51
|
Huang H, Guo Q, Qiu C, Huang B, Fu X, Yao J, Liang J, Li L, Chen L, Tang K, Lin L, Lu J, Bi Y, Ning G, Wen J, Lin C, Chen G. Associations of green tea and rock tea consumption with risk of impaired fasting glucose and impaired glucose tolerance in Chinese men and women. PLoS One 2013; 8:e79214. [PMID: 24260170 PMCID: PMC3832448 DOI: 10.1371/journal.pone.0079214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/18/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To explore the associations of green tea and rock tea consumption with risk of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). METHODS A multistage, stratified, cluster, random-sampling method was used to select a representative sample from Fujian Province in China. In total, 4808 subjects without cardiovascular disease, hypertension, cancer, or pancreatic, liver, kidney, or gastrointestinal diseases were enrolled in the study. A standard questionnaire was used to gather data on tea (green, rock, and black) consumption and other relevant factors. The assessment of impaired glucose regulation (IGR) was using 75-g oral glucose tolerance test (OGTT), the diagnostic criteria of normal glucose tolerance was according to American Diabetes Association. RESULTS Green tea consumption was associated with a lower risk of IFG, while rock tea consumption was associated with a lower risk of IGT. The adjusted odds ratios for IFG for green tea consumption of <1, 1-15, 16-30, and >30 cups per week were 1.0 (reference), 0.42 (95% confidence intervals (CI) 0.27-0.65), 0.23 (95% CI, 0.12-0.46), and 0.41 (95% CI, 0.17-0.93), respectively. The adjusted odds ratios for IGT for rock tea consumption of <1, 1-15, 16-30, and >30 cups per week were 1.0 (reference), 0.69 (95% CI, 0.48-0.98), 0.59 (95% CI, 0.39-0.90), and 0.64 (95% CI, 0.43-0.97), respectively. A U-shaped association was observed, subjects who consumed 16-30 cups of green or rock tea per week having the lowest odds ratios for IFG or IGT. CONCLUSIONS Consumption of green or rock tea may protect against the development of type 2 diabetes mellitus in Chinese men and women, particularly in those who drink 16-30 cups per week.
Collapse
Affiliation(s)
- Huibin Huang
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiuxuan Guo
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fujian Medical University, Fuzhou, Fujian, China
| | - Changsheng Qiu
- Department of Osteology, Wuyishan Municipal Hospital, Fujian Provincial Hospital, Wuyishan, Fujian, China
| | - Baoying Huang
- Department of Endocrinology, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Xianguo Fu
- Department of Endocrinology, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Jin Yao
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jixing Liang
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fujian Medical University, Fuzhou, Fujian, China
| | - Liantao Li
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fujian Medical University, Fuzhou, Fujian, China
| | - Ling Chen
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fujian Medical University, Fuzhou, Fujian, China
| | - Kaka Tang
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fujian Medical University, Fuzhou, Fujian, China
| | - Lixiang Lin
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jieli Lu
- Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junping Wen
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fujian Medical University, Fuzhou, Fujian, China
| | - Caijing Lin
- Department of Emergency, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Gang Chen
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
52
|
Drira R, Sakamoto K. Modulation of adipogenesis, lipolysis and glucose consumption in 3T3-L1 adipocytes and C2C12 myotubes by hydroxytyrosol acetate: A comparative study. Biochem Biophys Res Commun 2013; 440:576-81. [DOI: 10.1016/j.bbrc.2013.09.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 11/17/2022]
|
53
|
Mostafa T, Sabry D, Abdelaal AM, Mostafa I, Taymour M. Cavernous antioxidant effect of green tea, epigallocatechin-3-gallate with/without sildenafil citrate intake in aged diabetic rats. Andrologia 2013; 45:272-277. [PMID: 22928786 DOI: 10.1111/and.12005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2012] [Indexed: 02/05/2023] Open
Abstract
This study aimed to assess the cavernous antioxidant effect of green tea (GT), epigallocatechin-3-gallate (EGCG) with/without sildenafil citrate intake in aged diabetic rats. One hundred and four aged male white albino rat were divided into controls that received ordinary chow, streptozotocin (STZ)-induced aged diabetic rats, STZ-induced diabetic rats on infused green tea, induced diabetic rats on epigallocatechin-3-gallate and STZ-induced diabetic rats on sildenafil citrate added to EGCG. After 8 weeks, dissected cavernous tissues were assessed for gene expression of eNOS, cavernous malondialdehyde (MDA), glutathione peroxidase (GPx), cyclic guanosine monophosphate (cGMP), and serum testosterone (T). STZ-induced diabetic rats on GT demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats. Diabetic rats on EGCG demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats or diabetic rats on GT. Diabetic rats on EGCG added to sildenafil showed significant increase in cavernous eNOS, cGMP and significant decrease in cavernous MDA compared with other groups. Serum T demonstrated nonsignificant difference between the investigated groups. It is concluded that GT and EGCG have significant cavernous antioxidant effects that are increased if sildenafil is added.
Collapse
Affiliation(s)
- T Mostafa
- Department of Andrology and Sexology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | | | | | | |
Collapse
|
54
|
Dehghan-No G, Sharififar F, Moshafi MH, Behravan E, Dehghan-No A, Rezaei-Gha R. Antimutagenicity Activity of Different Fractions of Zataria multiflora,
Achillea wilhelmsii and Camellia sinensis using Ames Test. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.459.464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
55
|
Simonetti G, Simonetti N, Villa A. Increased Microbicidal Activity of Green Tea(Camellia sinensis)in Combination with Butylated Hydroxyanisole. J Chemother 2013; 16:122-7. [PMID: 15216944 DOI: 10.1179/joc.2004.16.2.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We have demonstrated that green tea (Camellia sinensis) shows increased antimicrobial activity against bacteria and fungi when used in combination with butylated hydroxyanisole (BHA). Glycolic extract taken from green tea showed only limited activity against Streptococcus mutans and no activity against Candida albicans and certain strains of Escherichia coli. BHA, at non inhibitory concentrations, increased the microbicidal activity of green tea against 10(10) S. mutans (p<0.01), non-susceptible E. coli (p<0.01) and C. albicans (p<0.01). Green tea in combination with BHA reduced the hydrophobicity of S. mutans (p<0.01) and greatly inhibited (p<0.001) the formation of hyphae in C. albicans. The increased antimicrobial activity of green tea is related to an impairment of the barrier function in microorganisms and a depletion of thiol groups. The increased activity of green tea as an oral antimicrobial product is discussed.
Collapse
Affiliation(s)
- G Simonetti
- University of Rome La Sapienza, Institute of Microbiology, Faculty of Pharmacy, Rome, Italy
| | | | | |
Collapse
|
56
|
Zhang X, Liu T, Huang Y, Wismeijer D, Liu Y. Icariin: Does It Have An Osteoinductive Potential for Bone Tissue Engineering? Phytother Res 2013; 28:498-509. [DOI: 10.1002/ptr.5027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/07/2013] [Accepted: 05/21/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Xin Zhang
- School of Stomatology; Tongji University; Shanghai China
| | - Tie Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE; University of Amsterdam and VU University Amsterdam; Gustav Mahlerlaan 3004 1081 LA Amsterdam the Netherlands
| | - Yuanliang Huang
- Department of Dentistry; Shanghai East Hospital Affiliated to Tongji University; Shanghai China
| | - Daniel Wismeijer
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE; University of Amsterdam and VU University Amsterdam; Gustav Mahlerlaan 3004 1081 LA Amsterdam the Netherlands
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE; University of Amsterdam and VU University Amsterdam; Gustav Mahlerlaan 3004 1081 LA Amsterdam the Netherlands
| |
Collapse
|
57
|
|
58
|
Tea and human health: The dark shadows. Toxicol Lett 2013; 220:82-7. [DOI: 10.1016/j.toxlet.2013.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 12/13/2022]
|
59
|
Sundaram R, Naresh R, Shanthi P, Sachdanandam P. Modulatory effect of green tea extract on hepatic key enzymes of glucose metabolism in streptozotocin and high fat diet induced diabetic rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:577-584. [PMID: 23453307 DOI: 10.1016/j.phymed.2013.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/14/2012] [Accepted: 01/26/2013] [Indexed: 06/01/2023]
Abstract
The study was undertaken to evaluate the antidiabetic effect of green tea extract on carbohydrate metabolic key enzymes in control and streptozotocin high fat diet -induced diabetic rats. The daily oral treatment of green tea extract (300 mg/kg body weight) to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and increase in the levels of insulin and hemoglobin. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver of diabetic rats were significantly reverted to near normal levels by the administration of green tea extract. Further, green tea extract administration to diabetic rats improved muscle and hepatic glycogen content suggesting the antihyperglycemic potential of green tea extract in diabetic rats. The obtained results were compared with metformin, a standard oral hypoglycemic drug. Thus, this study indicates that the administration of green tea extract to diabetic rats resulted in alterations in the metabolism of glucose with subsequent reduction in plasma glucose levels.
Collapse
Affiliation(s)
- Ramalingam Sundaram
- Department of Medical Biochemistry, Dr ALM P-G, Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
60
|
Ramalho SA, Nigam N, Oliveira GB, de Oliveira PA, Silva TOM, dos Santos AGP, Narain N. Effect of infusion time on phenolic compounds and caffeine content in black tea. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
61
|
Jung IH, Lee DE, Yun JH, Cho AR, Kim CS, You YJ, Kim SJ, Choi SH. Anti-inflammatory effect of (-)-epigallocatechin-3-gallate on Porphyromonas gingivalis lipopolysaccharide-stimulated fibroblasts and stem cells derived from human periodontal ligament. J Periodontal Implant Sci 2012; 42:185-95. [PMID: 23346461 PMCID: PMC3543933 DOI: 10.5051/jpis.2012.42.6.185] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/11/2012] [Indexed: 12/31/2022] Open
Abstract
PURPOSE (-)-epigallocatechin-3-gallate (EGCG) has been reported to exert anti-inflammatory and antibacterial effects in periodontitis. However, its exact mechanism of action has yet to be determined. The present in vitro study evaluated the anti-inflammatory effects of EGCG on human periodontal ligament fibroblasts (hPDLFs) and human periodontal ligament stem cells (hPDLSCs) affected by bacterial lipopolysaccharide (LPS) extracted from Porphyromonas gingivalis. METHODS hPDLFs and hPDLSCs were extracted from healthy young adults and were treated with EGCG and/or P. gingivalis LPS. After 1, 3, 5, and 7 days from treatment, cytotoxic and proliferative effects were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and bromodeoxyuridine assay, respectively. And then, the gene expressions of hPDLFs and hPDLSCs were observed for interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), and RANKL/OPG using real-time polymerase chain reaction (PCR) at 0, 6, 24, and 48 hours after treatment. The experiments were performed with the following groups for hPDLFs and hPDLSCs; 1) No treat, 2) EGCG alone, 3) P. gingivalis LPS alone, 4) EGCG+P. gingivalis LPS. RESULTS The 20 µM of EGCG and 20 µg/mL of P. gingivalis LPS had the lowest cytotoxic effects, so those concentrations were used for further experiments. The proliferations of hPDLFs and hPDLSCs increased in all groups, though the 'EGCG alone' showed less increase. In real-time PCR, the hPDLFs and hPDLSCs of 'EGCG alone' showed similar gene expressions to those cells of 'no treat'. The gene expressions of 'P. gingivalis LPS alone' in both hPDLFs and hPDLSCs were highly increased at 6 hours for IL-1β, IL-6, TNF-α, RANKL, and RANKL/OPG, except the RANKL/OPG in hPDLSCs. However, those increased gene expressions were down-regulated in 'EGCG+P. gingivalis LPS' by the additional treatment of EGCG. CONCLUSIONS Our results demonstrate that EGCG could exert an anti-inflammatory effect in hPDLFs and hPDLSCs against a major pathogen of periodontitis, P. gingivalis LPS.
Collapse
Affiliation(s)
- Im-Hee Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea. ; Division of Periodontology, Department of Dentistry, Inha University School of Medicine, Incheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Serrano JCE, Gonzalo-Benito H, Jové M, Fourcade S, Cassanyé A, Boada J, Delgado MA, Espinel AE, Pamplona R, Portero-Otín M. Dietary intake of green tea polyphenols regulates insulin sensitivity with an increase in AMP-activated protein kinase α content and changes in mitochondrial respiratory complexes. Mol Nutr Food Res 2012; 57:459-70. [PMID: 23281062 DOI: 10.1002/mnfr.201200513] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/09/2012] [Accepted: 11/09/2012] [Indexed: 01/14/2023]
Abstract
SCOPE The intake of food rich in polyphenols is related to a lower incidence in almost all chronic degenerative diseases. However, relatively little is known about the molecular mechanisms involved in its antioxidant properties. The aim of this study was to determine whether the mechanism of action of polyphenols could be related to a modulation in energy uptake and metabolism, and further induced mitochondrial changes. METHODS AND RESULTS For this purpose, male C57BL6 mice were fed during 3 months with a tea-based beverage rich in polyphenols. Insulin sensitivity, tissue oxidative damage biomarkers, as well as energy-related signaling pathways were determined to evaluate its mechanism of action. As a result, a tissue- and protein-specific subtle reduction in oxidative damage was observed. Skeletal muscle showed mitochondrial changes in respiratory complexes and an increase in AMP-activated protein kinase α levels, suggesting reduced energy availability. These changes were also associated with adipose tissue cellular metabolism. This was confirmed by a decline in the potential of energy uptake, evidenced by a diminished intestinal and systemic absorption of carbohydrates together with an inhibition of insulin sensitivity. CONCLUSIONS Our results suggest that the mechanisms of action of green tea polyphenols may be related to their ability to modulate energy uptake leading to mitochondrial adaptations possibly responsible for the changes in protein oxidative damage.
Collapse
Affiliation(s)
- José C E Serrano
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Lleida, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Ku HC, Liu HS, Hung PF, Chen CL, Liu HC, Chang HH, Tsuei YW, Shih LJ, Lin CL, Lin CM, Kao YH. Green tea (-)-epigallocatechin gallate inhibits IGF-I and IGF-II stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway. Mol Nutr Food Res 2012; 56:580-92. [PMID: 22495985 DOI: 10.1002/mnfr.201100438] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SCOPE This study investigated the pathways involved in epigallocatechin gallate (EGCG) modulation of insulin-like growth factor (IGF)-I-stimulated and IGF-II-stimulated mitogenesis in 3T3-L1 preadipocytes. METHODS AND RESULTS We found that this process was dose and time dependent, and caused by suppression of IGF-I-stimulated and IGF-II-stimulated phosphorylation of p66Shc and mitogen-activated protein kinase (MAPK) pathway proteins, including MEK1 kinase (RAF1), extracellular signal-regulated protein kinase (ERK) kinase (MEK1), and ERK 1 and ERK 2 (ERK1/2), but not phospho-Jun-N-terminal kinase, protein kinase B, p52Shc, or p46Shc. Furthermore, EGCG inhibited the IGF-I-stimulated phosphorylation of the IGF-I receptor-beta (IGF-IR β), the association of IGF-IR with the p66Shc protein, and the IGF-II-stimulated associations of the IGF-II receptor with G(αi-2) and p66Shc proteins, suggesting that EGCG selectively affects particular types of Shc and MAPK family members. Pretreatment with antiserum against the EGCG receptor (also known as the 67-kDa laminin receptor; 67LR), but not with an adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, prevented the inhibitory actions of EGCG on IGF-I- and IGF-II-stimulated ERK1/2 phosphorylation and subsequent preadipocyte proliferation. CONCLUSION The results of this study suggest that EGCG mediates anti-IGF-I and anti-IGF-II signals in preadipocyte mitogenesis via the 67LR but not the AMPK pathway.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Inhibition of Eph receptor-ephrin ligand interaction by tea polyphenols. Pharmacol Res 2012; 66:363-73. [PMID: 22750215 DOI: 10.1016/j.phrs.2012.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 11/21/2022]
Abstract
Tea contains a variety of bioactive chemicals, such as catechins and other polyphenols. These compounds are thought to be responsible for the health benefits of tea consumption by affecting the function of many cellular targets, not all of which have been identified. In a high-throughput screen for small molecule antagonists of the EphA4 receptor tyrosine kinase, we identified five tea polyphenols that substantially inhibit EphA4 binding to a synthetic peptide ligand. Further characterization of theaflavin monogallates from black tea and epigallocatechin-3,5-digallate from green tea revealed that these compounds at low micromolar concentrations also inhibit binding of the natural ephrin ligands to EphA4 and several other Eph receptors in in vitro assays. The compounds behave as competitive EphA4 antagonists, and their inhibitory activity is affected by amino acid mutations within the ephrin binding pocket of EphA4. In contrast, the major green tea catechin, epigallocatechin-3-gallate (EGCG), does not appear to be an effective Eph receptor antagonist. In cell culture assays, theaflavin monogallates and epigallocatechin-3,5-digallate inhibit ephrin-induced tyrosine phosphorylation (activation) of Eph receptors and endothelial capillary-like tube formation. However, the wider spectrum of Eph receptors affected by the tea derivatives in cells suggests additional mechanisms of inhibition besides interfering with ephrin binding. These results show that tea polyphenols derived from both black and green tea can suppress the biological activities of Eph receptors. Thus, the Eph receptor tyrosine kinase family represents an important class of targets for tea-derived phytochemicals.
Collapse
|
65
|
(-)-Epigallocatechin gallate suppresses adipocyte differentiation through the MEK/ERK and PI3K/Akt pathways. Cell Biol Int 2012; 36:147-53. [PMID: 21902673 DOI: 10.1042/cbi20110047] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
EGCG [(-)-epigallocatechin gallate], tea catechin, is one of the compounds that has been reported to act against obesity and diabetes. To determine the effect of EGCG on adipocyte differentiation, we treated 3T3-L1 preadipocytes with different catechins. Oil Red O staining showed significantly reduced intracellular lipid accumulation, especially with EGCG. Cell cycle analysis showed that EGCG inhibited cell proliferation by disturbing the cell cycle during the clonal expansion of 3T3-L1. RT-PCR (real-time PCR) demonstrated that EGCG noticeably reduced mRNA expression of PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CCAAT/enhancer-binding protein α) and FoxO1 (forkhead box class O1). EGCG also caused a significant decrease in the transcription of FoxO1 - the forkhead transcription factor class O1 involved in adipocyte differentiation - via the PI3K (phosphoinositide 3-kinase)/Akt and MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] pathways. These results suggest that EGCG suppresses the clonal expansion of adipocytes by inactivating FoxO1 via insulin signalling and stress-dependent MAPK pathways.
Collapse
|
66
|
Kumar N, Crocker T, Smith T, Connors S, Pow-Sang J, Spiess PE, Egan K, Quinn G, Schell M, Sebti S, Kazi A, Chuang T, Salup R, Helal M, Zagaja G, Trabulsi E, McLarty J, Fazili T, Williams CR, Schreiber F, Anderson K. Prostate Cancer Chemoprevention Targeting Men with High-Grade Prostatic Intraepithelial Neoplasia (HGPIN) and Atypical Small Acinar Proliferation (ASAP): Model for Trial Design and Outcome Measures. ACTA ACUST UNITED AC 2012; 2. [PMID: 24533253 PMCID: PMC3924733 DOI: 10.4172/jctr.1000105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In spite of the large number of nutrient-derived agents demonstrating promise as potential chemopreventive agents, most have failed to prove effectiveness in clinical trials. Critical requirements for moving nutrient-derived agents to recommendation for clinical use include adopting a systematic, molecular-mechanism based approach and utilizing the same ethical and rigorous methods such as are used to evaluate other pharmacological agents. Preliminary data on a mechanistic rationale for chemoprevention activity as observed from epidemiological, in vitro and preclinical studies, phase I data of safety in suitable cohorts, duration of intervention based on time to progression of preneoplastic disease to cancer and the use of a valid panel of biomarkers representing the hypothesized carcinogenesis pathway for measuring efficacy must inform the design of phase II clinical trials. The goal of this paper is to provide a model for evaluating a well characterized agent- Polyphenon E- in a phase II clinical trial of prostate cancer chemoprevention.
Collapse
Affiliation(s)
- Nagi Kumar
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA ; Oncological Sciences, University of South Florida College of Medicine, Tampa Florida
| | - Theresa Crocker
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA
| | - Tiffany Smith
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA
| | - Shahnjayla Connors
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA ; Oncological Sciences, University of South Florida College of Medicine, Tampa Florida
| | - Julio Pow-Sang
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA ; Oncological Sciences, University of South Florida College of Medicine, Tampa Florida
| | - Philippe E Spiess
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA ; Oncological Sciences, University of South Florida College of Medicine, Tampa Florida
| | - Kathleen Egan
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA ; Oncological Sciences, University of South Florida College of Medicine, Tampa Florida
| | - Gwen Quinn
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA ; Oncological Sciences, University of South Florida College of Medicine, Tampa Florida
| | - Michael Schell
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA ; Oncological Sciences, University of South Florida College of Medicine, Tampa Florida
| | - Said Sebti
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA ; Oncological Sciences, University of South Florida College of Medicine, Tampa Florida
| | - Aslam Kazi
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA ; Oncological Sciences, University of South Florida College of Medicine, Tampa Florida
| | - Tian Chuang
- Departments of Epidemiology, Health Outcomes and Behavior, Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Florida, USA ; Oncological Sciences, University of South Florida College of Medicine, Tampa Florida
| | - Raoul Salup
- Oncological Sciences, University of South Florida College of Medicine, Tampa Florida ; James A. Haley V.A. Hospital, Tampa, FL
| | - Mohamed Helal
- Oncological Sciences, University of South Florida College of Medicine, Tampa Florida
| | | | | | - Jerry McLarty
- LSUHSC - Feist-Weiller Cancer Center, Shreveport, LA
| | | | | | - Fred Schreiber
- Watson Clinic - Center for Cancer Care & Research, Lakeland, FL
| | | |
Collapse
|
67
|
Afaq F, Katiyar SK. Polyphenols: skin photoprotection and inhibition of photocarcinogenesis. Mini Rev Med Chem 2011; 11:1200-15. [PMID: 22070679 PMCID: PMC3288507 DOI: 10.2174/13895575111091200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/05/2011] [Accepted: 08/21/2011] [Indexed: 01/02/2023]
Abstract
Polyphenols are a large family of naturally occurring plant products and are widely distributed in plant foods, such as, fruits, vegetables, nuts, flowers, bark and seeds, etc. These polyphenols contribute to the beneficial health effects of dietary products. Clinical and epidemiological studies suggest that exposure of the skin to environmental factors/pollutants, such as solar ultraviolet (UV) radiation induce harmful effects and leads to various skin diseases including the risk of melanoma and non-melanoma skin cancers. The incidence of non-melanoma skin cancer, comprising of squamous cell carcinoma and basal cell carcinoma, is a significant public health concern world-wide. Exposure of the skin to solar UV radiation results in inflammation, oxidative stress, DNA damage, dysregulation of cellular signaling pathways and immunosuppression thereby resulting in skin cancer. The regular intake of natural plant products, especially polyphenols, which are widely present in fruits, vegetables, dry legumes and beverages have gained considerable attention as protective agents against the adverse effects of UV radiation. In this article, we first discussed the impact of polyphenols on human health based on their structure-activity relationship and bioavailability. We then discussed in detail the photoprotective effects of some selected polyphenols on UV-induced skin inflammation, proliferation, immunosuppression, DNA damage and dysregulation of important cellular signaling pathways and their implications in skin cancer management. The selected polyphenols include: green tea polyphenols, pomegranate fruit extract, grape seed proanthocyanidins, resveratrol, silymarin, genistein and delphinidin. The new information on the mechanisms of action of these polyphenols supports their potential use in skin photoprotection and prevention of photocarcinogenesis in humans.
Collapse
Affiliation(s)
- Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, 35294, AL, USA
| | - Santosh K. Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, 35294, AL, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
68
|
Connors SK, Chornokur G, Kumar NB. New insights into the mechanisms of green tea catechins in the chemoprevention of prostate cancer. Nutr Cancer 2011; 64:4-22. [PMID: 22098273 DOI: 10.1080/01635581.2012.630158] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prostate cancer is the most commonly diagnosed cancer and second most common cause of cancer deaths in American men. Its long latency, slow progression, and high incidence rate make prostate cancer ideal for targeted chemopreventative therapies. Therefore, chemoprevention studies and clinical trials are essential for reducing the burden of prostate cancer on society. Epidemiological studies suggest that tea consumption has protective effects against a variety of human cancers, including that of the prostate. Laboratory and clinical studies have demonstrated that green tea components, specifically the green tea catechin (GTC) epigallocatechin gallate, can induce apoptosis, suppress progression, and inhibit invasion and metastasis of prostate cancer. Multiple mechanisms are involved in the chemoprevention of prostate cancer with GTCs; understanding and refining models of fundamental molecular pathways by which GTCs modulate prostate carcinogenesis is essential to apply the utilization of green tea for the chemoprevention of prostate cancer in clinical settings. The objective of this article is to review and summarize the most current literature focusing on the major mechanisms of GTC chemopreventative action on prostate cancer from laboratory, in vitro, and in vivo studies, and clinical chemoprevention trials.
Collapse
Affiliation(s)
- Shahnjayla K Connors
- Department of Cancer Epidemiology, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA.
| | | | | |
Collapse
|
69
|
Gokulakrisnan A, Jayachandran Dare B, Thirunavukkarasu C. Attenuation of the cardiac inflammatory changes and lipid anomalies by (−)-epigallocatechin-gallate in cigarette smoke-exposed rats. Mol Cell Biochem 2011; 354:1-10. [DOI: 10.1007/s11010-011-0785-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
|
70
|
Jung IH, Yun JH, Cho AR, Kim CS, Chung WG, Choi SH. Effect of (-)-epigallocatechin-3-gallate on maintaining the periodontal ligament cell viability of avulsed teeth: a preliminary study. J Periodontal Implant Sci 2011; 41:10-6. [PMID: 21394292 PMCID: PMC3051051 DOI: 10.5051/jpis.2011.41.1.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/30/2010] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Avulsed tooth can be completely recovered, if sound periodontal ligament (PDL) of tooth is maintained. Although a lot of storage solutions have been explored for the better storage of avulsed tooth, there is a shortcoming that the preservation time is much short. On the other hand, there has been studies that (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, which is related to the anti inflammatory, antioxygenic, and antibacterial effects, allows the successful preservations of tissues and cells. This study evaluated the effect of EGCG on avulsed-teeth preservation of Beagle dogs for a period of time. METHODS The atraumatically extracted teeth of Beagle dogs were washed and preserved with 0/10/100 µM of EGCG at the time of immediate, period 1 (4 days in EGCG-contained media and additional 1 day in EGCG-free media), period 2 (8 days in EGCG-contained media and additional 2 days in EGCG-free media) and period 3 (12 days in EGCG-contained media and additional 2 days in EGCG-free media). Then, the cell viabilities of preserved teeth was calculated by dividing optical density (OD) of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with OD of eosin assay to eliminate the measurement errors caused by the different tissue volumes. RESULTS From the results, the immediately analyzed group presented the highest cell viability, and the rate of living cells on teeth surface decreased dependent on the preservation period. However, the 100 µM of EGCG-treated group showed statistically significant positive cell activity than EGCG-free groups throughout preservation periods. CONCLUSIONS Our findings showed that 100 µM EGCG could maintain PDL cell viability of extracted tooth. These results suggest that although EGCG could not be a perfect additive for tooth preservation, it is able to postpone the period of tooth storage. However, further in-depth studies are required for more plausible use of EGCG.
Collapse
Affiliation(s)
- Im-Hee Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
71
|
Gokulakrisnan A, Vinayagam MM, Rahman LAA, Thirunavukkarasu C. WITHDRAWN: Attenuation of cardiac oxidative stress by (-)-epigallocatechin-gallate (EGCG) in CS exposed rats. Biomed Pharmacother 2010:S0753-3322(10)00183-6. [PMID: 21115319 DOI: 10.1016/j.biopha.2010.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/30/2010] [Indexed: 01/08/2023] Open
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Adikesavan Gokulakrisnan
- Department of Biochemistry, Periyar University, Salem 636016, Tamil Nadu, India; Department of Biochemistry, Islamiah College, Vaniyambadi, Tamil Nadu, India
| | | | | | | |
Collapse
|
72
|
Gokulakrishnan A, Ali ARL. Cigarette smoke-induced biochemical perturbations in human erythrocytes and attenuation by epigallocatechin-3-gallate--tea catechin. Pharmacol Rep 2010; 62:891-9. [PMID: 21098872 DOI: 10.1016/s1734-1140(10)70349-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 03/09/2010] [Indexed: 10/25/2022]
Abstract
The protective effect of epigallocatechin-3-gallate (EGCG) against cigarette smoke (CS) induced alterations in human erythrocyte was studied using an in vitro model. Hemolysis, carboxyhemoglobin, osmotic fragility, hemin, lipid peroxidation (LPO), protein thiol, protein carbonyl, glutathione, antioxidant enzymes, membrane bound ATPases and erythrocyte ghost protein were assessed to investigate the effect of EGCG. Erythrocytes were incubated with CS and/or 10 μM EGCG under physiological conditions of temperature and pH for 2 h. CS significantly increased the percentage of hemolysis, carboxyhemoglobin, hemin, LPO and osmotic fragility in human erythrocytes whereas EGCG pretreatment significantly reduced all the above parameters. The levels of protein carbonyls significantly increased whereas the level of protein thiol decreased significantly in erythrocytes incubated with CS. EGCG pretreatment significantly decreased the levels of carbonyls and increased the level of protein thiol. The level of glutathione, antioxidant enzyme and membrane bound ATPases were decreased significantly in erythrocytes incubated with CS. However, EGCG pretreatment significantly increased the activities of GSH, antioxidant enzymes and membrane bound ATPases. CS incubated erythrocytes showed a progressive loss of the cytoskeleton proteins and formation of low molecular weight bands and protein aggregates. EGCG pretreatment of CS incubated erythrocytes showed a near normal protein profile compared to that of control erythrocytes. The present study divulges that EGCG can reduce the abnormalities of cigarette smoking by ameliorating the oxidative stress. This finding raises the possibility that EGCG may provide protection from CS induced toxicity.
Collapse
|
73
|
Yoon BI, Ha US, Sohn DW, Lee SJ, Kim HW, Han CH, Lee CB, Cho YH. Anti-inflammatory and antimicrobial effects of nanocatechin in a chronic bacterial prostatitis rat model. J Infect Chemother 2010; 17:189-94. [PMID: 20694569 DOI: 10.1007/s10156-010-0098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 07/12/2010] [Indexed: 01/18/2023]
Abstract
Chronic bacterial prostatitis (CBP) is one of the most common relapsing urinary tract infection (UTI) in males. Catechin, an extract of green tea, is known to have anti-inflammatory and antimicrobial effects against various bacteria. However, catechin can be easily degenerated during digestion, and this may result in decreased absorption into the body. Nanocatechin is catechin coated with hydroxypropyl methyl cellulose by nanotechnology. It reduces degeneration during digestion and enhances absorption of catechin into the body. We evaluated the anti-inflammatory and antimicrobial effect of nanocatechin on CBP and also analyzed plasma concentration of catechins to evaluate absorptivity in an animal model. Forty rats demonstrating CBP were randomly divided into four groups: control, ciprofloxacin, catechin, and nanocatechin. After treatment, the results of microbiological culture of prostate and urine samples as well as histological findings of the prostate in each group were analyzed. Plasma concentration of catechins in catechin and nanocatechin groups was compared. The use of ciprofloxacin, catechin, and nanocatechin showed statistically significant decrease in bacterial growth and improvement in prostatic inflammation compared with the control group. The nanocatechin group showed statistically significant decrease in bacterial growth and improvement in prostatic inflammation compared with the catechin group. Plasma concentrations of epicatechin, gallocatechin gallate, and epigallocatechin gallate were significantly higher in the nanocatechin group than those in the catechin group. These results suggest that nanocatechin has better antimicrobial and anti-inflammatory effects on rat CBP than catechin due to higher absorption into the body.
Collapse
Affiliation(s)
- Byung Il Yoon
- Department of Urology, St Mary's Hospital, The Catholic University of Korea College of Medicine, 62 Youido-dong, Youngdungpoku, Seoul, 150-713, Korea
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Kim H, Hiraishi A, Tsuchiya K, Sakamoto K. (-) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology 2010; 62:245-55. [PMID: 20596890 DOI: 10.1007/s10616-010-9285-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 06/11/2010] [Indexed: 02/07/2023] Open
Abstract
Tea catechin is one of the compounds that are closely related to obesity and insulin sensitivity. In order to determine the effect of catechin on adipocyte differentiation, we treated 3T3-L1 preadipocytes with different kinds of catechins. Our results showed that catechins, especially epigallocatechin gallate (EGCG), significantly reduced intracellular lipid accumulation and repressed the activity of glycerol-3-phosphate dehydrogenase, an enzyme involved in lipid synthesis. Furthermore, glucose and fatty acid transport were also suppressed by catechin. We then analyzed the activity of transcription factors-forkhead transcription factor class O1 (FoxO1) and sterol regulatory element-binding protein-1c (SREBP1c)-which are involved in adipocyte differentiation and lipid synthesis, respectively. The transcriptional activities of both these factors significantly decreased by EGCG. Western blot analysis revealed that EGCG induced the insulin signal-mediated phosphorylation of FoxO1 (Thr24, Ser256). These results suggest that EGCG suppresses the differentiation of adipocytes through the inactivation of FoxO1 and SREBP1c.
Collapse
Affiliation(s)
- Hyojung Kim
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | |
Collapse
|
75
|
Allen JG, Fotsch C, Babij P. Emerging Targets in Osteoporosis Disease Modification. J Med Chem 2010; 53:4332-53. [PMID: 20218623 DOI: 10.1021/jm9018756] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- John G. Allen
- Chemistry Research and Discovery, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320
| | - Christopher Fotsch
- Chemistry Research and Discovery, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320
| | - Philip Babij
- Metabolic Disorders, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320
| |
Collapse
|
76
|
Boehm K, Borrelli F, Ernst E, Habacher G, Hung SK, Milazzo S, Horneber M. Green tea (Camellia sinensis) for the prevention of cancer. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2009. [PMID: 19588362 DOI: 10.1002/14651858.cd005004.pub2.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Tea is one of the most commonly consumed beverages worldwide. Teas from the plant Camellia sinensis can be grouped into green, black and oolong tea. Cross-culturally tea drinking habits vary. Camellia sinensis contains the active ingredient polyphenol, which has a subgroup known as catechins. Catechins are powerful antioxidants. It has been suggested that green tea polyphenol may inhibit cell proliferation and observational studies have suggested that green tea may have cancer-preventative effects. OBJECTIVES To critically assess any associations between green tea consumption and the risk of cancer incidence and mortality. SEARCH STRATEGY We searched eligible studies up to January 2009 in the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Amed, CancerLit, Psych INFO and Phytobase and reference lists of previous reviews and included studies. SELECTION CRITERIA We included all prospective, controlled interventional studies and observational studies, which either assessed the associations between green tea consumption and risk of cancer incidence or that reported on cancer mortality. DATA COLLECTION AND ANALYSIS At least two review authors independently applied the study criteria, extracted data and assessed methodological quality of studies. Due to the nature of included studies, which were mainly epidemiological, results were summarised descriptively according to cancer diagnosis. MAIN RESULTS Fifty-one studies with more than 1.6 million participants were included. Twenty-seven of them were case-control studies, 23 cohort studies and one randomised controlled trial (RCT).Twenty-seven studies tried to establish an association between green tea consumption and cancer of the digestive tract, mainly of the upper gastrointestinal tract, five with breast cancer, five with prostate cancer, three with lung cancer, two with ovarian cancer, two with urinary bladder cancer one with oral cancer, three further studies included patients with various cancer diagnoses.The methodological quality was measured with the Newcastle-Ottawa scale (NOS). The 9 nested case-control studies within prospective cohorts were of high methodological quality, 13 of medium, and 1 of low. One retrospective case-control study was of high methodological quality and 21 of medium and 5 of low.Results from studies assessing associations between green tea and risk of digestive tract cancer incidence were highly contradictory. There was limited evidence that green tea could reduce the incidence of liver cancer. The evidence for esophageal, gastric, colon, rectum, and pancreatic cancer was conflicting. In prostate cancer, observational studies with higher methodological quality and the only included RCT suggested a decreased risk in men consuming higher quantities green tea or green tea extracts. However, there was limited to moderate evidence that the consumption of green tea reduced the risk of lung cancer, especially in men, and urinary bladder cancer or that it could even increase the risk of the latter. There was moderate to strong evidence that green tea consumption does not decrease the risk of dying from gastric cancer. There was limited moderate to strong evidence for lung, pancreatic and colorectal cancer. AUTHORS' CONCLUSIONS There is insufficient and conflicting evidence to give any firm recommendations regarding green tea consumption for cancer prevention. The results of this review, including its trends of associations, need to be interpreted with caution and their generalisability is questionable, as the majority of included studies were carried out in Asia (n = 47) where the tea drinking culture is pronounced. Desirable green tea intake is 3 to 5 cups per day (up to 1200 ml/day), providing a minimum of 250 mg/day catechins. If not exceeding the daily recommended allowance, those who enjoy a cup of green tea should continue its consumption. Drinking green tea appears to be safe at moderate, regular and habitual use.
Collapse
Affiliation(s)
- Katja Boehm
- Medizinische Klinik 5-Schwerpunkt Onkologie / Haematologie, Klinikum Nord, Prof.-Ernst-Nathan-Str. 1, Nuernberg, Germany, D-90419
| | | | | | | | | | | | | |
Collapse
|
77
|
Boehm K, Borrelli F, Ernst E, Habacher G, Hung SK, Milazzo S, Horneber M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst Rev 2009; 2009:CD005004. [PMID: 19588362 PMCID: PMC6457677 DOI: 10.1002/14651858.cd005004.pub2] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Tea is one of the most commonly consumed beverages worldwide. Teas from the plant Camellia sinensis can be grouped into green, black and oolong tea. Cross-culturally tea drinking habits vary. Camellia sinensis contains the active ingredient polyphenol, which has a subgroup known as catechins. Catechins are powerful antioxidants. It has been suggested that green tea polyphenol may inhibit cell proliferation and observational studies have suggested that green tea may have cancer-preventative effects. OBJECTIVES To critically assess any associations between green tea consumption and the risk of cancer incidence and mortality. SEARCH STRATEGY We searched eligible studies up to January 2009 in the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Amed, CancerLit, Psych INFO and Phytobase and reference lists of previous reviews and included studies. SELECTION CRITERIA We included all prospective, controlled interventional studies and observational studies, which either assessed the associations between green tea consumption and risk of cancer incidence or that reported on cancer mortality. DATA COLLECTION AND ANALYSIS At least two review authors independently applied the study criteria, extracted data and assessed methodological quality of studies. Due to the nature of included studies, which were mainly epidemiological, results were summarised descriptively according to cancer diagnosis. MAIN RESULTS Fifty-one studies with more than 1.6 million participants were included. Twenty-seven of them were case-control studies, 23 cohort studies and one randomised controlled trial (RCT).Twenty-seven studies tried to establish an association between green tea consumption and cancer of the digestive tract, mainly of the upper gastrointestinal tract, five with breast cancer, five with prostate cancer, three with lung cancer, two with ovarian cancer, two with urinary bladder cancer one with oral cancer, three further studies included patients with various cancer diagnoses.The methodological quality was measured with the Newcastle-Ottawa scale (NOS). The 9 nested case-control studies within prospective cohorts were of high methodological quality, 13 of medium, and 1 of low. One retrospective case-control study was of high methodological quality and 21 of medium and 5 of low.Results from studies assessing associations between green tea and risk of digestive tract cancer incidence were highly contradictory. There was limited evidence that green tea could reduce the incidence of liver cancer. The evidence for esophageal, gastric, colon, rectum, and pancreatic cancer was conflicting. In prostate cancer, observational studies with higher methodological quality and the only included RCT suggested a decreased risk in men consuming higher quantities green tea or green tea extracts. However, there was limited to moderate evidence that the consumption of green tea reduced the risk of lung cancer, especially in men, and urinary bladder cancer or that it could even increase the risk of the latter. There was moderate to strong evidence that green tea consumption does not decrease the risk of dying from gastric cancer. There was limited moderate to strong evidence for lung, pancreatic and colorectal cancer. AUTHORS' CONCLUSIONS There is insufficient and conflicting evidence to give any firm recommendations regarding green tea consumption for cancer prevention. The results of this review, including its trends of associations, need to be interpreted with caution and their generalisability is questionable, as the majority of included studies were carried out in Asia (n = 47) where the tea drinking culture is pronounced. Desirable green tea intake is 3 to 5 cups per day (up to 1200 ml/day), providing a minimum of 250 mg/day catechins. If not exceeding the daily recommended allowance, those who enjoy a cup of green tea should continue its consumption. Drinking green tea appears to be safe at moderate, regular and habitual use.
Collapse
Affiliation(s)
- Katja Boehm
- Klinikum NordMedizinische Klinik 5‐Schwerpunkt Onkologie/HaematologieProf.‐Ernst‐Nathan‐Str. 1NuernbergGermanyD‐90419
| | - Francesca Borrelli
- University of Naples 'Federico II'Department of Experimental PharmacologyVia D Montesano 49NaplesItaly80131
| | - Edzard Ernst
- Peninsula Medical School, University of ExeterComplementary Medicine DepartmentExeterUK
| | - Gabi Habacher
- Small Animal HospitalFeline CentreDepartment of Veterinary Clinical SciencesUniversity of BristolLangfordUK
| | - Shao Kang Hung
- Peninsula Medical School, Universities of Exeter and PlymouthComplementary Medicine25 Victoria Park RoadExeterUKEX2 4NT
| | - Stefania Milazzo
- Paracelsus Medical University, Klinikum NuernbergDepartment of Internal Medicine, Division of Oncology and HematologyProf.‐Ernst‐Nathan‐Str. 1NuernbergGermanyD‐90419
| | - Markus Horneber
- Paracelsus Medical University, Klinikum NurembergDepartment of Internal Medicine, Division of Oncology and HematologyProf.‐Ernst‐Nathan‐Str. 1NurembergGermanyD‐90419
| |
Collapse
|
78
|
Ku HC, Chang HH, Liu HC, Hsiao CH, Lee MJ, Hu YJ, Hung PF, Liu CW, Kao YH. Green tea (−)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am J Physiol Cell Physiol 2009; 297:C121-32. [DOI: 10.1152/ajpcell.00272.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin and (−)-epigallocatechin gallate (EGCG) have been reported to regulate fat cell mitogenesis and adipogenesis, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated mitogenesis in 3T3-L1 preadipocytes. EGCG inhibited insulin stimulation of preadipocyte proliferation in a dose- and time-dependent manner. EGCG also suppressed insulin-stimulated phosphorylation of the insulin receptor-β, insulin receptor (IR) substrates 1 and 2 (IRS1 and IRS2), and mitogen-activated protein kinase pathway proteins, RAF1, MEK1/2, and ERK1/2, but not JNK. Furthermore, EGCG inhibited the association of IR with the IRS1 and IRS2 proteins, but not with the IRS4 protein. These data suggest that EGCG selectively affects particular types of IRS and MAPK family members. Generally, EGCG was more effective than epicatechin, epicatechin gallate, and epigallocatechin in modulating insulin-stimulated mitogenic signaling. We identified the EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] in fat cells and found that its expression was sensitive to growth phase, tissue type, and differentiation state. Pretreatment of preadipocytes with 67LR antiserum prevented the effects of EGCG on insulin-stimulated phosphorylation of IRS2, RAF1, and ERK1/2 and insulin-stimulated preadipocyte proliferation (cell number and bromodeoxyuridine incorporation). Moreover, EGCG tended to increase insulin-stimulated associations between the 67LR and IR, IRS1, IRS2, and IRS4 proteins. These data suggest that EGCG mediates anti-insulin signaling in preadipocyte mitogenesis via the 67LR pathway.
Collapse
|
79
|
Shen CL, Yeh JK, Cao JJ, Wang JS. Green tea and bone metabolism. Nutr Res 2009; 29:437-56. [PMID: 19700031 PMCID: PMC2754215 DOI: 10.1016/j.nutres.2009.06.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/18/2009] [Accepted: 06/30/2009] [Indexed: 01/01/2023]
Abstract
Osteoporosis is a major health problem in both elderly women and men. Epidemiological evidence has shown an association between tea consumption and the prevention of age-related bone loss in elderly women and men. Ingestion of green tea and green tea bioactive compounds may be beneficial in mitigating bone loss of this population and decreasing their risk of osteoporotic fractures. This review describes the effect of green tea or its bioactive components on bone health, with an emphasis on (i) the prevalence and etiology of osteoporosis; (ii) the role of oxidative stress and antioxidants in osteoporosis; (iii) green tea composition and bioavailability; (iv) the effects of green tea and its active components on osteogenesis, osteoblastogenesis, and osteoclastogenesis from human epidemiological, animal, as well as cell culture studies; (v) possible mechanisms explaining the osteoprotective effects of green tea bioactive compounds; (vi) other bioactive components in tea that benefit bone health; and (vii) a summary and future direction of green tea and bone health research and the translational aspects. In general, tea and its bioactive components might decrease the risk of fracture by improving bone mineral density and supporting osteoblastic activities while suppressing osteoclastic activities.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430-9097, USA.
| | | | | | | |
Collapse
|
80
|
Wang CT, Chang HH, Hsiao CH, Lee MJ, Ku HC, Hu YJ, Kao YH. The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. Mol Nutr Food Res 2009; 53:349-60. [PMID: 19065584 DOI: 10.1002/mnfr.200800013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Green tea (-)-epigallocatechin-3-gallate (EGCG) is known as to regulate obesity and fat cell activity. However, little information is known about the effects of EGCG on oxidative reactive oxygen species (ROS) of fat cells. Using 3T3-L1 preadipocytes and adipocytes, we found that EGCG increased ROS production in dose- and time-dependent manners. The concentration of EGCG that increased ROS levels by 180-500% was approximately 50 muM for a range of 8-16 h of treatment. In contrast, EGCG dose- and time-dependently decreased the amount of intracellular glutathione (GSH) levels. EGCG was more effective than (-)-epicatechin, (-)-epicatechin-3-gallate, and (-)-epigallocatechin in changing ROS and GSH levels. This suggests a catechin-specific effect. To further examine the relation of GSH to ROS as altered by EGCG, we observed that exposure of preadipocytes and adipocytes to N-acetyl-L-cysteine (a GSH precursor) blocked the EGCG-induced increases in ROS levels and decreases in GSH levels. These observations suggest a GSH-dependent effect of EGCG on ROS production. While EGCG was demonstrated to alter levels of ROS and GSH, its signaling was altered by an EGCG receptor (the so-called 67 kDa laminin receptor(67LR)) antiserum, but not by normal rabbit serum. These data suggest that EGCG mediates GSH and ROS levels via the 67LR pathway.
Collapse
Affiliation(s)
- Chih-Ting Wang
- Department of Life Science, College of Science, National Central University, Chung-Li City, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
81
|
Lin RW, Chen CH, Wang YH, Ho ML, Hung SH, Chen IS, Wang GJ. (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-kappaB. Biochem Biophys Res Commun 2009; 379:1033-7. [PMID: 19150340 DOI: 10.1016/j.bbrc.2009.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/04/2009] [Indexed: 10/21/2022]
Abstract
People who regularly drink tea have been found to have a higher bone mineral density (BMD) and to be at less risk of hip fractures than those who do not drink it. Green tea catechins such as (-)-epigallocatechin gallate (EGCG) have been reported to increase osteogenic functioning in mesenchymal stem cells. However, its effect on osteoclastogenesis remains unclear. In this study, we investigated the effect of EGCG on RANKL-activation osteoclastogenesis and NF-kappaB in RAW 264.7, a murine preosteoclast cell line. EGCG (10-100 microM) significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in murine RAW 264.7 cells and bone marrow macrophages (BMMs). EGCG appeared to target osteoclastic differentiation at an early stage but had no cytotoxic effect on osteoclast precursors. In addition, it significantly inhibited RANKL-induced NF-kappaB transcriptional activity and nuclear translocation. We conclude that EGCG inhibits osteoclastogenesis through its activation of NF-kappaB.
Collapse
Affiliation(s)
- Ru-Wei Lin
- Graduate Institute of Pharmaceutical Sciences, College of Pharmacy, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, 807 Kaohsiung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
82
|
Chuu CP, Chen RY, Kokontis JM, Hiipakka RA, Liao S. Suppression of androgen receptor signaling and prostate specific antigen expression by (-)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer Lett 2008; 275:86-92. [PMID: 18977589 DOI: 10.1016/j.canlet.2008.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/25/2022]
Abstract
The green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), inhibits the development and progression of prostate cancer in TRAMP mice and in men. We examined the effects of EGCG on LNCaP human prostate cancer sublines 104-S, 104-R1 and R1Ad representing different progression stages of prostate cancer. EGCG suppressed cell proliferation, prostate specific antigen (PSA) expression, and AR transcriptional activity in the different LNCaP sublines. Intraperitoneal administration of EGCG also suppressed the growth of relapsing R1Ad tumors and decreased tumor-derived serum PSA. Effects of EGCG on tumor PSA expression have the potential to affect accurate monitoring of patient tumor burden by serum PSA measurements.
Collapse
Affiliation(s)
- Chih-Pin Chuu
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, CIS W325F, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
83
|
Kawazoe T, Kim H, Tsuji Y, Morimoto N, Hyon SH, Suzuki S. Green tea polyphenols affect skin preservation in rats and improve the rate of skin grafts. Cell Transplant 2008; 17:203-9. [PMID: 18468251 DOI: 10.3727/000000008783906964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Green tea polyphenols have been recently reported to promote the preservation of tissues, such as blood vessels, corneas, nerves, islet cells, articular cartilage, and myocardium, at room temperature. These findings indicate the possibility of a new method of tissue banking without freezing. A main active ingredient of green tea, epigallocatechin-3-gallate (EGCG), is a polyphenol that possesses antioxidant, antimicrobial, antiproliferative, and free radical scavenging effects. This study examined the effects of EGCG regarding skin preservation. Skin sample biopsy specimens measuring 1 x 1 cm from GFP rats were held in sterile containers with 50 ml preserving solution at 4 degrees C and 37 degrees C for up to about 8 weeks. Periodically, some of the preserved skin specimens were directly examined histologically and others were transplanted into nude mice. Histological examinations of skin preserved at 4 degrees C revealed a degeneration of the epidermal and dermal layers from 5 weeks in all groups. In the groups preserved at 37 degrees C, degeneration and flakiness of the epidermal layer were demonstrated starting at 2 weeks preservation regardless of addition of EGCG. After 2-7 weeks of preservation the rat skin grafted to nude mice in the EGCG groups stored at 4 degrees C showed successful engraftment. However, grafts preserved at 4 degrees C without EGCG and at 37 degrees C did not demonstrate GFP-positive keratinocyte or fibroblasts. In conclusion, the present findings suggest the future clinical usefulness of EGCG for skin preservation without freezing; however, the mechanism by which EGCG promotes skin preservation still remains unclear.
Collapse
Affiliation(s)
- Takeshi Kawazoe
- Department of Plastic and Reconstructive Surgery, Postgraduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | |
Collapse
|
84
|
Spina M, Cuccioloni M, Mozzicafreddo M, Montecchia F, Pucciarelli S, Eleuteri AM, Fioretti E, Angeletti M. Mechanism of inhibition of wt-dihydrofolate reductase from E. coli by tea epigallocatechin-gallate. Proteins 2008; 72:240-51. [PMID: 18214969 DOI: 10.1002/prot.21914] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dihydrofolate reductase (DHFR) is a ubiquitous enzyme involved in major biological process, including DNA synthesis and cancer inhibition, and its modulation is the object of extensive structural, kinetic, and pharmacological studies. In particular, earlier studies showed that green tea catechins are powerful inhibitors of bovine liver and chicken liver DHFR. In this article, we report the results of inhibition kinetics for the enzyme from another source (DHFR from E. coli) exerted by (-)-epigallocatechingallate (EGCG). Using different analytical techniques, we reported that EGCG acts as a bisubstrate inhibitor on the bacterial DHFR. Moreover, the combined approach of biosensor, kinetic, and molecular modelling analysis disclosed the ability of EGCG to bind to the enzyme both on substrate (DHF) and cofactor (NADPH) site. Collectively, our data have confirmed the selectivity of antifolate compounds with respect to the different source of enzyme (bacterial or mammalian DHFR) and the possible role of tea catechins as chemopreventive agents.
Collapse
Affiliation(s)
- Michele Spina
- Department of Molecular, Cellular and Animal Biology, University of Camerino, Via Gentile III da Varano, 62032, Camerino (MC), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Hsu CH, Tsai TH, Kao YH, Hwang KC, Tseng TY, Chou P. Effect of green tea extract on obese women: A randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 2008; 27:363-70. [DOI: 10.1016/j.clnu.2008.03.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 03/11/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
|
86
|
Janle EM, Morré DM, Morré DJ, Zhou Q, Zhu Y. Pharmacokinetics of green tea catechins in extract and sustained-release preparations. J Diet Suppl 2008; 5:248-63. [PMID: 19885387 PMCID: PMC2747776 DOI: 10.1080/19390210802414279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Catechins are a major constituent of green tea. For green tea to have cancer therapeutic benefit, catechin concentrations in the range of 100 nM are required continuously until apoptosis (programmed cell death) is induced. To prolong elevated plasma and interstitial concentrations of catechins, a sustained-release formulation of green tea extract was tested and compared to a commercial green tea extract (Tegreen97®). Sustained-release formulations are usually developed in the pharmaceutical industry to slowly deliver the compound over a period of time and increase the dosing interval. Plasma and interstitial fluid (ISF) pharmacokinetics of catechins were determined following an oral dose in the rat. The sustained-release formulation profile included multiple smaller peaks of total catechins in both plasma and ISF. Interstitial fluid profiles of green tea extract indicate that higher catechins concentration and longer duration in tissue than in blood may make a sustained-release form unnecessary.
Collapse
Affiliation(s)
- Elsa M Janle
- Botanical Center In Vivo Core, Purdue University, Department of Foods and Nutrition, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
87
|
Moon HS, Chung CS, Lee HG, Kim TG, Choi YJ, Cho CS. Inhibitory effect of (-)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity (Silver Spring) 2007; 15:2571-82. [PMID: 18070748 DOI: 10.1038/oby.2007.309] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the molecular mechanisms underlying the attenuating effect of (-)-epigallocatechin-3-gallate (EGCG) on proliferation and lipid accumulation of 3T3-L1 cells, with a focus on the duration of EGCG treatment. RESEARCH METHODS AND PROCEDURES Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay and diamidino-2-phenylindole staining. The anti-adipogenic effect of EGCG on 3T3-L1 cells was analyzed by glycerol-3-phosphate dehydrogenase activity and Oil red O staining. Western blot analysis was used to detect adenosine monophosphate-activated protein kinase (AMPK) activation and phosphorylation of its substrate, acetyl-CoA carboxylase (ACC), and expression of insulin (INS) receptor, INS receptor substrate-1 (IRS-1), and adipocyte marker proteins. RESULTS Exposure to EGCG during the early period of adipogenesis (7 days) was sufficient to prevent lipid accumulation. During this period, EGCG greatly decreased expression of the adipocyte marker proteins peroxisome proliferator-activated receptor gamma2 (PPARgamma2) and liver X receptor (LXR)-alpha. Furthermore, EGCG significantly induced generation of reactive oxygen species (ROS), which led to AMPK activation, and these effects were eliminated by N-acetylcysteine (NAC) treatment. Also, EGCG increased the tyrosine phosphorylation of INS receptor and INS-1 with increasing incubation time. In contrast, EGCG treatment did not alter glycerol release in the presence or absence of 2',5'-dideoxyadenosine (DDA), indicating that EGCG had no effect on lipolysis. DISCUSSION Our data demonstrate that EGCG decreased cell viability and inhibited differentiation of 3T3-L1 cells in a manner dependent on the duration of treatment. Also, we showed that inhibition of adipocyte differentiation by EGCG was associated with decreased glycerol-3-phosphate dehydrogenase (GPDH) activity accompanied by a strong inhibition of PPARgamma2-induced transcriptional activity. Furthermore, the inhibition of adipocyte differentiation by EGCG involved generation of ROS and activation of AMPK.
Collapse
Affiliation(s)
- Hyun-Seuk Moon
- School of Agricultural Biotechnology, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, 151-921 Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
88
|
Laccase-catalyzed conversion of green tea catechins in the presence of gallic acid to epitheaflagallin and epitheaflagallin 3-O-gallate. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.06.093] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
89
|
Siddiqui IA, Saleem M, Adhami VM, Asim M, Mukhtar H. Tea beverage in chemoprevention and chemotherapy of prostate cancer. Acta Pharmacol Sin 2007; 28:1392-408. [PMID: 17723173 DOI: 10.1111/j.1745-7254.2007.00693.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed malignancy and the second leading cause of cancer-related deaths in American males with similar trends in many western countries. The existing treatment approaches and surgical intervention have not been able to effectively cope with this dreaded disease. For these reasons, it is necessary to intensify our efforts for a better understanding of the disease process and for the development of novel approaches for its prevention and treatment. Based on considerable evidence from in vivo and in vitro data and epidemiological studies, in recent years the beverage tea has gained considerable attention for reducing the risk of several cancers. Much of the cancer preventive effects of tea, especially green tea appear to be mediated by the polyphenols present therein. Geographical evidence suggests that the incidence and occurrence of PCa is lower in populations that consume tea regularly. This evidence suggests that tea polyphenols could be extrapolated to optimize their chemopreventive properties against PCa. PCa represents an excellent candidate disease for chemoprevention because it is typically diagnosed in men over 50 years of age and therefore, even a modest delay in neoplastic development achieved through pharmacological or nutritional intervention could result in a substantial reduction in the incidence of clinically detectable disease. In this review we address the issue of possible use of tea, especially green tea, for the prevention as well as treatment of PCa.
Collapse
Affiliation(s)
- Imtiaz A Siddiqui
- Department of Dermatology, University of Wisconsin, Medical Sciences Center, Room B-25 1300 University Avenue, Madison, Wisconsin 53706,USA
| | | | | | | | | |
Collapse
|
90
|
Cho SY, Park PJ, Shin HJ, Kim YK, Shin DW, Shin ES, Lee HH, Lee BG, Baik JH, Lee TR. (-)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells. Am J Physiol Endocrinol Metab 2007; 292:E1166-72. [PMID: 17164435 DOI: 10.1152/ajpendo.00436.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adiponectin is an adipocyte-specific secretory hormone that can increase insulin sensitivity and promote adipocyte differentiation. Administration of adiponectin to obese or diabetic mice reduces plasma glucose and free fatty acid levels. Green tea polyphenols possess many pharmacological activities such as antioxidant, anti-inflammatory, antiobesity, and antidiabetic activities. To investigate whether green tea polyphenols have an effect on the regulation of adiponectin, we measured expression and secretion levels of adiponectin protein after treatment of each green tea polyphenols in 3T3-L1 adipocytes. We found that (-)-catechin enhanced the expression and secretion of adiponectin protein in a dose- and time-dependent manner. Furthermore, treatment of (-)-catechin increased insulin-dependent glucose uptake in differentiated adipocytes and augmented the expression of adipogenic marker genes, including PPARgamma, CEBPalpha, FAS, and SCD-1, when (-)-catechin was treated during adipocyte differentiation. In search of the molecular mechanism responsible for inducible effect of (-)-catechin on adiponectin expression, we found that (-)-catechin markedly suppresses the expression of Kruppel-like factor 7 (KLF7) protein, which has recently been reported to inhibit the expression of adiponectin and other adipogenesis related genes, including leptin, PPARgamma, C/EBPalpha, and aP2 in adipocytes. KLF7 is a transcription factor in adipocyte and plays an important role in the pathogenesis of type 2 diabetes. Taken together, these data suggest that the upregulation of adiponectin protein by (-)-catechin may involve, at least in part, suppression of KLF7 in 3T3-L1 cells.
Collapse
Affiliation(s)
- Si Young Cho
- Research and Development Center, AmorePacific Corporation, 314-1, Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 449-729, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Yusuf N, Irby C, Katiyar SK, Elmets CA. Photoprotective effects of green tea polyphenols. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2007; 23:48-56. [PMID: 17254040 DOI: 10.1111/j.1600-0781.2007.00262.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Non-melanoma skin cancer is the most common malignancy in humans and is equivalent to the incidence of malignancies in all other organs combined in the United States. Current methods of prevention depend on sunscreens in humans, efficacy of which is largely undetermined for non-melanoma skin cancers. Green tea polyphenols have the greatest effect with respect to chemoprevention and have been found to be most potent at suppressing the carcinogenic activity of UV radiation. They protect against many of the other damaging effects of UV radiation such as UV-induced sunburn response, UV-induced immunosuppression and photoaging of the skin. They exert their photoprotective effects by various cellular, molecular and biochemical mechanisms in in vitro and in vivo systems. Green tea polyphenols thus have the potential, when used in conjunction with traditional sunscreens, to further protect the skin against the adverse effects of ultraviolet radiation.
Collapse
Affiliation(s)
- Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
92
|
Putnam SE, Scutt AM, Bicknell K, Priestley CM, Williamson EM. Natural products as alternative treatments for metabolic bone disorders and for maintenance of bone health. Phytother Res 2007; 21:99-112. [PMID: 17106868 DOI: 10.1002/ptr.2030] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bone metabolism involves a complex balance between the deposition of matrix and mineralization and resorption. There is now good evidence that dietary components and herbal products can influence these processes, particularly by inhibiting bone resorption, thus having beneficial effects on the skeleton. For example, it has been reported that a number of common vegetables, including onion, garlic and parsley, can inhibit bone resorption in ovariectomized rats. Essential oils derived from sage, rosemary, thyme and other herbs inhibit osteoclast activity in vitro and in vitro and leading to an increase in bone mineral density. Soya, a rich source of isoflavones, has shown promising results and epidemiological evidence to support a use in maintaining bone health, and various traditional herbal formulae in Chinese and Ayurvedic medicine also have demonstrable effects in pharmacological models of osteoporosis. Recently, cannabinoids have been described as having positive effects on osteoblast differentiation, and the presence of cannabinoid receptors in bone tissue indicates a more complex role in bone metabolism than previously thought. The first part of this review briefly discusses normal bone metabolism and disorders caused by its disruption, with particular reference to osteoporosis and current pharmacological treatments. The effects of natural products on bone and connective tissue are then discussed, to include items of diet, herbal extracts and food supplements, with evidence for their efficacy outlined.
Collapse
Affiliation(s)
- Sophie E Putnam
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | | | | | | | | |
Collapse
|
93
|
Babu PVA, Sabitha KE, Shyamaladevi CS. Green tea impedes dyslipidemia, lipid peroxidation, protein glycation and ameliorates Ca2+-ATPase and Na+/K+-ATPase activity in the heart of streptozotocin-diabetic rats. Chem Biol Interact 2006; 162:157-64. [PMID: 16846594 DOI: 10.1016/j.cbi.2006.05.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 11/25/2022]
Abstract
Diabetes-induced hyperlipidemia, oxidative stress and protein glycation impair cellular calcium and sodium homeostasis associated with abnormal membrane-bound enzyme activities resulting in cardiac dysfunction in diabetes. To explore the cardioprotective mechanism of green tea in diabetes, we measured the changes in the levels of calcium, sodium, potassium and the activities of Na+/K+ -ATPase and Ca2+ -ATPase in green tea treated diabetic rat hearts. The effect of green tea on triglycerides, lipid peroxidation and protein glycation in diabetic heart were also measured to elucidate the underlying mechanisms. Diabetes was induced by streptozotocin (STZ, 60 mg/kg i.p.). Six weeks after the induction of diabetes, some of the diabetic rats were treated orally with green tea extract (GTE) (300 mg/kg/day) for 4 weeks. GTE produced reduction in blood glucose and lowered the levels of lipid peroxides, triglycerides and extent of protein glycation in the heart of diabetic rats. GTE blunted the rise in cardiac [Ca2+] and [Na+] whereas increased the activities of Ca2+ -ATPase and Na+/K+ -ATPase in diabetic rats. In conclusion, the data provide support to the therapeutic effect of GTE and suggest that a possible mechanism of action may be associated with the attenuation of the rise in [Ca2+] and [Na+] by ameliorating Ca2+ -ATPase and Na+/K+ -ATPase activities.
Collapse
|
94
|
Babu PVA, Sabitha KE, Shyamaladevi CS. Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem Biol Interact 2006; 162:114-20. [PMID: 16860299 DOI: 10.1016/j.cbi.2006.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 04/10/2006] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
Hyperglycemia induced oxidative stress has been proposed as a cause of many complications of diabetes including cardiac dysfunction. The present study depicts the therapeutic effect of green tea extract on oxidative stress in aorta as well as heart of streptozotocin diabetic rats. Six weeks after diabetes induction, green tea was administered orally for 4 weeks [300 mg (kg body weight)(-1) day (-1)]. In aorta and heart of diabetic rats there was a significant increase in the activity of superoxide dismutase, catalase and glutathione peroxidase with an increase in lipid peroxides. Diabetic rats showed a significant decrease in the levels of serum and cardiac glutathione. Green tea administration to diabetic rats reduced lipid peroxides and activity of antioxidant enzymes whereas increased glutathione content. The results demonstrate that the induction of antioxidant enzymes in diabetic rats is not efficient and sufficient to reduce the oxidative stress. But green tea by providing a competent antioxidative mechanism ameliorates the oxidative stress in the aorta and heart of diabetic rats. The study suggests that green tea may provide a useful therapeutic option in the reversal of oxidative stress induced cardiac dysfunction in diabetes mellitus.
Collapse
|
95
|
Abstract
Tea has been found to possess widespread biological functions based on a variety of laboratory data. The effects of tea on obesity and diabetes have received increasing attention. This paper reviews the evidence for the connections among tea catechins, and obesity and diabetes. Tea catechins, especially (-)-epigallocatechin gallate (EGCG), appear to have antiobesity and antidiabetic effects. While few epidemiological and clinical studies show the health benefits of EGCG on obesity and diabetes, the mechanisms of its actions are emerging based on the various laboratory data. These mechanisms may be related to certain pathways, such as through the modulations of energy balance, endocrine systems, food intake, lipid and carbohydrate metabolism, the redox status, and activities of different types of cells (i. e., fat, liver, muscle, and beta-pancreatic cells). Because the EGCG receptor, the so-called 67-kDa laminin receptor (LR), has been discovered with colocalization of other types of LR and cytoskeleton in both cancer cells and normal cells, this may explain that EGCG possesses numerous actions. The mechanistic results of this review may possibly be utilized in the treatment of obesity, diabetes, and other related diseases using tea- and EGCG-based folk medicines.
Collapse
Affiliation(s)
- Yung-Hsi Kao
- Department of Life Science, College of Science, National Central University, Chung-Li City, Taoyuan, Taiwan.
| | | | | | | |
Collapse
|
96
|
Siddiqui IA, Adhami VM, Saleem M, Mukhtar H. Beneficial effects of tea and its polyphenols against prostate cancer. Mol Nutr Food Res 2006; 50:130-43. [PMID: 16425281 DOI: 10.1002/mnfr.200500113] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tea, next to water, is the most widely consumed beverage in the world. Depending upon the level of fermentation, tea can be categorized into three types: green (unfermented), oolong (partially fermented), and black (highly to fully fermented). In general, green tea has been found to be superior to black and oolong tea in terms of antioxidant and health promoting benefits owing to the higher content of (-)-epigallocatechin-3-gallate. Tea polyphenols comprise about one-third of the weight of the dried leaf, and they exhibit biochemical and pharmacological activities including antioxidant activities, inhibition of cell proliferation, induction of apoptosis, cell cycle arrest and modulation of carcinogen metabolism. Several studies demonstrate that most tea polyphenols exert their effects by scavenging reactive oxygen species (ROS) since excessive production of ROS has been implicated in the development of a variety of ailments including cancer of the prostate gland (CaP). Using cell culture and animal model systems, molecular targets for these remarkable beneficial effects of green tea drinking on CaP prevention and therapy have been defined. Geographical and case-control studies are showing that green tea drinking could afford CaP chemopreventive effects in human population. In this review we attempt to summarize the experimental as well as the epidemiological basis for the possible role of tea and its polyphenols for chemoprevention and chemotherapy of CaP.
Collapse
Affiliation(s)
- Imtiaz A Siddiqui
- Department of Dermatology, University of Wisconsin, Medical Sciences Center, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
97
|
Han DW, Hyon SH, Park JC, Park KD, Park YH, Park HK. Non-frozen preservation of mammalian tissue using green tea polyphenolic compounds. Biomed Mater 2006; 1:R18-29. [DOI: 10.1088/1748-6041/1/1/r03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
98
|
Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 2006; 66:1234-40. [PMID: 16424063 DOI: 10.1158/0008-5472.can-05-1145] [Citation(s) in RCA: 528] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Green tea catechins (GTCs) proved to be effective in inhibiting cancer growth in several experimental models. Recent studies showed that 30% of men with high-grade prostate intraepithelial neoplasia (HG-PIN) would develop prostate cancer (CaP) within 1 year after repeated biopsy. This prompted us to do a proof-of-principle clinical trial to assess the safety and efficacy of GTCs for the chemoprevention of CaP in HG-PIN volunteers. The purity and content of GTCs preparations were assessed by high-performance liquid chromatography [(-)-epigallocathechin, 5.5%; (-)-epicatechin, 12.24%; (-)-epigallocatechin-3-gallate, 51.88%; (-)-epicatechin-3-gallate, 6.12%; total GTCs, 75.7%; caffeine, <1%]. Sixty volunteers with HG-PIN, who were made aware of the study details, agreed to sign an informed consent form and were enrolled in this double-blind, placebo-controlled study. Daily treatment consisted of three GTCs capsules, 200 mg each (total 600 mg/d). After 1 year, only one tumor was diagnosed among the 30 GTCs-treated men (incidence, approximately 3%), whereas nine cancers were found among the 30 placebo-treated men (incidence, 30%). Total prostate-specific antigen did not change significantly between the two arms, but GTCs-treated men showed values constantly lower with respect to placebo-treated ones. International Prostate Symptom Score and quality of life scores of GTCs-treated men with coexistent benign prostate hyperplasia improved, reaching statistical significance in the case of International Prostate Symptom Scores. No significant side effects or adverse effects were documented. To our knowledge, this is the first study showing that GTCs are safe and very effective for treating premalignant lesions before CaP develops. As a secondary observation, administration of GTCs also reduced lower urinary tract symptoms, suggesting that these compounds might also be of help for treating the symptoms of benign prostate hyperplasia.
Collapse
Affiliation(s)
- Saverio Bettuzzi
- Department of Medicina Sperimentale, Sezione di Biochimica, University of Parma, Via Volturno 39, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
99
|
Liu HS, Chen YH, Hung PF, Kao YH. Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Am J Physiol Endocrinol Metab 2006; 290:E273-81. [PMID: 16159906 DOI: 10.1152/ajpendo.00325.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resistin (Rstn) is known as an adipocyte-specific secretory hormone that can cause insulin resistance and decrease adipocyte differentiation. By contrast, green tea catechins, especially (-)-epigallocatechin gallate (EGCG), have been reported as body weight and diabetes chemopreventatives. Whether EGCG regulates production of Rstn is unknown. Using 3T3-L1 adipocytes, we found that EGCG at 20 and 100 microM suppressed Rstn mRNA levels by approximately 35 and 50%, respectively, after 3 h. The basal half-life of Rstn mRNA induced by actinomycin D was >12 h but shifted to 3 h in the presence of EGCG. This suggests that EGCG regulates the stability of Rstn mRNA. Treatment with cycloheximide did not prevent EGCG-suppressed Rstn mRNA levels, which suggests that the effect of EGCG does not require new protein synthesis. Intracellular Rstn protein significantly decreased in the presence of 100 microM EGCG 3 h after treatment, whereas the release of the Rstn protein did not significantly change. This suggests that EGCG may modulate the distribution of Rstn protein between the intracellular and extracellular compartments. EGCG did not affect the amounts of extracellular signal-related kinase-1/2 (ERK1/2), phospho-JNK, phospho-p38, and phospho-Akt proteins but reduced the amounts of phospho-ERK1/2 proteins. Overexpression with MEK1 blocked EGCG-inhibited Rstn mRNA expression. These data suggest that EGCG downregulates Rstn expression via a pathway that is dependent on the ERK pathway.
Collapse
Affiliation(s)
- Hang-Seng Liu
- Department of General Medical Laboratory, Armed Forces Tao-Yuan General Hospital, Chung-Li City, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
100
|
Anger DL, Petre MA, Crankshaw DJ. Heteroactivation of cytochrome P450 1A1 by teas and tea polyphenols. Br J Pharmacol 2006; 145:926-33. [PMID: 15895106 PMCID: PMC1576212 DOI: 10.1038/sj.bjp.0706255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We studied 7-ethoxyresorufin deethylase as an index of cytochrome P4501A1 (CYP1A1) activity in liver microsomes from rats pretreated with 3-methylcholanthrene. The enzyme had complex kinetics compatible with a multisite model. At 1 microM substrate, brewed black, green and white teas had complex effects on enzyme activity consisting of activation at low concentrations and inhibition at higher concentrations. Data fit well to a two-site model that allowed us to determine maximal activation (% increase above control), pEC(50) for activation (g ml(-1)) and pIC(50) for inhibition (g ml(-1)). These parameters were 190+/-40, 5.9+/-0.1 and 4.51+/-0.09 for green tea, 350+/-40, 5.43+/-0.05 and 5.43+/-0.05 for black tea and 230+/-80, 5.3+/-0.3 and 4.7+/-0.2 for white tea, respectively. The effects of the brewed teas were mimicked to different degrees by the green tea polyphenols. Maximal activation, pEC(50) (M) and pIC(50) (M) were: (-)-epicatechin, 55+/-9, 5.4+/-0.3, 2+/-1; (-)-epicatechin gallate, 160+/-60, 6.2+/-0.3, 5.28+/-0.06; (-)-epigallocatechin 30+/-10, 6.5+/-0.5, 3.37+/-0.08; and (-)-epigallocatechin gallate 130+/-40, 6.7+/-0.3, 5.0+/-0.1. A crude extract of black tea polyphenols inhibited 7-ethoxyresorufin deethylase, but did not cause enzyme activation consistently. Enzyme activation was dependent upon substrate concentration. Heteroactivation of CYP1A1 may partially explain the lack of agreement between biological and epidemiological evidence of a role for tea in cancer prevention.
Collapse
Affiliation(s)
- Dana L Anger
- Honours Biology & Pharmacology Programme, McMaster University, Hamilton, Ontario, Canada
| | - Maria-Alexandra Petre
- Honours Biology & Pharmacology Programme, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Denis J Crankshaw
- Honours Biology & Pharmacology Programme, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
- Author for correspondence:
| |
Collapse
|