51
|
Ahmed OA, El-Say KM, Aljaeid BM, Badr-Eldin SM, Ahmed TA. Optimized vinpocetine-loaded vitamin E D-α-tocopherol polyethylene glycol 1000 succinate-alpha lipoic acid micelles as a potential transdermal drug delivery system: in vitro and ex vivo studies. Int J Nanomedicine 2018; 14:33-43. [PMID: 30587983 PMCID: PMC6302827 DOI: 10.2147/ijn.s187470] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Vinpocetine (VNP), a semisynthetic natural product, is used as a vasodilator for cerebrovascular and age-related memory disorders. VNP suffers from low oral bioavailability owing to its low water solubility and extensive first-pass metabolism. This work aimed at utilizing D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and alpha lipoic acid (ALA) to develop efficient micellar system for transdermal delivery of VNP. Materials and methods VNP-TPGS-ALA micelles were prepared, characterized for particle size using particle size analyzer, and investigated for structure using transmission electron microscope. Optimization of VNP-TPGS-ALA micelles-loaded transdermal films was performed using Box–Behnken experimental design. The investigated factors were percentage of ALA in TPGS (X1), citral concentration (X2), and propylene glycol concentration (X3). Elongation percent (Y1), initial permeation after 2 hours (Y2), and cumulative permeation after 24 hours (Y3) were studied as responses. Results Statistical analysis revealed optimum levels of 16.62%, 3%, and 2.18% for X1, X2, and X3, respectively. Fluorescent laser microscopic visualization of skin penetration of the optimized transdermal film revealed marked widespread fluorescence intensity in skin tissue after 0.5, 2, and 4 hours compared with raw VNP transdermal film formulation, which indicated enhancement of VNP skin penetration. Conclusion The obtained results highlighted the potentiality of VNP nanostructure-based films for controlling the transdermal permeation of the drug and improving its effectiveness.
Collapse
Affiliation(s)
- Osama Aa Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt,
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Bader M Aljaeid
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
52
|
Sena CM, Cipriano MA, Botelho MF, Seiça RM. Lipoic Acid Prevents High-Fat Diet-Induced Hepatic Steatosis in Goto Kakizaki Rats by Reducing Oxidative Stress Through Nrf2 Activation. Int J Mol Sci 2018; 19:2706. [PMID: 30208622 PMCID: PMC6164246 DOI: 10.3390/ijms19092706] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023] Open
Abstract
Prevention of hepatic fat accumulation may be an important approach for liver diseases due to the increased relevance of hepatic steatosis in this field. This study was conducted to investigate the effects of the antioxidant α-lipoic acid (α-LA) on hepatic steatosis, hepatocellular function, and oxidative stress in a model of type 2 diabetes fed with a high fat diet (HFD). Goto-Kakizaki rats were randomly divided into four groups. The first group received only a standard rat diet (control GK) including groups 2 (HFD), 3 (vehicle group), and 4 (α-LA group), which were given HFD, ad libitum during three months. Wistar rats are the non-diabetic control group. Carbohydrate and lipid metabolism, liver function, plasma and liver tissue malondialdehyde (MDA), liver GSH, tumor necrosis factor-α (TNF-α) and nuclear factor E2 (erythroid-derived 2)-related factor-2 (Nrf2) levels were assessed in the different groups. Liver function was assessed using quantitative hepatobiliary scintigraphy, serum aspartate, and alanine aminotransferases (AST, ALT), alkaline phosphatase, gamma-glutamyltranspeptidase, and bilirubin levels. Histopathologically steatosis and fibrosis were evaluated. Type 2 diabetic animals fed with HFD showed a marked hepatic steatosis and a diminished hepatic extraction fraction and both were fully prevented with α-LA. Plasma and liver tissue MDA and hepatic TNF-α levels were significantly higher in the HFD group when compared with the control group and significantly lower in the α-LA group. Systemic and hepatic cholesterol, triglycerides, and serum uric acid levels were higher in hyperlipidemic GK rats and fully prevented with α-LA. In addition, nuclear Nrf2 activity was significantly diminished in GK rats and significantly augmented after α-LA treatment. In conclusion, α-LA strikingly ameliorates steatosis in this animal model of diabetes fed with HFD by decrementing the inflammatory marker TNF-α and reducing oxidative stress. α-LA might be considered a useful therapeutic tool to prevent hepatic steatosis by incrementing antioxidant defense systems through Nrf2 and consequently decreasing oxidative stress and inflammation in type 2 diabetes.
Collapse
Affiliation(s)
- Cristina Maria Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
- iCBR, Faculty of Medicine, University of Coimbra; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
| | | | - Maria Filomena Botelho
- iCBR, Faculty of Medicine, University of Coimbra; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
| | - Raquel Maria Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
- iCBR, Faculty of Medicine, University of Coimbra; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
| |
Collapse
|
53
|
Fratantonio D, Speciale A, Molonia MS, Bashllari R, Palumbo M, Saija A, Cimino F, Monastra G, Virgili F. Alpha-lipoic acid, but not di-hydrolipoic acid, activates Nrf2 response in primary human umbilical-vein endothelial cells and protects against TNF-α induced endothelium dysfunction. Arch Biochem Biophys 2018; 655:18-25. [PMID: 30096293 DOI: 10.1016/j.abb.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
The antioxidants role in cell response regulation attracted great interest in the last decades and it is undergoing to a profound reconsideration. The mere concept of "biological antioxidant" has been frequently misconceived or misused, possibly leading to the misinterpretation of some experimental observation. Organosulfur compounds in general and α-lipoic acid, a dithiol molecule, can be considered a typical example of the kind. Reduced α-lipoic acid, dehydrolipoic acid has been in fact originally considered a bona fide, reducing, electron donor molecule. A more recent approach, according to stoichiometric and thermodynamic evidences, lead to a reinterpretation of the biochemical role of "antioxidants". The electrophilic nature of oxidized nucleophilic molecules, including α-lipoic acid, renders more plausible a mechanism based on the ability to activate Nrf2/EpRE mediated hormetic response. In this study, we demonstrate that nmolar concentrations of oxidized α-lipoic acid, but not dehydrolipoic acid, protect human umbilical primary endothelial cells (HUVEC) from TNF-α induced dysfunction, inhibit NF-κB activation and block apoptosis following the activation of Nrf2 transcription factor. Our observations corroborate the concept that the major, if not the unique, mechanism by which α-lipoic acid can non-enzymatically exert its reducing activity is related to the electrophilic nature of the oxidized form.
Collapse
Affiliation(s)
- D Fratantonio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - A Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - M S Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - R Bashllari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - M Palumbo
- Institute of Obstetric and Gynecological Pathology, Santo Bambino Hospital, University of Catania, Catania, Italy
| | - A Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - F Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - G Monastra
- Department of Molecular Medicine, University of Rome "La Sapienza", Rome, Italy
| | - F Virgili
- Council for Agricultural Research and Economics - Food and Nutrition Research Centre (CREA - AN), Italy
| |
Collapse
|
54
|
α-Lipoic acid inhibits the migration and invasion of breast cancer cells through inhibition of TGFβ signaling. Life Sci 2018; 207:15-22. [DOI: 10.1016/j.lfs.2018.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 01/29/2023]
|
55
|
Protein moonlighting elucidates the essential human pathway catalyzing lipoic acid assembly on its cognate enzymes. Proc Natl Acad Sci U S A 2018; 115:E7063-E7072. [PMID: 29987032 DOI: 10.1073/pnas.1805862115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The lack of attachment of lipoic acid to its cognate enzyme proteins results in devastating human metabolic disorders. These mitochondrial disorders are evident soon after birth and generally result in early death. The mutations causing specific defects in lipoyl assembly map in three genes, LIAS, LIPT1, and LIPT2 Although physiological roles have been proposed for the encoded proteins, only the LIPT1 protein had been studied at the enzyme level. LIPT1 was reported to catalyze only the second partial reaction of the classical lipoate ligase mechanism. We report that the physiologically relevant LIPT1 enzyme activity is transfer of lipoyl moieties from the H protein of the glycine cleavage system to the E2 subunits of the 2-oxoacid dehydrogenases required for respiration (e.g., pyruvate dehydrogenase) and amino acid degradation. We also report that LIPT2 encodes an octanoyl transferase that initiates lipoyl group assembly. The human pathway is now biochemically defined.
Collapse
|
56
|
Mishra D, Wang S, Michel S, Palui G, Zhan N, Perng W, Jin Z, Mattoussi H. Photochemical transformation of lipoic acid-based ligands: probing the effects of solvent, ligand structure, oxygen and pH. Phys Chem Chem Phys 2018; 20:3895-3902. [PMID: 29367960 DOI: 10.1039/c7cp06350d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have combined optical absorption with the Ellman's test to identify the parameters that affect the transformation of the 5-membered dithiolanes to thiols in lipoic acid (LA) and its derivatives during UV-irradiation. We found that the nature and polarity of the solvent, the structure of the ligands, acidity of the medium and oxygen can drastically affect the amount of photogenerated thiols. These findings are highly relevant to the understanding of the photochemical transformation of this biologically relevant compound, and would benefit the increasing use of LA-based ligands for the surface functionalization of various nanomaterials.
Collapse
Affiliation(s)
- Dinesh Mishra
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Vacchina P, Lambruschi DA, Uttaro AD. Lipoic acid metabolism in Trypanosoma cruzi as putative target for chemotherapy. Exp Parasitol 2018; 186:17-23. [PMID: 29409741 DOI: 10.1016/j.exppara.2018.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/12/2018] [Accepted: 01/30/2018] [Indexed: 11/30/2022]
Abstract
Lipoic acid (LA) is a cofactor of relevant enzymatic complexes including the glycine cleave system and 2-ketoacid dehydrogenases. Intervention on LA de novo synthesis or salvage could have pleiotropic deleterious effect in cells, making both pathways attractive for chemotherapy. We show that Trypanosoma cruzi was susceptible to treatment with LA analogues. 8-Bromo-octanic acid (BrO) inhibited the growth of epimastigote forms of both Dm28c and CL Brener strains, although only at high (chemotherapeutically irrelevant) concentrations. The methyl ester derivative MBrO, was much more effective, with EC50 values one order of magnitude lower (62-66 μM). LA did not bypass the toxic effect of its analogues. Small monocarboxylic acids appear to be poorly internalized by T. cruzi: [14C]-octanoic acid was taken up 12 fold less efficiently than [14C]-palmitic acid. Western blot analysis of lipoylated proteins allowed the detection of the E2 subunits of pyruvate dehydrogenase (PDH), branched chain 2-ketoacid dehydrogenase and 2-ketoglutarate dehydrogenase complexes. Growth of parasites in medium with 10 fold lower glucose content, notably increased PDH activity and the level of its lipoylated E2 subunit. Treatment with BrO (1 mM) and MBrO (0.1 mM) completely inhibited E2 lipoylation and all three dehydrogenases activities. These observations indicate the lack of specific transporters for octanoic acid and most probably also for BrO and LA, which is in agreement with the lack of a LA salvage pathway, as previously suggested for T. brucei. They also indicate that the LA synthesis/protein lipoylation pathway could be a valid target for drug intervention. Moreover, the free LA available in the host would not interfere with such chemotherapeutic treatments.
Collapse
Affiliation(s)
- Paola Vacchina
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniel A Lambruschi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
58
|
St. John TM. Chronic Hepatitis. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
59
|
Molz P, Schröder N. Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and Neurodegeneration. Front Pharmacol 2017; 8:849. [PMID: 29311912 PMCID: PMC5732919 DOI: 10.3389/fphar.2017.00849] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
The aging process comprises a series of organic alterations, affecting multiple systems, including the nervous system. Aging has been considered the main risk factor for the advance of neurodegenerative diseases, many of which are accompanied by cognitive impairment. Aged individuals show cognitive decline, which has been associated with oxidative stress, as well as mitochondrial, and consequently energetic failure. Lipoic acid (LA), a natural compound present in food and used as a dietary supplement, has been considered a promising agent for the treatment and/or prevention of neurodegenerative disorders. In spite of a number of preclinical studies showing beneficial effects of LA in memory functioning, and pointing to its neuroprotective potential effect, to date only a few studies have examined its effects in humans. Investigations performed in animal models of memory loss associated to aging and neurodegenerative disorders have shown that LA improves memory in a variety of behavioral paradigms. Moreover, cell and molecular mechanisms underlying LA effects have also been investigated. Accordingly, LA displays antioxidant, antiapoptotic, and anti-inflammatory properties in both in vivo and in vitro studies. In addition, it has been shown that LA reverses age-associated loss of neurotransmitters and their receptors, which can underlie its effects on cognitive functions. The present review article aimed at summarizing and discussing the main studies investigating the effects of LA on cognition as well as its cell and molecular effects, in order to improve the understanding of the therapeutic potential of LA on memory loss during aging and in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with LA.
Collapse
Affiliation(s)
- Patrícia Molz
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| | - Nadja Schröder
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| |
Collapse
|
60
|
Seifar F, Khalili M, Khaledyan H, Amiri Moghadam S, Izadi A, Azimi A, Shakouri SK. α-Lipoic acid, functional fatty acid, as a novel therapeutic alternative for central nervous system diseases: A review. Nutr Neurosci 2017; 22:306-316. [DOI: 10.1080/1028415x.2017.1386755] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fatemeh Seifar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Khalili
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Multiple Sclerosis Research Center, Tehran, Iran
| | - Habib Khaledyan
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Amiri Moghadam
- Faculty of Medicine, Department of Community Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Azimeh Izadi
- Faculty of Nutrition and Food Science, Department of Biochemistry and Diet Therapy, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seied Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
61
|
Szulc-Kielbik I, Kielbik M, Klink M. Ferulic acid but not alpha-lipoic acid effectively protects THP-1-derived macrophages from oxidant and pro-inflammatory response to LPS. Immunopharmacol Immunotoxicol 2017; 39:330-337. [DOI: 10.1080/08923973.2017.1369100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Magdalena Klink
- Faculty of Cosmetology, The Academy of Cosmetics and Health Care, Warsaw, Poland
| |
Collapse
|
62
|
Zou H, Wang H, Liu T, Li X, Zhu X, Wang Z. Protective role of α-lipoic acid in hyperuricemia-induced endothelial dysfunction. Exp Ther Med 2017; 13:3047-3054. [PMID: 28587378 DOI: 10.3892/etm.2017.4345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/28/2016] [Indexed: 01/06/2023] Open
Abstract
The aim of the current study was to determine the effects of α-lipoic acid (LA) on hyperuricemia and endothelial dysfunction, and to uncover the underlying mechanism of its action. A hyperuricemic rat model was established by administration of uric acid (UA) and the rats were orally fed with 2 g/kg/day LA or phosphate-buffered saline. Primary rat aortic endothelial cells were subsequently isolated, and a cell viability assay, apoptosis assay, enzyme nitric oxide synthase (eNOS) activity assay and mitochondrial function assay were all performed. For the in vitro study, human umbilical vein endothelial cells were used and western blotting was performed to assess Akt signaling activity. The results of the current study indicated that LA inhibited apoptosis, enhanced eNOS activity and production of nitric oxide (NO), and rescued mitochondrial mass and function in uric acid (UA)-treated endothelial cells. LA activated Akt signaling and inhibition of Akt signaling abolished the effects of LA on cell viability, NO production, ROS production and ATP levels in UA-treated endothelial cells. Therefore, the current study demonstrated that LA attenuated oxidant stress and inhibited apoptosis in UA-treated endothelial cells by activating Akt signaling. The results indicate that LA may serve as a therapeutic approach to treat hyperuricemia-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Hui Zou
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Huan Wang
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Tongmei Liu
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Xiaojie Li
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Xiaoduo Zhu
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Zheng Wang
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
63
|
Wang D, Zhou L, Zhou H, Hou G, Shi L. Effects of dietary α-lipoic acid on carcass characteristics, antioxidant capability and meat quality in Hainan black goats. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1080/1828051x.2016.1263546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dingfa Wang
- Research Center of Animal Science, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, PR China
| | - Luli Zhou
- Research Center of Animal Science, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, PR China
| | - Hanlin Zhou
- Research Center of Animal Science, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, PR China
| | - Guanyu Hou
- Research Center of Animal Science, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, PR China
| | - Liguang Shi
- Research Center of Animal Science, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, PR China
| |
Collapse
|
64
|
Janzer M, Larbig G, Kübelbeck A, Wischnjow A, Haberkorn U, Mier W. Drug Conjugation Affects Pharmacokinetics and Specificity of Kidney-Targeted Peptide Carriers. Bioconjug Chem 2016; 27:2441-2449. [DOI: 10.1021/acs.bioconjchem.6b00397] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Maria Janzer
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
- Merck KGaA, Frankfurter Strasse
250, 64293 Darmstadt, Germany
| | - Gregor Larbig
- Merck KGaA, Frankfurter Strasse
250, 64293 Darmstadt, Germany
| | - Armin Kübelbeck
- Merck KGaA, Frankfurter Strasse
250, 64293 Darmstadt, Germany
| | - Artjom Wischnjow
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Uwe Haberkorn
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Walter Mier
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| |
Collapse
|
65
|
Kastaniotis AJ, Autio KJ, Kerätär JM, Monteuuis G, Mäkelä AM, Nair RR, Pietikäinen LP, Shvetsova A, Chen Z, Hiltunen JK. Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:39-48. [PMID: 27553474 DOI: 10.1016/j.bbalip.2016.08.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/20/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the "classic" cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Alexander J Kastaniotis
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Juha M Kerätär
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anne M Mäkelä
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Remya R Nair
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Laura P Pietikäinen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials and Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland; State Key Laboratory of Supramolecular Structure and Materials and Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
66
|
Aly HAA, Mansour AM, Hassan MH, Abd-Ellah MF. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:913-922. [PMID: 25533183 DOI: 10.1002/tox.22101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016.
Collapse
Affiliation(s)
- Hamdy A A Aly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munaworah, Saudi Arabia
| | - Mohamed F Abd-Ellah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
67
|
Monastra G, De Grazia S, Cilaker Micili S, Goker A, Unfer V. Immunomodulatory activities of alpha lipoic acid with a special focus on its efficacy in preventing miscarriage. Expert Opin Drug Deliv 2016; 13:1695-1708. [DOI: 10.1080/17425247.2016.1200556] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giovanni Monastra
- Department of Experimental Medicine, University la Sapienza, Rome, Italy
| | - Sara De Grazia
- Department of Research and Development, LO.LI. Pharma, Rome, Italy
| | | | - Asli Goker
- Department of Obstetrics and Gynecology, Celal Bayar University, Manisa, Turkey
| | - Vittorio Unfer
- Department of Medical Sciences, UNIIPUS – Private Swiss University Institute, Chiasso, Switzerland
| |
Collapse
|
68
|
Ikuta N, Okamoto H, Furune T, Uekaji Y, Terao K, Uchida R, Iwamoto K, Miyajima A, Hirota T, Sakamoto N. Bioavailability of an R-α-Lipoic Acid/γ-Cyclodextrin Complex in Healthy Volunteers. Int J Mol Sci 2016; 17:ijms17060949. [PMID: 27314343 PMCID: PMC4926482 DOI: 10.3390/ijms17060949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022] Open
Abstract
R-α-lipoic acid (R-LA) is a cofactor of mitochondrial enzymes and a very strong antioxidant. R-LA is available as a functional food ingredient but is unstable against heat or acid. Stabilized R-LA was prepared through complexation with γ-cyclodextrin (CD), yielding R-LA/CD. R-LA/CD was orally administered to six healthy volunteers and showed higher plasma levels with an area under the plasma concentration-time curve that was 2.5 times higher than that after oral administration of non-complexed R-LA, although the time to reach the maximum plasma concentration and half-life did not differ. Furthermore, the plasma glucose level after a single oral administration of R-LA/CD or R-LA was not affected and no side effects were observed. These results indicate that R-LA/CD could be easily absorbed in the intestine. In conclusion, γ-CD complexation is a promising technology for delivering functional but unstable ingredients like R-LA.
Collapse
Affiliation(s)
- Naoko Ikuta
- Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan.
| | - Hinako Okamoto
- Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan.
- CycloChem Bio Co., Ltd., Kobe 650-0047, Japan.
| | | | | | - Keiji Terao
- Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan.
- CycloChem Bio Co., Ltd., Kobe 650-0047, Japan.
| | - Ryota Uchida
- Department of Biopharmaceutics, Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba 278-8510, Japan.
| | - Kosuke Iwamoto
- Department of Biopharmaceutics, Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba 278-8510, Japan.
| | - Atsushi Miyajima
- Department of Biopharmaceutics, Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba 278-8510, Japan.
| | - Takashi Hirota
- Department of Biopharmaceutics, Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba 278-8510, Japan.
| | | |
Collapse
|
69
|
Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway. Microbiol Mol Biol Rev 2016; 80:429-50. [PMID: 27074917 DOI: 10.1128/mmbr.00073-15] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the structure of lipoic acid and its role in bacterial metabolism were clear over 50 years ago, it is only in the past decade that the pathways of biosynthesis of this universally conserved cofactor have become understood. Unlike most cofactors, lipoic acid must be covalently bound to its cognate enzyme proteins (the 2-oxoacid dehydrogenases and the glycine cleavage system) in order to function in central metabolism. Indeed, the cofactor is assembled on its cognate proteins rather than being assembled and subsequently attached as in the typical pathway, like that of biotin attachment. The first lipoate biosynthetic pathway determined was that of Escherichia coli, which utilizes two enzymes to form the active lipoylated protein from a fatty acid biosynthetic intermediate. Recently, a more complex pathway requiring four proteins was discovered in Bacillus subtilis, which is probably an evolutionary relic. This pathway requires the H protein of the glycine cleavage system of single-carbon metabolism to form active (lipoyl) 2-oxoacid dehydrogenases. The bacterial pathways inform the lipoate pathways of eukaryotic organisms. Plants use the E. coli pathway, whereas mammals and fungi probably use the B. subtilis pathway. The lipoate metabolism enzymes (except those of sulfur insertion) are members of PFAM family PF03099 (the cofactor transferase family). Although these enzymes share some sequence similarity, they catalyze three markedly distinct enzyme reactions, making the usual assignment of function based on alignments prone to frequent mistaken annotations. This state of affairs has possibly clouded the interpretation of one of the disorders of human lipoate metabolism.
Collapse
|
70
|
Fei M, Xie Q, Zou Y, He R, Zhang Y, Wang J, Bo L, Li J, Deng X. Alpha-lipoic acid protects mice against concanavalin A-induced hepatitis by modulating cytokine secretion and reducing reactive oxygen species generation. Int Immunopharmacol 2016; 35:53-60. [PMID: 27018751 DOI: 10.1016/j.intimp.2016.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alpha-lipoic acid (α-LA), which exits in almost all types of prokaryotic and eukaryotic cells, is a key regulator of energy metabolism in mitochondria. This study was designed to explore the protective effect of α-LA against concanavalin A (Con A)-induced hepatitis in mice and explore the potential mechanism. METHODS Acute autoimmune hepatitis was induced by intravenous (IV) injection of Con A (15mg/kg) in C57BL/6 mice. α-LA (100mg/kg) was administered four days before Con A injection. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and histopathological change of the liver tissue were measured. Serum cytokine TNF-α, IL-6, IFN-γ and IL-10 were detected by ELISA. The mRNA levels of these inflammatory cytokines in the liver were detected by RT-PCR. Malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD) and reduced/oxidized glutathione (GSH/GSSG) in liver were determined using commercial kits. Phosphorylated NF-κB p65, IκBα and phosphorylated MAPK were measured by Western blot. RESULTS Con A injection induced severe immune responses and extensive hepatocellular apoptosis within 12h. Pretreatment of α-LA markedly reduced the serum ALT and AST activity and the increase of plasma TNF-α, IL-6, IFN-γ and IL-10. In addition, α-LA pretreatment decreased the tissue MPO activity and lipid peroxidation, but increased SOD and GSH levels. α-LA inhibited the phosphorylation of NF-κB p65, IκBα and JNK. CONCLUSION Pretreatment of α-LA markedly attenuated Con A-induced hepatitis by modulating cytokine secretion and reducing reactive oxygen species generation.
Collapse
Affiliation(s)
- Miaomiao Fei
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Qun Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yun Zou
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Rong He
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yan Zhang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Jun Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Lulong Bo
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Jinbao Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Xiaoming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
71
|
Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016; 49:49-77. [PMID: 27012748 DOI: 10.1016/j.mam.2016.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.
Collapse
|
72
|
Roberts JL, Moreau R. Emerging role of alpha-lipoic acid in the prevention and treatment of bone loss. Nutr Rev 2016; 73:116-25. [PMID: 26024498 DOI: 10.1093/nutrit/nuu005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a chronic disease associated with decreased bone density that afflicts millions of people worldwide. Current pharmacological treatments are limited, costly, and linked to several negative side effects. These factors are driving current interest in the clinical use of naturally occurring bioactive compounds to mitigate bone loss. Alpha-lipoic acid, a potent antioxidant and essential member of mitochondrial dehydrogenases, has shown considerable promise as an antiosteoclastogenic agent due to its potent reactive oxygen species-scavenging capabilities along with a proven clinical safety record. Collectively, current data indicate that alpha-lipoic acid protects from bone loss via a 2-pronged mechanism involving inhibition of osteoclastogenic reactive oxygen species generation and upregulation of redox gene expression.
Collapse
Affiliation(s)
- Joseph L Roberts
- J.L. Roberts and R. Moreau are with the Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Régis Moreau
- J.L. Roberts and R. Moreau are with the Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
73
|
Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int J Mol Sci 2015; 16:29592-630. [PMID: 26690422 PMCID: PMC4691126 DOI: 10.3390/ijms161226183] [Citation(s) in RCA: 540] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023] Open
Abstract
Heavy metals, which have widespread environmental distribution and originate from natural and anthropogenic sources, are common environmental pollutants. In recent decades, their contamination has increased dramatically because of continuous discharge in sewage and untreated industrial effluents. Because they are non-degradable, they persist in the environment; accordingly, they have received a great deal of attention owing to their potential health and environmental risks. Although the toxic effects of metals depend on the forms and routes of exposure, interruptions of intracellular homeostasis include damage to lipids, proteins, enzymes and DNA via the production of free radicals. Following exposure to heavy metals, their metabolism and subsequent excretion from the body depends on the presence of antioxidants (glutathione, α-tocopherol, ascorbate, etc.) associated with the quenching of free radicals by suspending the activity of enzymes (catalase, peroxidase, and superoxide dismutase). Therefore, this review was written to provide a deep understanding of the mechanisms involved in eliciting their toxicity in order to highlight the necessity for development of strategies to decrease exposure to these metals, as well as to identify substances that contribute significantly to overcome their hazardous effects within the body of living organisms.
Collapse
|
74
|
Enamorado AD, Martins AC, Flores JA, Tesser MB, Caldas SS, Primel EG, Monserrat JM. Biochemical responses over time in common carp Cyprinus carpio (Teleostei, Cyprinidae) during fed supplementation with α-lipoic acid. Comp Biochem Physiol A Mol Integr Physiol 2015; 188:9-16. [DOI: 10.1016/j.cbpa.2015.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/22/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
75
|
Sacco P, Sechi A, Trevisan A, Picotti F, Gianni R, Stucchi L, Fabbian M, Bosco M, Paoletti S, Marsich E. A silver complex of hyaluronan-lipoate (SHLS12): Synthesis, characterization and biological properties. Carbohydr Polym 2015; 136:418-26. [PMID: 26572372 DOI: 10.1016/j.carbpol.2015.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
In this study we present a novel silver complex of hyaluronan-lipoate (SHLS12) in a gel-state form. NMR analysis, conductometry and elemental analysis demonstrated stable non-covalent interactions between silver ions and the polysaccharide-lipoate backbone, whereas rheological investigations confirmed its gel-like physical-chemical behavior. Biological studies showed the ability of SHLS12 to exert a straightforward activity against different bacterial strains grown in sessile/planktonic state. The biocompatibility was also proved toward two eukaryotic cell lines. By considering both its ability to preserve antibacterial properties when exposed to the serum protein BSA and its low susceptibility to be degraded by hyaluronidase enzyme, this novel complex may be considered as a promising biomaterial for future in vivo applications.
Collapse
Affiliation(s)
- Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Alessandra Sechi
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Antonia Trevisan
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Fabrizio Picotti
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Rita Gianni
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Luca Stucchi
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Matteo Fabbian
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Marco Bosco
- SIGEA Srl, AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy.
| |
Collapse
|
76
|
Bao Y, Gao C, Hao W, Ji C, Zhao L, Zhang J, Liu T, Ma Q. Effects of Dietary L-carnosine and Alpha-lipoic Acid on Growth Performance, Blood Thyroid Hormones and Lipid Profiles in Finishing Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1465-70. [PMID: 26194221 PMCID: PMC4554854 DOI: 10.5713/ajas.14.0604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/02/2014] [Accepted: 04/11/2015] [Indexed: 11/28/2022]
Abstract
The present study was conducted to determine the effects of L-carnosine (LC) and/or alpha-lipoic acid (ALA) supplementation on growth performance, blood thyroid hormones and lipid profiles in finishing pigs. A total of 40 (Landrace×Yorkshire) pigs with an initial body weight of 57.93±3.14 kg were randomly allocated to 4 experimental diets using a 2×2 factorial arrangement with 2 LC supplemental levels (0 or 0.1%) and 2 ALA supplemental levels (0 or 0.03%) in basal diets. The results showed that pigs fed LC-supplemented diets increased final live weight, average daily gain, and average daily feed intake compared to those of pigs fed without LC-supplemented diets (p<0.05). Dietary supplementation with ALA did not affect the growth performance and carcass traits of pigs (p>0.05). Additionally, LC supplementation increased serum triiodothyronine, thyroxine levels, and ALA supplementation increased serum triiodothyronine levels (p<0.05). Serum total cholesterol and triglycerides levels were significantly decreased in LC and ALA supplemented groups, respectively (p<0.05). Moreover, serum low density lipoprotein cholesterol levels were lower in the ALA-supplemented groups than those of pigs fed without ALA-supplemented diets (p<0.05). However, no significant LC×ALA interaction effect on growth performance, blood thyroid hormones and lipid profiles was found. This study suggested that dietary supplementation of LC resulted in better growth performance compared to that of ALA supplementation. L-carnosine and/or ALA supplementation positively modified blood lipid profiles, which may have the potential to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Yinghui Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chunqi Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China ; College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenbo Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tao Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
77
|
Puri BK, Hakkarainen-Smith JS, Derham A, Monro JA. Co-administration of α-lipoic acid and glutathione is associated with no significant changes in serum bilirubin, alkaline phosphatase or γ-glutamyltranspeptidase levels during the treatment of neuroborreliosis with intravenous ceftriaxone. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2015; 12:227-230. [PMID: 25968441 DOI: 10.1515/jcim-2014-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND While pharmacotherapy with intravenous ceftriaxone, a third-generation cephalosporin, is a potential treatment of Lyme neuroborreliosis, there is concern that it can cause the formation of biliary sludge, leading to hepatobiliary complications such as biliary colic, jaundice and cholelithiasis, which are reflected in changes in serum levels of bilirubin and markers of cholestatic liver injury (alkaline phosphatase and γ-glutamyltranspeptidase). It has been suggested that the naturally occurring substances α-lipoic acid and glutathione may be helpful in preventing hepatic disease. α-Lipoic acid exhibits antioxidant, anti-inflammatory and anti-apoptotic activities in the liver, while glutathione serves as a sulfhydryl buffer. The aim of this study was to determine whether co-administration of α-lipoic acid and glutathione is associated with significant changes in serum levels of bilirubin, alkaline phosphatase and γ-glutamyltranspeptidase during the treatment of Lyme neuroborreliosis with long-term intravenous ceftriaxone. METHODS Serum levels of bilirubin, alkaline phosphatase and γ-glutamyltranspeptidase were measured in 42 serologically positive Lyme neuroborreliosis patients before and after long-term treatment with intravenous ceftriaxone (2-4 g daily) with co-administration of oral/intravenous α-lipoic acid (600 mg daily) and glutathione (100 mg orally or 0.6-2.4 g intravenously daily). RESULTS None of the patients developed biliary colic and there were no significant changes in serum bilirubin, alkaline phosphatase or γ-glutamyltranspeptidase levels over the course of the intravenous ceftriaxone treatment (mean length 75.0 days). CONCLUSIONS Co-administration of α-lipoic acid and glutathione is associated with no significant changes in serum bilirubin, alkaline phosphatase or γ-glutamyltranspeptidase levels during the treatment of neuroborreliosis with intravenous ceftriaxone.
Collapse
|
78
|
Tayebati SK, Tomassoni D, Di Cesare Mannelli L, Amenta F. Effect of treatment with the antioxidant alpha-lipoic (thioctic) acid on heart and kidney microvasculature in spontaneously hypertensive rats. Clin Exp Hypertens 2015. [PMID: 26207883 DOI: 10.3109/10641963.2015.1047950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial cells represent an important vascular site of signaling and development of damage during ischemia, inflammation and other pathological conditions. Excessive reactive oxygen species production causes pathological activation of endothelium including exposure of cell to adhesion molecules. Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) are members of the immunoglobulin super-family which are present on the surface of endothelial cells. These molecules represent important markers of endothelial inflammation. The present study was designed to investigate, with immunochemical and immunohistochemical techniques, the effect of treatment with (+/-)-alpha lipoic (thioctic) acid and its enantiomers on heart and kidney endothelium in spontaneously hypertensive rats (SHR). Arterial hypertension is accompanied by an increased oxidative stress status in the heart characterized by thiobarbituric acid reactive substances (TBARS) and nucleic acid oxidation increase. The higher oxidative stress also modifies adhesion molecules expression. In the heart VCAM-1, which was higher than ICAM-1 and PECAM-1, was increased in SHR. ICAM-1, VCAM-1 and PECAM-1 expression was significantly greater in the renal endothelium of SHR. (+/-)-Alpha lipoic acid and (+)-alpha lipoic acid treatment significantly decreased TBARS levels, the nucleic acid oxidation and prevented adhesion molecules expression in cardiac and renal vascular endothelium. These data suggest that endothelial molecules may be used for studying the mechanisms of vascular injury on target organs of hypertension. The effects observed after treatment with (+)-alpha lipoic acid could open new perspectives for countering heart and kidney microvascular injury which represent a common feature in hypertensive end-organs damage.
Collapse
Affiliation(s)
| | - Daniele Tomassoni
- b School of Bioscience and Veterinary Medicine, University of Camerino , Camerino , Italy, and
| | | | | |
Collapse
|
79
|
Zehnpfennig B, Wiriyasermkul P, Carlson DA, Quick M. Interaction of α-Lipoic Acid with the Human Na+/Multivitamin Transporter (hSMVT). J Biol Chem 2015; 290:16372-82. [PMID: 25971966 DOI: 10.1074/jbc.m114.622555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 11/06/2022] Open
Abstract
The human Na(+)/multivitamin transporter (hSMVT) has been suggested to transport α-lipoic acid (LA), a potent antioxidant and anti-inflammatory agent used in therapeutic applications, e.g. in the treatment of diabetic neuropathy and Alzheimer disease. However, the molecular basis of the cellular delivery of LA and in particular the stereospecificity of the transport process are not well understood. Here, we expressed recombinant hSMVT in Pichia pastoris and used affinity chromatography to purify the detergent-solubilized protein followed by reconstitution of hSMVT in lipid bilayers. Using a combined approach encompassing radiolabeled LA transport and equilibrium binding studies in conjunction with the stabilized R-(+)- and S-(-)-enantiomers and the R,S-(+/-) racemic mixture of LA or lipoamide, we identified the biologically active form of LA, R-LA, to be the physiological substrate of hSMVT. Interaction of R-LA with hSMVT is strictly dependent on Na(+). Under equilibrium conditions, hSMVT can simultaneously bind ~2 molecules of R-LA in a biphasic binding isotherm with dissociation constants (Kd) of 0.9 and 7.4 μm. Transport of R-LA in the oocyte and reconstituted system is exclusively dependent on Na(+) and exhibits an affinity of ~3 μm. Measuring transport with known amounts of protein in proteoliposomes containing hSMVT in outside-out orientation yielded a catalytic turnover number (kcat) of about 1 s(-1), a value that is well in agreement with other Na(+)-coupled transporters. Our data suggest that hSMVT-mediated transport is highly specific for R-LA at our tested concentration range, a finding with wide ramifications for the use of LA in therapeutic applications.
Collapse
Affiliation(s)
| | - Pattama Wiriyasermkul
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | - Matthias Quick
- From the Center for Molecular Recognition and Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
80
|
Effect of γ-Cyclodextrin Inclusion Complex on the Absorption of R-α-Lipoic Acid in Rats. Int J Mol Sci 2015; 16:10105-20. [PMID: 25946345 PMCID: PMC4463635 DOI: 10.3390/ijms160510105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/27/2015] [Accepted: 04/27/2015] [Indexed: 01/22/2023] Open
Abstract
R-α-lipoic acid (RLA) is an endogenous organic acid, and works as a cofactor for mitochondrial enzymes and as a kind of antioxidant. Inclusion complexes of RLA with α-, β- or γ-cyclodextrins (CD) were prepared and orally administered as a suspension to rats. Among them, RLA/γ-CD showed the highest plasma exposure, and its area under the plasma concentration-time curve (AUC) of RLA was 2.2 times higher than that after oral administration of non-inclusion RLA. On the other hand, the AUC after oral administration of non-inclusion RLA and RLA/γ-CD to pylorus-ligated rats did not differ. However, the AUC after intraduodenal administration of RLA/γ-CD was 5.1 times higher than that of non-inclusion RLA, and was almost comparable to the AUC after intraduodenal administration of RLA-Na solution. Furthermore, the AUC after intraduodenal administration of RLA/γ-CD was not affected by biliary ligation or co-administration of an amylase inhibitor. These findings demonstrated that RLA was absorbed from the small intestine effectively when orally administered as a γ-CD inclusion complex, which could be easily dissolved in the lumen of the intestine. In conclusion, γ-CD inclusion complex is an appropriate formulation for supplying RLA as a drug or nutritional supplement with respect to absorption.
Collapse
|
81
|
Pashaj A, Xia M, Moreau R. α-Lipoic acid as a triglyceride-lowering nutraceutical. Can J Physiol Pharmacol 2015; 93:1029-41. [PMID: 26235242 DOI: 10.1139/cjpp-2014-0480] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Considering the current obesity epidemic in the United States (>100 million adults are overweight or obese), the prevalence of hypertriglyceridemia is likely to grow beyond present statistics of ∼30% of the population. Conventional therapies for managing hypertriglyceridemia include lifestyle modifications such as diet and exercise, pharmacological approaches, and nutritional supplements. It is critically important to identify new strategies that would be safe and effective in lowering hypertriglyceridemia. α-Lipoic acid (LA) is a naturally occurring enzyme cofactor found in the human body in small quantities. A growing body of evidence indicates a role of LA in ameliorating metabolic dysfunction and lipid anomalies primarily in animals. Limited human studies suggest LA is most efficacious in situations where blood triglycerides are markedly elevated. LA is commercially available as dietary supplements and is clinically shown to be safe and effective against diabetic polyneuropathies. LA is described as a potent biological antioxidant, a detoxification agent, and a diabetes medicine. Given its strong safety record, LA may be a useful nutraceutical, either alone or in combination with other lipid-lowering strategies, when treating severe hypertriglyceridemia and diabetic dyslipidemia. This review examines the current evidence regarding the use of LA as a means of normalizing blood triglycerides. Also presented are the leading mechanisms of action of LA on triglyceride metabolism.
Collapse
Affiliation(s)
- Anjeza Pashaj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mengna Xia
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
82
|
Tanaka Y, Kaibori M, Miki H, Nakatake R, Tokuhara K, Nishizawa M, Okumura T, Kwon AH. Alpha-lipoic acid exerts a liver-protective effect in acute liver injury rats. J Surg Res 2015; 193:675-83. [DOI: 10.1016/j.jss.2014.08.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/19/2014] [Accepted: 08/28/2014] [Indexed: 01/23/2023]
|
83
|
Theoretical investigation to characterize the inclusion complex of α-lipoic acid and β-cyclodextrin. CR CHIM 2015. [DOI: 10.1016/j.crci.2014.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
84
|
Zhang X, Malhotra S, Molina M, Haag R. Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 2015; 44:1948-73. [DOI: 10.1039/c4cs00341a] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We emphasize the synthetic strategies to produce micro-/nanogels and the importance of degradable linkers incorporated in the gel network.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Shashwat Malhotra
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Maria Molina
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| |
Collapse
|
85
|
Quick M, Shi L. The sodium/multivitamin transporter: a multipotent system with therapeutic implications. VITAMINS AND HORMONES 2015; 98:63-100. [PMID: 25817866 PMCID: PMC5530880 DOI: 10.1016/bs.vh.2014.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The Na(+)/multivitamin transporter (SMVT) is a member of the solute:sodium symporter family that catalyzes the Na(+)-dependent uptake of the structurally diverse water-soluble vitamins pantothenic acid (vitamin B5) and biotin (vitamin H), α-lipoic acid-a vitamin-like substance with strong antioxidant properties-and iodide. The organic substrates of SMVT play central roles in the cellular metabolism and are, therefore, essential for normal human health and development. For example, biotin deficiency leads to growth retardation, dermatological disorders, and neurological disorders. Animal studies have shown that biotin deficiency during pregnancy is directly correlated to embryonic growth retardation, congenital malformation, and death of the embryo. This chapter focuses on the structural and functional features of the human isoform of SMVT (hSMVT); the discovery of which was greatly facilitated by the cloning and expression of hSMVT in tractable expression systems. Special emphasis will be given to mechanistic implications of the transport process of hSMVT that will inform our understanding of the molecular determinants of hSMVT-mediated transport in dynamic context to alleviate the development and optimization of hSMVT as a multipotent platform for drug delivery.
Collapse
Affiliation(s)
- Matthias Quick
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, USA.
| | - Lei Shi
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, USA
| |
Collapse
|
86
|
Fernández-Galilea M, Pérez-Matute P, Prieto-Hontoria PL, Houssier M, Burrell MA, Langin D, Martínez JA, Moreno-Aliaga MJ. α-Lipoic acid treatment increases mitochondrial biogenesis and promotes beige adipose features in subcutaneous adipocytes from overweight/obese subjects. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:273-81. [PMID: 25542506 DOI: 10.1016/j.bbalip.2014.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 01/20/2023]
Abstract
α-Lipoic acid (α-Lip) is a natural occurring antioxidant with beneficial anti-obesity properties. The aim of this study was to investigate the putative effects of α-Lip on mitochondrial biogenesis and the acquirement of brown-like characteristics by subcutaneous adipocytes from overweight/obese subjects. Thus, fully differentiated human subcutaneous adipocytes were treated with α-Lip (100 and 250μM) for 24h for studies on mitochondrial content and morphology, mitochondrial DNA (mtDNA) copy number, fatty acid oxidation enzymes and brown/beige characteristic genes. The involvement of the Sirtuin1/Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (SIRT1/PGC-1α) pathway was also evaluated. Our results showed that α-Lip increased mitochondrial content in cultured human adipocytes as revealed by electron microscopy and by mitotracker green labeling. Moreover, an enhancement in mtDNA content was observed. This increase was accompanied by an up-regulation of SIRT1 protein levels, a decrease in PGC-1α acetylation and up-regulation of Nuclear respiratory factor 1 (Nrf1) and Mitochondrial transcription factor (Tfam) transcription factors. Enhanced oxygen consumption and fatty acid oxidation enzymes, Carnitine palmitoyl transferase 1 and Acyl-coenzyme A oxidase (CPT-1 and ACOX) were also observed. Mitochondria from α-Lip-treated adipocytes exhibited some morphological characteristics of brown mitochondria, and α-Lip also induced up-regulation of some brown/beige adipocytes markers such as cell death-inducing DFFA-like effector a (Cidea) and T-box 1 (Tbx1). Moreover, α-Lip up-regulated PR domain containing 16 (Prdm16) mRNA levels in treated adipocytes. Therefore, our study suggests the ability of α-Lip to promote mitochondrial biogenesis and brown-like remodeling in cultured white subcutaneous adipocytes from overweight/obese donors.
Collapse
Affiliation(s)
- Marta Fernández-Galilea
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - Patricia Pérez-Matute
- HIV and Associated Metabolic Alterations Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Pedro L Prieto-Hontoria
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Faculty of Health and Physical Activity Science, University SEK, Santiago, Chile
| | - Marianne Houssier
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - María A Burrell
- Department of Histology and Pathology, University of Navarra, Pamplona, Spain
| | - Dominique Langin
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
87
|
Study of the therapeutic effects of Lactobacillus and α-lipoic acid against dimethylnitrosamine-induced liver fibrosis in rats. J Genet Eng Biotechnol 2014. [DOI: 10.1016/j.jgeb.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
88
|
Jiang S, Zhu W, Wu J, Li C, Zhang X, Li Y, Cao K, Liu L. α-Lipoic acid protected cardiomyoblasts from the injury induced by sodium nitroprusside through ROS-mediated Akt/Gsk-3β activation. Toxicol In Vitro 2014; 28:1461-73. [PMID: 25193743 DOI: 10.1016/j.tiv.2014.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/05/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
It has been long noted that cardiac cell apoptosis provoked by excessive production of nitric oxide (NO) plays important roles in the pathogenesis of variant cardiac diseases. Attenuation of NO-induced injury would be an alternative therapeutic approach for the development of cardiac disorders. This study investigated the effects of α-lipoic acid (LA) on the injury induced by sodium nitroprusside (SNP), a widely used NO donor, in rat cardiomyoblast H9c2 cells. SNP challenge significantly decreased cell viability and increased apoptosis, as evidenced by morphological abnormalities, nuclear condensation and decline of mitochondrial potential (ΔΨm). These changes induced by SNP were significantly attenuated by LA pretreatment. Furthermore, LA pretreatment prevented the SNP-triggered suppression of Akt and Gsk-3β activation. Blockade of Akt activation with triciribin (API) completely abolished the cytoprotection of LA against SNP challenge. In addition, LA moderately increased intracellular ROS production. Interestingly, inhibition of ROS with N-acetylcysteine abrogated Akt/Gsk-3β activation and the LA-induced cytoprotection following SNP stimulation. Taken together, the results indicate that LA protected the SNP-induced injury in cardiac H9c2 cells through, at least in part, the activation of Akt/Gsk-3β signaling in a ROS-dependent mechanism.
Collapse
Affiliation(s)
- Surong Jiang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Weina Zhu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jun Wu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, United States
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 210029, China
| | - Kejiang Cao
- Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
89
|
Sharma B, Singh S, Siddiqi NJ. Biomedical implications of heavy metals induced imbalances in redox systems. BIOMED RESEARCH INTERNATIONAL 2014; 2014:640754. [PMID: 25184144 PMCID: PMC4145541 DOI: 10.1155/2014/640754] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/28/2014] [Accepted: 07/10/2014] [Indexed: 02/03/2023]
Abstract
Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals.
Collapse
Affiliation(s)
- Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Shweta Singh
- Department of Genetics, SGPGIMS, Lucknow 226014, India
| | - Nikhat J. Siddiqi
- Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
90
|
Hamano Y. Effects of α-lipoic acid supplementation on sexual difference of growth performance, heat exposure-induced metabolic response and lipid peroxidation of raw meat in broiler chickens. Br Poult Sci 2014; 55:343-50. [DOI: 10.1080/00071668.2014.903559] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
91
|
Kütter MT, Romano LA, Ventura-Lima J, Tesser MB, Monserrat JM. Antioxidant and toxicological effects elicited by alpha-lipoic acid in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162:70-6. [PMID: 24704542 DOI: 10.1016/j.cbpc.2014.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/27/2022]
Abstract
Lipoic acid (LA) is a disulfide-containing compound derived from octanoic acid that is synthesized in mitochondria. This molecule acts as a co-factor for mitochondrial enzymes that catalyze oxidative decarboxylation reactions. Several antioxidant properties of LA enable it to be considered as an "ideal antioxidant", having diverse benefits that allow it to deal with environmental or biological stress. Some of the effects induced by LA in aquatic organisms render it suitable for use in aquaculture. However, it is necessary to determine the appropriate dose(s) to be used with different species and even organs to maximize the beneficial antioxidant and detoxifying effects and to minimize the pro-oxidant toxic effects. This review analyzes and compiles existing data from aquatic organisms in which both benefits and drawbacks of LA have been described.
Collapse
Affiliation(s)
- M T Kütter
- Programa de Pós-Graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil
| | - L A Romano
- Programa de Pós-Graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil; Instituto de Oceanografia (IO), Laboratório de Patologia e Imunologia de Organismos Aquáticos, FURG, Brasil
| | - J Ventura-Lima
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil; Instituto de Ciências Biológicas (ICB), FURG, Brasil
| | - M B Tesser
- Programa de Pós-Graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil; Instituto de Oceanografia (IO), Laboratório de Nutrição de Organismos Aquáticos, FURG, Brazil
| | - J M Monserrat
- Programa de Pós-Graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil; Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil; Instituto de Ciências Biológicas (ICB), FURG, Brasil.
| |
Collapse
|
92
|
Nikolai S, Huebbe P, Metges CC, Schloesser A, Dose J, Ikuta N, Terao K, Matsugo S, Rimbach G. R-α lipoic acid γ-cyclodextrin complex increases energy expenditure: a 4-month feeding study in mice. Nutrition 2014; 30:228-33. [PMID: 24377457 DOI: 10.1016/j.nut.2013.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE A high-fat diet (HFD) affects energy expenditure in laboratory rodents. R-α lipoic acid cyclodextrin (RALA-CD) complex is a stable form of lipoic acid (LA) and may improve energy expenditure. The aim of this study was to determine the effect of RALA-CD on energy expenditure and underlying molecular targets in female laboratory mice. METHODS Female C57BL/6J mice were fed a HFD containing 0.1% LA for about 16 wk. The effects on energy expenditure, gene and protein expression were assessed using indirect calorimetry, real-time reverse transcriptase polymerase chain reaction, and Western blot, respectively. RESULTS Supplementing mice with RALA-CD resulted in a significant increase in energy expenditure. However, both RALA per se (without γ-cyclodextrin) and S-α lipoic acid cyclodextrin did not significantly alter energy expenditure. Furthermore RALA-CD changed expression of genes encoding proteins centrally involved in energy metabolism. Transcriptional key regulators sirtuin 3 and peroxisome proliferator-activated receptor-γ, coactivator 1 alpha, as well as thyroid related enzyme type 2 iodothyronine deiodinase were up-regulated in brown adipose tissue (BAT) of RALA-CD-fed mice. Importantly, mRNA and/or protein expression of downstream effectors uncoupling protein (Ucp) 1 and 3 also were elevated in BAT from RALA-CD-supplemented mice. CONCLUSION Overall, present data suggest that RALA-CD is a regulator of energy expenditure in laboratory mice.
Collapse
Affiliation(s)
- Sibylle Nikolai
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Germany
| | - Cornelia C Metges
- Leibniz Institute for Farm Animal Biology, Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Germany
| | - Janina Dose
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Germany
| | - Naoko Ikuta
- Graduate School of Medicine, Kobe University, Kobe, Japan; School of Natural Systems, College of Science and Engineering, Kanazawa University, Japan
| | | | - Seiichi Matsugo
- School of Natural Systems, College of Science and Engineering, Kanazawa University, Japan
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Germany.
| |
Collapse
|
93
|
Zhao L, Raval V, Briggs NEB, Bhardwaj RM, McGlone T, Oswald IDH, Florence AJ. From discovery to scale-up: α-lipoic acid : nicotinamide co-crystals in a continuous oscillatory baffled crystalliser. CrystEngComm 2014. [DOI: 10.1039/c4ce00154k] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discovery, characterisation and scale-up of novel α-lipoic acid co-crystals using continuous crystallisation in a COBC is demonstrated.
Collapse
Affiliation(s)
- Lihua Zhao
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation c/o Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow, UK
| | - Vishal Raval
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation c/o Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow, UK
| | - Naomi E. B. Briggs
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation c/o Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow, UK
| | - Rajni M. Bhardwaj
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- , UK
| | - Thomas McGlone
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation c/o Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow, UK
| | - Iain D. H. Oswald
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- , UK
| | - Alastair J. Florence
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation c/o Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow, UK
| |
Collapse
|
94
|
Neuroprotective activity of thioctic acid in central nervous system lesions consequent to peripheral nerve injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:985093. [PMID: 24527432 PMCID: PMC3914604 DOI: 10.1155/2013/985093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 11/21/2022]
Abstract
Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (−)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/−)-, (+)-, or (−)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/−)- or (−)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies.
Collapse
|
95
|
α-Lipoic acid prevents p53 degradation in colon cancer cells by blocking NF-κB induction of RPS6KA4. Anticancer Drugs 2013; 24:555-65. [PMID: 23599020 DOI: 10.1097/cad.0b013e32836181eb] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α-Lipoic acid (α-LA) is a biogenic antioxidant that has been used successfully in the treatment of diabetic polyneuropathy and its application to many oxidative stress-associated chronic diseases has increased. In this study, we investigated the effect of α-LA on colorectal cancer cell growth and its underlying mechanism. α-LA treatment resulted in a marked reduction in the growth of HCT116 colon cancer cells in a dose-dependent manner through the G1 arrest of the cell cycle and apoptosis induction. α-LA treatment significantly increased tumor cell response to various apoptotic stresses, such as etoposide, 5-fluorouracil, UVC, γ-irradiation, hypoxia, and tumor necrosis factor α (TNFα). Interestingly, α-LA increased p53 protein stability and its apoptosis-enhancing effect was more evident in wild-type p53-carrying cells compared with p53-deficient cells, suggesting that the proapoptotic role of α-LA is associated with its p53-stabilizing function. On the basis of our microarray data showing α-LA downregulation of the ribosomal protein p90S6K (RPS6KA4), which has been reported to inhibit p53 function, we tested whether α-LA regulation of RPS6KA4 is associated with its proapoptotic function. α-LA treatment led to a marked reduction in the RPS6KA4 mRNA level in multiple colorectal cancer cells and restoration of RPS6KA4 expression markedly attenuated α-LA induction of apoptosis in a p53-dependent manner. In addition, we observed that RPS6KA4 expression is activated by TNFα whereas both basal and TNFα induction of RPS6KA4 are inhibited by the nuclear factor-κB (NF-κB) inhibitor BAY11-7082 or transfection of a dominant-negative mutant of NF-κB, indicating that NF-κB plays a crucial role in RPS6KA4 gene expression. Finally, we found that α-LA exerts an inhibitory effect on the nuclear translocation of NF-κB triggered by TNFα. Collectively, our study shows that α-LA suppresses colorectal tumor cell growth at least partially by preventing RPS6KA4-mediated p53 inhibition through blockade of NF-κB signaling.
Collapse
|
96
|
Ibrahim S, Gao D, Sinko PJ. Selective cytotoxicity and combined effects of camptothecin or paclitaxel with sodium-R-alpha lipoate on A549 human non-small cell lung cancer cells. Nutr Cancer 2013; 66:492-9. [PMID: 24063429 DOI: 10.1080/01635581.2013.749290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer and remains the deadliest form of cancer in the United States and worldwide. New therapies are highly sought after to improve outcome. The effect of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity was evaluated on A549 NSCLC and BEAS-2B "normal" lung epithelial cells. Combination indices (CI) and dose reduction indices (DRI) were investigated by studying the cytotoxicity of sodium-R-alpha lipoate (0-16 mM), camptothecin (0-25 nM) and paclitaxel (0-0.06 nM) alone and in combination. 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium-bromide (MTT) was used to assess cytotoxicity. The combinational cytotoxic effects of sodium-R-alpha lipoate with camptothecin or paclitaxel were analyzed using a simulation of dose effects (CompuSyn® 3.01). The effects of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity varied based on concentrations and treatment times. It was found that sodium-R-alpha lipoate wasn't cytotoxic toward BEAS-2B cells at any of the concentrations tested. For A549 cells, CIs [(additive (CI = 1); synergistic (CI < 1); antagonistic (CI < 1)] were lower and DRIs were higher for the camptothecin/sodium-R-alpha-lipoate combination (CI = ∼0.17-1.5; DRI = ∼2.2-22.6) than the paclitaxel/sodium-R-alpha-lipoate combination (CI = ∼0.8-9.9; DRI = ∼0.10-5.8) suggesting that the camptothecin regimen was synergistic and that the addition of sodium-R-alpha lipoate was important for reducing the camptothecin dose and potential for adverse effects.
Collapse
Affiliation(s)
- Sherif Ibrahim
- a Department of Pharmaceutics , Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , New Brunswick , New Jersey , USA
| | | | | |
Collapse
|
97
|
Dudek M, Bilska-Wilkosz A, Knutelska J, Mogilski S, Bednarski M, Zygmunt M, Iciek M, Sapa J, Bugajski D, Filipek B, Włodek L. Are anti-inflammatory properties of lipoic acid associated with the formation of hydrogen sulfide? Pharmacol Rep 2013; 65:1018-24. [DOI: 10.1016/s1734-1140(13)71084-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/05/2013] [Indexed: 01/02/2023]
|
98
|
Tian YF, He CT, Chen YT, Hsieh PS. Lipoic acid suppresses portal endotoxemia-induced steatohepatitis and pancreatic inflammation in rats. World J Gastroenterol 2013; 19:2761-2771. [PMID: 23687413 PMCID: PMC3653150 DOI: 10.3748/wjg.v19.i18.2761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/14/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effect of α-lipoic acid (LA) on mild portal endotoxemia-induced steatohepatitis and associated pancreatic abnormalities in fructose-fed rats.
METHODS: Rats were randomly assigned into two groups with a regular or 60% fructose-enriched diet for 8 wk. After fructose feeding for 4 wk, rats were further divided into four subgroups: with intraportal saline (FPV), with intraportal saline plus administration of LA (FPV + LA), with lipopolysaccharide (LPS) infusion (FPLPS), and with LPS infusion plus administration of LA (FPLPS + LA). Rats were treated with LPS using intraportal infusion while LA was administered orally. Metabolite levels, superoxide levels, inflammatory markers, malondialdehyde content, glutathione content and toll-like receptor 4 (TLR4) gene expression were all measured using standard biochemical techniques. Pancreatic insulin secretion was evaluated by a hyperglycemic clamp technique. Histology of liver and pancreas tissues were evaluated using hematoxylin and eosin staining and immunohistochemistry.
RESULTS: Fructose-induced elevation in plasma C-reactive protein, amylase, superoxide, white blood cell count as well as in hepatic and pancreatic contents of malondialdehyde, tumor necrosis factor alpha and interleukin-6 were increased in animals treated with LPS and reversed with LA administration. The augmented hepatic gene expression of TLR4 in fructose-fed rats was further increased in those with intraportal LPS infusion, which was partially reversed by LA administration. Pathological examination showed inflammatory changes and leukocyte infiltration in hepatic and pancreatic islets of animals treated with LPS but were rarely observed in those with LA treatment. In addition to affects on the liver, impaired pancreatic insulin secretion seen in fructose-fed rats was deteriorated in with LPS treatment and partially reversed with LA administration.
CONCLUSION: These data suggest LA could significantly suppress mild portal-endotoxemia but not fructose-induced liver and pancreatic abnormalities in a rodent model for metabolic syndrome.
Collapse
|
99
|
Li DW, Li GR, Lu Y, Liu ZQ, Chang M, Yao M, Cheng W, Hu LS. α-lipoic acid protects dopaminergic neurons against MPP+-induced apoptosis by attenuating reactive oxygen species formation. Int J Mol Med 2013; 32:108-14. [PMID: 23615851 DOI: 10.3892/ijmm.2013.1361] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/21/2013] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) elicited by oxidative stress are widely recognized as a major initiator in the dege-neration of dopaminergic neurons distinctive of Parkinson's disease (PD). The interaction of ROS with mitochondria triggers sequential events in the mitochondrial cell death pathway, which is thought to be responsible for ROS-mediated neurodegeneration in PD. α-lipoic acid (LA) is a pleiotropic compound with potential pharmacotherapeutic value against a range of pathophysiological insults. Its protective actions against oxidative damage by scavenging ROS and reducing production of free radicals have been reported in various in vitro and in vivo systems. This study analyzed the ability of LA to protect PC12 neuronal cells from toxicity of 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) which is known to kill dopaminergic neurons selectively and to cause severe parkinsonism-like symptoms in humans and primate animals. Our results demonstrate that the apoptosis of PC12 cells elicited by MPP+ could be significantly prevented by pretreatment with LA for 1 h. In addition, LA inhibits intercellular ROS levels and the mitochondrial transmembrane permeability, the key players in the pathogenesis of PD, thereby protecting dopaminergic neuronal cells against oxidative damage.
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
100
|
AL-Rasheed NM, Al-Rasheed NM, Attia HA, Hasan IH, Al-Amin M, Al-Ajmi H, Mohamad RA. Adverse cardiac responses to alpha-lipoic acid in a rat-diabetic model: possible mechanisms? J Physiol Biochem 2013; 69:761-78. [DOI: 10.1007/s13105-013-0252-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
|