51
|
Isolation rearing alters social behaviors and monoamine neurotransmission in the medial prefrontal cortex and nucleus accumbens of adult rats. Brain Res 2011; 1385:175-81. [DOI: 10.1016/j.brainres.2011.02.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/11/2011] [Accepted: 02/13/2011] [Indexed: 11/15/2022]
|
52
|
Zombeck JA, Swearingen SP, Rhodes JS. Acute locomotor responses to cocaine in adolescents vs. adults from four divergent inbred mouse strains. GENES BRAIN AND BEHAVIOR 2011; 9:892-8. [PMID: 20662938 DOI: 10.1111/j.1601-183x.2010.00630.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Growing evidence suggests that adolescent mice display differential sensitivity to the acute locomotor activating effects of cocaine as compared to adults, but the direction of the difference varies across studies and the reasons are not clear. Few studies have directly examined genetic contributions to age differences in locomotor stimulation from cocaine. The goal of this study was to determine the extent to which reduced stimulation in C57BL/6J adolescents as compared to adults generalizes to other strains. Therefore, we examined male and female mice from four genetically divergent inbred stains (BALB/cByJ, C57BL/6J, DBA/2J and FVB/NJ) at two ages, postnatal day 30 and postnatal day 65. Mice received either saline or cocaine (15 or 30 mg/kg), and then immediately were placed back into their home cages. Locomotor activity was recorded continuously in the home cage by video tracking. Adolescents displayed reduced stimulation as compared to adults for C57BL/6J, BALB/cByJ and female FVB/NJ mice. No age differences were observed for DBA/2J or male FVB/NJ. No main effects of sex were observed. Strain differences in pharmacokinetics, neural development or physiology could contribute to the observed differences between ages across strains. Future comparative studies could discover biological differences between strains that explain age differences in cocaine sensitivity.
Collapse
Affiliation(s)
- J A Zombeck
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
53
|
Santucci AC, Rabidou D. Residual performance impairments in adult rats trained on an object discrimination task subsequent to cocaine administration during adolescence. Addict Biol 2011; 16:30-42. [PMID: 20192947 DOI: 10.1111/j.1369-1600.2009.00200.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present study was conducted to determine whether cognitive impairments in adult rats treated with cocaine during adolescence demonstrated in previous investigations extend to tests of object discrimination learning. Accordingly, 30-day-old male Long-Evans rats were injected subcutaneously with either 10 or 20 mg/kg cocaine or received control injections of saline for 7-8 consecutive days. An extended abstinence period was then introduced (mean = 70.7 ± 9.8 days) before subjects, who were now young adults (mean = 106.3 ± 10.2 days old), were assessed for acquisition of a two-choice object discrimination task. Using a correctional learning procedure conducted in a water maze, subjects were trained (eight trials per day for 10 days) to approach one of two multi-dimentional 'junk' objects. Although all animals acquired the discrimination to a reasonable extent, cocaine-treated subjects exhibited lower percentages of correct choices over the course of training (10 mg/kg = 59.6 ± 7.2% and 20 mg/kg = 59.4 ± 4.9%) relative to the saline control group (67.5 ± 4.9%). Further analyses revealed that saline-treated subjects acquired proficient discrimination performance earlier during the course of training, achieving an approximate 72% performance rate after only 3 days of training. This was in contrast to the two cocaine-treated groups needing 7 days of training to achieve comparable levels of performance. In addition, saline-treated subjects required significantly fewer trials (20.8 ± 8.9) than either cocaine-treated group (10 mg/kg = 52.2 ± 11.9 and 20 mg/kg = 63.3 ± 8.7) to reach an 87.5% correct response criterion (i.e. 7-correct-out-of-8-consecutive-trials) and performed at a higher above-chance level (13.5%) than either cocaine-treated group (3.6% and 5.3% for the 10 and 20 mg/kg cocaine groups, respectively). These findings demonstrate the existence of cognitive impairments in adulthood subsequent to cocaine exposure during adolescence despite a prolonged drug-free interval. Speculation regarding the neurobiological basis for this effect, especially with regard to alterations to prefrontal circuitry, is provided.
Collapse
Affiliation(s)
- Anthony C Santucci
- Department of Psychology, Manhattanville College, Purchase, NY 10577, USA.
| | | |
Collapse
|
54
|
Crews FT, Vetreno RP. Addiction, adolescence, and innate immune gene induction. Front Psychiatry 2011; 2:19. [PMID: 21629837 PMCID: PMC3098669 DOI: 10.3389/fpsyt.2011.00019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 04/11/2011] [Indexed: 01/12/2023] Open
Abstract
Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control, and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB) facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g., negative affect-anxiety and loss of frontal-cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy.
Collapse
Affiliation(s)
- Fulton T Crews
- Department of Pharmacology, Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | | |
Collapse
|
55
|
Abstract
Adolescence is a developmental period characterized by increased reward-seeking behavior. Investigators have used functional magnetic resonance imaging (fMRI) in conjunction with reward paradigms to test two opposing hypotheses about adolescent developmental changes in the striatum, a region implicated in reward processing. One hypothesis posits that the striatum is relatively hypo-responsive to rewards during adolescence, such that heightened reward-seeking behavior is necessary to achieve the same activation as adults. Another view suggests that during adolescence the striatal reward system is hyper-responsive, which subsequently results in greater reward-seeking. While evidence for both hypotheses has been reported, the field has generally converged on this latter hypothesis based on compelling evidence. In this review, I describe the evidence to support this notion, speculate on the disparate fMRI findings and conclude with future areas of inquiry to this fascinating question.
Collapse
Affiliation(s)
- Adriana Galvan
- Department of Psychology, University of California at Los Angeles Los Angeles, CA, USA
| |
Collapse
|
56
|
Abstract
Adolescence is a developmental period characterized by increased reward-seeking behavior. Investigators have used functional magnetic resonance imaging (fMRI) in conjunction with reward paradigms to test two opposing hypotheses about adolescent developmental changes in the striatum, a region implicated in reward processing. One hypothesis posits that the striatum is relatively hypo-responsive to rewards during adolescence, such that heightened reward-seeking behavior is necessary to achieve the same activation as adults. Another view suggests that during adolescence the striatal reward system is hyper-responsive, which subsequently results in greater reward-seeking. While evidence for both hypotheses has been reported, the field has generally converged on this latter hypothesis based on compelling evidence. In this review, I describe the evidence to support this notion, speculate on the disparate fMRI findings and conclude with future areas of inquiry to this fascinating question.
Collapse
Affiliation(s)
- Adriana Galvan
- Department of Psychology, University of California at Los Angeles Los Angeles, CA, USA
| |
Collapse
|
57
|
Wahlstrom D, White T, Luciana M. Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neurosci Biobehav Rev 2009; 34:631-48. [PMID: 20026110 DOI: 10.1016/j.neubiorev.2009.12.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 11/26/2022]
Abstract
Human adolescence has been characterized by increases in risk-taking, emotional lability, and deficient patterns of behavioral regulation. These behaviors have often been attributed to changes in brain structure that occur during this developmental period, notably alterations in gray and white matter that impact synaptic architecture in frontal, limbic, and striatal regions. In this review, we provide a rationale for considering that these behaviors may be due to changes in dopamine system activity, particularly overactivity, during adolescence relative to either childhood or adulthood. This rationale relies on animal data due to limitations in assessing neurochemical activity more directly in juveniles. Accordingly, we also present a strategy that incorporates molecular genetic techniques to infer the status of the underlying tone of the dopamine system across developmental groups. Implications for the understanding of adolescent behavioral development are discussed.
Collapse
Affiliation(s)
- Dustin Wahlstrom
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
58
|
Wahlstrom D, Collins P, White T, Luciana M. Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn 2009; 72:146-59. [PMID: 19944514 DOI: 10.1016/j.bandc.2009.10.013] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 10/22/2009] [Indexed: 12/28/2022]
Abstract
Adolescence is characterized by increased risk-taking, novelty-seeking, and locomotor activity, all of which suggest a heightened appetitive drive. The neurotransmitter dopamine is typically associated with behavioral activation and heightened forms of appetitive behavior in mammalian species, and this pattern of activation has been described in terms of a neurobehavioral system that underlies incentive-motivated behavior. Adolescence may be a time of elevated activity within this system. This review provides a summary of changes within cortical and subcortical dopaminergic systems that may account for changes in cognition and affect that characterize adolescent behavior. Because there is a dearth of information regarding neurochemical changes in human adolescents, models for assessing links between neurochemical activity and behavior in human adolescents will be described using molecular genetic techniques. Furthermore, we will suggest how these techniques can be combined with other methods such as pharmacology to measure the impact of dopamine activity on behavior and how this relation changes through the lifespan.
Collapse
Affiliation(s)
- Dustin Wahlstrom
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
59
|
Zombeck JA, Lewicki AD, Patel K, Gupta T, Rhodes JS. Patterns of neural activity associated with differential acute locomotor stimulation to cocaine and methamphetamine in adolescent versus adult male C57BL/6J mice. Neuroscience 2009; 165:1087-99. [PMID: 19932887 DOI: 10.1016/j.neuroscience.2009.11.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/12/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
Adolescence is a time period when major changes occur in the brain with long-term consequences for behavior. One ramification is altered responses to drugs of abuse, but the specific brain mechanisms and implications for mental health are poorly understood. Here, we used a mouse model in which adolescents display dramatically reduced sensitivity to the acute locomotor stimulating effects of cocaine and methamphetamine. The goal was to identify key brain regions or circuits involved in the differential behavior. Male adolescent (postnatal day (PN), 30-35) and young adult (PN, 69-74) C57BL/6J mice were administered an i.p. injection of cocaine (0, 15, 30 mg/kg) or methamphetamine (0, 2, 4 mg/kg) and euthanized 90 min later. Locomotor activity was monitored continuously in the home cage by video tracking. Immunohistochemical detection of Fos protein was used to quantify neuronal activation in 16 different brain regions. As expected, adolescents were less sensitive to the locomotor stimulating effects of cocaine and methamphetamine as indicated by a rightward shift in the dose response relationship. After a saline injection, adolescents showed similar levels of Fos as adults in all regions except the dorsal caudate (CPuD) and lateral caudate (CPuL) where levels were lower in adolescents. Cocaine and methamphetamine dose dependently increased Fos in all brain regions sampled in both adolescents and adults, but Fos levels were similar in both age groups for a majority of regions and doses. Locomotor activity was correlated with Fos in several brain areas within adolescent and adult groups, and adolescents had a significantly greater induction of Fos for a given amount of locomotor activity in key brain regions including the caudate where they showed reduced Fos under baseline conditions. Future research will identify the molecular and cellular events that are responsible for the differential psychostimulant-induced patterns of brain activation and behavior observed in adolescent versus adult mice.
Collapse
Affiliation(s)
- J A Zombeck
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
60
|
Harvey RC, Dembro KA, Rajagopalan K, Mutebi MM, Kantak KM. Effects of self-administered cocaine in adolescent and adult male rats on orbitofrontal cortex-related neurocognitive functioning. Psychopharmacology (Berl) 2009; 206:61-71. [PMID: 19513699 PMCID: PMC2902997 DOI: 10.1007/s00213-009-1579-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/24/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Deficits in amygdala-related stimulus-reward learning are produced following 18 drug-free days of cocaine self-administration or its passive delivery in rats exposed during adulthood. No deficits in stimulus-reward learning are produced by cocaine exposure initiated during adolescence. OBJECTIVES To determine if age of initiating cocaine exposure differentially affects behavioral functioning of an additional memory system linked to cocaine addiction, the orbitofrontal cortex. MATERIALS AND METHODS A yoked-triad design (n = 8) was used. One rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling drug delivery (1.0 mg/kg) self-administered cocaine from either P37-P59 or P77-P99, and then underwent 18 drug-free days (P60-P77 vs. P100-P117). Rats next were tested for acquisition of odor-delayed win-shift behavior conducted over 15 sessions (P78-P96 vs. P118-P136). RESULTS Cocaine self-administration did not differ between adults and adolescents. During the test phase of the odor-delayed win-shift task (relatively difficult task demands), rats from both drug-onset ages showed learning deficits. Rats with cocaine self-administration experience committed more errors and had longer session latencies compared to rats passively receiving saline or cocaine. Rats with adolescent-onset cocaine self-administration experience showed an additional learning deficit by requiring more sessions to reach criterion levels for task acquisition compared to same-aged passive saline controls or rats with adult-onset cocaine self-administration experience. Rats passively receiving cocaine did not differ from the passive saline control from either age group. CONCLUSIONS Rats with adolescent-onset cocaine self-administration experience were more impaired in an orbitofrontal cortex-related learning task than rats with adult-onset cocaine self-administration experience.
Collapse
|
61
|
Schramm-Sapyta NL, Walker QD, Caster JM, Levin ED, Kuhn CM. Are adolescents more vulnerable to drug addiction than adults? Evidence from animal models. Psychopharmacology (Berl) 2009; 206:1-21. [PMID: 19547960 PMCID: PMC3025448 DOI: 10.1007/s00213-009-1585-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/26/2009] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND RATIONALE Epidemiological evidence suggests that people who begin experimenting with drugs of abuse during early adolescence are more likely to develop substance use disorders (SUDs), but this correlation does not guarantee causation. Animal models, in which age of onset can be tightly controlled, offer a platform for testing causality. Many animal models address drug effects that might promote or discourage drug intake and drug-induced neuroplasticity. METHODS We have reviewed the preclinical literature to investigate whether adolescent rodents are differentially sensitive to rewarding, reinforcing, aversive, locomotor, and withdrawal-induced effects of drugs of abuse. RESULTS AND CONCLUSIONS The rodent model literature consistently suggests that the balance of rewarding and aversive effects of drugs of abuse is tipped toward reward in adolescence. However, increased reward does not consistently lead to increased voluntary intake: age effects on voluntary intake are drug and method specific. On the other hand, adolescents are consistently less sensitive to withdrawal effects, which could protect against compulsive drug seeking. Studies examining neuronal function have revealed several age-related effects but have yet to link these effects to vulnerability to SUDs. Taken together, the findings suggest factors which may promote recreational drug use in adolescents, but evidence relating to pathological drug-seeking behavior is lacking. A call is made for future studies to address this gap using behavioral models of pathological drug seeking and for neurobiologic studies to more directly link age effects to SUD vulnerability.
Collapse
|
62
|
Alleva E, Francia N. Psychiatric vulnerability: Suggestions from animal models and role of neurotrophins. Neurosci Biobehav Rev 2009; 33:525-36. [DOI: 10.1016/j.neubiorev.2008.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 05/21/2008] [Accepted: 09/03/2008] [Indexed: 01/19/2023]
|
63
|
Himmel HM. Safety pharmacology assessment of central nervous system function in juvenile and adult rats: effects of pharmacological reference compounds. J Pharmacol Toxicol Methods 2008; 58:129-46. [PMID: 18585470 DOI: 10.1016/j.vascn.2008.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/01/2008] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Recent EU/US pediatric legislation and FDA/EMEA guidelines recognize the potential differences in safety profiles of drugs in adults versus young patients. Hence safety studies are recommended to investigate key functional domains of e.g. the developing CNS. METHODS Selected psychoactive stimulants (caffeine, d-amphetamine, scopolamine) and depressants (baclofen, diazepam, haloperidol, chlorpromazine, imipramine, morphine) were characterized upon single administration with regard to behavioural parameters, locomotor activity, body temperature, pro-/anti-convulsive activity (pentylenetetrazole, PTZ), and nocifensive responses (hotplate) in neonatal (2 weeks), juvenile (4 weeks) and adult rats (8-9 weeks). RESULTS In vehicle-treated rats, behavioural patterns matured with age, locomotor activity and handling-induced rise in body temperature were enhanced, whereas PTZ convulsion threshold dose and nocifensive response latency decreased. Single test compound treatment elicited behavioural effects characteristic for psychoactive drugs with stimulating and depressing properties regardless of age. However, incidence of certain behaviours, and magnitude of effects on locomotor activity and body temperature varied with age and became generally more pronounced in adult rats. Pro-/anti-convulsive effects and delayed nocifensive responses did not differ between juvenile and adult rats. CONCLUSION CNS effects of selected psychoactive reference compounds were qualitatively similar, but quantitatively different in neonatal, juvenile and adult rats.
Collapse
Affiliation(s)
- Herbert M Himmel
- BHC-GDD-GED-NDS-SP, Safety Pharmacology, Bayer HealthCare AG, Wuppertal, Germany.
| |
Collapse
|
64
|
López-Aranda MF, López-Téllez JF, Blanco E, Masmudi-Martín M, Navarro-Lobato I, Khan ZU. A dynamic expression pattern of sGalpha(i2) protein during early period of postnatal rat brain development. Int J Dev Neurosci 2008; 26:611-24. [PMID: 18472243 DOI: 10.1016/j.ijdevneu.2008.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022] Open
Abstract
The function of sGalphai2 protein in central nervous system is not well understood. Therefore to explore the possible role of this protein in postnatal brain development, we have analyzed the protein expression pattern of brain obtained from rats of postnatal day 0 (P0) to P90 by dot-blots and immunocytochemistry techniques. In dot-blots, both nuclear and membrane fractions showed a gradual decrease from P0 to P60. Highest protein level was observed at the age of P0. There was also a trend of decline in the sGalphai2 protein from P0 to P90 in brain sections stained by immunocytochemistry method. At P0, the protein labeling was highest in cerebral cortex, hippocampus, cerebellum and mitral cell layer. In cerebral cortex, a drop in the immunolabeling of sGalphai2 protein was observed at P3, which was significantly increased at the age of P5. However, in striatum and olfactory tubercle, it was maintained through P0-P10 and P0-P5, respectively. Thalamus was one of the areas where labeling was not as strong as cortex, hippocampus or striatum. In contrary to other areas, immunostaining of sGalphai2 in corpus-callosum and lacunosum-molecular was not seen at P0 and appeared in advanced postnatal ages. A detectable level of sGalphai2 protein was observed at P5 in carpus-callosum and at P20 in lacunosum-molecular. A high level of sGalphai2 protein in the period when cellular layer organization and synaptic innervations, synaptic connections and maturation take place, suggests for a potential role of this protein in the early postnatal brain development.
Collapse
Affiliation(s)
- Manuel F López-Aranda
- Laboratory of Neurobiology, CIMES, Faculty of Medicine, University of Malaga, Campus Teatinos s/n, Malaga 29071, Spain.
| | | | | | | | | | | |
Collapse
|
65
|
Marazziti D, Lucacchini A, Baroni S, Betti L, Catena M, Giannaccini G, Dell'Osso B, Masala I, Mungai F, Dell'Osso L. Presence of D4 dopamine receptors in human prefrontal cortex: a postmortem study. BRAZILIAN JOURNAL OF PSYCHIATRY 2008; 29:148-52. [PMID: 17639254 DOI: 10.1590/s1516-44462007000200011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 01/16/2007] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of our study was to explore the presence and the distribution of D4 dopamine receptors in postmortem human prefrontal cortex, by means of the binding of [3H]YM-09151-2, an antagonist that has equal affinity for D2, D3 and D4 receptors. It was therefore necessary to devise a unique assay method in order to distinguish and detect the D4 component. METHOD Frontal cortex samples were harvested postmortem, during autopsy sessions, from 5 subjects. In the first assay, tissue homogenates were incubated with increasing concentrations of [3H]YM-09151-2, whereas L-745870, which has a high affinity for D4 and a low affinity for D2/D3 receptors, was used as the displacer. In the second assay, raclopride, which has a high affinity for D2/D3 receptors and a low affinity for D4 receptors, was used to block D2/D3. The L-745870 (500 nM) was added to both assays in order to determine the nonspecific binding. RESULTS Our experiments revealed the presence of specific and saturable binding of [3H]YM-09151-2. The blockade of D2 and D3 receptors with raclopride ensured that the D4 receptors were labeled. The mean maximum binding capacity was 88 +/- 25 fmol/mg protein, and the dissociation constant was 0.8 +/- 0.4 nM. DISCUSSION AND CONCLUSIONS Our findings, although not conclusive, suggest that the density of D4 receptors is low in the human prefrontal cortex.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Walker QD, Kuhn CM. Cocaine increases stimulated dopamine release more in periadolescent than adult rats. Neurotoxicol Teratol 2008; 30:412-8. [PMID: 18508233 DOI: 10.1016/j.ntt.2008.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 03/25/2008] [Accepted: 04/15/2008] [Indexed: 11/17/2022]
Abstract
The neural mechanisms responsible for the enhanced adolescent vulnerability for initiating drug abuse are unclear. We investigated whether age differences in dopamine neurotransmission could explain cocaine's enhanced psychomotor effects in the periadolescent rat. Electrical stimulation of the medial forebrain bundle of anesthetized post-natal age 28 days (PN28) and PN65 rats elicited dopamine release in caudate nucleus and nucleus accumbens core before and after 15 mg/kg cocaine i.p. Extracellular dopamine concentrations were greater in PN65 than PN28 caudate following 20 and 60 Hz stimulations and in the PN65 nucleus accumbens following 60 Hz stimulations. Cocaine increased dopamine concentrations elicited by 20 Hz stimulations 3-fold in the adult, but almost 9-fold in periadolescent caudate. Dopamine release rate was lower in the periadolescent caudate although total dopamine clearance was similar to that of adults. The periadolescent caudate achieved adult levels of clearance by compensating for a lower V(max) with higher uptake affinity. Tighter regulation of extracellular dopamine by the higher uptake/release ratio in periadolescents led to greater increases after cocaine. In nucleus accumbens, dopamine release and V(max) were lower in periadolescents than adults, but uptake affinity and cocaine effects were similar. Immaturity of dopamine neurotransmission in dorsal striatum may underlie enhanced acute responses to psychostimulants in adolescent rats and suggests a mechanism for the greater vulnerability of adolescent humans to drug addiction.
Collapse
Affiliation(s)
- Q David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States
| | | |
Collapse
|
67
|
Koshibu K, Levitt P. Gene x environment effects: stress and memory dysfunctions caused by stress and gonadal factor irregularities during puberty in control and TGF-alpha hypomorphic mice. Neuropsychopharmacology 2008; 33:557-65. [PMID: 17473839 DOI: 10.1038/sj.npp.1301436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The maturation of many neural functions occurs during puberty. An abnormal development of these processes, in the context of genetic vulnerability, may result in sex- and age-dependent penetrance of neuropsychiatric disorders. Reduced transforming growth factors-alpha (TGF-alpha) expression in Waved-1 (Wa-1) mice impairs the stress response and fear memory in adult males, but are absent or far less prominent in adult females and in pubertal males. Gonadectomy around the onset of puberty, when the mutant anatomical and behavioral phenotypes are undetectable, results in significant gene x environment effects. Adult control males show reduced physiological stress response as a result of gonadectomy, but not adult Wa-1 males. In females, pubertal gonadectomy elevates specific anxiety parameters only in adult control mice. There also are general sex-specific effects of pubertal gonadectomy on adult stress and fear memory. Surgical stress alone also induces sex- and genotype-dependent effects, albeit in different behavioral parameters than those affected by gonadectomy. We conclude that normal development of stress and memory processes is reliant on the levels of stress and gonadal factors during puberty, the effects of which are modulated by genetic factors and sex.
Collapse
Affiliation(s)
- Kyoko Koshibu
- Department of Neurobiology and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | | |
Collapse
|
68
|
Smith KS, Morrell JI. Behavioral responses during the initial exposures to a low dose of cocaine in late preweanling and adult rats. Neurotoxicol Teratol 2008; 30:202-12. [PMID: 18276106 DOI: 10.1016/j.ntt.2008.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/03/2008] [Accepted: 01/12/2008] [Indexed: 10/22/2022]
Abstract
Human drug experimentation begins during late childhood and early adolescence, a critical time in physical and CNS development, when the immature CNS is vulnerable to the long-term effects of psychoactive drugs. Few preclinical animal studies have investigated responses to such drugs in a developmental stage equivalent to late childhood of humans. We used a rodent model to examine behavioral responses of female Sprague-Dawley late preweanling and adult rats during acute and repeated exposures to a low dose of cocaine. Results show that after cocaine injection, preweanling rats (18-21 days old) have locomotor responses that differ from adults, but after postnatal day 22, the responses are indistinguishable from adults even though rats are still not weaned. Before day 22, locomotor effects of cocaine differ from those in adults in three ways: preweanlings are active for a longer time after cocaine injection at day 18; preweanling activity peaks more rapidly after subcutaneous administration; and after only three injections of cocaine, a tolerance-like pattern is seen in preweanlings whereas an emerging pattern of sensitization to cocaine is seen in adults. The behavioral patterns of this age group offer a preclinical model of the early effects of drugs of abuse.
Collapse
Affiliation(s)
- Kiersten S Smith
- Center for Molecular and Behavioral Neuroscience, Rutgers University, USA.
| | | |
Collapse
|
69
|
Abstract
The purpose of this review is to summarize the neurobiological factors involved in the etiology of adolescent addiction and present evidence implicating various mechanisms in its development. Adolescents are at heightened risk for experimentation with substances, and early experimentation is associated with higher rates of SUD in adulthood. Both normative (e.g., immature frontal-limbic connections, immature frontal lobe development) and non-normative (e.g., lowered serotonergic function, abnormal hypothalamic-pituitary-adrenal axis function) neurobiological developmental factors can predispose adolescents to a heightened risk for SUD. In addition, a normative imbalance in the adolescent neurobiological motivational system may be caused by the relative underdevelopment of suppressive mechanisms when compared to stimulatory systems. These neurobiological liabilities may correspond to neurobehavioral impairments in decision-making, affiliation with deviant peers and externalizing behavior; these and other cognitive and behavioral traits converge with neurobiological factors to increase SUD risk. The progression to SUD acts as an amplifying feedback loop, where the development of SUD results in reciprocal impairments in neurobehavioral and neurobiological processes. A clearer understanding of adolescent neurobiology is a necessary step in the development of prevention and treatment interventions for adolescent SUD.
Collapse
Affiliation(s)
- Ty S Schepis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
70
|
Shahbazi M, Moffett AM, Williams BF, Frantz KJ. Age- and sex-dependent amphetamine self-administration in rats. Psychopharmacology (Berl) 2008; 196:71-81. [PMID: 17922112 DOI: 10.1007/s00213-007-0933-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 08/28/2007] [Indexed: 11/28/2022]
Abstract
RATIONALE Recreational drug use peaks in the developmental stage of adolescence, and exposure to drugs during adolescence may predict drug dependence in adulthood. Nevertheless, adolescent drug vulnerability is not widely studied in animal models of drug intake, and very few studies have investigated sex differences in drug-related behavior during adolescence. OBJECTIVES We compared patterns of intravenous (i.v.) amphetamine self-administration among adolescent vs adult, male vs female Sprague-Dawley rats on a fixed ratio (FR) followed by a progressive ratio (PR) schedule of reinforcement. MATERIALS AND METHODS After surgical implantation of i.v. catheters, adolescent [postnatal day (P) 35-52] and adult (P90-106) male and female rats were allowed to acquire lever-pressing behavior reinforced by either 0.025 or 0.05 mg/kg/0.1-ml amphetamine infusions over 14 daily 2-h sessions on an FR1 schedule (n = 9-12 per age-, sex-, and dose-group). Subsequently, responding maintained by 0.0125 or 0.05 mg/kg per infusion amphetamine in 4-h sessions on a PR schedule was tested. RESULTS Adolescent rats acquired amphetamine self-administration faster than adults, reached a higher number of infusions, and took more amphetamine than their adult counterparts during the acquisition phase, although age differences varied by dose. In PR testing, young adult males earned fewer infusions than older adult males, whereas young adult females earned more infusions than their older adult counterparts, and more than age-matched males. CONCLUSION These results suggest that i.v. amphetamine self-administration in rats is a useful model to investigate the potential neurochemical and endocrine bases for age and sex differences in vulnerability to behavioral reinforcement by amphetamine.
Collapse
Affiliation(s)
- Mahin Shahbazi
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
71
|
Rosenkranz JA, Johnston D. State-dependent modulation of amygdala inputs by dopamine-induced enhancement of sodium currents in layer V entorhinal cortex. J Neurosci 2007; 27:7054-69. [PMID: 17596455 PMCID: PMC6672235 DOI: 10.1523/jneurosci.1744-07.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interaction between the entorhinal cortex (EC) and basolateral amygdala (BLA) may be a fundamental component in the consolidation of many forms of affective memory, such as inhibitory avoidance. Dopamine (DA) in the EC is necessary for, and may facilitate, this form of learning. This effect of DA on affective behaviors may be accomplished in part through modulation of amygdala inputs. Although it is known that DA can modulate neuronal activity in the EC, it is not known whether DA modulates inputs from the BLA. In this study, we used in vitro patch-clamp recordings and Ca2+ imaging of layer V neurons in the rat lateral EC to determine whether DA modulates the integration of inputs from the BLA and the mechanism for this modulation. We found that DA exerted actions that depended on the neuronal state. Near resting membrane potentials, DA suppressed integration of inputs, whereas at depolarized potentials, DA enhanced integration. DA enhanced the integration by a D2-mediated enhancement of Na+ currents, via phospholipase C. These experiments demonstrate that DA can exert actions in the EC that depend on the membrane voltage. This effect of DA may affect a wide range of inputs. Functionally, by enhancement of amygdala inputs that arrive in concert with other inputs, or during depolarized states, DA can facilitate the impact of affect on memory in a subset of conditions.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
72
|
Vidal J, Bie JD, Granneman RA, Wallinga AE, Koolhaas JM, Buwalda B. Social stress during adolescence in Wistar rats induces social anxiety in adulthood without affecting brain monoaminergic content and activity. Physiol Behav 2007; 92:824-30. [PMID: 17651767 DOI: 10.1016/j.physbeh.2007.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 05/11/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
Adolescence has been described as an important period to acquire social competences required for adult life. It has been suggested that early stress experiences could affect the development of the brain at different levels. These changes in the brain during adolescence may be related with the development of psychopathologies such as depression and social anxiety in adulthood. In the first experiment, we examined long-term effects of repeated social stress during adolescence on adult social approach-avoidance behavior. For that purpose, adolescent male Wistar rats were exposed twice at postnatal day (Pnd) 45 and Pnd48 to the resident-intruder paradigm followed by three times psychosocial threat with the same resident. Three weeks after the last psychosocial threat experience the animals were behaviorally tested in a social approach-avoidance test. Socially stressed animals spent less time in the interaction zone with an unfamiliar male adult rat. These data suggest that animals exposed to social stress during adolescence show a higher level of social anxiety in adulthood. In the second experiment, we investigated whether these long-term effects of social stress during adolescence on behavior draw a parallel with changes in brain monoamine content, biosynthesis and turnover. Using the same experimental design as in the first experiment, HPLC analysis of various brain regions showed that there were no differences in monoamine content, monoamine biosynthesis and monoamines activity in the prefrontal cortex, hippocampus, hypothalamus and striatum in adulthood. These results indicate that long-lasting changes in social behavior following social stress during adolescence are not accompanied by changes in brain monoamine content, biosynthesis and turnover.
Collapse
Affiliation(s)
- Jose Vidal
- Behavioral Physiology, University of Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
73
|
Badanich KA, Maldonado AM, Kirstein CL. Chronic ethanol exposure during adolescence increases basal dopamine in the nucleus accumbens septi during adulthood. Alcohol Clin Exp Res 2007; 31:895-900. [PMID: 17391340 DOI: 10.1111/j.1530-0277.2007.00370.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND In humans, adolescent exposure to alcohol is associated with the onset of adult alcohol dependency and suggests that early use potentiates vulnerability to addiction. The aim of the present study was to address whether chronic ethanol exposure during adolescence would alter nucleus accumbens septi (NAcc) dopamine (DA) levels in the adult brain. METHODS Rats were injected daily from postnatal day (PND) 30 to 50 with either 0.75 g/kg/i.p. ethanol or saline followed by an ethanol-abstinent period from PND 51 to 65. Changes in extracellular DA levels in the anterior NAcc shell were measured via the no net flux (NNF) paradigm. RESULTS Extracellular DA levels were greater in rats chronically treated with ethanol during adolescence (6.5 nM DA) in comparison with saline-exposed controls (3.6 nM DA). There were no differences in extraction fraction (E(d)), an indirect measure of DA reuptake, between ethanol-treated (87%) and nontreated (68%) rats. CONCLUSIONS Together these findings suggest that changes in extracellular DA may be an underlying physiological mechanism in adolescent vulnerability to the rewarding properties of ethanol.
Collapse
Affiliation(s)
- Kimberly A Badanich
- Department of Psychology, Cognitive and Neural Sciences, University of South Florida, Tampa, Florida 33620, USA
| | | | | |
Collapse
|
74
|
Frantz KJ, O'Dell LE, Parsons LH. Behavioral and neurochemical responses to cocaine in periadolescent and adult rats. Neuropsychopharmacology 2007; 32:625-37. [PMID: 16794567 DOI: 10.1038/sj.npp.1301130] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although recreational drug use by human adolescents is a well-known and long-standing problem, relatively little is known regarding differences in behavioral and physiological responses to abused substances in adolescent vs adult animals. The present study compared effects of the psychomotor stimulant, cocaine, in periadolescent (postnatal days 37-52) and adult (postnatal days 75-90) male Wistar rats. Locomotion and motor stereotypy were recorded after acute and repeated cocaine injections (0, 10, or 20 mg/kg cocaine, intraperitoneal (i.p.), four injections spaced 5 days apart). Spontaneous acquisition of intravenous (i.v.) cocaine self-administration was investigated in two dose groups ( approximately 0.37 or 0.74 mg/kg/infusion) over 14 days. Dopamine levels in the nucleus accumbens were recorded under basal conditions (no net flux method) and after cocaine administration ( approximately 0.37, 0.74, and 2.92 mg/kg/i.v. infusion or 20 mg/kg i.p.) using in vivo microdialysis. The locomotor data are in partial agreement with previous reports of hyposensitivity to acute cocaine in periadolescent vs adult rats; periadolescents were less active overall than adults. Moreover, adult rats exhibited significant locomotor sensitization after repeated injection of 10 mg/kg cocaine, whereas periadolescents required the high dose of 20 mg/kg cocaine to demonstrate sensitization. Neither age group showed sensitization of motor stereotypies. No age-related difference was observed in acquisition of cocaine self-administration, or in basal or cocaine-stimulated nucleus accumbens dopamine. These experiments imply a developmental dissociation between the motor activating and reinforcing effects of cocaine. Similarities in dopamine levels across age groups suggest that age-specific motor responses to cocaine are not mediated by dopamine in the nucleus accumbens.
Collapse
Affiliation(s)
- Kyle J Frantz
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA.
| | | | | |
Collapse
|
75
|
Crews F, He J, Hodge C. Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 2007; 86:189-99. [PMID: 17222895 PMCID: PMC11646682 DOI: 10.1016/j.pbb.2006.12.001] [Citation(s) in RCA: 687] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 11/20/2006] [Accepted: 12/04/2006] [Indexed: 01/04/2023]
Abstract
Cortical growth and remodeling continues from birth through youth and adolescence to stable adult levels changing slowly into senescence. There are critical periods of cortical development when specific experiences drive major synaptic rearrangements and learning that only occur during the critical period. For example, visual cortex is characterized by a critical period of plasticity involved in establishing visual acuity. Adolescence is defined by characteristic behaviors that include high levels of risk taking, exploration, novelty and sensation seeking, social interaction and play behaviors. In addition, adolescence is the final period of development of the adult during which talents, reasoning and complex adult behaviors mature. This maturation of behaviors corresponds with periods of marked changes in neurogenesis, cortical synaptic remodeling, neurotransmitter receptors and transporters, as well as major changes in hormones. Frontal cortical development is later in adolescence and likely contributes to refinement of reasoning, goal and priority setting, impulse control and evaluating long and short term rewards. Adolescent humans have high levels of binge drinking and experimentation with other drugs. This review presents findings supporting adolescence as a critical period of cortical development important for establishing life long adult characteristics that are disrupted by alcohol and drug use.
Collapse
Affiliation(s)
- Fulton Crews
- Bowles Center for Alcohol Studies, School of Medecine, University of North Carolina at Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
76
|
Brummelte S, Teuchert-Noodt G. Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus). Brain Res 2006; 1125:9-16. [PMID: 17112487 DOI: 10.1016/j.brainres.2006.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/03/2006] [Accepted: 10/03/2006] [Indexed: 11/16/2022]
Abstract
Dopamine (DA) projections from the mesencephalon are believed to play a critical role during development and are essential for cognitive and behavioral functions. Since the postnatal maturation patterns of these projections differ substantially between various brain regions, cortical, limbic or subcortical areas might exhibit varying vulnerabilities concerning developmental disorders. The dopaminergic afferents of the rodent prefrontal cortex show an extremely prolonged maturation which is very sensitive to epigenetic challenges. However, less is known about the development of the DA innervation of caudal limbic areas. Therefore, immunohistochemically stained DA fibers were quantitatively examined in the basolateral (BLA) and central amygdaloid nucleus (CE) and the ventrolateral entorhinal cortex (EC) of the Mongolian gerbil (Meriones unguiculatus). Animals of different ages, ranging from juvenile [postnatal day (PD) 14, 20, 30)] to adolescent (PD70), adult (6, 18 months) and aged (24 months), were analyzed. Results show a significant increase of fibers between PD14 and PD20 in the BLA and lateral part of the CE, with a trend for a subsequent decline in fiber densities until PD30. The EC and medial part of the CE showed no developmental changes. Interestingly, none of the investigated areas showed significant reductions of DA fibers during aging.
Collapse
Affiliation(s)
- Susanne Brummelte
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | | |
Collapse
|
77
|
Badanich KA, Adler KJ, Kirstein CL. Adolescents differ from adults in cocaine conditioned place preference and cocaine-induced dopamine in the nucleus accumbens septi. Eur J Pharmacol 2006; 550:95-106. [PMID: 17011546 DOI: 10.1016/j.ejphar.2006.08.034] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/03/2006] [Accepted: 08/14/2006] [Indexed: 01/27/2023]
Abstract
In humans, adolescent exposure to illicit drugs predicts the onset of adult drug abuse and suggests that early drug use potentiates vulnerability to drug addiction. Cocaine conditioned place preferences were measured in early adolescent [postnatal day (PND) 35], late adolescent (PND 45) and young adult (PND 60) rats by injecting either 0, 5 or 20 mg/kg cocaine and conditioning them to environmental cues. Cocaine preferences were found for all ages at the high dose. PND 35s were the only age group to have a preference at the low dose. To address whether age-related differences in cocaine place preferences were related to differences in the mesolimbic dopaminergic system, we measured extracellular dopamine levels in the nucleus accumbens septi of PND 35, PND 45 and PND 60 rats via quantitative microdialysis under transient conditions. Rats were injected daily with either 5 mg/kg/ip or saline for 4 days and surgically implanted with a microdialysis probe aimed at the nucleus accumbens. Rats were perfused with either 0, 1, 10 or 40 nM dopamine and the extracellular dopamine concentration was measured. Our results show that adolescents differ from adults in basal dopamine. All cocaine treated rats, regardless of age, showed a significant increase in dopamine over baseline in response to a cocaine challenge. Additionally, there were age-related differences in the extraction fraction (E(d)), an indirect measure of dopamine reuptake. Together these findings suggest ontogenetic differences in extracellular dopamine and dopamine reuptake and that these differences may provide an explanation for adolescent vulnerability to addiction.
Collapse
Affiliation(s)
- Kimberly A Badanich
- Department of Psychology, Cognitive and Neural Sciences, University of South Florida 4202 E. Fowler Avenue Tampa, FL 33620, USA
| | | | | |
Collapse
|
78
|
Tseng KY, O’Donnell P. Dopamine modulation of prefrontal cortical interneurons changes during adolescence. Cereb Cortex 2006; 17:1235-40. [PMID: 16818475 PMCID: PMC2204087 DOI: 10.1093/cercor/bhl034] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adolescence is marked by profound psychological and neuroendocrine changes. Cognitive functions that depend on the prefrontal cortex and dopamine (DA), such as decision making, are acquired or refined during adolescence; yet, little is known about how neural circuits mature in the transition to adulthood. Here, we conducted electrophysiological recordings in rat brain slices, unveiling an enhancement of the excitability of interneurons, which are important for cortical network activity, by D(1) and D(2) DA receptors. The D(2) effect was observed in slices from adult (postnatal day [PD] > 50) but not preadolescent (PD < 36) animals suggesting a possible neural substrate for the maturation of DA-dependent prefrontal cortical functions during or after adolescence and identifying a critical neural population that could be involved in the periadolescent onset of neuropsychiatric disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Kuei-Yuan Tseng
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Patricio O’Donnell
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
79
|
Strother WN, Lumeng L, Li TK, McBride WJ. Dopamine and serotonin content in select brain regions of weanling and adult alcohol drinking rat lines. Pharmacol Biochem Behav 2005; 80:229-37. [PMID: 15680176 DOI: 10.1016/j.pbb.2004.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 11/11/2004] [Accepted: 11/16/2004] [Indexed: 11/21/2022]
Abstract
The objective of the present study was to examine innate differences in the tissue content of dopamine (DA), serotonin (5-HT) and their metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in five brain regions of weanling and adult alcohol-preferring (P), alcohol-nonpreferring (NP), high-alcohol-drinking (HAD) and low-alcohol-drinking (LAD) selected rat lines. Adult male and weanling (postnatal day 25) male rats were killed by decapitation and brains were rapidly dissected for the following regions: olfactory tubercles (OTU), nucleus accumbens (ACB), septum (SEP), anterior cerebral cortex (ACTX) and amygdala (AMYG). Tissue extracts were assayed by HPLC with electrochemical detection. Due to significantly higher content levels in the adults, adult and weanling animals were analyzed separately. Significant differences were found in the ACB and OTU between the adult lines in both DA and 5-HT content, with P and HAD rats having lower levels than NP and LAD rats, respectively. Significant differences in DA content between the weanling lines were also found in the OTU, with P and HAD rats having lower DA levels than NP and LAD rats, respectively. These results confirm previous findings of an association between innate low DA content in select limbic regions and high alcohol drinking behavior.
Collapse
Affiliation(s)
- Wendy N Strother
- Department of Psychiatry and Institute of Psychiatric Research, 791 Union Drive, Indianapolis, IN, 46202-4887, USA.
| | | | | | | |
Collapse
|
80
|
Moran-Gates T, Gan L, Park YS, Zhang K, Baldessarini RJ, Tarazi FI. Repeated antipsychotic drug exposurein developing rats: Dopamine receptor effects. Synapse 2005; 59:92-100. [PMID: 16270300 DOI: 10.1002/syn.20220] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antipsychotic drugs are often prescribed to juvenile psychiatric patients, though their cerebral effects during development are incompletely described. Accordingly, we studied the effects of repeated treatment with dissimilar antipsychotic drugs on dopamine (DA) receptors in juvenile vs. adult rats. Tissue levels of DA receptor types (D1, D2, D3, and D4) in forebrain regions of juvenile rats were quantified after 3 weeks of daily treatment with representative first- (fluphenazine) and second-generation (clozapine and olanzapine) antipsychotics, and compared with similarly treated adult rats examined in previous studies. Fluphenazine, clozapine, and olanzapine all decreased D1 receptors in dorsolateral frontal and medial prefrontal cortex (MPC) of juvenile, but not adult rats. Conversely, all three test agents increased D2 labeling in MPC of adult, but not young animals. Fluphenazine and olanzapine, but not clozapine, also increased D2 receptor levels in hippocampus, and D4 levels in nucleus accumbens (NAc) and caudate-putamen (CPu) in both juvenile and adult brain. D3 receptors were not altered by any treatment in any brain region at either age. Only some DA receptor adaptations to antipsychotic treatment are shared by developing and mature animals. Developmental differences in DA receptor responses may account for differences in clinical effects of antipsychotic drugs between young and adult psychiatric patients.
Collapse
Affiliation(s)
- Taylor Moran-Gates
- Mailman Research Center, McLean Division of Massachusetts General Hospital, Belmont 02478-9106, and Department of Psychiatry and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
81
|
Adriani W, Laviola G. Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol 2004; 15:341-52. [PMID: 15343057 DOI: 10.1097/00008877-200409000-00005] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adolescence comes in association with puberty, when maturation and rearrangement of major neurotransmitter pathways and functions are still taking place. The neurobiological processes occurring in the brain during this developmental period have been so far poorly investigated. Yet, it is during adolescence that some major neuropsychiatric disorders may become evident, including ADHD, schizophrenia, and drug abuse. Moreover, the age-related neurobehavioural plasticity renders adolescents particularly vulnerable to the consequences of psychoactive drug exposure. In this view, there is an increased likelihood that addiction will develop when psychoactive drug use starts early during adolescence. From all these observations adolescence emerges as a critical phase in development. In the present review, we focus on recent neurobiological characterization of adolescent rats and mice. As for vulnerability to addictive behaviour, nicotine exposure during adolescence dose-dependently down-regulated levels of AMPA GluR2/3 subunits in the striatum, suggesting a reduced neurobehavioural plasticity in adult subjects. Comparable exposure during adulthood had opposite effects. It was found consistently that exposure to nicotine during adolescence, but not similar exposure in the post-adolescent period, increased the expression of specific subunits of the acetylcholine receptor in adult rats, thus enhancing the reinforcing efficacy of nicotine in a self-administration paradigm. The present data identified a specific age-window, characterized by long-term effects on behavioural and neurochemical indexes, of vulnerability. With respect to potential therapeutic approaches in ADHD, we studied the adolescent spontaneously-hypertensive-rat (SHR) in an intolerance-to-delay operant-behaviour paradigm. The model was further validated by the finding that impulsivity was reduced by chronic methylphenidate administration. Impulsive SHR animals were characterized by reduced cannabinoid CB1 receptor density in the prefrontal cortex. Interestingly, an acute cannabinoid agonist increased levels of self-control behaviour in these animals. The present data suggest that pharmacological modulation of the cannabinoid system might improve some behavioural anomalies seen in ADHD. In conclusion, modelling the adolescent phase in rats and mice appears to be useful for the investigation of determinants of vulnerability to addiction and to other early-onset neuropsychiatric disorders.
Collapse
Affiliation(s)
- W Adriani
- Behavioural Neuroscience Section, Dept. Cell Biology and Neuroscience, Istituto Superiore di Sanità, viale Regina Elena 299, I-00161 Roma, Italy
| | | |
Collapse
|
82
|
Olazábal DE, Abercrombie E, Rosenblatt JS, Morrell JI. The content of dopamine, serotonin, and their metabolites in the neural circuit that mediates maternal behavior in juvenile and adult rats. Brain Res Bull 2004; 63:259-68. [PMID: 15196651 DOI: 10.1016/j.brainresbull.2004.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 02/16/2004] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
Continuous exposure of non-parturient rats to pups can induce maternal behavior similar in most aspects to that found in the postpartum rat. Surprisingly, young juvenile rats (20-24 days of age) only require 1-3 days of exposure to pups, while adults require 4-8 days before maternal behavior emerges. Dopamine (DA) and possibly serotonin (5-HT) may mediate the expression of adult maternal behavior. We hypothesize that postnatal changes in DA and 5-HT within the neural circuit that supports maternal behavior including the medial preoptic area (MPOA), medial and cortical amygdala (MCA), and nucleus accumbens (NAC), may underlie these differences in responsiveness across juveniles and adults. We measured DA, 5-HT, and their metabolites in postmortem samples of these regions in maternal and non-maternal juvenile and adult females. The only difference found across behavioral groups was that the MPOA of adults induced into maternal behavior by pup exposure had more DA than did that of isolated adult females or maternal juveniles. However, when adults versus juveniles were compared, the content of DA and 3,4-dihydroxyphenylacetic (DOPAC) was higher in the adult than in the juvenile NAC and MCA; the content of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in these structures did not vary across the age groups. In contrast, higher levels of 5-HT and 5-HIAA were found in the MPOA in juveniles compared to adults. We propose that these region-specific age differences in DA and 5HT may underlie differences in juvenile-adult responses to pups.
Collapse
Affiliation(s)
- D E Olazábal
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA.
| | | | | | | |
Collapse
|
83
|
Sahr AE, Thielen RJ, Lumeng L, Li TK, McBride WJ. Long-lasting alterations of the mesolimbic dopamine system after periadolescent ethanol drinking by alcohol-preferring rats. Alcohol Clin Exp Res 2004; 28:702-11. [PMID: 15166644 DOI: 10.1097/01.alc.0000125344.79677.1c] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND This study tested the hypothesis that ethanol consumption by alcohol-preferring (P) rats during the periadolescent period causes persistent alterations in the mesolimbic dopamine (DA) system. After ethanol drinking during periadolescence, P rats were examined for alterations in basal locomotor activity, changes in extracellular DA levels and extraction fraction in the nucleus accumbens (NAc) by using no-net-flux (NNF) microdialysis, and changes in the response of the mesolimbic DA system to ethanol. METHODS Male P rat pups were given 24-hr free-choice access to 15% (v/v) ethanol from postnatal day (PD) 30 through PD 60. On PD 70, rats were assessed for locomotor activity. On PD 70 to 80, rats were implanted with bilateral guide cannulas aimed above the NAc. After at least 5 days, microdialysis probes were inserted bilaterally; on the following day, NNF microdialysis experiments were conducted. On the day after the NNF experiment, conventional microdialysis experiments were conducted to measure extracellular levels of DA in response to intraperitoneal injection of saline or ethanol 2.5 g/kg. RESULTS Compared with the ethanol-naive group, ethanol drinking by P rats during periadolescence did not alter basal locomotor activity, nor did it alter the basal extracellular concentration of DA. There was, however, a significant increase in the extraction fraction of DA of ethanol-drinking animals relative to the controls (57.4 +/- 2.7% and 45.8 +/- 2.3%, respectively). Additionally, compared with controls, P rats with exposure to ethanol during the periadolescent period showed a prolonged increase in the extracellular levels of DA after a challenge dose of ethanol. CONCLUSIONS The results of the microdialysis experiments suggest that periadolescent ethanol drinking by P rats increases basal DA neurotransmission (as indicated by higher DA clearance while maintaining the same extracellular DA concentrations) and prolongs the response of DA neurotransmission to ethanol.
Collapse
Affiliation(s)
- A E Sahr
- Graduate Program in Medical Neurobiology, Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
84
|
Kotecha SA, MacDonald JF. Signaling molecules and receptor transduction cascades that regulate NMDA receptor-mediated synaptic transmission. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 54:51-106. [PMID: 12785285 DOI: 10.1016/s0074-7742(03)54003-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Suhas A Kotecha
- Department of Physiology, Faculty of Medicine, University of Toronto, Canadian Institute of Health Research Group, The Synapse, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
85
|
Bernaerts P, Tirelli E. Facilitatory effect of the dopamine D4 receptor agonist PD168,077 on memory consolidation of an inhibitory avoidance learned response in C57BL/6J mice. Behav Brain Res 2003; 142:41-52. [PMID: 12798264 DOI: 10.1016/s0166-4328(02)00371-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The still unknown contribution of the D4 receptors to memory consolidation was studied examining the memory effects of the dopamine D4 agonist PD168,077, the putative dopamine D4 antagonist L745,870, their mutual combination, and the combination of the D4 agonist with representative compounds acting as agonist or antagonist on the D1, D2 and the D3 receptors. Memory consolidation was assessed in C57BL/6J mice using the one-trial step-through inhibitory avoidance task, the compounds being injected immediately after training (foot-shock) and performance measured 24h later. PD168,077 (0.5-10mg/kg) dose-dependently improved memory performance and L745,870 (0.05-5mg/kg) at doses lower than 1mg/kg increased and at doses higher than 1mg/kg impaired memory performance. PD168,077 did not affect the paradoxical promnesic effect of low doses (0.1-0.5mg/kg) of L745,870, but antagonised the memory-impairing effect induced by 5mg/kg L745,870. The D1 antagonist SCH23390 (0.025-0.05 mg/kg) and the D2 antagonist eticlopride (0.01-0.05 mg/kg) antagonised the promnesic effects of PD168,077, which attenuated the decreasing effect on memory consolidation of both D1 and D2 antagonists. Accordingly, the D1 agonist SKF38393 (5-20mg/kg) and the D2 agonist quinelorane (0.1-1 mg/kg) both synergistically magnified the memory-improving effects of the D4 agonist. The dopamine D3 antagonist U99194A (2.5-10mg/kg) did not affect the promnesic effects induced by the D4 agonist, which nevertheless abolished the U99194A-induced promnesic effects. Additionally, the amnesic effects produced by the D3 agonist 7-OH-DPAT (0.01-1 microg/kg) was attenuated by PD168,077. These results suggest a potential role of dopamine D4 receptors in memory consolidation, which would be similar to that of the D1 and D2 receptors and probably opposite to that of the D3 receptors.
Collapse
Affiliation(s)
- Pascale Bernaerts
- Laboratoire de Neuroscience Comportementale et de Psychopharmacologie Expérimentale, Département des Sciences Cognitives, Université de Liège, Boulevard du Rectorat 5/B32, B-4000 Liège, Belgium
| | | |
Collapse
|
86
|
Sobrian SK, Jones BL, Varghese S, Holson RR. Behavioral response profiles following drug challenge with dopamine receptor subtype agonists and antagonists in developing rat. Neurotoxicol Teratol 2003; 25:311-28. [PMID: 12757828 DOI: 10.1016/s0892-0362(03)00009-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As part of an investigation into the effects of gestational ethanol (ETOH) exposure on the developing dopamine (DA) system, pregnant Sprague-Dawley rats were exposed to one of three conditions: ETOH, pair-fed (PF) to the ETOH group, or ad libitum lab chow controls (LC). In this paper we report behavioral drug challenge effects for offspring of the two control groups (PF and LC). Male and female pups between postnatal days (PNDs) 21 and 23 in age were exposed to one of three intraperitoneal/subcutaneous doses of one of eight drugs chosen to assess the functional status of the DA D(1), D(2), and D(3) receptor subtype, or a saline control. Agonists were SKF 38393, apomorphine (APO), quinpirole (QUIN), and 7-hydroxy-N,N-di-n-propyl-2-amino-tetralin [7-OH-DPAT (DPAT)]; antagonists were spiperone (SPIP), SCH 23390, and two recently developed D(3) antagonists nafadotride (NAF) and PD 152255. Immediately following drug injection, pups were placed in observation cages, where eight behaviors (square entries, grooming, circling, rearing, sniffing, head and oral movements, and yawning) were scored at 3-min intervals for 30 min. Classic behavioral profiles were generally obtained for the high-dose mixed agonists APO, DPAT, and QUIN, which potently increased square entries, rearing, and sniffing, while reducing grooming and head movements. However, low-dose APO had no effect on behavior. The D(1) agonist, SKF 38393, had a strikingly different behavioral profile; it had no effect on square entries at any dose, while increasing grooming and sniffing at the medium dose. The D(1) antagonist, SCH 23390, profoundly decreased all behaviors except oral and head movements, especially at high doses. In contrast, the effects of the D(2) antagonist, SPIP, were limited to increasing sniffing at the medium dose. The two putative D(3) antagonists, NAF and PD 152255, presented strikingly different profiles. NAF induced a pattern of behavioral suppression that resembled the profile of high-dose SCH, while high-dose PD 152255 stimulated behavior. The failure of low-dose APO to have any effect on behavior suggests that the D(2) autoreceptor is not functional in preweanling rats. This hypothesis is further supported by the lack of behavioral suppression seen with low-dose QUIN and DPAT. Failure of NAF to produce behavioral activation at low doses and the stimulatory effects seen with PD 152255 suggests that either the D(3) autoreceptor, the postsynaptic D(3) receptor, or both are not fully functional at this age as well.
Collapse
Affiliation(s)
- Sonya K Sobrian
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA.
| | | | | | | |
Collapse
|
87
|
Defagot MC, Villar MJ, Antonelli MC. Differential localization of metabotropic glutamate receptors during postnatal development. Dev Neurosci 2003; 24:272-82. [PMID: 12457065 DOI: 10.1159/000066741] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The localization of metabotropic glutamate receptors (mGluRs) during development has been associated with brain maturation and plasticity. The developmental immunohistochemical analysis of mGluR1alpha, mGluR2/3 and mGluR4a expression was performed in the cerebral cortex, hippocampus and basal ganglia at postnatal days (P) 4, 8, 12, 35 and 60. In early stages (P4 and P8) mGluR1alpha-like immunoreactivity (mGluR1alpha-LI) was detected in cell bodies and fibers of the frontal cortex, hippocampus and globus pallidus. At P35 and P60, the staining was observed in pyramidal cells and fibers in the deepest layers of the cortex and in stratum oriens of the hippocampus, while a lower labeling was observed in fibers of the globus pallidus. No immunostaining was observed in substantia nigra pars reticulata until P12, when a dense network of fiber staining was detected through the adult stages (P35, P60). mGluR2/3-LI was present from the second week of development in fibers and cell bodies of the stratum lacunosum moleculare of the CA1-CA3 and striatum; this staining pattern persisted until adult stages. mGluR4a-LI was observed at P12 in neuronal bodies of the cortex, in pyramidal cells of the hippocampus and in neuronal cells of the striatum. At P35 and P60, a strong signal was observed in a reduced number of labeled cells of the cerebral cortex, in fibers of the stratum oriens of CA1 and in long processes of substantia nigra pars reticulata. Our results indicate that there are significant changes in the protein expression of mGluR subunits through postnatal development. These differences may play a significant role in the establishment of proper synaptic circuitry in early postnatal life, as well as contributing to the maintenance, stabilization, and plasticity of the rat forebrain, particularly through the participation of mGluR1alpha and mGluR4a.
Collapse
Affiliation(s)
- María C Defagot
- Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina.
| | | | | |
Collapse
|
88
|
Strother WN, Lumeng L, Li TK, McBride WJ. Regional CNS densities of serotonin 1A and dopamine D2 receptors in periadolescent alcohol-preferring P and alcohol-nonpreferring NP rat pups. Pharmacol Biochem Behav 2003; 74:335-42. [PMID: 12479952 DOI: 10.1016/s0091-3057(02)01001-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of the present study was to use quantitative autoradiography to determine binding densities of serotonin(1A) (5-HT(1A)) and dopamine (DA) D(2) receptors in alcohol-naive periadolescent P and NP rat pups. P (n=8) and NP (n=7) rat pups, 25 days of age, from different litters were used. Coronal brain sections were incubated with 2 nM [3H]8-OH-DPAT or 20 nM [3H]sulpiride for 5-HT(1A) or D(2) binding, respectively. Approximately 15-40% higher densities of [3H]8-OH-DPAT binding were observed in the anterior cortical regions of the periadolescent P rat compared with NP rat pups. Similar differences were also observed in posterior cortical regions with P rats having 25-40% higher [3H]8-OH-DPAT binding than NP rats. [3H]8-OH-DPAT binding was approximately 10-20% higher in posterior hippocampal regions of the P rat pups compared with the NP line. [3H]sulpiride binding was significantly different only in the ventral tegmental area (VTA), where binding was approximately 20% lower in the periadolescent P rats compared with the NP rat pups. Overall, these results are very similar to findings observed in adult alcohol-naive P and NP rats, and suggest that the innate differences in the neural systems implicated in high alcohol drinking behaviors may already be established in the periadolescent animal.
Collapse
Affiliation(s)
- Wendy N Strother
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University Medical Center, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202-4887, USA.
| | | | | | | |
Collapse
|
89
|
Vastola BJ, Douglas LA, Varlinskaya EI, Spear LP. Nicotine-induced conditioned place preference in adolescent and adult rats. Physiol Behav 2002; 77:107-14. [PMID: 12213508 DOI: 10.1016/s0031-9384(02)00818-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
About 1 million American adolescents start smoking every year. Adolescents may be unusually sensitive to certain consequences of nicotine, demonstrating, for instance, significantly higher rates of dependence than adults at the same level of nicotine use. To explore whether adolescents may be more sensitive to rewarding properties of nicotine than adults, the present study used an animal model to assess the rewarding effects of a low nicotine dose (0.6 mg/kg) in a conditioned place preference (CPP) paradigm. Locomotor activity during conditioning and testing was also evaluated. Nicotine was observed to induce place preference conditioning in adolescent Sprague-Dawley rats, whereas the training dose of 0.6 mg/kg failed to produce convincing place preference in their adult counterparts. Age differences were also apparent in terms of nicotine influences on motor activity, with adults being more sensitive to nicotine-suppressant effects and only adolescents showing an emergence of nicotine-stimulatory effects upon repeated exposures. An increased predisposition to stimulatory nicotine effects during adolescence may contribute to age-specific rewarding properties of the drug as revealed using the CPP paradigm in this experiment. Increased sensitivity to stimulatory and rewarding effects during adolescence could potentially contribute to the high rate of nicotine use and dependence among human adolescents.
Collapse
Affiliation(s)
- Bonnie J Vastola
- Department of Psychology, Center for Developmental Psychobiology, Binghamton University, Binghamton, NY 13902-6000, USA
| | | | | | | |
Collapse
|
90
|
Greene JR, Kerkhoff JE, Guiver L, Totterdell S. Structural and functional abnormalities of the hippocampal formation in rats with environmentally induced reductions in prepulse inhibition of acoustic startle. Neuroscience 2001; 103:315-23. [PMID: 11246147 DOI: 10.1016/s0306-4522(00)00560-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of social isolation on prepulse inhibition of acoustic startle (PPI), electrophysiology and morphology of subicular pyramidal neurons and the densities of interneuronal sub-types in the hippocampal formation were examined. Wistar rats (male weanlings) were housed socially (socials, n=8) or individually (isolates, n=7). When tested eight weeks later, PPI was lower in isolates. Rats then received terminal anaesthesia before slices of hippocampal formation were made in which the electrophysiological properties of a total of 108 subicular neurons were characterized. There were no differences in neuronal sub-types recorded in socials compared with isolates. Intrinsically burst-firing and regular spiking pyramidal neurons were examined in detail. There were no differences in resting membrane potential or input resistance in isolates compared with socials but action potential height was reduced and action potential threshold raised in isolates. A limited morphological examination of Neurobiotin-filled intrinsically burst-firing neurons did not reveal differences in cell-body area or in number of primary dendrites. Sections from the contralateral hemispheres of the same rats were stained with antibodies to calretinin, parvalbumin and the neuronal isoform of nitric oxide synthase (nNOS). In isolates, the density of calretinin positive neurons was increased in the dentate gyrus but unchanged in areas CA3, CA1 and subiculum. Parvalbumin and nNOS positive neuronal densities were unchanged. Hence in rats with environmentally induced reductions in PPI there are structural and functional abnormalities in the hippocampal formation. If the reduction in PPI stems from these abnormalities, and reduced PPI in rats is relevant to schizophrenia, then drugs that correct the reported electrophysiological changes might have antipsychotic effects.
Collapse
Affiliation(s)
- J R Greene
- University Department of Pharmacology, The University of Oxford, Mansfield Road, OX1 3QT, Oxford, UK
| | | | | | | |
Collapse
|
91
|
Abstract
The mesolimbic dopamine (DA) pathway is critical in reward-mediated behavior. Water, sucrose, and drugs of abuse all increase DA in the nucleus accumbens septi (NAcc) in adult animals. Recently our laboratory has shown that cocaine and alcohol increase DA efflux in preadolescent animals. The present study used a natural reinforcer (i.e., water) at postnatal day 25 (PND 25) to determine the sensitivity and responsiveness of this pathway. Repeated pairing of a peppermint odor with water resulted in a behavioral odor preference and an odor-elicited increase in accumbal DA. Results show that this developing pathway is functional and responsive to conditioning using a natural reinforcer and that these behavioral and neurochemical responses can be conditioned to a previously novel environmental stimulus.
Collapse
Affiliation(s)
- E D Guion
- Department of Psychology: Cognitive and Neurosciences, Department of Pharmacology and Therapeutics, University of South Florida, Tampa, FL 33620, USA
| | | |
Collapse
|
92
|
Smeets WJ, González A. Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:308-79. [PMID: 11011071 DOI: 10.1016/s0165-0173(00)00034-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparative analysis of catecholaminergic systems in the brain and spinal cord of vertebrates forces to reconsider several aspects of the organization of catecholamine systems. Evidence has been provided for the existence of extensive, putatively catecholaminergic cell groups in the spinal cord, the pretectum, the habenular region, and cortical and subcortical telencephalic areas. Moreover, putatively dopamine- and noradrenaline-accumulating cells have been demonstrated in the hypothalamic periventricular organ of almost every non-mammalian vertebrate studied. In contrast with the classical idea that the evolution of catecholamine systems is marked by an increase in complexity going from anamniotes to amniotes, it is now evident that the brains of anamniotes contain catecholaminergic cell groups, of which the counterparts in amniotes have lost the capacity to produce catecholamines. Moreover, a segmental approach in studying the organization of catecholaminergic systems is advocated. Such an approach has recently led to the conclusion that the chemoarchitecture and connections of the basal ganglia of anamniote and amniote tetrapods are largely comparable. This review has also brought together data about the distribution of receptors and catecholaminergic fibers as well as data about developmental aspects. From these data it has become clear that there is a good match between catecholaminergic fibers and receptors, but, at many places, volume transmission seems to play an important role. Finally, although the available data are still limited, striking differences are observed in the spatiotemporal sequence of appearance of catecholaminergic cell groups, in particular those in the retina and olfactory bulb.
Collapse
Affiliation(s)
- W J Smeets
- Graduate School of Neurosciences of Amsterdam, Research Institute of Neurosciences, Amsterdam, The Netherlands.
| | | |
Collapse
|
93
|
Abstract
To successfully negotiate the developmental transition between youth and adulthood, adolescents must maneuver this often stressful period while acquiring skills necessary for independence. Certain behavioral features, including age-related increases in social behavior and risk-taking/novelty-seeking, are common among adolescents of diverse mammalian species and may aid in this process. Reduced positive incentive values from stimuli may lead adolescents to pursue new appetitive reinforcers through drug use and other risk-taking behaviors, with their relative insensitivity to drugs supporting comparatively greater per occasion use. Pubertal increases in gonadal hormones are a hallmark of adolescence, although there is little evidence for a simple association of these hormones with behavioral change during adolescence. Prominent developmental transformations are seen in prefrontal cortex and limbic brain regions of adolescents across a variety of species, alterations that include an apparent shift in the balance between mesocortical and mesolimbic dopamine systems. Developmental changes in these stressor-sensitive regions, which are critical for attributing incentive salience to drugs and other stimuli, likely contribute to the unique characteristics of adolescence.
Collapse
Affiliation(s)
- L P Spear
- Department of Psychology and Center for Developmental Psychobiology, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
94
|
Tarazi FI, Baldessarini RJ. Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain. Int J Dev Neurosci 2000; 18:29-37. [PMID: 10708903 DOI: 10.1016/s0736-5748(99)00108-2] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Postnatal development of dopamine D(1), D(2) and D(4) receptors in the caudate-putamen, nucleus accumbens, frontal cortex and hippocampus was assessed in rat brain between postnatal days 7 and 60. In the caudate-putamen and nucleus accumbens, density of all three receptor subtypes increased to a peak at postnatal day 28, then declined significantly in both regions (postnatal days 35-60) to adult levels. In the frontal cortex and hippocampus, these receptors rose steadily and continuously to stable, maximal adult levels by postnatal day 60. Evidently, D(1), D(2) and D(4) receptors follow a similar course of development in several cortical, limbic and extrapyramidal regions of rat forebrain, with selective elimination of excess dopamine receptors at the time of puberty in the caudate-putamen and accumbens but not other brain regions.
Collapse
Affiliation(s)
- F I Tarazi
- Mailman Research Center, McLean Division of Massachusetts General Hospital, 115 Mill Street, Belmont, USA.
| | | |
Collapse
|
95
|
Russell VA. The nucleus accumbens motor-limbic interface of the spontaneously hypertensive rat as studied in vitro by the superfusion slice technique. Neurosci Biobehav Rev 2000; 24:133-6. [PMID: 10654669 DOI: 10.1016/s0149-7634(99)00056-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The behavioral disturbances of attention-deficit hyperactivity disorder (ADHD) have been attributed to dysfunction of the mesolimbic dopaminergic (DA) projection from the ventral tegmental area of the midbrain. DA released from terminals in the nucleus accumbens (interface between limbic and motor areas of the brain) draws attention to unexpected, behaviorally significant events and provides the motivational drive for reward-related behavior. An in vitro superfusion technique was used to show that depolarization (25 mM K+)-induced release of DA from nucleus accumbens slices of spontaneously hypertensive rats (SHR, animal model for ADHD) was significantly lower than that of Wistar-Kyoto controls (WKY). Evidence also suggested that DA autoreceptor efficacy was increased at low endogenous agonist concentrations. D2 receptor blockade by the antagonist, sulpiride, caused a significantly greater increase in the electrically stimulated release of DA from nucleus accumbens slices of SHR compared to WKY. This suggested that presynaptic regulation of DA release had been altered in SHR to cause down-regulation of the DA system. This could have occurred at an early stage of development in an attempt to compensate for abnormally high DA concentrations. The reduction in DA transmission could have left the adult SHR with impaired DA reward/reinforcement mechanisms, resulting in the behavioral disturbances characteristic of ADHD.
Collapse
Affiliation(s)
- V A Russell
- Department of Physiology, University of Cape Town, Medical School, South Africa.
| |
Collapse
|
96
|
Tarazi FI, Tomasini EC, Baldessarini RJ. Postnatal development of dopamine and serotonin transporters in rat caudate-putamen and nucleus accumbens septi. Neurosci Lett 1998; 254:21-4. [PMID: 9780082 DOI: 10.1016/s0304-3940(98)00644-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Density of dopamine transporter (DAT) and serotonin transporter (5-HTT) membrane proteins in the caudate-putamen (CPu) and nucleus accumbens (NAc) of rat brain was assessed at seven ages at postnatal days (PD) 7-60, by in vitro quantitative autoradiography. Binding of [3H]GBR-12935 (to DAT) and [3H]paroxetine (to 5-HTT) increased steadily and very similarly, from low levels at PD-7 to maximal levels, to 6-7-fold higher density at PD-60 in both regions. These findings indicate that DAT and 5-HTT follow a synchronized course of development in rat CPu and NAc. In contrast to reported elimination of excessive receptors in CPu and NAc during maturation, there was no evidence of pruning of DAT or 5-HTT in these regions of rat forebrain.
Collapse
Affiliation(s)
- F I Tarazi
- Mailman Research Center, McLean Division of Massachusetts General Hospital, Harvard Medical School Belmont 02178, USA.
| | | | | |
Collapse
|