002 Basel, Switzerland
| | - Claudia Krawczyk
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | | | - Gábor Borbély
- Swedish Toxicology Science Research Center (Swetox), Forskargatan 20, 151 36 Södertälje, Sweden
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institutet at Novum, 141 83 Stockholm, Sweden
| | - Christian Zinser
- Swedish Toxicology Science Research Center (Swetox), Forskargatan 20, 151 36 Södertälje, Sweden
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Joëlle Rüegg
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.,Swedish Toxicology Science Research Center (Swetox), Forskargatan 20, 151 36 Södertälje, Sweden.,Department of Clinical Neurosciences, Karolinska Institutet, CMM L8:00, 171 76 Stockholm, Sweden
| |
Collapse
|
72
|
Omelyanenko A, Sekyrova P, Andäng M. ZD7288, a blocker of the HCN channel family, increases doubling time of mouse embryonic stem cells and modulates differentiation outcomes in a context-dependent manner. SPRINGERPLUS 2016; 5:41. [PMID: 26835223 PMCID: PMC4715829 DOI: 10.1186/s40064-016-1678-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/06/2016] [Indexed: 11/18/2022]
Abstract
Pluripotent stem cells are the starting cell type of choice for the development of many cell-based regenerative therapies due to their rapid and unlimited proliferation and broad differentiation potential. The unique pluripotent cell cycle underlies both these properties. Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) family channels have previously been reported to modulate mouse embryonic stem cell (ESC) proliferation and here we characterize the effects of HCN inhibitor ZD7288 on ESC proliferation and stem cell identity. The doubling time of cells treated with the HCN blocker increased by ~30 % due to longer G1 and S phases, resulting in a nearly twofold reduction in ESC numbers after 4 day serum-free culture. Slower progression through S phase was not accompanied by H2AX phosphorylation or cell stalling at transition points, although EdU incorporation in treated cells was reduced. Despite the drastic cell cycle perturbations, the pluripotent status of the cells was not compromised by treatment. Cultures treated with the HCN blocker in maintenance conditions maintained pluripotency marker expression on both RNA and protein level, although we observed a reversible effect on morphology and colony formation frequency. Addition of ZD7288 in differentiating media improved FBS-driven differentiation, but not directed differentiation to neuroectoderm, further indicating that altered cell cycle structure does not necessarily compromise pluripotency and drive ESCs to differentiation. The categorically different outcomes of ZD7288 use during differentiation indicate that cell culture context can be determinative for effects of ion-modulatory molecules and underscores the need for exploring their action in serum-free conditions demanded by potential clinical use.
Collapse
Affiliation(s)
- Anna Omelyanenko
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Petra Sekyrova
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden ; Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Michael Andäng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden ; Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| |
Collapse
|
73
|
Generating Diverse Spinal Motor Neuron Subtypes from Human Pluripotent Stem Cells. Stem Cells Int 2015; 2016:1036974. [PMID: 26823667 PMCID: PMC4707335 DOI: 10.1155/2016/1036974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 09/14/2015] [Indexed: 12/18/2022] Open
Abstract
Resolving the mechanisms underlying human neuronal diversification remains a major challenge in developmental and applied neurobiology. Motor neurons (MNs) represent a diverse pool of neuronal subtypes exhibiting differential vulnerability in different human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). The ability to predictably manipulate MN subtype lineage restriction from human pluripotent stem cells (PSCs) will form the essential basis to establishing accurate, clinically relevant in vitro disease models. I first overview motor neuron developmental biology to provide some context for reviewing recent studies interrogating pathways that influence the generation of MN diversity. I conclude that motor neurogenesis from PSCs provides a powerful reductionist model system to gain insight into the developmental logic of MN subtype diversification and serves more broadly as a leading exemplar of potential strategies to resolve the molecular basis of neuronal subclass differentiation within the nervous system. These studies will in turn permit greater mechanistic understanding of differential MN subtype vulnerability using in vitro human disease models.
Collapse
|
74
|
Solari C, Vázquez Echegaray C, Cosentino MS, Petrone MV, Waisman A, Luzzani C, Francia M, Villodre E, Lenz G, Miriuka S, Barañao L, Guberman A. Manganese Superoxide Dismutase Gene Expression Is Induced by Nanog and Oct4, Essential Pluripotent Stem Cells' Transcription Factors. PLoS One 2015; 10:e0144336. [PMID: 26642061 PMCID: PMC4671669 DOI: 10.1371/journal.pone.0144336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/17/2015] [Indexed: 01/29/2023] Open
Abstract
Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription.
Collapse
Affiliation(s)
- Claudia Solari
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), UBA-CONICET, Buenos Aires, Argentina
| | - Camila Vázquez Echegaray
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), UBA-CONICET, Buenos Aires, Argentina
| | - María Soledad Cosentino
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), UBA-CONICET, Buenos Aires, Argentina
| | - María Victoria Petrone
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), UBA-CONICET, Buenos Aires, Argentina
| | - Ariel Waisman
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), UBA-CONICET, Buenos Aires, Argentina
| | - Carlos Luzzani
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), UBA-CONICET, Buenos Aires, Argentina
| | - Marcos Francia
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), UBA-CONICET, Buenos Aires, Argentina
| | - Emilly Villodre
- Laboratório de Sinalização Celular, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Guido Lenz
- Laboratório de Sinalização Celular, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Santiago Miriuka
- Laboratorio de Investigación Aplicada a las Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lino Barañao
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), UBA-CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandra Guberman
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), UBA-CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
75
|
A serum-free and defined medium for the culture of mammalian postimplantation embryos. Biochem Biophys Res Commun 2015; 468:813-9. [DOI: 10.1016/j.bbrc.2015.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022]
|
76
|
Baillie-Johnson P, van den Brink SC, Balayo T, Turner DA, Martinez Arias A. Generation of Aggregates of Mouse Embryonic Stem Cells that Show Symmetry Breaking, Polarization and Emergent Collective Behaviour In Vitro. J Vis Exp 2015. [PMID: 26650833 PMCID: PMC4692741 DOI: 10.3791/53252] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have developed a protocol improving current Embryoid Body (EB) culture which allows the study of self-organization, symmetry breaking, axial elongation and cell fate specification using aggregates of mouse embryonic stem cells (mESCs) in suspension culture. Small numbers of mESCs are aggregated in basal medium for 48 hr in non-tissue-culture-treated, U-bottomed 96-well plates, after which they are competent to respond to experimental signals. Following treatment, these aggregates begin to show signs of polarized gene expression and gradually alter their morphology from a spherical mass of cells to an elongated, well organized structure in the absence of external asymmetry cues. These structures are not only able to display markers of the three germ layers, but actively display gastrulation-like movements, evidenced by a directional dislodgement of individual cells from the aggregate, which crucially occurs at one region of the elongated structure. This protocol provides a detailed method for the reproducible formation of these aggregates, their stimulation with signals such as Wnt/β-Catenin activation and BMP inhibition and their analysis by single time-point or time-lapse fluorescent microscopy. In addition, we describe modifications to current whole-mount mouse embryo staining procedures for immunocytochemical analysis of specific markers within fixed aggregates. The changes in morphology, gene expression and length of the aggregates can be quantitatively measured, providing information on how signals can alter axial fates. It is envisaged that this system can be applied both to the study of early developmental events such as axial development and organization, and more broadly, the processes of self-organization and cellular decision-making. It may also provide a suitable niche for the generation of cell types present in the embryo that are unobtainable from conventional adherent culture such as spinal cord and motor neurones.
Collapse
Affiliation(s)
| | - Susanne Carina van den Brink
- Department of Genetics, University of Cambridge; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences
| | - Tina Balayo
- Department of Genetics, University of Cambridge
| | | | | |
Collapse
|
77
|
Wei W, Lu Y, Hao B, Zhang K, Wang Q, Miller AL, Zhang LR, Zhang LH, Yue J. CD38 Is Required for Neural Differentiation of Mouse Embryonic Stem Cells by Modulating Reactive Oxygen Species. Stem Cells 2015; 33:2664-2673. [PMID: 26012865 DOI: 10.1002/stem.2057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/27/2015] [Indexed: 11/12/2022]
Abstract
CD38 is a multifunctional membrane enzyme and the main mammalian ADP-ribosyl cyclase, which catalyzes the synthesis and hydrolysis of cADPR, a potent endogenous Ca(2+) mobilizing messenger. Here, we explored the role of CD38 in the neural differentiation of mouse embryonic stem cells (ESCs). We found that the expression of CD38 was decreased during the differentiation of mouse ESCs initiated by adherent monoculture. Perturbing the CD38/cADPR signaling by either CD38 knockdown or treatment of cADPR antagonists inhibited the neural commitment of mouse ESCs, whereas overexpression of CD38 promoted it. Moreover, CD38 knockdown dampened reactive oxygen species (ROS) production during neural differentiation of ESCs by inhibiting NADPH oxidase activity, while CD38 overexpression enhanced it. Similarly, application of hydrogen peroxide mitigated the inhibitory effects of CD38 knockdown on neural differentiation of ESCs. Taken together, our data indicate that the CD38 signaling pathway is required for neural differentiation of mouse ESCs by modulating ROS production.
Collapse
Affiliation(s)
- Wenjie Wei
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yingying Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Baixia Hao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kehui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qian Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Liang-Ren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Li-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
78
|
Vrbsky J, Tereh T, Kyrylenko S, Dvorak P, Krejci L. MEK and TGF-beta Inhibition Promotes Reprogramming without the Use of Transcription Factor. PLoS One 2015; 10:e0127739. [PMID: 26039048 PMCID: PMC4454598 DOI: 10.1371/journal.pone.0127739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/18/2015] [Indexed: 01/15/2023] Open
Abstract
The possibility of replacing the originally discovered and widely used DNA reprogramming transcription factors is stimulating enormous effort to identify more effective compounds that would not alter the genetic information. Here, we describe the generation of induced pluripotent stem cells (iPSc) from head-derived primary culture of mouse embryonic cells using small chemical inhibitors of the MEK and TGF-beta pathways without delivery of exogenous transcription factors. These iPSc express standard pluripotency markers and retain their potential to differentiate into cells of all germ layers. Our data indicate that head-derived embryonic neural cells might have the reprogramming potential while neither the same primary cells cultivated over five passages in vitro nor a cell population derived from adult brain possesses this capacity. Our results reveal the potential for small molecules to functionally replace routinely used transcription factors and lift the veil on molecular regulation controlling pluripotency. The conditions described here could provide a platform upon which other genome non integrative and safer reprogramming processes could be developed. This work also shows novel potential for developing embryonic neural cells.
Collapse
Affiliation(s)
- Jan Vrbsky
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic
| | - Tamas Tereh
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Sergiy Kyrylenko
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic
| | - Lumir Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 602 00, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
79
|
Kimura Y, Oda M, Nakatani T, Sekita Y, Monfort A, Wutz A, Mochizuki H, Nakano T. CRISPR/Cas9-mediated reporter knock-in in mouse haploid embryonic stem cells. Sci Rep 2015; 5:10710. [PMID: 26039937 PMCID: PMC4454075 DOI: 10.1038/srep10710] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/29/2015] [Indexed: 12/26/2022] Open
Abstract
Mouse parthenogenetic haploid embryonic stem cells (ESCs) are pluripotent cells generated from chemically activated oocytes. Haploid ESCs provide an opportunity to study the effect of genetic alterations because of their hemizygotic characteristics. However, their further application for the selection of unique phenotypes remains limited since ideal reporters to monitor biological processes such as cell differentiation are missing. Here, we report the application of CRISPR/Cas9-mediated knock-in of a reporter cassette, which does not disrupt endogenous target genes in mouse haploid ESCs. We first validated the system by inserting the P2A-Venus reporter cassette into the housekeeping gene locus. In addition to the conventional strategy using the Cas9 nuclease, we employed the Cas9 nickase and truncated sgRNAs to reduce off-target mutagenesis. These strategies induce targeted insertions with an efficiency that correlated with sgRNA guiding activity. We also engineered the neural marker gene Sox1 locus and verified the precise insertion of the P2A-Venus reporter cassette and its functionality by monitoring neural differentiation. Our data demonstrate the successful application of the CRISPR/Cas9-mediated knock-in system for establishing haploid knock-in ESC lines carrying gene specific reporters. Genetically modified haploid ESCs have potential for applications in forward genetic screening of developmental pathways.
Collapse
Affiliation(s)
- Yasuyoshi Kimura
- Department of Pathology
- Department of Neurology, Graduate School of Medicine
| | - Masaaki Oda
- Department of Pathology
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Yoichi Sekita
- Department of Pathology
- Department of Biosciences, Kitasato University School of Science, Kanagawa, Japan
| | - Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Hönggerberg, 8049 Zürich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Hönggerberg, 8049 Zürich, Switzerland
| | | | - Toru Nakano
- Department of Pathology
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- JST, CREST.
| |
Collapse
|
80
|
Velten L, Anders S, Pekowska A, Järvelin AI, Huber W, Pelechano V, Steinmetz LM. Single-cell polyadenylation site mapping reveals 3' isoform choice variability. Mol Syst Biol 2015; 11:812. [PMID: 26040288 PMCID: PMC4501847 DOI: 10.15252/msb.20156198] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell variability in gene expression is important for many processes in biology, including embryonic development and stem cell homeostasis. While heterogeneity of gene expression levels has been extensively studied, less attention has been paid to mRNA polyadenylation isoform choice. 3′ untranslated regions regulate mRNA fate, and their choice is tightly controlled during development, but how 3′ isoform usage varies within genetically and developmentally homogeneous cell populations has not been explored. Here, we perform genome-wide quantification of polyadenylation site usage in single mouse embryonic and neural stem cells using a novel single-cell transcriptomic method, BATSeq. By applying BATBayes, a statistical framework for analyzing single-cell isoform data, we find that while the developmental state of the cell globally determines isoform usage, single cells from the same state differ in the choice of isoforms. Notably this variation exceeds random selection with equal preference in all cells, a finding that was confirmed by RNA FISH data. Variability in 3′ isoform choice has potential implications on functional cell-to-cell heterogeneity as well as utility in resolving cell populations.
Collapse
Affiliation(s)
- Lars Velten
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Simon Anders
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Aleksandra Pekowska
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Aino I Järvelin
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Vicent Pelechano
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany Stanford Genome Technology Center, Palo Alto, CA, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
81
|
Gu H, Lazarenko RM, Koktysh D, Iacovitti L, Zhang Q. A Stem Cell-Derived Platform for Studying Single Synaptic Vesicles in Dopaminergic Synapses. Stem Cells Transl Med 2015; 4:887-93. [PMID: 26025981 DOI: 10.5966/sctm.2015-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022] Open
Abstract
The exocytotic release of dopamine is one of the most characteristic but also one of the least appreciated processes in dopaminergic neurotransmission. Fluorescence imaging has yielded rich information about the properties of synaptic vesicles and the release of neurotransmitters in excitatory and inhibitory neurons. In contrast, imaging-based studies for in-depth understanding of synaptic vesicle behavior in dopamine neurons are lagging largely because of a lack of suitable preparations. Midbrain culture has been one of the most valuable preparations for the subcellular investigation of dopaminergic transmission; however, the paucity and fragility of cultured dopaminergic neurons limits their use for live cell imaging. Recent developments in stem cell technology have led to the successful production of dopamine neurons from embryonic or induced pluripotent stem cells. Although the dopaminergic identity of these stem cell-derived neurons has been characterized in different ways, vesicle-mediated dopamine release from their axonal terminals has been barely assessed. We report a more efficient procedure to reliably generate dopamine neurons from embryonic stem cells, and it yields more dopamine neurons with more dopaminergic axon projections than midbrain culture does. Using a collection of functional measurements, we show that stem cell-derived dopamine neurons are indistinguishable from those in midbrain culture. Taking advantage of this new preparation, we simultaneously tracked the turnover of hundreds of synaptic vesicles individually using pH-sensitive quantum dots. By doing so, we revealed distinct fusion kinetics of the dopamine-secreting vesicles, which is consistent within both preparations.
Collapse
Affiliation(s)
- Haigang Gu
- Department of Pharmacology and Vanderbilt Institute of Nanoscale Science and Engineering, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Roman M Lazarenko
- Department of Pharmacology and Vanderbilt Institute of Nanoscale Science and Engineering, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dmitry Koktysh
- Department of Pharmacology and Vanderbilt Institute of Nanoscale Science and Engineering, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Pharmacology and Vanderbilt Institute of Nanoscale Science and Engineering, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qi Zhang
- Department of Pharmacology and Vanderbilt Institute of Nanoscale Science and Engineering, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
82
|
Wongpaiboonwattana W, Stavridis MP. Neural differentiation of mouse embryonic stem cells in serum-free monolayer culture. J Vis Exp 2015:e52823. [PMID: 26066640 DOI: 10.3791/52823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability to differentiate mouse embryonic stem cells (ESC) to neural progenitors allows the study of the mechanisms controlling neural specification as well as the generation of mature neural cell types for further study. In this protocol we describe a method for the differentiation of ESC to neural progenitors using serum-free, monolayer culture. The method is scalable, efficient and results in production of ~70% neural progenitor cells within 4 - 6 days. It can be applied to ESC from various strains grown under a variety of conditions. Neural progenitors can be allowed to differentiate further into functional neurons and glia or analyzed by microscopy, flow cytometry or molecular techniques. The differentiation process is amenable to time-lapse microscopy and can be combined with the use of reporter lines to monitor the neural specification process. We provide detailed instructions on media preparation and cell density optimization to allow the process to be applied to most ESC lines and a variety of cell culture vessels.
Collapse
Affiliation(s)
| | - Marios P Stavridis
- Division of Cancer Research, College of Medicine, Dentistry and Nursing, University of Dundee;
| |
Collapse
|
83
|
Liu P, Dou X, Peng G, Han JDJ, Jing N. Genome-wide analysis of histone acetylation dynamics during mouse embryonic stem cell neural differentiation. GENOMICS DATA 2015; 5:15-6. [PMID: 26484213 PMCID: PMC4583617 DOI: 10.1016/j.gdata.2015.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/01/2015] [Indexed: 01/13/2023]
Abstract
Epigenetic modification as an intrinsic fine-tune program cooperates with key transcription factors to regulate the cell fate determination. The histone acetylation participating in neural differentiation of pluripotent stem cells is expected but not well studied. Here, using acetylated histone H3 ChIP-sequencing (ChIP-seq), we demonstrate that the histone H3 acetylation level is gradually increased on the neural gene loci while decreased on the neural-inhibitory gene loci during mouse embryonic stem cell (mESC) neural differentiation. We further show that histone deacetylase 1 (HDAC1) is essential for neural commitment by targeting Nodal signaling. Thus, our study reveals a mechanism by which the epigenetic modification of histone acetylation/deacetylation interacts with extracellular signaling in mESC neural fate determination. Data were deposited in Gene Expression Omnibus (GEO) datasets under reference number GSE66025.
Collapse
Affiliation(s)
- Pingyu Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoyang Dou
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Dong Jackie Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
84
|
Histone deacetylation promotes mouse neural induction by restricting Nodal-dependent mesendoderm fate. Nat Commun 2015; 6:6830. [PMID: 25904100 DOI: 10.1038/ncomms7830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 01/22/2023] Open
Abstract
Cell fate determination requires the cooperation between extrinsic signals and intrinsic molecules including transcription factors as well as epigenetic regulators. Nevertheless, how neural fate commitment is regulated by epigenetic modifications remains largely unclear. Here we show that transient histone deacetylation at epiblast stage promotes neural differentiation of mouse embryonic stem cells (mESCs). Histone deacetylase 1 (HDAC1) deficiency in mESCs partially phenocopies the inhibition of histone deacetylation in vitro, and displays reduced incorporation into neural tissues in chimeric mouse embryos in vivo. Mechanistic studies show that Nodal, which is repressed by histone deacetylation, is a direct target of HDAC1. Furthermore, the inhibition of histone deacetylation in the anterior explant of mouse embryos at E7.0 leads to Nodal activation and neural development repression. Thus, our study reveals an intrinsic mechanism that epigenetic histone deacetylation ensures neural fate commitment by restricting Nodal signalling in murine anterior epiblast ex vivo and mESC in vitro.
Collapse
|
85
|
Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells. Stem Cells Int 2015; 2015:459301. [PMID: 25945099 PMCID: PMC4402205 DOI: 10.1155/2015/459301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022] Open
Abstract
Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or neuronal differentiation of ES cells. To investigate this, we examined the expression profiles of Wnt signaling components. Expression levels of Wnts known to induce β-catenin were very low in undifferentiated ES cells. Stable ES cell lines which can monitor endogenous activity of Wnt/β-catenin signaling suggest that Wnt signaling was very low in undifferentiated ES cells, whereas it increased during embryonic body formation or neuronal differentiation. Interestingly, application of small molecules which can positively (BIO, GSK3β inhibitor) or negatively (IWR-1-endo, Axin stabilizer) control Wnt/β-catenin signaling suggests that activation of that signaling at different time periods had differential effects on neuronal differentiation of 46C ES cells. Further, ChIP analysis suggested that β-catenin/TCF1 complex directly regulated the expression of Sox1 during neuronal differentiation. Overall, our data suggest that Wnt/β-catenin signaling plays differential roles at different time points of neuronal differentiation.
Collapse
|
86
|
Nakanoh S, Fuse N, Takahashi Y, Agata K. Verification of chicken Nanog as an epiblast marker and identification of chicken PouV as Pou5f3 by newly raised antibodies. Dev Growth Differ 2015; 57:251-63. [DOI: 10.1111/dgd.12205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Shota Nakanoh
- Department of Biophysics; Graduate School of Science; Kyoto University; Sakyo-Ku Kyoto 606-8502 Japan
| | - Naoyuki Fuse
- RIKEN Center for Developmental Biology; Kobe Hyogo 650-0047 Japan
| | - Yoshiko Takahashi
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency (JST); Kawaguchi Saitama 332-0012 Japan
| | - Kiyokazu Agata
- Department of Biophysics; Graduate School of Science; Kyoto University; Sakyo-Ku Kyoto 606-8502 Japan
| |
Collapse
|
87
|
Huang G, Ye S, Zhou X, Liu D, Ying QL. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci 2015; 72:1741-57. [PMID: 25595304 DOI: 10.1007/s00018-015-1833-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) can be maintained in culture indefinitely while retaining the capacity to generate any type of cell in the body, and therefore not only hold great promise for tissue repair and regeneration, but also provide a powerful tool for modeling human disease and understanding biological development. In order to fulfill the full potential of ESCs, it is critical to understand how ESC fate, whether to self-renew or to differentiate into specialized cells, is regulated. On the molecular level, ESC fate is controlled by the intracellular transcriptional regulatory networks that respond to various extrinsic signaling stimuli. In this review, we discuss and compare important signaling pathways in the self-renewal and differentiation of mouse, rat, and human ESCs with an emphasis on how these pathways integrate into ESC-specific transcription circuitries. This will be beneficial for understanding the common and conserved mechanisms that govern self-renewal, and for developing novel culture conditions that support ESC derivation and maintenance.
Collapse
Affiliation(s)
- Guanyi Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | | | | | | | | |
Collapse
|
88
|
Guyochin A, Maenner S, Chu ETJ, Hentati A, Attia M, Avner P, Clerc P. Live cell imaging of the nascent inactive X chromosome during the early differentiation process of naive ES cells towards epiblast stem cells. PLoS One 2014; 9:e116109. [PMID: 25546018 PMCID: PMC4278889 DOI: 10.1371/journal.pone.0116109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022] Open
Abstract
Random X-chromosome inactivation ensures dosage compensation in mammals through the transcriptional silencing of one of the two X chromosomes present in each female cell. Silencing is initiated in the differentiating epiblast of the mouse female embryos through coating of the nascent inactive X chromosome by the non-coding RNA Xist, which subsequently recruits the Polycomb Complex PRC2 leading to histone H3-K27 methylation. Here we examined in mouse ES cells the early steps of the transition from naive ES cells towards epiblast stem cells as a model for inducing X chromosome inactivation in vitro. We show that these conditions efficiently induce random XCI. Importantly, in a transient phase of this differentiation pathway, both X chromosomes are coated with Xist RNA in up to 15% of the XX cells. In an attempt to determine the dynamics of this process, we designed a strategy aimed at visualizing the nascent inactive X-chromosome in live cells. We generated transgenic female XX ES cells expressing the PRC2 component Ezh2 fused to the fluorescent protein Venus. The fluorescent fusion protein was expressed at sub-physiological levels and located in nuclei of ES cells. Upon differentiation of ES cell towards epiblast stem cell fate, Venus-fluorescent territories appearing in interphase nuclei were identified as nascent inactive X chromosomes by their association with Xist RNA. Imaging of Ezh2-Venus for up to 24 hours during the differentiation process showed survival of some cells with two fluorescent domains and a surprising dynamics of the fluorescent territories across cell division and in the course of the differentiation process. Our data reveal a strategy for visualizing the nascent inactive X chromosome and suggests the possibility for a large plasticity of the nascent inactive X chromosome.
Collapse
Affiliation(s)
- Aurélia Guyochin
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
- Université de Technologie de Compiègne, Compiègne, France
| | - Sylvain Maenner
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
| | - Erin Tsi-Jia Chu
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
| | - Asma Hentati
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
- Université Blaise Pascal, Clermont-Ferrand, France
| | - Mikael Attia
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
| | - Philip Avner
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
- EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Monterotondo, Italy
| | - Philippe Clerc
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
- Epigénétique des Cellules Souches, Department of Developmental Biology, CNRS URA2578, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
89
|
Wang L, Du Y, Ward JM, Shimbo T, Lackford B, Zheng X, Miao YL, Zhou B, Han L, Fargo DC, Jothi R, Williams CJ, Wade PA, Hu G. INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development. Cell Stem Cell 2014; 14:575-91. [PMID: 24792115 DOI: 10.1016/j.stem.2014.02.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/17/2013] [Accepted: 02/21/2014] [Indexed: 11/17/2022]
Abstract
The master transcription factors play integral roles in the pluripotency transcription circuitry of embryonic stem cells (ESCs). How they selectively activate expression of the pluripotency network while simultaneously repressing genes involved in differentiation is not fully understood. Here, we define a requirement for the INO80 complex, a SWI/SNF family chromatin remodeler, in ESC self-renewal, somatic cell reprogramming, and blastocyst development. We show that Ino80, the chromatin remodeling ATPase, co-occupies pluripotency gene promoters with the master transcription factors, and its occupancy is dependent on OCT4 and WDR5. At the pluripotency genes, Ino80 maintains an open chromatin architecture and licenses recruitment of Mediator and RNA polymerase II for gene activation. Our data reveal an essential role for INO80 in the expression of the pluripotency network and illustrate the coordination among chromatin remodeler, transcription factor, and histone-modifying enzyme in the regulation of the pluripotent state.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ying Du
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - James M Ward
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Takashi Shimbo
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Brad Lackford
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaofeng Zheng
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yi-liang Miao
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Bingying Zhou
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leng Han
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Raja Jothi
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Carmen J Williams
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Paul A Wade
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Guang Hu
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
90
|
Huang G, Yan H, Ye S, Tong C, Ying QL. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells 2014; 32:1149-60. [PMID: 24302476 DOI: 10.1002/stem.1609] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/16/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022]
Abstract
STAT3 can be transcriptionally activated by phosphorylation of its tyrosine 705 or serine 727 residue. In mouse embryonic stem cells (mESCs), leukemia inhibitory factor (LIF) signaling maintains pluripotency by inducing JAK-mediated phosphorylation of STAT3 Y705 (pY705). However, the function of phosphorylated S727 (pS727) in mESCs remains unclear. In this study, we examined the roles of STAT3 pY705 and pS727 in regulating mESC identities, using a small molecule-based system to post-translationally modulate the quantity of transgenic STAT3 in STAT3(-/-) mESCs. We demonstrated that pY705 is absolutely required for STAT3-mediated mESC self-renewal, while pS727 is dispensable, serving only to promote proliferation and optimal pluripotency. S727 phosphorylation is regulated directly by fibroblast growth factor/Erk signaling and crucial in the transition of mESCs from pluripotency to neuronal commitment. Loss of S727 phosphorylation resulted in significantly reduced neuronal differentiation potential, which could be recovered by a S727 phosphorylation mimic. Moreover, loss of pS727 sufficed LIF to reprogram epiblast stem cells to naïve pluripotency, suggesting a dynamic equilibrium of STAT3 pY705 and pS727 in the control of mESC fate.
Collapse
Affiliation(s)
- Guanyi Huang
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
91
|
McAninch D, Thomas P. Identification of highly conserved putative developmental enhancers bound by SOX3 in neural progenitors using ChIP-Seq. PLoS One 2014; 9:e113361. [PMID: 25409526 PMCID: PMC4237438 DOI: 10.1371/journal.pone.0113361] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022] Open
Abstract
The transcription factor SOX3 is expressed within most neural progenitor (NP) cells of the vertebrate central nervous system (CNS) and is essential for normal brain development in mice and humans. However, despite the widespread expression of Sox3, CNS defects in null mice are relatively mild due to functional redundancy with the other SOXB1 sub-group members Sox1 and Sox2. To further understand the molecular function of SOX3, we investigated the genome-wide binding profile of endogenous SOX3 in NP cells using ChIP-seq. SOX3 binding was identified at over 8,000 sites, most of which were intronic or intergeneic and were significantly associated with neurodevelopmental genes. The majority of binding sites were moderately or highly conserved (phastCons scores >0.1 and 0.5, respectively) and included the previously characterised, SOXB1-binding Nestin NP cell enhancer. Comparison of SOX3 and published ChIP-Seq data for the co-activator P300 in embryonic brain identified hundreds of highly conserved putative enhancer elements. In addition, we identified a subset of highly conserved putative enhancers for CNS development genes common to SOXB1 members in NP cells, all of which contained the SOX consensus motif (ACAAWR). Together these data implicate SOX3 in the direct regulation of hundreds of NP genes and provide molecular insight into the overlapping roles of SOXB1 proteins in CNS development.
Collapse
Affiliation(s)
- Dale McAninch
- Department of Biochemistry, School of Molecular & Biomedical Science and Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Paul Thomas
- Department of Biochemistry, School of Molecular & Biomedical Science and Robinson Research Institute, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
92
|
14-3-3ε and ζ regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain. J Neurosci 2014; 34:12168-81. [PMID: 25186760 DOI: 10.1523/jneurosci.2513-13.2014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of β-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades.
Collapse
|
93
|
Main H, Radenkovic J, Kosobrodova E, McKenzie D, Bilek M, Lendahl U. Cell surface antigen profiling using a novel type of antibody array immobilised to plasma ion-implanted polycarbonate. Cell Mol Life Sci 2014; 71:3841-57. [PMID: 24623559 PMCID: PMC11113427 DOI: 10.1007/s00018-014-1595-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/21/2014] [Indexed: 01/13/2023]
Abstract
To identify and sort out subpopulations of cells from more complex and heterogeneous assemblies of cells is important for many biomedical applications, and the development of cost- and labour-efficient techniques to accomplish this is warranted. In this report, we have developed a novel array-based platform to discriminate cellular populations based on differences in cell surface antigen expressions. These cell capture microarrays were produced through covalent immobilisation of CD antibodies to plasma ion immersion implantation-treated polycarbonate (PIII-PC), which offers the advantage of a transparent matrix, allowing direct light microscopy visualisation of captured cells. The functionality of the PIII-PC array was validated using several cell types, resulting in unique surface antigen expression profiles. PIII-PC results were compatible with flow cytometry, nitrocellulose cell capture arrays and immunofluorescent staining, indicating that the technique is robust. We report on the use of this PIII-PC cluster of differentiation (CD) antibody array to gain new insights into neural differentiation of mouse embryonic stem (ES) cells and into the consequences of genetic targeting of the Notch signalling pathway, a key signalling mechanism for most cellular differentiation processes. Specifically, we identify CD98 as a novel marker for neural precursors and polarised expression of CD9 in the apical domain of ES cell-derived neural rosettes. We further identify expression of CD9 in hitherto uncharacterised non-neural cells and enrichment of CD49e- and CD117-positive cells in Notch signalling-deficient ES cell differentiations. In conclusion, this work demonstrates that covalent immobilisation of antibody arrays to the PIII-PC surface provides faithful cell surface antigen data in a cost- and labour-efficient manner. This may be used to facilitate high throughput identification and standardisation of more precise marker profiles during stem cell differentiation and in various genetic and disease contexts.
Collapse
Affiliation(s)
- Heather Main
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|
94
|
Zhang Y, Zhou J, Fang Z, Jiang M, Chen X. Noggin versus basic fibroblast growth factor on the differentiation of human embryonic stem cells. Neural Regen Res 2014; 8:2171-7. [PMID: 25206526 PMCID: PMC4146116 DOI: 10.3969/j.issn.1673-5374.2013.23.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022] Open
Abstract
The difference between Noggin and basic fibroblast growth factor for the neural precursor differentiation from human embryonic stem cells has not been studied. In this study, 100 μg/L Noggin or 20 μg/L basic fibroblast growth factor in serum-free neural induction medium was used to differentiate human embryonic stem cells H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast microscope. Immunofluorescence staining revealed expression levels of Nestin, β-III Tubulin and Sox-1 were higher in the induced cells and reverse-transcription PCR showed induced cells expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cell differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and increases the differentiation of neural precursors.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junmei Zhou
- Tissue Engineering Laboratory, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zhenfu Fang
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Manxi Jiang
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
95
|
Liu W, Stein P, Cheng X, Yang W, Shao NY, Morrisey EE, Schultz RM, You J. BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos. Cell Death Differ 2014; 21:1950-60. [PMID: 25146928 DOI: 10.1038/cdd.2014.124] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 01/06/2023] Open
Abstract
Bromodomain-containing protein 4 (BRD4) is an important epigenetic reader implicated in the pathogenesis of a number of different cancers and other diseases. Brd4-null mouse embryos die shortly after implantation and are compromised in their ability to maintain the inner cell mass, which gives rise to embryonic stem cells (ESCs). Here we report that BRD4 regulates expression of the pluripotency factor Nanog in mouse ESCs and preimplantation embryos, as well as in human ESCs and embryonic cancer stem cells. Inhibition of BRD4 function using a chemical inhibitor, small interfering RNAs, or a dominant-negative approach suppresses Nanog expression, and abolishes the self-renewal ability of ESCs. We also find that BRD4 associates with BRG1 (brahma-related gene 1, aka Smarca4 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4)), a key regulator of ESC self-renewal and pluripotency, in the Nanog regulatory regions to regulate Nanog expression. Our study identifies Nanog as a novel BRD4 target gene, providing new insights for the biological function of BRD4 in stem cells and mouse embryos. Knowledge gained from these non-cancerous systems will facilitate future investigations of how Brd4 dysfunction leads to cancers.
Collapse
Affiliation(s)
- W Liu
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - P Stein
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - X Cheng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - W Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - N-Y Shao
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E E Morrisey
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - J You
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
96
|
Xu H, Ang YS, Sevilla A, Lemischka IR, Ma'ayan A. Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLoS Comput Biol 2014; 10:e1003777. [PMID: 25122140 PMCID: PMC4133156 DOI: 10.1371/journal.pcbi.1003777] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/27/2014] [Indexed: 11/22/2022] Open
Abstract
A 30-node signed and directed network responsible for self-renewal and pluripotency of mouse embryonic stem cells (mESCs) was extracted from several ChIP-Seq and knockdown followed by expression prior studies. The underlying regulatory logic among network components was then learned using the initial network topology and single cell gene expression measurements from mESCs cultured in serum/LIF or serum-free 2i/LIF conditions. Comparing the learned network regulatory logic derived from cells cultured in serum/LIF vs. 2i/LIF revealed differential roles for Nanog, Oct4/Pou5f1, Sox2, Esrrb and Tcf3. Overall, gene expression in the serum/LIF condition was more variable than in the 2i/LIF but mostly consistent across the two conditions. Expression levels for most genes in single cells were bimodal across the entire population and this motivated a Boolean modeling approach. In silico predictions derived from removal of nodes from the Boolean dynamical model were validated with experimental single and combinatorial RNA interference (RNAi) knockdowns of selected network components. Quantitative post-RNAi expression level measurements of remaining network components showed good agreement with the in silico predictions. Computational removal of nodes from the Boolean network model was also used to predict lineage specification outcomes. In summary, data integration, modeling, and targeted experiments were used to improve our understanding of the regulatory topology that controls mESC fate decisions as well as to develop robust directed lineage specification protocols. For this study we first constructed a directed and signed network consisting of 15 pluripotency regulators and 15 lineage commitment markers that extensively interact to regulate mouse embryonic stem cells fate decisions from data available in the public domain. Given the connectivity structure of this network, the underlying regulatory logic was learned using single cell gene expression measurements of mESCs cultured in two different conditions. With connectivity and logic learned, the network was then simulated using a dynamic Boolean logic framework. Such simulations enabled prediction of knockdown effects on the overall activity of the network. Such predictions were validated by single and combinatorial RNA interference experiments followed by expression measurements. Finally, lineage specification outcomes upon single and combinatorial gene knockdowns were predicted for all possible knockdown combinations.
Collapse
Affiliation(s)
- Huilei Xu
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yen-Sin Ang
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ana Sevilla
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ihor R. Lemischka
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (IRL); (AM)
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (IRL); (AM)
| |
Collapse
|
97
|
Brachyury cooperates with Wnt/β-catenin signalling to elicit primitive-streak-like behaviour in differentiating mouse embryonic stem cells. BMC Biol 2014; 12:63. [PMID: 25115237 PMCID: PMC4171571 DOI: 10.1186/s12915-014-0063-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022] Open
Abstract
Background The formation of the primitive streak is the first visible sign of gastrulation, the process by which the three germ layers are formed from a single epithelium during early development. Embryonic stem cells (ESCs) provide a good system for understanding the molecular and cellular events associated with these processes. Previous work, both in embryos and in culture, has shown how converging signals from both nodal/TGFβR and Wnt/β-catenin signalling pathways specify cells to adopt a primitive-streak-like fate and direct them to undertake an epithelial-to-mesenchymal transition (EMT). However, many of these approaches have relied on genetic analyses without taking into account the temporal progression of events within single cells. In addition, it is still unclear to what extent events in the embryo are able to be reproduced in culture. Results Here, we combine flow cytometry and a quantitative live single-cell imaging approach to demonstrate how the controlled differentiation of mouse ESCs towards a primitive streak fate in culture results in cells displaying many of the characteristics observed during early mouse development including transient brachyury expression, EMT and increased motility. We also find that the EMT initiates the process, and this is both fuelled and terminated by the action of brachyury, whose expression is dependent on the EMT and β-catenin activity. Conclusions As a consequence of our analysis, we propose that a major output of brachyury expression is in controlling the velocity of the cells that are transiting out of the primitive streak. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0063-7) contains supplementary material, which is available to authorized users.
Collapse
|
98
|
Wang L, Miao YL, Zheng X, Lackford B, Zhou B, Han L, Yao C, Ward JM, Burkholder A, Lipchina I, Fargo DC, Hochedlinger K, Shi Y, Williams CJ, Hu G. The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming. Cell Stem Cell 2014; 13:676-90. [PMID: 24315442 DOI: 10.1016/j.stem.2013.10.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/14/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
Abstract
Embryonic stem cell (ESC) self-renewal and differentiation are governed by a broad-ranging regulatory network. Although the transcriptional regulatory mechanisms involved have been investigated extensively, posttranscriptional regulation is still poorly understood. Here we describe a critical role of the THO complex in ESC self-renewal and differentiation. We show that THO preferentially interacts with pluripotency gene transcripts through Thoc5 and is required for self-renewal at least in part by regulating their export and expression. During differentiation, THO loses its interaction with those transcripts due to reduced Thoc5 expression, leading to decreased expression of pluripotency proteins that facilitates exit from self-renewal. THO is also important for the establishment of pluripotency, because its depletion inhibits somatic cell reprogramming and blastocyst development. Together, our data indicate that THO regulates pluripotency gene mRNA export to control ESC self-renewal and differentiation, and therefore uncover a role for this aspect of posttranscriptional regulation in stem cell fate specification.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Feng C, Wan H, Zhao XY, Wang L, Zhou Q. Generation of tetraploid complementation mice from embryonic stem cells cultured with chemical defined medium. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
100
|
Han X, Gui B, Xiong C, Zhao L, Liang J, Sun L, Yang X, Yu W, Si W, Yan R, Yi X, Zhang D, Li W, Li L, Yang J, Wang Y, Sun YE, Zhang D, Meng A, Shang Y. Destabilizing LSD1 by Jade-2 promotes neurogenesis: an antibraking system in neural development. Mol Cell 2014; 55:482-94. [PMID: 25018020 DOI: 10.1016/j.molcel.2014.06.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/24/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022]
Abstract
Histone H3K4 demethylase LSD1 plays an important role in stem cell biology, especially in the maintenance of the silencing of differentiation genes. However, how the function of LSD1 is regulated and the differentiation genes are derepressed are not understood. Here, we report that elimination of LSD1 promotes embryonic stem cell (ESC) differentiation toward neural lineage. We showed that the destabilization of LSD1 occurs posttranscriptionally via the ubiquitin-proteasome pathway by an E3 ubiquitin ligase, Jade-2. We demonstrated that Jade-2 is a major LSD1 negative regulator during neurogenesis in vitro and in vivo in both mouse developing cerebral cortices and zebra fish embryos. Apparently, Jade-2-mediated degradation of LSD1 acts as an antibraking system and serves as a quick adaptive mechanism for re-establishing epigenetic landscape without more laborious transcriptional regulations. As a potential anticancer strategy, Jade-2-mediated LSD1 degradation could potentially be used in neuroblastoma cells to induce differentiation toward postmitotic neurons.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Bin Gui
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Cong Xiong
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Linnan Zhao
- Key Laboratory of Mental Health, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaohan Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wenhua Yu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wenzhe Si
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Ruorong Yan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Xia Yi
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Di Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Lifang Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yi Eve Sun
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200065, China; Departments of Psychiatry and Behavioral Sciences and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dai Zhang
- Key Laboratory of Mental Health, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China; 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|