51
|
Juárez P, Valdovinos MG, May ME, Lloyd BP, Couppis MH, Kennedy CH. Serotonin2A/C receptors mediate the aggressive phenotype of TLX gene knockout mice. Behav Brain Res 2013; 256:354-61. [DOI: 10.1016/j.bbr.2013.07.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 01/31/2023]
|
52
|
|
53
|
Abstract
Aggression mediates competition for food, mating partners, and habitats and, among social animals, establishes stable dominance hierarchies. In humans, abnormal aggression is a hallmark of neuropsychiatric disorders and can be elicited by environmental factors acting on an underlying genetic susceptibility. Identifying the genetic architecture that predisposes to aggressive behavior in people is challenging because of difficulties in quantifying the phenotype, genetic heterogeneity, and uncontrolled environmental conditions. Studies on mice have identified single-gene mutations that result in hyperaggression, contingent on genetic background. These studies can be complemented by systems genetics approaches in Drosophila melanogaster, in which mutational analyses together with genome-wide transcript analyses, artificial selection studies, and genome-wide analysis of epistasis have revealed that a large segment of the genome contributes to the manifestation of aggressive behavior with widespread epistatic interactions. Comparative genomic analyses based on the principle of evolutionary conservation are needed to enable a complete dissection of the neurogenetic underpinnings of this universal fitness trait.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695-7617, USA.
| | | |
Collapse
|
54
|
Zakany J, Duboule D. A genetic basis for altered sexual behavior in mutant female mice. Curr Biol 2012; 22:1676-80. [PMID: 22863319 DOI: 10.1016/j.cub.2012.06.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/06/2012] [Accepted: 06/26/2012] [Indexed: 12/01/2022]
Abstract
Although neural substrates of mammalian female mating behavior have been described, the association between complex courtship activity and specific underlying mechanisms remains elusive. We have isolated a mouse line that unexpectedly shows altered female social behavior with increased investigation of males and increased genital biting. We investigated adult individuals by behavioral observation and genetic and molecular neuroanatomy methods. We report exacerbated inverse pursuits and incapacitating bites directed at the genitals of stud males. This extreme deviation from wild-type female courtship segregates with a deletion of the Hoxd1 to Hoxd9 genomic region. This dominant Atypical female courtship allele (HoxD(Afc)) induces ectopic Hoxd10 gene expression in several regions in newborn forebrain transitorily and stably in a sparse subpopulation of cells in the cornu ammonis fields of adult hippocampus, which may thus lead to an abnormal modulation in the sexual behavior of mutant females. The resulting compulsive sexual solicitation behavior displayed by the most affected individuals suggests new avenues to study the genetic and molecular bases of normal and pathological mammalian affect and raises the potential involvement of the hippocampus in the control of female courtship behavior. The potential relevance to human 2q.31.1 microdeletion syndrome is discussed.
Collapse
Affiliation(s)
- Jozsef Zakany
- National Research Centre Frontiers in Genetics, Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
55
|
Estruch SB, Buzón V, Carbó LR, Schorova L, Lüders J, Estébanez-Perpiñá E. The oncoprotein BCL11A binds to orphan nuclear receptor TLX and potentiates its transrepressive function. PLoS One 2012; 7:e37963. [PMID: 22675500 PMCID: PMC3366998 DOI: 10.1371/journal.pone.0037963] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/01/2012] [Indexed: 12/12/2022] Open
Abstract
Nuclear orphan receptor TLX (NR2E1) functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs) of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H) screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1), a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9), a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain.
Collapse
Affiliation(s)
- Sara B. Estruch
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine from the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Víctor Buzón
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine from the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Laia R. Carbó
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine from the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Lenka Schorova
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine from the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Jens Lüders
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine, Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine from the University of Barcelona, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
56
|
Angoa-Pérez M, Kane MJ, Briggs DI, Sykes CE, Shah MM, Francescutti DM, Rosenberg DR, Thomas DM, Kuhn DM. Genetic depletion of brain 5HT reveals a common molecular pathway mediating compulsivity and impulsivity. J Neurochem 2012; 121:974-84. [PMID: 22443164 DOI: 10.1111/j.1471-4159.2012.07739.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropsychiatric disorders characterized by behavioral disinhibition, including disorders of compulsivity (e.g. obsessive-compulsive disorder; OCD) and impulse-control (e.g. impulsive aggression), are severe, highly prevalent and chronically disabling. Treatment options for these diseases are extremely limited. The pathophysiological bases of disorders of behavioral disinhibition are poorly understood but it has been suggested that serotonin dysfunction may play a role. Mice lacking the gene encoding brain tryptophan hydroxylase 2 (Tph2-/-), the initial and rate-limiting enzyme in the synthesis of serotonin, were tested in numerous behavioral assays that are well known for their utility in modeling human neuropsychiatric diseases. Mice lacking Tph2 (and brain 5HT) show intense compulsive and impulsive behaviors to include extreme aggression. The impulsivity is motor in form and not cognitive because Tph2-/- mice show normal acquisition and reversal learning on a spatial learning task. Restoration of 5HT levels by treatment of Tph2-/- mice with its immediate precursor 5-hydroxytryptophan attenuated compulsive and impulsive-aggressive behaviors. Surprisingly, in Tph2-/- mice, the lack of 5HT was not associated with anxiety-like behaviors. The results indicate that 5HT mediates behavioral disinhibition in the mammalian brain independent of anxiogenesis.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Retina restored and brain abnormalities ameliorated by single-copy knock-in of human NR2E1 in null mice. Mol Cell Biol 2012; 32:1296-311. [PMID: 22290436 DOI: 10.1128/mcb.06016-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nr2e1 encodes a stem cell fate determinant of the mouse forebrain and retina. Abnormal regulation of this gene results in retinal, brain, and behavioral abnormalities in mice. However, little is known about the functionality of human NR2E1. We investigated this functionality using a novel knock-in humanized-mouse strain carrying a single-copy bacterial artificial chromosome (BAC). We also documented, for the first time, the expression pattern of the human BAC, using an NR2E1-lacZ reporter strain. Unexpectedly, cerebrum and olfactory bulb hypoplasia, hallmarks of the Nr2e1-null phenotype, were not fully corrected in animals harboring one functional copy of human NR2E1. These results correlated with an absence of NR2E1-lacZ reporter expression in the dorsal pallium of embryos and proliferative cells of adult brains. Surprisingly, retinal histology and electroretinograms demonstrated complete correction of the retina-null phenotype. These results correlated with appropriate expression of the NR2E1-lacZ reporter in developing and adult retina. We conclude that the human BAC contained all the elements allowing correction of the mouse-null phenotype in the retina, while missing key regulatory regions important for proper spatiotemporal brain expression. This is the first time a separation of regulatory mechanisms governing NR2E1 has been demonstrated. Furthermore, candidate genomic regions controlling expression in proliferating cells during neurogenesis were identified.
Collapse
|
58
|
Sun G, Ye P, Murai K, Lang MF, Li S, Zhang H, Li W, Fu C, Yin J, Wang A, Ma X, Shi Y. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun 2011; 2:529. [PMID: 22068596 DOI: 10.1038/ncomms1532] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/05/2011] [Indexed: 12/22/2022] Open
Abstract
miR-137 is a brain-enriched microRNA. Its role in neural development remains unknown. Here we show that miR-137 has an essential role in controlling embryonic neural stem cell fate determination. miR-137 negatively regulates cell proliferation and accelerates neural differentiation of embryonic neural stem cells. In addition, we show that the histone lysine-specific demethylase 1 (LSD1), a transcriptional co-repressor of nuclear receptor TLX, is a downstream target of miR-137. In utero electroporation of miR-137 in embryonic mouse brains led to premature differentiation and outward migration of the transfected cells. Introducing a LSD1 expression vector lacking the miR-137 recognition site rescued miR-137-induced precocious differentiation. Furthermore, we demonstrate that TLX, an essential regulator of neural stem cell self-renewal, represses the expression of miR-137 by recruiting LSD1 to the genomic regions of miR-137. Thus, miR-137 forms a feedback regulatory loop with TLX and LSD1 to control the dynamics between neural stem cell proliferation and differentiation during neural development.
Collapse
Affiliation(s)
- GuoQiang Sun
- Department of Neurosciences, Center for Gene Expression and Drug Discovery, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology (Berl) 2011; 213:183-212. [PMID: 20938650 PMCID: PMC3684010 DOI: 10.1007/s00213-010-2000-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/09/2010] [Indexed: 12/24/2022]
Abstract
RATIONALE Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. OBJECTIVE We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. RESULTS New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT(1A), 5-HT(1B) and 5-HT(2A/2C) receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT(1A) and 5-HT(1B) receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT(1B), 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. CONCLUSIONS Feedback to autoreceptors of the 5-HT(1) family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT(2) family expression may cause escalated aggression, whereas the phasic increase of 5-HT(2) receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment.
Collapse
|
60
|
Takahashi A, Quadros IM, de Almeida RMM, Miczek KA. Behavioral and pharmacogenetics of aggressive behavior. Curr Top Behav Neurosci 2011; 12:73-138. [PMID: 22297576 DOI: 10.1007/7854_2011_191] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serotonin (5-HT) has long been considered as a key transmitter in the neurocircuitry controlling aggression. Impaired regulation of each subtype of 5-HT receptor, 5-HT transporter, synthetic and metabolic enzymes has been linked particularly to impulsive aggression. The current summary focuses mostly on recent findings from pharmacological and genetic studies. The pharmacological treatments and genetic manipulations or polymorphisms of aspecific target (e.g., 5-HT1A receptor) can often result in inconsistent results on aggression, due to "phasic" effects of pharmacological agents versus "trait"-like effects of genetic manipulations. Also, the local administration of a drug using the intracranial microinjection technique has shown that activation of specific subtypes of 5-HT receptors (5-HT1A and 5-HT1B) in mesocorticolimbic areas can reduce species-typical and other aggressive behaviors, but the same receptors in the medial prefrontal cortex or septal area promote escalated forms of aggression. Thus, there are receptor populations in specific brain regions that preferentially modulate specific types of aggression. Genetic studies have shown important gene-environment interactions; it is likely that the polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT (e.g., MAOA) determine the vulnerability to adverse environmental factors that escalate aggression. We also discuss the interaction between the 5-HT system and other systems. Modulation of 5-HT neurons in the dorsalraphe nucleus by GABA, glutamate and CRF profoundly regulate aggressive behaviors. Also, interactions of the 5-HT system with other neuropeptides(arginine vasopressin, oxytocin, neuropeptide Y, opioid) have emerged as important neurobiological determinants of aggression. Studies of aggression in genetically modified mice identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly[e.g., BDNF, neuronal nitric oxide (nNOS), aCaMKII, Neuropeptide Y].The future agenda delineates specific receptor subpopulations for GABA, glutamate and neuropeptides as they modulate the canonical aminergic neurotransmitters in brainstem, limbic and cortical regions with the ultimate outcome of attenuating or escalating aggressive behavior.
Collapse
|
61
|
Gui H, Li ML, Tsai CC. A tale of tailless. Dev Neurosci 2010; 33:1-13. [PMID: 21124006 DOI: 10.1159/000321585] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/16/2010] [Indexed: 12/20/2022] Open
Abstract
Drosophila Tailless(Tll) and its vertebrate homologue Tlx are conserved orphan nuclear receptors specifically expressed in the eye and the forebrain. Tll and Tlx act primarily as transcriptional repressors through their interactions with transcriptional corepressors, Atrophin family proteins, and histone-tail/chromatin-modifying factors such as lysine-specific histone demethylase 1 and histone deacetylases. The functional importance of Tll and Tlx is made apparent by the recent discovery that they are expressed in neural stem cells (NSCs) and are required for self-renewal of these cells in both Drosophila and the mouse. This review provides a snapshot of current knowledge about Tll and Tlx and their transcriptional network, which maintains NSCs in developing and adult animals.
Collapse
Affiliation(s)
- Hongxing Gui
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, N.J., USA.
| | | | | |
Collapse
|
62
|
Wong BK, Hossain SM, Trinh E, Ottmann GA, Budaghzadeh S, Zheng QY, Simpson EM. Hyperactivity, startle reactivity and cell-proliferation deficits are resistant to chronic lithium treatment in adult Nr2e1(frc/frc) mice. GENES, BRAIN, AND BEHAVIOR 2010; 9:681-94. [PMID: 20497236 PMCID: PMC3292041 DOI: 10.1111/j.1601-183x.2010.00602.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The NR2E1 region on Chromosome 6q21-22 has been repeatedly linked to bipolar disorder (BP) and NR2E1 has been associated with BP, and more specifically bipolar I disorder (BPI). In addition, patient sequencing has shown an enrichment of rare candidate-regulatory variants. Interestingly, mice carrying either spontaneous (Nr2e1(frc) ) or targeted (Tlx(-) ) deletions of Nr2e1 (here collectively known as Nr2e1-null) show similar neurological and behavioral anomalies, including hypoplasia of the cerebrum, reduced neural stem cell proliferation, extreme aggression and deficits in fear conditioning; these are the traits that have been observed in some patients with BP. Thus, NR2E1 is a positional and functional candidate for a role in BP. However, no Nr2e1-null mice have been fully evaluated for behaviors used to model BP in rodents or pharmacological responses to drugs effective in treating BP symptoms. In this study we examine Nr2e1(frc/frc) mice, homozygous for the spontaneous deletion, for abnormalities in activity, learning and information processing, and cell proliferation; these are the phenotypes that are either affected in patients with BP or commonly assessed in rodent models of BP. The effect of lithium, a drug used to treat BP, was also evaluated for its ability to attenuate Nr2e1(frc/frc) behavioral and neural stem cell-proliferation phenotypes. We show for the first time that Nr2e1-null mice exhibit extreme hyperactivity in the open field as early as postnatal day 18 and in the home cage, deficits in open-field habituation and passive avoidance, and surprisingly, an absence of acoustic startle. We observed a reduction in neural stem/progenitor cell proliferation in Nr2e1(frc/frc) mice, similar to that seen in other Nr2e1-null strains. These behavioral and cell-proliferation phenotypes were resistant to chronic-adult-lithium treatment. Thus, Nr2e1(frc/frc) mice exhibit behavioral traits used to model BP in rodents, but our results do not support Nr2e1(frc/frc) mice as pharmacological models for BP.
Collapse
Affiliation(s)
- Bibiana K.Y. Wong
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Sazzad M. Hossain
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Eric Trinh
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Glen A. Ottmann
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Saeed Budaghzadeh
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | | | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
63
|
MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A 2010; 107:1876-81. [PMID: 20133835 DOI: 10.1073/pnas.0908750107] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neural stem cell self-renewal and differentiation is orchestrated by precise control of gene expression involving nuclear receptor TLX. Let-7b, a member of the let-7 microRNA family, is expressed in mammalian brains and exhibits increased expression during neural differentiation. However, the role of let-7b in neural stem cell proliferation and differentiation remains unknown. Here we show that let-7b regulates neural stem cell proliferation and differentiation by targeting the stem cell regulator TLX and the cell cycle regulator cyclin D1. Overexpression of let-7b led to reduced neural stem cell proliferation and increased neural differentiation, whereas antisense knockdown of let-7b resulted in enhanced proliferation of neural stem cells. Moreover, in utero electroporation of let-7b to embryonic mouse brains led to reduced cell cycle progression in neural stem cells. Introducing an expression vector of Tlx or cyclin D1 that lacks the let-7b recognition site rescued let-7b-induced proliferation deficiency, suggesting that both TLX and cyclin D1 are important targets for let-7b-mediated regulation of neural stem cell proliferation. Let-7b, by targeting TLX and cyclin D1, establishes an efficient strategy to control neural stem cell proliferation and differentiation.
Collapse
|
64
|
|
65
|
Abstract
Neural stem cells exist in the mammalian developing and adult nervous system. Recently, tremendous interest in the potential of neural stem cells for the treatment of neurodegenerative diseases and brain injuries has substantially promoted research on neural stem cell self-renewal and differentiation. Multiple cell-intrinsic regulators coordinate with the microenvironment through various signaling pathways to regulate neural stem cell maintenance, self-renewal, and fate determination. This review focuses on essential intracellular regulators that control neural stem cell maintenance and self-renewal in both embryonic brains and adult nervous system. These factors include the orphan nuclear receptor TLX, the high-mobility-group DNA binding protein Sox2, the basic helix-loop-helix transcription factor Hes, the tumor suppressor gene Pten, the membrane-associated protein Numb, and its cytoplasmic homolog Numblike. The aim of this review is to summarize our current understanding of neural stem cell regulation through these important stem cell regulators.
Collapse
Affiliation(s)
- Qiuhao Qu
- Department of Neurosciences, Center for Gene Expression and Drug Discovery, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|
66
|
Edwards AC, Ayroles JF, Stone EA, Carbone MA, Lyman RF, Mackay TFC. A transcriptional network associated with natural variation in Drosophila aggressive behavior. Genome Biol 2009; 10:R76. [PMID: 19607677 PMCID: PMC2728530 DOI: 10.1186/gb-2009-10-7-r76] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/03/2009] [Accepted: 07/16/2009] [Indexed: 11/18/2022] Open
Abstract
A genome-wide screen of inbred Drosophila lines together with transcriptional network modeling reveals insights into the genetic bases of heritable aggression. Background Aggressive behavior is an important component of fitness in most animals. Aggressive behavior is genetically complex, with natural variation attributable to multiple segregating loci with allelic effects that are sensitive to the physical and social environment. However, we know little about the genes and genetic networks affecting natural variation in aggressive behavior. Populations of Drosophila melanogaster harbor quantitative genetic variation in aggressive behavior, providing an excellent model system for dissecting the genetic basis of naturally occurring variation in aggression. Results Correlating variation in transcript abundance with variation in complex trait phenotypes is a rapid method for identifying candidate genes. We quantified aggressive behavior in 40 wild-derived inbred lines of D. melanogaster and performed a genome-wide association screen for quantitative trait transcripts and single feature polymorphisms affecting aggression. We identified 266 novel candidate genes associated with aggressive behavior, many of which have pleiotropic effects on metabolism, development, and/or other behavioral traits. We performed behavioral tests of mutations in 12 of these candidate genes, and show that nine indeed affected aggressive behavior. We used the genetic correlations among the quantitative trait transcripts to derive a transcriptional genetic network associated with natural variation in aggressive behavior. The network consists of nine modules of correlated transcripts that are enriched for genes affecting common functions, tissue-specific expression patterns, and/or DNA sequence motifs. Conclusions Correlations among genetically variable transcripts that are associated with genetic variation in organismal behavior establish a foundation for understanding natural variation for complex behaviors in terms of networks of interacting genes.
Collapse
Affiliation(s)
- Alexis C Edwards
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | |
Collapse
|
67
|
Wang X, Bowers SL, Wang F, Pu XA, Nelson RJ, Ma J. Cytoplasmic prion protein induces forebrain neurotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:555-63. [PMID: 19281844 PMCID: PMC2693458 DOI: 10.1016/j.bbadis.2009.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 12/14/2022]
Abstract
The prion protein (PrP) is essential for the pathogenesis of prion disease. PrP has been detected in the cytosol of neurons and transgenic mice expressing PrP in the cytosol (cyPrP) under a pan-neuronal promoter developed rapid cerebellar granule neuron degeneration. Yet, it remains unclear whether cyPrP is capable to cause toxicity in other neuronal populations. Here, we report that transgenic mice expressing cyPrP in the forebrain neurons developed behavioral abnormalities including clasping and hyperactivity. These mice had reduced thickness in cortex and developed astrogliosis in hippocampal and cortical regions. Moreover, cyPrP in these mice was recognized by the A11 anti-oligomer antibody and was associated with the hydrophobic lipid core of membranes, indicating that cyPrP oligomer caused membrane perturbation contributes to cyPrP neurotoxicity. Together, our results clearly revealed that cyPrP is able to cause toxicity in different neuronal populations, supporting a role of cyPrP in PrP-mediated neurodegenerative disorders.
Collapse
Affiliation(s)
- Xinhe Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Avenue, Columbus, Ohio 43210
| | - Stephanie L. Bowers
- Departments of Psychology, Neuroscience, and Institute for Behavioral Medicine Research, Ohio State University, Columbus, Ohio 43210
| | - Fei Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Avenue, Columbus, Ohio 43210
| | - Xin-an Pu
- Center for Molecular Neurobiology Ohio State University, Columbus, Ohio 43210
| | - Randy J. Nelson
- Departments of Psychology, Neuroscience, and Institute for Behavioral Medicine Research, Ohio State University, Columbus, Ohio 43210
| | - Jiyan Ma
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Avenue, Columbus, Ohio 43210
| |
Collapse
|
68
|
Maney DL, Lange HS, Raees MQ, Reid AE, Sanford SE. Behavioral phenotypes persist after gonadal steroid manipulation in white-throated sparrows. Horm Behav 2009; 55:113-20. [PMID: 18848562 DOI: 10.1016/j.yhbeh.2008.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 09/07/2008] [Accepted: 09/08/2008] [Indexed: 11/27/2022]
Abstract
White-throated sparrows (Zonotrichia albicollis) exhibit a behavioral polymorphism that segregates with a plumage marker. Individuals with a white stripe (WS) on the crown engage in an aggressive strategy that involves more singing, whereas individuals with a tan stripe (TS) sing less and engage in more parental care. Previous work has shown that plasma levels of gonadal steroids differ between the morphs in both sexes, suggesting a hormonal mechanism for the polymorphic behavior in this species. Here, we eliminated morph differences in plasma levels of testosterone (T) in males and estradiol (E2) in females in order to test whether morph differences in behavior would be similarly eliminated. Males and females in non-breeding condition were treated with T or E2, respectively, so that plasma levels in the treated groups were high and equal between the WS and TS morphs. We found that despite hormone treatment, WS and TS birds differed with respect to singing behavior. WS males sang more in response to song playback than did TS males, and WS females exhibited more spontaneous song than TS females. We also found that WS males gave more chip calls, which are often used in contexts of territorial aggression. Overall, these results suggest that WS birds engage in more territorial vocalization, particularly song, than do TS birds, even when T or E2 levels are experimentally equalized. This behavioral difference may therefore be driven by other factors, such as steroid metabolism, receptor expression or function, or steroid-independent neurotransmitter systems.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA 30033, USA.
| | | | | | | | | |
Collapse
|
69
|
Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus. Genomics 2008; 93:196-204. [PMID: 18950699 DOI: 10.1016/j.ygeno.2008.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 11/22/2022]
Abstract
We have engineered a set of useful tools that facilitate targeted single copy knock-in (KI) at the hypoxanthine guanine phosphoribosyl transferase 1 (Hprt1) locus. We employed fine scale mapping to delineate the precise breakpoint location at the Hprt1(b-m3) locus allowing allele specific PCR assays to be established. Our suite of tools contains four targeting expression vectors and a complementing series of embryonic stem cell lines. Two of these vectors encode enhanced green fluorescent protein (EGFP) driven by the human cytomegalovirus immediate-early enhancer/modified chicken beta-actin (CAG) promoter, whereas the other two permit flexible combinations of a chosen promoter combined with a reporter and/or gene of choice. We have validated our tools as part of the Pleiades Promoter Project (http://www.pleiades.org), with the generation of brain-specific EGFP positive germline mouse strains.
Collapse
|
70
|
Chaudhry AM, Marsh-Rollo SE, Aksenov V, Rollo CD, Szechtman H. Modifier Selection by Transgenes: The Case of Growth Hormone Transgenesis and Hyperactive Circling Mice. Evol Biol 2008. [DOI: 10.1007/s11692-008-9036-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
71
|
Kumar RA, McGhee KA, Leach S, Bonaguro R, Maclean A, Aguirre-Hernandez R, Abrahams BS, Coccaro EF, Hodgins S, Turecki G, Condon A, Muir WJ, Brooks-Wilson AR, Blackwood DH, Simpson EM. Initial association of NR2E1 with bipolar disorder and identification of candidate mutations in bipolar disorder, schizophrenia, and aggression through resequencing. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:880-9. [PMID: 18205168 DOI: 10.1002/ajmg.b.30696] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nuclear receptor 2E1 gene (NR2E1) resides within a 6q21-22 locus for bipolar disorder and schizophrenia. Mice deleted for Nr2e1 show altered neurogenesis, cortical and limbic abnormalities, aggression, hyperexcitability, and cognitive impairment. NR2E1 is therefore a positional and functional candidate for involvement in mental illness. We performed association analyses in 394 patients with bipolar disorder, 396 with schizophrenia, and 479 controls using six common markers and haplotypes. We also performed a comprehensive mutation screen of NR2E1, resequencing its entire coding region, complete 5' and 3' untranslated regions, consensus splice-sites, and evolutionarily conserved regions in 126 humans with bipolar disorder, schizophrenia, or aggressive disorders. NR2E1 was associated with bipolar disorder I and II [odds ratio (OR = 0.77, P = 0.013), bipolar disorder I (OR = 0.77, P = 0.015), bipolar disorder in females (OR = 0.72, P = 0.009), and with age at onset < or = 25 years (OR = 0.67, P = 0.006)], all of which remained significant after correcting for multiple comparisons. We identified eight novel candidate mutations that were absent in 325 controls; four of these were predicted to alter known neural transcription factor binding sites. Analyses of NR2E1 mRNA in human brain revealed forebrain-specific transcription. The data presented support the hypothesis that genetic variation at NR2E1 may be associated with susceptibility to brain-behavior disorders.
Collapse
Affiliation(s)
- Ravinesh A Kumar
- Centre for Molecular Medicine & Therapeutics and Child & Family Research Institute, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Ben Cheikh BOA, Baulac S, Lahjouji F, Bouhouche A, Couarch P, Khalili N, Regragui W, Lehericy S, Ruberg M, Benomar A, Heath S, Chkili T, Yahyaoui M, Jiddane M, Ouazzani R, LeGuern E. A locus for bilateral occipital polymicrogyria maps to chromosome 6q16-q22. Neurogenetics 2008; 10:35-42. [PMID: 18758830 DOI: 10.1007/s10048-008-0143-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 07/31/2008] [Indexed: 12/31/2022]
Abstract
We describe the clinical, radiographic, and genetic features of a large consanguineous Moroccan family in which bilateral occipital polymicrogyria segregated as an autosomal recessive trait. Six affected members of the family had partial complex seizures often associated with behavioral abnormalities. On MRI, three patients had a thickened irregular cortex in the lateral occipital lobes with small gyri. A high-density genome-wide scan with 10,000 SNPs established linkage by homozygosity mapping to a 14-Mb region on chromosome 6q16-q22. Candidate genes by function (TUBE1, GRIK2, GPRC6A, GPR6, NR2E1, MICAL1, and MARCKS) in this locus were screened for mutations.
Collapse
|
73
|
Abstract
TLX is an orphan nuclear receptor (also called NR2E1) that regulates the expression of target genes by functioning as a constitutive transrepressor. The physiological significance of TLX in the cytodifferentiation of neural cells in the brain is known. However, the corepressors supporting the transrepressive function of TLX have yet to be identified. In this report, Y79 retinoblastoma cells were subjected to biochemical techniques to purify proteins that interact with TLX, and we identified LSD1 (also called KDM1), which appears to form a complex with CoREST and histone deacetylase 1. LSD1 interacted with TLX directly through its SWIRM and amine oxidase domains. LSD1 potentiated the transrepressive function of TLX through its histone demethylase activity as determined by a luciferase assay using a genomically integrated reporter gene. LSD1 and TLX were recruited to a TLX-binding site in the PTEN gene promoter, accompanied by the demethylation of H3K4me2 and deacetylation of H3. Knockdown of either TLX or LSD1 derepressed expression of the endogenous PTEN gene and inhibited cell proliferation of Y79 cells. Thus, the present study suggests that LSD1 is a prime corepressor for TLX.
Collapse
|
74
|
Li W, Sun G, Yang S, Qu Q, Nakashima K, Shi Y. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain. Mol Endocrinol 2008; 22:56-64. [PMID: 17901127 PMCID: PMC2194628 DOI: 10.1210/me.2007-0290] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/18/2007] [Indexed: 12/31/2022] Open
Abstract
TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.
Collapse
Affiliation(s)
- Wenwu Li
- Neuroscience Division, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
75
|
Shi Y, Sun G, Zhao C, Stewart R. Neural stem cell self-renewal. Crit Rev Oncol Hematol 2008; 65:43-53. [PMID: 17644000 PMCID: PMC2235812 DOI: 10.1016/j.critrevonc.2007.06.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/28/2007] [Accepted: 06/07/2007] [Indexed: 12/19/2022] Open
Abstract
Two fundamental properties of stem cells are their ability to self-renew and to differentiate. Self-renewal is an integration of proliferation control with the maintenance of an undifferentiated state. Stem cell self-renewal is regulated by the dynamic interplay between transcription factors, epigenetic control, microRNA (miRNA) regulators, and cell-extrinsic signals from the microenvironment in which stem cells reside. Recent progress in defining specific roles for cell-intrinsic factors and extrinsic factors in regulating stem cell self-renewal starts to unfold the multilayered regulatory networks. This review focuses on cell-intrinsic regulators, including orphan nuclear receptor TLX, polycomb transcriptional repressor Bmi1, high-mobility-group DNA binding protein Sox2, basic helix-loop-helix Hes genes, histone modifying enzymes and chromatin remodeling proteins, and small RNA modulators, as well as cell-extrinsic signaling molecules, such as Wnt, Notch, Sonic hedgehog (Shh), TGFalpha, EGF, and FGF. Unraveling the mechanisms by which neural stem cells renew themselves will provide insights into both basic neurosciences and clinical applications of stem cell-based cell replacement therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yanhong Shi
- Neuroscience Division, Center of Gene Expression and Drug Discovery, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010.
| | - Guoqiang Sun
- Neuroscience Division, Center of Gene Expression and Drug Discovery, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010.
| | - Chunnian Zhao
- Neuroscience Division, Center of Gene Expression and Drug Discovery, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010.
| | - Richard Stewart
- Neuroscience Division, Center of Gene Expression and Drug Discovery, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010.
| |
Collapse
|
76
|
Belz T, Liu HK, Bock D, Takacs A, Vogt M, Wintermantel T, Brandwein C, Gass P, Greiner E, Schütz G. Inactivation of the gene for the nuclear receptor tailless in the brain preserving its function in the eye. Eur J Neurosci 2007; 26:2222-7. [DOI: 10.1111/j.1460-9568.2007.05841.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
77
|
Abstract
Unchecked aggression and violence exact a significant toll on human societies. Aggression is an umbrella term for behaviours that are intended to inflict harm. These behaviours evolved as adaptations to deal with competition, but when expressed out of context, they can have destructive consequences. Uncontrolled aggression has several components, such as impaired recognition of social cues and enhanced impulsivity. Molecular approaches to the study of aggression have revealed biological signals that mediate the components of aggressive behaviour. These signals may provide targets for therapeutic intervention for individuals with extreme aggressive outbursts. This Review summarizes the complex interactions between genes, biological signals, neural circuits and the environment that influence the development and expression of aggressive behaviour.
Collapse
Affiliation(s)
- Randy J Nelson
- Department of Psychology, Institute for Behavioural Medicine Research, The Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
78
|
Kumar RA, Everman DB, Morgan CT, Slavotinek A, Schwartz CE, Simpson EM. Absence of mutations in NR2E1 and SNX3 in five patients with MMEP (microcephaly, microphthalmia, ectrodactyly, and prognathism) and related phenotypes. BMC MEDICAL GENETICS 2007; 8:48. [PMID: 17655765 PMCID: PMC1950490 DOI: 10.1186/1471-2350-8-48] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 07/26/2007] [Indexed: 11/15/2022]
Abstract
Background A disruption of sorting nexin 3 (SNX3) on 6q21 was previously reported in a patient with MMEP (microcephaly, microphthalmia, ectrodactyly, and prognathism) and t(6;13)(q21;q12) but no SNX3 mutations were identified in another sporadic case of MMEP, suggesting involvement of another gene. In this work, SNX3 was sequenced in three patients not previously studied for this gene. In addition, we test the hypothesis that mutations in the neighbouring gene NR2E1 may underlie MMEP and related phenotypes. Methods Mutation screening was performed in five patients: the t(6;13)(q21;q12) MMEP patient, three additional patients with possible MMEP or a related phenotype, and one patient with oligodactyly, ulnar aplasia, and a t(6;7)(q21;q31.2) translocation. We used sequencing to exclude SNX3 coding mutations in three patients not previously studied for this gene. To test the hypothesis that mutations in NR2E1 may contribute to MMEP or related phenotypes, we sequenced the entire coding region, complete 5' and 3' untranslated regions, consensus splice-sites, and evolutionarily conserved regions including core and proximal promoter in all five patients. Two-hundred and fifty control subjects were genotyped for any candidate mutation. Results We did not detect any synonymous nor nonsynonymous coding mutations of NR2E1 or SNX3. In one patient with possible MMEP, we identified a candidate regulatory mutation that has been reported previously in a patient with microcephaly but was not found in 250 control subjects examined here. Conclusion Our results do not support involvement of coding mutations in NR2E1 or SNX3 in MMEP or related phenotypes; however, we cannot exclude the possibility that regulatory NR2E1 or SNX3 mutations or deletions at this locus may underlie abnormal human cortical development in some patients.
Collapse
Affiliation(s)
- Ravinesh A Kumar
- Centre for Molecular Medicine and Therapeutics, Child & Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28Ave, Vancouver, V5Z 4H4, Canada
| | - David B Everman
- Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic Center. One Gregor Mendel Circle, Greenwood, South Carolina, 29646, USA
| | - Chad T Morgan
- Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic Center. One Gregor Mendel Circle, Greenwood, South Carolina, 29646, USA
| | - Anne Slavotinek
- Department of Pediatrics, Division of Medical Genetics, University of California, Box 0748, 533 Parnassus St., San Francisco, California, 94143-0748, USA
| | - Charles E Schwartz
- Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic Center. One Gregor Mendel Circle, Greenwood, South Carolina, 29646, USA
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics, Child & Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28Ave, Vancouver, V5Z 4H4, Canada
| |
Collapse
|
79
|
Kitambi SS, Hauptmann G. The zebrafish orphan nuclear receptor genes nr2e1 and nr2e3 are expressed in developing eye and forebrain. Gene Expr Patterns 2007; 7:521-8. [PMID: 17127102 DOI: 10.1016/j.modgep.2006.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 10/12/2006] [Accepted: 10/16/2006] [Indexed: 11/24/2022]
Abstract
Mammalian Nr2e1 (Tailless, Mtll or Tlx) and Nr2e3 (photoreceptor-specific nuclear receptor, Pnr) are highly related orphan nuclear receptors, that are expressed in eye and forebrain-derived structures. In this study, we analyzed the developmental expression patterns of zebrafish nr2e1 and nr2e3. RT-PCR analysis showed that nr2e1 and nr2e3 are both expressed during embryonic and post-embryonic development. To examine the spatial distribution of nr2e1 and nr2e3 during development whole-mount in situ hybridization was performed. At tailbud stage, initial nr2e1 expression was localized to the rostral brain rudiment anterior to pax2.1 and eng2 expression at the prospective midbrain-hindbrain boundary. During subsequent stages, nr2e1 became widely expressed in fore- and midbrain primordia, eye and olfactory placodes. At 24hpf, strong nr2e1 expression was detected in telencephalon, hypothalamus, dorsal thalamus, pretectum, midbrain tectum, and retina. At 2dpf, the initially widespread nr2e1 expression became more restricted to distinct regions within the fore- and midbrain and to the retinal ciliary margin, the germinal zone which gives rise to retina and presumptive iris. Expression of nr2e3 was exclusively found in the developing retina and epiphysis. In both structures, nr2e3 expression was found in photoreceptor cells. The developmental expression profile of zebrafish nr2e1 and nr2e3 is consistent with evolutionary conserved functions in eye and rostral brain structures.
Collapse
Affiliation(s)
- Satish Srinivas Kitambi
- School of Life Sciences, Södertörns University College, Department of Biosciences and Nutrition, Karolinska Institutet, Alfred Nobels Allé 3, 14152 Huddinge, Sweden
| | | |
Collapse
|
80
|
Houde C, Dickinson RJ, Houtzager VM, Cullum R, Montpetit R, Metzler M, Simpson EM, Roy S, Hayden MR, Hoodless PA, Nicholson DW. Hippi is essential for node cilia assembly and Sonic hedgehog signaling. Dev Biol 2006; 300:523-33. [PMID: 17027958 PMCID: PMC5053816 DOI: 10.1016/j.ydbio.2006.09.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 08/30/2006] [Accepted: 09/05/2006] [Indexed: 11/28/2022]
Abstract
Hippi functions as an adapter protein that mediates pro-apoptotic signaling from poly-glutamine-expanded huntingtin, an established cause of Huntington disease, to the extrinsic cell death pathway. To explore other functions of Hippi we generated Hippi knock-out mice. This deletion causes randomization of the embryo turning process and heart looping, which are hallmarks of defective left-right (LR) axis patterning. We report that motile monocilia normally present at the surface of the embryonic node, and proposed to initiate the break in LR symmetry, are absent on Hippi-/- embryos. Furthermore, defects in central nervous system development are observed. The Sonic hedgehog (Shh) pathway is downregulated in the neural tube in the absence of Hippi, which results in failure to establish ventral neural cell fate. Together, these findings demonstrate a dual role for Hippi in cilia assembly and Shh signaling during development, in addition to its proposed role in apoptosis signal transduction in the adult brain under pathogenically stressful conditions.
Collapse
Affiliation(s)
- Caroline Houde
- Biochemistry Department, McGill University, Montreal, Canada H3G 1Y6
| | - Robin J. Dickinson
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada V5Z 1L3
| | | | - Rebecca Cullum
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada V5Z 1L3
| | - Rachel Montpetit
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada V5Z 1L3
| | - Martina Metzler
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, Canada V5Z 4H4
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, Canada V5Z 4H4
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V5Z 4H4
| | - Sophie Roy
- Biochemistry Department, McGill University, Montreal, Canada H3G 1Y6
- Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, Canada V5Z 4H4
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V5Z 4H4
| | - Pamela A. Hoodless
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada V5Z 1L3
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V5Z 4H4
| | - Donald W. Nicholson
- Biochemistry Department, McGill University, Montreal, Canada H3G 1Y6
- Merck Research Laboratories, Rahway, New Jersey 07065, USA
| |
Collapse
|
81
|
Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 2006; 58:798-836. [PMID: 17132856 DOI: 10.1124/pr.58.4.10] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Half of the members of the nuclear receptors superfamily are so-called "orphan" receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
Collapse
Affiliation(s)
- Gérard Benoit
- Unité Mixte de Recherche 5161 du Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique 1237, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Kumar RA, Leach S, Bonaguro R, Chen J, Yokom DW, Abrahams BS, Seaver L, Schwartz CE, Dobyns W, Brooks-Wilson A, Simpson EM. Mutation and evolutionary analyses identify NR2E1-candidate-regulatory mutations in humans with severe cortical malformations. GENES BRAIN AND BEHAVIOR 2006; 6:503-16. [PMID: 17054721 PMCID: PMC2040186 DOI: 10.1111/j.1601-183x.2006.00277.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear receptor 2E1 (NR2E1) is expressed in human fetal and adult brains; however, its role in human brain–behavior development is unknown. Previously, we have corrected the cortical hypoplasia and behavioral abnormalities in Nr2e1−/− mice using a genomic clone spanning human NR2E1, which bolsters the hypothesis that NR2E1 may similarly play a role in human cortical and behavioral development. To test the hypothesis that humans with abnormal brain–behavior development may have null or hypomorphic NR2E1 mutations, we undertook the first candidate mutation screen of NR2E1 by sequencing its entire coding region, untranslated, splice site, proximal promoter and evolutionarily conserved non-coding regions in 56 unrelated patients with cortical disorders, namely microcephaly. We then genotyped the candidate mutations in 325 unrelated control subjects and 15 relatives. We did not detect any coding region changes in NR2E1; however, we identified seven novel candidate regulatory mutations that were absent from control subjects. We used in silico tools to predict the effects of these candidate mutations on neural transcription factor binding sites (TFBS). Four candidate mutations were predicted to alter TFBS. To facilitate the present and future studies of NR2E1, we also elucidated its molecular evolution, genetic diversity, haplotype structure and linkage disequilibrium by sequencing an additional 94 unaffected humans representing Africa, the Americas, Asia, Europe, the Middle East and Oceania, as well as great apes and monkeys. We detected strong purifying selection, low genetic diversity, 21 novel polymorphisms and five common haplotypes at NR2E1. We conclude that protein-coding changes in NR2E1 do not contribute to cortical and behavioral abnormalities in the patients examined here, but that regulatory mutations may play a role.
Collapse
Affiliation(s)
- R A Kumar
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
- Department of Medical Genetics, University of British ColumbiaVancouver, Canada
| | - S Leach
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer AgencyVancouver, Canada
| | - R Bonaguro
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - J Chen
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - D W Yokom
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - B S Abrahams
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - L Seaver
- Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic CenterGreenwood, SC, USA
| | - C E Schwartz
- Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic CenterGreenwood, SC, USA
| | - W Dobyns
- University of ChicagoChicago, IL, USA
| | - A Brooks-Wilson
- Department of Medical Genetics, University of British ColumbiaVancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer AgencyVancouver, Canada
| | - E M Simpson
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
- Department of Medical Genetics, University of British ColumbiaVancouver, Canada
- Corresponding author: Elizabeth M. Simpson, 3020 980 West 28 Ave, Vancouver, BC, Canada V5Z 4H4. E-mail:
| |
Collapse
|
83
|
Tucci V, Lad HV, Parker A, Polley S, Brown SDM, Nolan PM. Gene-environment interactions differentially affect mouse strain behavioral parameters. Mamm Genome 2006; 17:1113-20. [PMID: 17091318 DOI: 10.1007/s00335-006-0075-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 07/28/2006] [Indexed: 10/23/2022]
Abstract
Systematic phenotyping of mouse strains and mutants generated through genome-wide mutagenesis programs promises to deliver a wealth of functional genetic information. To this end, the appropriation of a standard series of phenotyping protocols is desirable to produce data sets that are consistent within and across laboratories and across time. Standard phenotyping protocols such as EMPReSS (European Mouse Phenotyping Resource for Standardised Screens) provide a series of protocols aimed at phenotyping multiple body systems that could realistically be adopted and/or reproduced in any laboratory. This includes a series of neurologic and behavioral screens, bearing in mind that this class of phenotype is well represented in targeted mutants and mutagenesis screens. Having cross-validated screening batteries in a number of laboratories and in a number of commonly used inbred strains, our group was interested in establishing whether subtle changes in cage environment could affect behavioral test outcome. Aside from unavoidable quantitative differences in test outcome, we identified significant and distinct genotype-environment-test interactions. For example, specific strain order in open-field center entries and total distance traveled can be reversed depending on the form of enrichment used, while prepulse inhibition of the acoustic startle response is, even quantitatively, unaffected by the enrichment condition. Our findings argue that unless systematically recorded, behavioral studies conducted under subtle variations in cage environment may lead to data misinterpretation, although this could be limited to particular behaviors. Further investigations into the extent and limits of genetic and environmental variables are critical for the realization of both behavioral and functional genomics endpoints.
Collapse
Affiliation(s)
- Valter Tucci
- MRC Mammalian Genetics Unit, Harwell, Didcot, Oxfordshire, OX11 0RD, UK
| | | | | | | | | | | |
Collapse
|
84
|
Edwards AC, Rollmann SM, Morgan TJ, Mackay TFC. Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genet 2006; 2:e154. [PMID: 17044737 PMCID: PMC1564424 DOI: 10.1371/journal.pgen.0020154] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 08/01/2006] [Indexed: 11/25/2022] Open
Abstract
Aggressive behavior is important for animal survival and reproduction, and excessive aggression is an enormous social and economic burden for human society. Although the role of biogenic amines in modulating aggressive behavior is well characterized, other genetic mechanisms affecting this complex behavior remain elusive. Here, we developed an assay to rapidly quantify aggressive behavior in Drosophila melanogaster, and generated replicate selection lines with divergent levels of aggression. The realized heritability of aggressive behavior was approximately 0.10, and the phenotypic response to selection specifically affected aggression. We used whole-genome expression analysis to identify 1,539 probe sets with different expression levels between the selection lines when pooled across replicates, at a false discovery rate of 0.001. We quantified the aggressive behavior of 19 mutations in candidate genes that were generated in a common co-isogenic background, and identified 15 novel genes affecting aggressive behavior. Expression profiling of genetically divergent lines is an effective strategy for identifying genes affecting complex traits. Aggressive behavior is a complex trait affected by numerous interacting genes whose expression depends on the environment. Aggression can be selectively advantageous in the pursuit of mates, territory, or food; however, excessive aggression may be deleterious. Pathological levels of aggression in humans create an enormous burden to society. Although dysfunction of the biogenic amine systems is often associated with alterations in aggressive behavior, this represents only the “tip of the iceberg” of the complex genetic architecture of aggressive behavior. The fruit fly Drosophila melanogaster is an excellent model genetic system for exploring the genetic basis of aggressive behavior. The authors have developed a rapid assay to quantify Drosophila aggression, and have used it to select genetically divergent replicate lines for increased and decreased behavior from a genetically heterogeneous base population. They used whole-genome expression profiling to identify variation in gene expression among these lines, and identified 1,539 transcripts that differed between the selection lines, illustrating the complex genomic basis of aggressive behavior. The authors evaluated aggressive behavior of flies with mutations in 19 genes that were implicated by the analysis of differential transcript abundance, and identified 15 novel candidate genes affecting this complex trait, eight of which have human orthologs.
Collapse
Affiliation(s)
- Alexis C Edwards
- Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Stephanie M Rollmann
- Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Theodore J Morgan
- Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Trudy F. C Mackay
- Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
85
|
Chang B, Hawes NL, Hurd RE, Wang J, Howell D, Davisson MT, Roderick TH, Nusinowitz S, Heckenlively JR. Mouse models of ocular diseases. Vis Neurosci 2006; 22:587-93. [PMID: 16332269 DOI: 10.1017/s0952523805225075] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 05/19/2005] [Indexed: 11/06/2022]
Abstract
The Jackson Laboratory, having the world's largest collection of mouse mutant stocks and genetically diverse inbred strains, is an ideal place to discover genetically determined eye variations and disorders. In this paper, we list and describe mouse models for ocular research available from Mouse Eye Mutant Resource at The Jackson Laboratory. While screening mouse strains and stocks at The Jackson Laboratory (TJL) for genetic mouse models of human ocular disorders, we have identified numerous spontaneous or naturally occurring mutants. We characterized these mutants using serial indirect ophthalmoscopy, fundus photography, electroretinography (ERG) and histology, and performed genetic analysis including linkage studies and gene identification. Utilizing ophthalmoscopy, electroretinography, and histology, to date we have discovered 109 new disorders affecting all aspects of the eye including the lid, cornea, iris, lens, and retina, resulting in corneal disorders, glaucoma, cataracts, and retinal degenerations. The number of known serious or disabling eye diseases in humans is large and affects millions of people each year. Yet research on these diseases frequently is limited by the obvious restrictions on studying pathophysiologic processes in the human eye. Likewise, many human ocular diseases are genetic in origin, but appropriate families often are not readily available for genetic studies. Mouse models of inherited ocular disease provide powerful tools for rapid genetic analysis, characterization, and gene identification. Because of the great similarity among mammalian genomes, these findings in mice have direct relevance to the homologous human conditions.
Collapse
Affiliation(s)
- B Chang
- The Jackson Laboratory, Bar Harbor, ME 04609-1500, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Uemura A, Kusuhara S, Wiegand SJ, Yu RT, Nishikawa SI. Tlx acts as a proangiogenic switch by regulating extracellular assembly of fibronectin matrices in retinal astrocytes. J Clin Invest 2006; 116:369-77. [PMID: 16424942 PMCID: PMC1332029 DOI: 10.1172/jci25964] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 11/11/2005] [Indexed: 12/27/2022] Open
Abstract
In response to hypoxia, hypoxia-inducible factors act as the primary proangiogenic triggers by regulating transcription levels of target genes, including VEGF. However, little is known about the specific factors that control other components of the angiogenic process, particularly formation of matrix scaffolds that promote adhesion and migration of endothelial cells. We show that in the postnatal mouse retina, the orphan nuclear receptor tailless (Tlx) is strongly expressed in the proangiogenic astrocytes, which secrete VEGF and fibronectin. Tlx expression by retinal astrocytes is controlled by oxygen concentration and rapidly downregulated upon contact with blood vessels. In mice null for Tlx, retinal astrocytes maintain VEGF expression; however, the extracellular assembly of fibronectin matrices by astrocytes is severely impaired, leading to defective scaffold formation and a complete failure of normal retinal vascular development. This work identifies Tlx as an essential component of the molecular network involved in the hypoxia-inducible proangiogenic switch in retinal astrocytes.
Collapse
Affiliation(s)
- Akiyoshi Uemura
- Laboratory for Stem Cell Biology, Center for Developmental Biology, Institute of Physical and Chemical Research (RIKEN), Kobe, Japan.
| | | | | | | | | |
Collapse
|
87
|
Christie BR, Li AM, Redila VA, Booth H, Wong BKY, Eadie BD, Ernst C, Simpson EM. Deletion of the nuclear receptor Nr2e1 impairs synaptic plasticity and dendritic structure in the mouse dentate gyrus. Neuroscience 2005; 137:1031-7. [PMID: 16289828 DOI: 10.1016/j.neuroscience.2005.08.091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 07/14/2005] [Accepted: 08/15/2005] [Indexed: 11/17/2022]
Abstract
The spontaneous or targeted deletion of the nuclear receptor transcription factor Nr2e1 produces a mouse that shows hypoplasia of the hippocampal formation and reduced neurogenesis in adult mice. In these studies we show that hippocampal synaptic transmission appears normal in the dentate gyrus and cornu ammonis 1 subfields of adult mice that lack Nr2e1 (Nr2e1-/-), and that fEPSP shape, paired-pulse responses, and short-term plasticity are not substantially altered in either subfield. In contrast, the expression of long-term potentiation is selectively impaired in the dentate gyrus, and not in the cornu ammonis 1 subfield. Golgi analysis revealed that there was a significant reduction in both dendritic branching and dendritic length that was specific to dentate gyrus granule cells in the Nr2e1-/- mice. These results indicate that Nr2e1 deletion can significantly alter both synaptic plasticity and dendritic structure in the dentate gyrus.
Collapse
Affiliation(s)
- B R Christie
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, Canada V6T 1Z4.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Abrahams BS, Kwok MCH, Trinh E, Budaghzadeh S, Hossain SM, Simpson EM. Pathological aggression in "fierce" mice corrected by human nuclear receptor 2E1. J Neurosci 2005; 25:6263-70. [PMID: 16000615 PMCID: PMC6725287 DOI: 10.1523/jneurosci.4757-04.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 05/20/2005] [Accepted: 05/22/2005] [Indexed: 11/21/2022] Open
Abstract
"Fierce" mice, homozygous for the deletion of nuclear receptor 2E1 (NR2E1), show abnormal brain-eye development and pathological aggression. To evaluate functional equivalency between mouse and human NR2E1, we generated mice transgenic for a genomic clone spanning the human NR2E1 locus and bred these animals to fierce mice deleted for the corresponding mouse gene. In fierce mutants carrying human NR2E1, structural brain defects were eliminated and eye abnormalities ameliorated. Excitingly, behavior in these "rescue" mice was indistinguishable from controls. Because no artificial promoter was used to drive transgene expression, promoter and regulatory elements within the human NR2E1 clone are functional in mouse. Normal behavior in rescue animals suggests that mechanisms underlying the behavioral abnormalities in fierce mice may also be conserved in humans. Our data support the hypothesis that variation at NR2E1 may contribute to human behavioral disorders. Use of this rescue paradigm with other genes will permit the direct evaluation of human genes hypothesized to play a causal role in psychiatric disease but for which evidence is lacking or equivocal.
Collapse
MESH Headings
- Aggression/physiology
- Agonistic Behavior/physiology
- Animals
- Brain/abnormalities
- Brain/embryology
- Cerebral Cortex/abnormalities
- Congenital Abnormalities/embryology
- Congenital Abnormalities/genetics
- Congenital Abnormalities/therapy
- Crosses, Genetic
- Exploratory Behavior/physiology
- Eye Abnormalities/embryology
- Eye Abnormalities/genetics
- Eye Abnormalities/therapy
- Female
- Genotype
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Olfactory Bulb/abnormalities
- Orphan Nuclear Receptors
- Phenotype
- Promoter Regions, Genetic
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Regulatory Sequences, Nucleic Acid
- Retina/abnormalities
- Reverse Transcriptase Polymerase Chain Reaction
- Species Specificity
- Territoriality
Collapse
Affiliation(s)
- Brett S Abrahams
- Graduate Program in Neuroscience, British Columbia Research Institute for Children's and Women's Health, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | | | | | | | | | | |
Collapse
|
89
|
Gammie SC. Current models and future directions for understanding the neural circuitries of maternal behaviors in rodents. BEHAVIORAL AND COGNITIVE NEUROSCIENCE REVIEWS 2005; 4:119-35. [PMID: 16251728 DOI: 10.1177/1534582305281086] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maternal behaviors in rodents include a number of subcomponents, such as nursing, nest building, licking and grooming of pups, pup retrieval, and maternal aggression. Because each behavior involves a unique motor pattern, a unique ensemble neural circuitry must underlie each behavior. To what extent there is overlap in terms of brain regions and specific neurons for each circuit is being actively investigated. This review will first examine overlapping and separate components of pup retrieval and maternal aggression circuitries while examining a central role for medial preoptic area (MPA) in both behaviors. With an emphasis on experimental approaches, the review will then highlight recent findings and propose future directions for understanding maternal behavior regulation. Finally, examples for why studying the neural basis of maternal behaviors can bring insights to other areas of neuroscience, such as feeding, addiction, and anxiety and aggression regulation will be provided.
Collapse
|
90
|
Prendergast BJ, Nelson RJ. Affective responses to changes in day length in Siberian hamsters (Phodopus sungorus). Psychoneuroendocrinology 2005; 30:438-52. [PMID: 15721056 DOI: 10.1016/j.psyneuen.2004.08.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 08/03/2004] [Accepted: 08/09/2004] [Indexed: 11/30/2022]
Abstract
The goal of these experiments was to test the hypothesis that day length influences anxious- and depressive-like behaviors in reproductively photoperiodic rodents. Male and female Siberian hamsters (Phodopus sungorus) were exposed to long (16 h light/day; LD) or short (8 h light/day; SD) photoperiods beginning at the time of weaning (day 18). Two weeks later hamsters were subjected to a series of behavioral tests to quantify anxiety-and depressive-like behaviors. In an elevated plus maze, SD males exhibited longer latencies to enter an open arm, entered fewer open arms, and spent less time exploring open arms relative to LD hamsters. SD males were likewise slower to enter either of the distal arms of a completely enclosed T-maze, and in a hunger-motivated exploratory paradigm SD males were slower to enter an open arena for food as compared to LD males. In a forced-swimming model of behavioral despair, SD males exhibited immobility sooner, more often, and for a greater total amount of time relative to LD males. Total activity levels, aversiveness to light, olfactory function, and limb strength were unaffected by SD, suggesting that the behavioral changes consequent to SD are not attributable to sensory or motor deficits, but rather may arise from changes in general affective state. The anxiogenic and depressive effects of SD were largely absent in female hamsters. Together the results indicate that adaptation to short photoperiods is associated with increased expression of anxiety- and depressive-like behaviors relative to those observed under LD photoperiod conditions.
Collapse
|
91
|
Miyawaki T, Uemura A, Dezawa M, Yu RT, Ide C, Nishikawa S, Honda Y, Tanabe Y, Tanabe T. Tlx, an orphan nuclear receptor, regulates cell numbers and astrocyte development in the developing retina. J Neurosci 2005; 24:8124-34. [PMID: 15371513 PMCID: PMC6729803 DOI: 10.1523/jneurosci.2235-04.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tlx belongs to a class of orphan nuclear receptors that underlies many aspects of neural development in the CNS. However, the fundamental roles played by Tlx in the control of eye developmental programs remain elusive. By using Tlx knock-out (KO) mice, we show here that Tlx is expressed by retinal progenitor cells in the neuroblastic layer during the period of retinal layer formation, and it is critical for controlling the generation of appropriate numbers of retinal progenies through the activities of cell cycle-related molecules, cyclin D1 and p27Kip1. Tlx expression is restricted to Müller cells in the mature retina and appears to control their proper development. Furthermore, we show that Tlx is expressed by immature astrocytes that migrate from the optic nerve onto the inner surface of the retina and is required for their generation and maturation, as assessed by honeycomb network formation and expression of R-cadherin, a critical component for vasculogenesis. The impaired astrocyte network formation on the inner retinal surface is accompanied by the loss of vasculogenesis in Tlx KO retinas. Our studies thus indicate that Tlx underlies a fundamental developmental program of retinal organization and controls the generation of the proper numbers of retinal progenies and development of glial cells during the protracted period of retinogenesis.
Collapse
Affiliation(s)
- Takaya Miyawaki
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Nuclear receptors are ancient ligand-regulated transcription factors that control key metabolic and developmental pathways. The fruitfly Drosophila melanogaster has only 18 nuclear-receptor genes - far fewer than any other genetic model organism and representing all 6 subfamilies of vertebrate receptors. These unique attributes establish the fly as an ideal system for studying the regulation and function of nuclear receptors during development. Here, we review recent breakthroughs in our understanding of D. melanogaster nuclear receptors, and interpret these results in light of findings from their evolutionarily conserved vertebrate homologues.
Collapse
Affiliation(s)
- Kirst King-Jones
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, 15 North 2030 East, Room 5100, Salt Lake City, Utah 84112-5331, USA.
| | | |
Collapse
|
93
|
Pinto LH, Vitaterna MH, Siepka SM, Shimomura K, Lumayag S, Baker M, Fenner D, Mullins RF, Sheffield VC, Stone EM, Heffron E, Takahashi JS. Results from screening over 9000 mutation-bearing mice for defects in the electroretinogram and appearance of the fundus. Vision Res 2005; 44:3335-45. [PMID: 15536001 PMCID: PMC3756145 DOI: 10.1016/j.visres.2004.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 07/14/2004] [Indexed: 10/26/2022]
Abstract
Random mutagenesis combined with phenotypic screening using carefully crafted functional tests has successfully led to the discovery of genes that are essential for a number of functions. This approach does not require prior knowledge of the identity of the genes that are involved and is a way to ascribe function to the nearly 6000 genes for which knowledge of the DNA sequence has been inadequate to determine the function of the gene product. In an effort to identify genes involved in the visual system via this approach, we have tested over 9000 first and third generation offspring of mice treated with the mutagen N-ethyl-N-nitrosourea (ENU) for visual defects, as evidenced by abnormalities in the electroretinogram and appearance of the fundus. We identified 61 putative mutations with this procedure and outline the steps needed to identify the affected genes.
Collapse
Affiliation(s)
- Lawrence H Pinto
- Department of Neurobiology and Physiology and Center for Functional Genomics, Northwestern University, 2205 Tech Drive, Hogan Hall 2-140, Evanston, IL 60208, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Janssen PA, Nicholls TL, Kumar RA, Stefanakis H, Spidel AL, Simpson EM. Of mice and men: will the intersection of social science and genetics create new approaches for intimate partner violence? JOURNAL OF INTERPERSONAL VIOLENCE 2005; 20:61-71. [PMID: 15618562 DOI: 10.1177/0886260504268120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The past two decades have yielded a recognition that intimate partner violence is ubiquitous. Although violence within relationships is bidirectional, there is acknowledgment that violence directed against women is more persistent and dangerous. Strategies for treatment of men have been largely unsuccessful, and studies of women centered approaches to prevention are in their infancy. An emerging concept in the brain-behavior field is the recognition of genetics as a powerful influence on aggressive and violent behaviors. Mouse models of human health and disease have facilitated our understanding of the role of genetics in the manifestation of these traits. There is a need to push the boundaries of research on intimate partner violence by adopting biosocial approaches to understand its causes.
Collapse
Affiliation(s)
- Patricia A Janssen
- Department of Health Care and Epidemiology, University of British Columbia
| | | | | | | | | | | |
Collapse
|
95
|
Keays DA, Nolan PM. N-ethyl-N-nitrosourea mouse mutants in the dissection of behavioural and psychiatric disorders. Eur J Pharmacol 2004; 480:205-17. [PMID: 14623363 DOI: 10.1016/j.ejphar.2003.08.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Twin and adoption studies have consistently implicated genetics in the aetiology of psychiatric and behavioural disorders. The identification of the genes and molecular pathways that are associated with these traits using linkage studies has been difficult because psychiatric disorders are almost always non-mendelian, heterogeneous, involve multiple genetic loci and are influenced significantly by environmental factors. Mouse models that are based on intermediate signatures of psychiatric disease and pharmacological responsiveness hold promise as a complementary approach to dissecting the molecular basis of neurobehavioural disorders. This has been made possible by the development and refinement of gene targeting technologies and the use of super-efficient chemical mutagens. N-ethyl-N-nitrosourea (ENU) mutagenesis in the mouse, when coupled to a battery of sensitive behavioural screens, is an effective way of creating and identifying novel mouse behavioural mutants. Here, the concept of screening for ENU mutants is introduced while progress with two behavioural screens, an "anxiety" screen and a circadian screen, are presented. It is hoped that the study of mouse mutants that have arisen from these screens will provide new insights into the genetic basis of abnormal behaviour and that they might lead to the development of novel therapeutic compounds for human psychiatric disease.
Collapse
Affiliation(s)
- David A Keays
- MRC Mammalian Genetics Unit, Harwell, Didcot, OX11 0RD, Oxfordshire, UK
| | | |
Collapse
|
96
|
Kumar RA, Chan KL, Wong AHW, Little KQ, Rajcan-Separovic E, Abrahams BS, Simpson EM. Unexpected embryonic stem (ES) cell mutations represent a concern in gene targeting: Lessons from ?fierce? mice. Genesis 2004; 38:51-7. [PMID: 14994267 DOI: 10.1002/gene.20001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The exceptional value of gene targeting technology to generate mouse models of human disease exists under the shadow of potential genetic errors. We previously observed an unexpected brain-behavior phenotype that resulted from a gene-targeting experiment designed to delete the Zfa gene. Given that the transcription of Zfa is restricted to the germ cell lineage of adult testis, it was both a surprise and a concern when the resulting mice had a phenotype present in both sexes that included abnormal brains and violent behavior. We hypothesized that an unrelated mutation may have been responsible for the unexpected phenotype. Here we show that the single gene mutation, Nr2e1(frc) (fierce), which was responsible for the brain-behavior phenotype, existed in the embryonic stem (ES) cell even before the derivation of the Zfa knockout mice. Our work thus highlights a concern in gene targeting, namely, that ES cells can harbor unexpected mutations, which can lead to genotype-phenotype misattribution. Based on our findings, we caution the gene-targeting community to use low-passage ES cells, to characterize mice derived from more than one independently targeted ES cell clone, and to backcross mice to allow for segregation of distant but linked mutations.
Collapse
Affiliation(s)
- Ravinesh A Kumar
- Doctorate Program in Medical Genetics, University of British Columbia, Vancouver, British Columbia, V5Z 4H4 Canada.
| | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Currently, 36 genes have been reported to affect offensive behavior in male mice. Potentially, these genes could be used to analyze the mechanism of this behavior. But there are methodological flies in this conceptual ointment. The studies with these genes varied in the genetic background, the maternal environments, the postweaning housing, the strain or type of opponent, and the type of test. The effects of each of these on the genetics of offense are reviewed with examples. It is concluded that between-study variation in these environmental or experiential circumstances may make it difficult to impossible to relate the effect of one genetic variant to another and to use these to identify and relate the pathways for gene effects on offensive behaviors. For this reason, standardization of these conditions is recommended.
Collapse
Affiliation(s)
- Stephen C Maxson
- Department of Psychology, The University of Connecticut, Storrs, CT 06269-1020, USA.
| | | |
Collapse
|
98
|
Banks KG, Johnson KA, Lerner CP, Mahaffey CL, Bronson RT, Simpson EM. Retroposon compensatory mechanism hypothesis not supported: Zfa knockout mice are fertile. Genomics 2003; 82:254-60. [PMID: 12906850 DOI: 10.1016/s0888-7543(03)00155-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is hypothesized that autosomal retroposons compensate for the loss of their inactivated essential X-chromosome progenitors during spermatogenesis. Here we test this Retroposon Compensatory Mechanism (RCM) hypothesis using the Zfy gene family. The mouse autosomal retroposon Zfa is expressed in testes at the same developmental time points at which Zfx levels decline, which correspond to the time of male sex chromosome inactivation, suggesting that Zfa may compensate for the loss of Zfx during spermatogenesis. We examined the effect of Zfa-targeted mutagenesis on spermatogenesis in three genetically distinct mouse strains. Surprisingly, Zfa knockout mice showed no detectable fertility, sperm count, or testes morphology defects. We therefore conclude that Zfa is not an essential gene for spermatogenesis and fertility. This surprising finding now challenges the RCM hypothesis at least for the Zfy gene family. It also forces us to reevaluate the original data underpinning the RCM hypothesis for this family and to propose alternative hypotheses.
Collapse
Affiliation(s)
- Kathleen G Banks
- Centre for Molecular Medicine and Therapeutics, British Columbia Research Institute for Children's and Women's Health, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia, Canada, V5Z 4H4
| | | | | | | | | | | |
Collapse
|
99
|
Hill KG, Alva H, Blednov YA, Cunningham CL. Reduced ethanol-induced conditioned taste aversion and conditioned place preference in GIRK2 null mutant mice. Psychopharmacology (Berl) 2003; 169:108-14. [PMID: 12721779 DOI: 10.1007/s00213-003-1472-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Accepted: 03/10/2003] [Indexed: 01/16/2023]
Abstract
RATIONALE Previous studies have shown that GIRK2 channel function is enhanced by ethanol and that GIRK2 null mutant mice are less sensitive to some of ethanol's effects, including anxiolysis, habituated locomotor stimulation, and acute handling-induced convulsions than wild types. Under some conditions, GIRK2 knockout mice consume more ethanol than wild types, but it is unclear whether they do so because they are more sensitive to ethanol's rewarding effects or less sensitive to its aversive effects. OBJECTIVE To further assess the role of GIRK2 in ethanol action, GIRK2 null mutant and wild type mice were tested in conditioning models that measure the motivational effects of ethanol. METHOD In a conditioned taste aversion (CTA) procedure, knockout and wild type mice were given ethanol (0.0, 2.0, 2.5, or 3.5 g/kg, IP) following 1-h access to saccharin every 48 h over a 10 day period. In a conditioned place preference (CPP) procedure, knockout and wild type mice were given ethanol (2.0 or 3.0 g/kg, IP) paired with one stimulus (grid or hole floor) and saline paired with the other. After four 5-min trials with each stimulus, a 60-min choice test was done. RESULTS The results demonstrated a genotypic difference in both paradigms. In CTA, there was no difference between genotypes at 0.0 or 3.5 g/kg ethanol, but at the 2.0 and 2.5 g/kg doses, wild types developed a stronger aversion to saccharin than knockouts. In CPP, wild types developed place preference, but knockouts did not. CONCLUSIONS These studies show that GIRK2 deletion reduced ethanol's impact in tasks that are commonly used to index the drug's rewarding and aversive effects. These findings could reflect either a learning/memory deficit or decreased sensitivity to ethanol's motivational effects in null mutant mice. The latter interpretation is more consistent with previous data showing that knockout mice consume higher doses of ethanol than wild type mice.
Collapse
Affiliation(s)
- Katherine G Hill
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR 97201-3098, USA.
| | | | | | | |
Collapse
|
100
|
Abrahams BS, Chong ACO, Nisha M, Milette D, Brewster DA, Berry ML, Muratkhodjaev F, Mai S, Rajcan-Separovic E, Simpson EM. Metaphase FISHing of transgenic mice recommended: FISH and SKY define BAC-mediated balanced translocation. Genesis 2003; 36:134-41. [PMID: 12872244 DOI: 10.1002/gene.10205] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The evolving trend to use larger transgenes and their associated increased chance of unexpected genetic events mandates more careful characterization of transgenic mice. In characterizing our five new mouse strains transgenic for the BAC, bEMS4, we have identified the highest copy number reported to date: the stable incorporation of approximately 40 copies of a 194-kb expressed transgene in a single insertion site. We caution, however, that standard molecular techniques failed to identify a balanced translocation in another strain, and an inappropriate site of insertion in a third. Molecular cytogenetic analysis using metaphase FISH was the minimum level of characterization needed to reveal these unexpected genetic events. In addition, we combined FISH and SKY to identify the transgene at the breakpoints of the balanced translocation, t(3;9). This is the first description of a BAC-mediated chromosomal rearrangement and the first application of SKY to identify transgene-induced chromosomal rearrangements.
Collapse
Affiliation(s)
- Brett S Abrahams
- Graduate Program in Neuroscience, Department of Medical Genetics, University of Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|