51
|
Liu WQ, Yang J, Hong M, Gao CE, Dong J. A potential peptide vector that allows targeted delivery of a desired fusion protein into the human breast cancer cell line MDA-MB-231. Oncol Lett 2016; 11:3943-3952. [PMID: 27313722 PMCID: PMC4888075 DOI: 10.3892/ol.2016.4538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/08/2016] [Indexed: 11/29/2022] Open
Abstract
Effective control of breast cancer has been primarily hampered by a lack of tumor specificity in treatments. One potential way to improve targeting specificity is to develop novel vectors that specifically bind to and are internalized by tumor cells. Through a phage display library, an 11-L-amino acid peptide, PI (sequence, CASPSGALRSC), was selected. PI was labeled with fluorescein isothiocyanate (FITC) and named PI-FITC. Subsequently, the specific affinity of PI-FITC to MDA-MB-231 human breast cancer cells and other cancer cell lines was observed by confocal microscopy. Our previous study established that PI-FITC also shows affinity to Calu-1 human lung carcinoma cells and major histocompatibility complex class I antigen molecules; therefore, the cytomembrane proteins of the cell lines were analyzed to determine those that were common to the two cell lines and may be associated with transmembrane transduction. To further test the delivery ability of PI to MDA-MB-231 cells, PI-glutathione-S-transferase (GST) was constructed and the internalization of this fusion protein was visualized by immunofluorescence microscopy. The results revealed that PI exhibited specific affinity to MDA-MB-231 cells. Use of membrane transport inhibitors indicated that macropinocytosis and caveolin-mediated endocytosis may be involved in the endocytosis of PI. In addition, 11 membrane proteins common to MDA-MB-231 and Calu-1 may be associated with transmembrane transduction. In summary, PI was able to deliver PI-GST into MDA-MB-231 cells. Thus, PI could be modified to be a potential vector, and may contribute to the development of targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Wei Qing Liu
- Department of Internal Medicine Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jun Yang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Min Hong
- Department of Internal Medicine Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chang E Gao
- Department of Internal Medicine Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jian Dong
- Department of Internal Medicine Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China; Department of Internal Medicine Oncology, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650106, P.R. China
| |
Collapse
|
52
|
Erazo-Oliveras A, Najjar K, Truong D, Wang TY, Brock DJ, Prater AR, Pellois JP. The Late Endosome and Its Lipid BMP Act as Gateways for Efficient Cytosolic Access of the Delivery Agent dfTAT and Its Macromolecular Cargos. Cell Chem Biol 2016; 23:598-607. [PMID: 27161484 DOI: 10.1016/j.chembiol.2016.03.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 01/02/2023]
Abstract
Endosomal entrapment is a severely limiting bottleneck in the delivery of biologics into cells. The compound dfTAT was recently found to circumvent this problem by mediating endosomal leakage efficiently and without toxicity. Herein, we report on the mechanism of endosomal escape of this cell-penetrating peptide. By modulating the trafficking of the peptide within the endocytic pathway, we identify late endosomes as the organelles rendered leaky by dfTAT. We establish that dfTAT binds bis(monoacylglycero)phosphate (BMP), a lipid found in late endosomes, and that the peptide causes the fusion and leakage of bilayers containing BMP. Together, these data identify late endosomes as desirable gateways for cell penetration and BMP as a cellular factor that can be exploited for the development of future delivery agents.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Kristina Najjar
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Dat Truong
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Ting-Yi Wang
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Dakota J Brock
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Austin R Prater
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA.
| |
Collapse
|
53
|
|
54
|
Choi M, Lee SH, Kim WB, Gujrati V, Kim D, Lee J, Kim JI, Kim H, Saw PE, Jon S. Intracellular Delivery of Bioactive Cargos to Hard-to-Transfect Cells Using Carbon Nanosyringe Arrays under an Applied Centrifugal g-Force. Adv Healthc Mater 2016; 5:101-7. [PMID: 25846396 DOI: 10.1002/adhm.201400834] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/10/2015] [Indexed: 11/09/2022]
Abstract
There is considerable interest in developing a common, universal platform for delivering biomacromolecules such as proteins and RNAs into diverse cells with high efficiency. Here, it is shown that carbon nanosyringe arrays (CNSAs) under an applied centrifugal g-force (cf-CNSAs) can deliver diverse bioactive cargos directly into the cytosol of hard-to-transfect cells with relatively high efficiency and reproducibility. The cf-CNSA platform, an optimized version of a previous CNSA-mediated intracellular delivery platform that adds a g-force feature, exhibits more rapid and superior delivery of cargos to various hard-to-transfect cells than is the case in the absence of g-force. Active species, including small interfering RNAs, plasmids, and proteins are successfully transported across plasma membrane barriers into various cells. By overcoming the limitations of currently available transfection methods, the cf-CNSA platform paves the way to universal delivery of a variety of cargos, facilitating the analysis of cellular responses in diverse cell types.
Collapse
Affiliation(s)
- Minsuk Choi
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Daejeon 305-701 South Korea
| | - Sang Ho Lee
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 500-712 South Korea
| | - Won Bae Kim
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 500-712 South Korea
| | - Vipul Gujrati
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Daejeon 305-701 South Korea
| | - Daejin Kim
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Daejeon 305-701 South Korea
| | - Jinju Lee
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 500-712 South Korea
| | - Jae-Il Kim
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 500-712 South Korea
| | - Hyungjun Kim
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Daejeon 305-701 South Korea
| | - Phei Er Saw
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Daejeon 305-701 South Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Daejeon 305-701 South Korea
| |
Collapse
|
55
|
Logrip ML, Barak S, Warnault V, Ron D. Corticostriatal BDNF and alcohol addiction. Brain Res 2015; 1628:60-7. [PMID: 25801118 PMCID: PMC4577309 DOI: 10.1016/j.brainres.2015.03.025] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/03/2015] [Accepted: 03/12/2015] [Indexed: 12/23/2022]
Abstract
Growth factors, long studied for their involvement in neuronal development and plasticity, also regulate responses to drugs of abuse, including alcohol. This review details the intricate interaction between the Brain-Derived Neurotrophic Factor (BDNF) and alcohol, and provides evidence to suggest that corticostriatal BDNF signaling acts to keep alcohol drinking in moderation. Specifically, we describe studies in rodent models suggesting that moderate consumption of alcohol increases BDNF levels in the dorsal striatum, which in turn act to suppress alcohol intake by activating a Mitogen-Activated Protein Kinase (MAPK)-dependent genomic mechanism. We further provide data to suggest that alcohol intake levels escalate when the endogenous corticostriatal BDNF pathway becomes dysregulated. Finally, we summarize recent studies suggesting that specific microRNAs targeting BDNF mRNA in the medial prefrontal cortex (mPFC) regulate the breakdown of the protective corticostriatal BDNF pathway.
Collapse
Affiliation(s)
- Marian L Logrip
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Segev Barak
- School of Psychological Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Vincent Warnault
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
56
|
Onoshima D, Yukawa H, Baba Y. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 2015; 95:2-14. [PMID: 26344675 DOI: 10.1016/j.addr.2015.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/31/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022]
Abstract
A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine.
Collapse
|
57
|
Matusica D, Alfonsi F, Turner BJ, Butler TJ, Shepheard SR, Rogers ML, Skeldal S, Underwood CK, Mangelsdorf M, Coulson EJ. Inhibition of motor neuron death in vitro and in vivo by a p75 neurotrophin receptor intracellular domain fragment. J Cell Sci 2015; 129:517-30. [PMID: 26503157 DOI: 10.1242/jcs.173864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022] Open
Abstract
The p75 neurotrophin receptor (p75(NTR); also known as NGFR) can mediate neuronal apoptosis in disease or following trauma, and facilitate survival through interactions with Trk receptors. Here we tested the ability of a p75(NTR)-derived trophic cell-permeable peptide, c29, to inhibit p75(NTR)-mediated motor neuron death. Acute c29 application to axotomized motor neuron axons decreased cell death, and systemic c29 treatment of SOD1(G93A) mice, a common model of amyotrophic lateral sclerosis, resulted in increased spinal motor neuron survival mid-disease as well as delayed disease onset. Coincident with this, c29 treatment of these mice reduced the production of p75(NTR) cleavage products. Although c29 treatment inhibited mature- and pro-nerve-growth-factor-induced death of cultured motor neurons, and these ligands induced the cleavage of p75(NTR) in motor-neuron-like NSC-34 cells, there was no direct effect of c29 on p75(NTR) cleavage. Rather, c29 promoted motor neuron survival in vitro by enhancing the activation of TrkB-dependent signaling pathways, provided that low levels of brain-derived neurotrophic factor (BDNF) were present, an effect that was replicated in vivo in SOD1(G93A) mice. We conclude that the c29 peptide facilitates BDNF-dependent survival of motor neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Dusan Matusica
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia Department of Anatomy & Histology, Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Fabienne Alfonsi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Victoria 3051, Australia
| | - Tim J Butler
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephanie R Shepheard
- Department of Human Physiology, Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Mary-Louise Rogers
- Department of Human Physiology, Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Sune Skeldal
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Clare K Underwood
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marie Mangelsdorf
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
58
|
Lu P, Bruno BJ, Rabenau M, Lim CS. Delivery of drugs and macromolecules to the mitochondria for cancer therapy. J Control Release 2015; 240:38-51. [PMID: 26482081 DOI: 10.1016/j.jconrel.2015.10.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022]
Abstract
Mitochondria are organelles that have pivotal functions in producing the energy necessary for life and executing the cell death pathway. Targeting drugs and macromolecules to the mitochondria may provide an effective means of inducing cell death for cancer therapy, and has been actively pursued in the last decade. This review will provide a brief overview of mitochondrial structure and function, how it relates to cancer, and importantly, will discuss different strategies of mitochondrial delivery including delivery using small molecules, peptides, genes encoding proteins and MTSs, and targeting polymers/nanoparticles with payloads to the mitochondria. The advantages and disadvantages for each strategy will be discussed. Specific examples using the latest strategies for mitochondrial targeting will be evaluated, as well as potential opportunities for specific mitochondrial compartment localization, which may lead to improvements in mitochondrial therapeutics. Future perspectives in mitochondrial targeting of drugs and macromolecules will be discussed. Currently this is an under-explored area that is prime for new discoveries in cancer therapeutics.
Collapse
Affiliation(s)
- Phong Lu
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin J Bruno
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA
| | - Malena Rabenau
- Department of Pharmaceutics and Biopharmacy, Phillips-Universität, 35037 Marburg, Germany
| | - Carol S Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 30 S. 2000 E., University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
59
|
Lee JH, Park EJ, Woo YS, Koh JH, Kim YH. Effects of protein transduction domain combination for intracellular recombinant protein delivery. J Control Release 2015; 213:e59-60. [PMID: 27005197 DOI: 10.1016/j.jconrel.2015.05.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jong Hwan Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Eun Jeong Park
- DDS Research lab, CKD Research Institute, Chong Kun Dang Pharmaceutical Corporation, 446-916 Yongin-si, Gyeounggi-do, Republic of Korea
| | - Young Sun Woo
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Jae Ho Koh
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea.
| |
Collapse
|
60
|
Nguyen JM, Qualmann KJ, Okashah R, Reilly A, Alexeyev MF, Campbell DJ. 5p deletions: Current knowledge and future directions. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2015; 169:224-38. [PMID: 26235846 DOI: 10.1002/ajmg.c.31444] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disorders resulting from 5p deletions (5p-) were first recognized by Lejeune et al. in 1963 [Lejeune et al. (1963); C R Hebd Seances Acad Sci 257:3098-3102]. 5p- is caused by partial or total deletion of the short arm of chromosome 5. The most recognizable phenotype is characterized by a high-pitched cry, dysmorphic features, poor growth, and developmental delay. This report reviews 5p- disorders and their molecular basis. Hemizygosity for genes located within this region have been implicated in contributing to the phenotype. A review of the genes on 5p which may be dosage sensitive is summarized. Because of the growing knowledge of these specific genes, future directions to explore potential targeted therapies for individuals with 5p- are discussed. © 2015 Wiley Periodicals, Inc.
Collapse
|
61
|
Rust A, Hassan HHA, Sedelnikova S, Niranjan D, Hautbergue G, Abbas SA, Partridge L, Rice D, Binz T, Davletov B. Two complementary approaches for intracellular delivery of exogenous enzymes. Sci Rep 2015; 5:12444. [PMID: 26207613 PMCID: PMC4513551 DOI: 10.1038/srep12444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/26/2015] [Indexed: 01/08/2023] Open
Abstract
Intracellular delivery of biologically active proteins remains a formidable challenge in biomedical research. Here we show that biomedically relevant enzymes can be delivered into cells using a new DNA transfection reagent, lipofectamine 3000, allowing assessment of their intracellular functions. We also show that the J774.2 macrophage cell line exhibits unusual intracellular uptake of structurally and functionally distinct enzymes providing a convenient, reagent-free approach for evaluation of intracellular activities of enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Rice
- The University of Sheffield, Western Bank, Sheffield, UK
| | - Thomas Binz
- Medizinische Hochschule Hannover, Carl-Neuberg-Straße, Hannover, Germany
| | | |
Collapse
|
62
|
Sato Y, Nakamura T, Yamada Y, Akita H, Harashima H. Multifunctional enveloped nanodevices (MENDs). ADVANCES IN GENETICS 2015; 88:139-204. [PMID: 25409606 DOI: 10.1016/b978-0-12-800148-6.00006-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is anticipated that nucleic acid medicines will be in widespread use in the future, since they have the potential to cure diseases based on molecular mechanisms at the level of gene expression. However, intelligent delivery systems are required to achieve nucleic acid therapy, since they can perform their function only when they reach the intracellular site of action. We have been developing a multifunctional envelope-type nanodevice abbreviated as MEND, which consists of functional nucleic acids as a core and lipid envelope, and can control not only biodistribution but also the intracellular trafficking of nucleic acids. In this chapter, we review the development and evolution of the MEND by providing several successful examples, including the R8-MEND, the KALA-MEND, the MITO-Porter, the YSK-MEND, and the PALM.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| |
Collapse
|
63
|
D'Astolfo DS, Pagliero RJ, Pras A, Karthaus WR, Clevers H, Prasad V, Lebbink RJ, Rehmann H, Geijsen N. Efficient intracellular delivery of native proteins. Cell 2015; 161:674-690. [PMID: 25910214 DOI: 10.1016/j.cell.2015.03.028] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/19/2014] [Accepted: 03/12/2015] [Indexed: 11/29/2022]
Abstract
Modulation of protein function is used to intervene in cellular processes but is often done indirectly by means of introducing DNA or mRNA encoding the effector protein. Thus far, direct intracellular delivery of proteins has remained challenging. We developed a method termed iTOP, for induced transduction by osmocytosis and propanebetaine, in which a combination of NaCl hypertonicity-induced macropinocytosis and a transduction compound (propanebetaine) induces the highly efficient transduction of proteins into a wide variety of primary cells. We demonstrate that iTOP is a useful tool in systems in which transient cell manipulation drives permanent cellular changes. As an example, we demonstrate that iTOP can mediate the delivery of recombinant Cas9 protein and short guide RNA, driving efficient gene targeting in a non-integrative manner.
Collapse
Affiliation(s)
- Diego S D'Astolfo
- KNAW-Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Romina J Pagliero
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Anita Pras
- KNAW-Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Wouter R Karthaus
- KNAW-Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Hans Clevers
- KNAW-Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Vikram Prasad
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Robert Jan Lebbink
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Holger Rehmann
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Niels Geijsen
- KNAW-Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
64
|
Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1352-8. [DOI: 10.1016/j.bbamem.2015.02.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 11/21/2022]
|
65
|
Dogra P, Martin EB, Williams A, Richardson RL, Foster JS, Hackenback N, Kennel SJ, Sparer TE, Wall JS. Novel heparan sulfate-binding peptides for blocking herpesvirus entry. PLoS One 2015; 10:e0126239. [PMID: 25992785 PMCID: PMC4436313 DOI: 10.1371/journal.pone.0126239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/31/2015] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection can lead to congenital hearing loss and mental retardation. Upon immune suppression, reactivation of latent HCMV or primary infection increases morbidity in cancer, transplantation, and late stage AIDS patients. Current treatments include nucleoside analogues, which have significant toxicities limiting their usefulness. In this study we screened a panel of synthetic heparin-binding peptides for their ability to prevent CMV infection in vitro. A peptide designated, p5+14 exhibited ~ 90% reduction in murine CMV (MCMV) infection. Because negatively charged, cell-surface heparan sulfate proteoglycans (HSPGs), serve as the attachment receptor during the adsorption phase of the CMV infection cycle, we hypothesized that p5+14 effectively competes for CMV adsorption to the cell surface resulting in the reduction in infection. Positively charged Lys residues were required for peptide binding to cell-surface HSPGs and reducing viral infection. We show that this inhibition was not due to a direct neutralizing effect on the virus itself and that the peptide blocked adsorption of the virus. The peptide also inhibited infection of other herpesviruses: HCMV and herpes simplex virus 1 and 2 in vitro, demonstrating it has broad-spectrum antiviral activity. Therefore, this peptide may offer an adjunct therapy for the treatment of herpes viral infections and other viruses that use HSPGs for entry.
Collapse
Affiliation(s)
- Pranay Dogra
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Emily B. Martin
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Angela Williams
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Raphael L. Richardson
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - James S. Foster
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Nicole Hackenback
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Stephen J. Kennel
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
- Department of Radiology, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Tim E. Sparer
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jonathan S. Wall
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
- Department of Radiology, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| |
Collapse
|
66
|
Shibata K, Sakai H, Huang Q, Kamata H, Chiba Y, Misawa M, Ikebe R, Ikebe M. Rac1 regulates myosin II phosphorylation through regulation of myosin light chain phosphatase. J Cell Physiol 2015; 230:1352-64. [PMID: 25502873 DOI: 10.1002/jcp.24878] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
Abstract
Phosphorylation of regulatory light chain (MLC) activates myosin II, which enables it to promote contractile and motile activities of cells. We report here a novel signaling mechanism that activates MLC phosphorylation and smooth muscle contraction. Contractile agonists activated Rac1, and Rac1 inhibition diminished agonist-induced MLC phosphorylation, thus inhibiting smooth muscle contraction. Rac1 inhibits the activity of MLC phosphatase (MLCP) but not that of MLC kinase, through a phosphatase that targets MYPT1 (a regulatory subunit of MLCP) and CPI-17 (a MLCP specific inhibitor) rather than through the RhoA-Rho dependent kinase (ROCK) pathway. Rac1 inhibition decreased the activity of protein kinase C (PKC), which also contributes to the change in CPI-17 phosphorylation. We propose that activation of Rac1 increases the activity of PKC, which increases the phosphorylation of CPI-17 and MYPT1 by inhibiting the phosphatase that targets these proteins, thereby decreasing the activity of MLCP and increasing phosphorylation of MLC. Our results suggest that Rac1 coordinates with RhoA to increase MLC phosphorylation by inactivation of CPI-17/MYPT1 phosphatase, which decreases MLCP activity thus promoting MLC phosphorylation and cell contraction.
Collapse
Affiliation(s)
- Keita Shibata
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Yu J, Rupasinghe C, Wilson JL, Taylor L, Rahimi N, Mierke D, Polgar P. Targeting receptor tyrosine kinases and their downstream signaling with cell-penetrating peptides in human pulmonary artery smooth muscle and endothelial cells. Chem Biol Drug Des 2015; 85:586-97. [PMID: 25298192 PMCID: PMC4390552 DOI: 10.1111/cbdd.12446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/12/2014] [Accepted: 09/25/2014] [Indexed: 01/05/2023]
Abstract
Cell-penetrating peptide (CPP) intracellular delivery of receptor signaling motifs provides an opportunity to regulate specific receptor tyrosine kinase signal transductions. We targeted tyrosine residues Y740 and Y751 of the PDGF receptor β (PDGFRβ) and Y1175 of the VEGF receptor 2 (VEGFR2). The Y740 and Y751 motifs activated ERK and Akt, while the Y1175 motif activated ERK. Targeting either Y740 or Y751 of the PDGFRβ in human pulmonary artery smooth muscle cells (HPASMC) effectively inhibited PDGF activation of ERK or Akt. Interfering with the Y751 region of the PDGFRβ proved more effective than targeting the Y740 region. The phosphorylation of Y751 of the CPP and the length and exact sequence of the mimicking peptide proved crucial. On the other hand, in human pulmonary artery endothelial cell phosphorylation of the VEGFR2 Y1175 CPP was not a determinant in blockage of ERK activation. Likewise, the length of the peptide mimic was not crucial with a very small sequence containing the Y1175 remaining effective. Physiologic proof of concept for the effectiveness of the CPP was confirmed by blockage of HPASMC migration in response to PDGF following culture injury. Thus targeted blockage of tyrosine kinase receptor signaling can be very effective.
Collapse
Affiliation(s)
- Jun Yu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Jamie L. Wilson
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Linda Taylor
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nader Rahimi
- Departments of Pathology and Lab Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Dale Mierke
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Peter Polgar
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
68
|
Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nat Chem 2015; 7:394-402. [PMID: 25901817 PMCID: PMC4617616 DOI: 10.1038/nchem.2224] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/27/2015] [Indexed: 12/12/2022]
Abstract
Post-translational modification of the histone proteins in chromatin plays a central role in epigenetic control of DNA-templated processes in eukaryotic cells. Developing methods that enable the structure of histones to be manipulated is therefore essential to understand the biochemical mechanisms underlying genomic regulation. Here we present a synthetic biology method to engineer histones bearing site-specific modifications on cellular chromatin using protein trans-splicing. We genetically fused the N-terminal fragment of ultrafast split-intein to the C-terminus of histone H2B, which upon reaction with a complementary synthetic C-intein, generated labeled histone. Using this approach, we incorporated various non-native chemical modifications to chromatin in vivo with temporal control. Furthermore, the time and concentration dependence of protein trans-splicing performed in nucleo enabled us to examine differences in the accessibility of the euchromatin and heterochromatin regions of the epigenome. Finally, we used protein trans-splicing to semi-synthesize a native histone modification, H2BK120 ubiquitination, in isolated nuclei, and show that this can trigger downstream epigenetic cross-talk of H3K79 methylation.
Collapse
|
69
|
Reza F, Glazer PM. Therapeutic genome mutagenesis using synthetic donor DNA and triplex-forming molecules. Methods Mol Biol 2015; 1239:39-73. [PMID: 25408401 PMCID: PMC6608751 DOI: 10.1007/978-1-4939-1862-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genome mutagenesis can be achieved in a variety of ways, though a select few are suitable for therapeutic settings. Among them, the harnessing of intracellular homologous recombination affords the safety and efficacy profile suitable for such settings. Recombinagenic donor DNA and mutagenic triplex-forming molecules co-opt this natural recombination phenomenon to enable the specific, heritable editing and targeting of the genome. Editing the genome is achieved by designing the sequence-specific recombinagenic donor DNA to have base mismatches, insertions, and deletions that will be incorporated into the genome when it is used as a template for recombination. Targeting the genome is similarly achieved by designing the sequence-specific mutagenic triplex-forming molecules to further recruit the recombination machinery thereby upregulating its activity with the recombinagenic donor DNA. This combination of extracellularly introduced, designed synthetic molecules and intercellularly ubiquitous, evolved natural machinery enables the mutagenesis of chromosomes and engineering of whole genomes with great fidelity while limiting nonspecific interactions. Herein, we demonstrate the harnessing of recombinagenic donor DNA and mutagenic triplex-forming molecular technology for potential therapeutic applications. These demonstrations involve, among others, utilizing this technology to correct genes so that they become physiologically functional, to induce dormant yet functional genes in place of non-functional counterparts, to place induced genes under regulatory elements, and to disrupt genes to abrogate a cellular vulnerability. Ancillary demonstrations of the design and synthesis of this recombinagenic and mutagenic molecular technology as well as their delivery and assayed interaction with duplex DNA reveal a potent technological platform for engineering specific changes into the living genome.
Collapse
Affiliation(s)
- Faisal Reza
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520-8040, USA
| | | |
Collapse
|
70
|
Matsuzaki-Horibuchi S, Yasuda T, Sakaguchi N, Yamaguchi Y, Akashi M. Cell-permeable intrinsic cellular inhibitors of apoptosis protect and rescue intestinal epithelial cells from radiation-induced cell death. JOURNAL OF RADIATION RESEARCH 2015; 56:100-113. [PMID: 25359904 PMCID: PMC4572601 DOI: 10.1093/jrr/rru094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/21/2014] [Accepted: 09/13/2014] [Indexed: 06/04/2023]
Abstract
One of the important mechanisms for gastrointestinal (GI) injury following high-dose radiation exposure is apoptosis of epithelial cells. X-linked inhibitor of apoptosis (XIAP) and cellular IAP2 (cIAP2) are intrinsic cellular inhibitors of apoptosis. In order to study the effects of exogenously added IAPs on apoptosis in intestinal epithelial cells, we constructed bacterial expression plasmids containing genes of XIAP (full-length, BIR2 domain and BIR3-RING domain with and without mutations of auto-ubiquitylation sites) and cIAP2 proteins fused to a protein-transduction domain (PTD) derived from HIV-1 Tat protein (TAT) and purified these cell-permeable recombinant proteins. When the TAT-conjugated IAPs were added to rat intestinal epithelial cells IEC6, these proteins were effectively delivered into the cells and inhibited apoptosis, even when added after irradiation. Our results suggest that PTD-mediated delivery of IAPs may have clinical potential, not only for radioprotection but also for rescuing the GI system from radiation injuries.
Collapse
Affiliation(s)
- Shiori Matsuzaki-Horibuchi
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba 263-8555, Japan Department of Traumatology and Critical Care Medicine, Kyorin University Hospital, 6-20-2 Shinkawa, Mitaka-city, Tokyo, 181-8611, Japan
| | - Takeshi Yasuda
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba 263-8555, Japan
| | - Nagako Sakaguchi
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba 263-8555, Japan
| | - Yoshihiro Yamaguchi
- Department of Traumatology and Critical Care Medicine, Kyorin University Hospital, 6-20-2 Shinkawa, Mitaka-city, Tokyo, 181-8611, Japan
| | - Makoto Akashi
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-city, Chiba 263-8555, Japan
| |
Collapse
|
71
|
Swarnkar G, Abu-Amer Y. Regulation of NF-κB signaling in osteoclasts and myeloid progenitors. Methods Mol Biol 2015; 1280:527-42. [PMID: 25736770 DOI: 10.1007/978-1-4939-2422-6_31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is crucial for immune responses and skeletal development. Work in recent years has shown that various members of the NF-κB family are viable targets to regulate activity and survival of bone cells and hence bone metabolism. In this regard, deletion of upstream kinases or distal NF-κB subunits resulted with bone deformities. Thus, it has become increasingly apparent that detailed investigation of NF-κB in bone cells may provide opportunities to design new therapeutic modalities. In this chapter we present modified methodology describing efficient approaches to regulate the NF-κB pathway in vitro and in vivo to assess its function in bone cells and tissues.
Collapse
Affiliation(s)
- Gaurav Swarnkar
- Department of Orthopedic Surgery-Research, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8233, Saint Louis, MO, 63110, USA
| | | |
Collapse
|
72
|
Lin R, Zhang P, Cheetham AG, Walston J, Abadir P, Cui H. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. Bioconjug Chem 2014; 26:71-7. [PMID: 25547808 PMCID: PMC4306504 DOI: 10.1021/bc500408p] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.
Collapse
Affiliation(s)
- Ran Lin
- Department of Chemical and Biomolecular Engineering, ‡Institute for NanoBioTechnology, §Division of Geriatrics Medicine and Gerontology, and ⊥Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | | | | | | | |
Collapse
|
73
|
Kim SM, Chae MK, Lee C, Yim MS, Bang JK, Ryu EK. Enhanced cellular uptake of a TAT-conjugated peptide inhibitor targeting the polo-box domain of polo-like kinase 1. Amino Acids 2014; 46:2595-603. [PMID: 25151148 DOI: 10.1007/s00726-014-1798-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/25/2014] [Indexed: 10/24/2022]
Abstract
In the last decade, drug delivery systems using biologically active molecules for cellular uptake of therapeutic targets have been studied for application and testing in clinical trials. For instance, the transactivator of transcription (TAT) peptide, or cell-penetrating peptide, was shown to deliver a variety of cargoes, including proteins, peptides, and nucleic acids. Polo-like kinase 1 (Plk1) plays key roles in the regulation of cell cycle events (e.g., mitotic progression). Plk1 was also shown to be activated and highly expressed in proliferating cells such as tumor cells. Amongst these phosphopeptides, Pro-Leu-His-Ser-p-Thr (PLHSpT), which is the minimal sequence for polo-box domain (PBD) binding, was shown to have an inhibitory effect and to induce apoptotic cell death. However, the phosphopeptide showed low cell membrane penetration. Thus, in our study, we synthesized Plk1 inhibitor TAT-PLHSpT to improve agent internalization into cells. TAT-PLHSpT was shown to internalize into the nucleus. The conjugation of TAT with PLHSpT inhibited cancer cell growth and survival. Moreover, it showed an increase in cellular uptake and inhibition of Plk1 kinase activity. Further studies are needed for biological evaluation of the new peptide in tumor-bearing animal models (in vivo). Our results prove that TAT-PLHSpT is a good candidate for specific PBD binding of Plk1 as a therapeutic agent for humans.
Collapse
Affiliation(s)
- Sung Min Kim
- Magnetic Resonance Research Center, Korea Basic Science Institute, 804-1 Ochang, Cheongju, Chungbuk, 363-883, Republic of Korea
| | | | | | | | | | | |
Collapse
|
74
|
Yang XX, Hou XN, Xu B, Hao X, Jiang GJ, Fan TJ. Cell-penetrating peptide delivery of biologically active oct4 protein into cultured Takifugu rubripes spermary cells. JOURNAL OF FISH BIOLOGY 2014; 85:1369-1380. [PMID: 25199543 DOI: 10.1111/jfb.12487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Continuous cell culture of a puffer fish Takifugu rubripes has been established for efficient delivery of exogenous genes or proteins to cultured fish cells. Transcription factor oct4 was chosen for transduction into cultured fish cells because of its conserved structure and function between fish and mammals. In this work, the T. rubripes oct4 gene was cloned and expressed in Escherichia coli as a recombinant protein by introducing cell-penetrating peptide (CPP) poly-arginine (11R) and 6His-tag at the C-terminus. After purification, recombinant proteins were added to the growth medium and incubated with T. rubripes spermary cells. Recombinant proteins that crossed the cell membrane were detected in the cytoplasm and nucleus by western blot and immunofluorescent observation. The function of transduced oct4 as a transcription factor in fish cells was confirmed by driving green fluorescent protein expression in the pEGFP-1 reporter construct with the conserved specific oct4-binding sequence from mouse Mus musculus. Taken together, 11R can be an efficient CPP in delivering fusion proteins to cultured fish cells.
Collapse
Affiliation(s)
- X X Yang
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
75
|
Hu Q, Chen R, Teesalu T, Ruoslahti E, Clegg DO. Reprogramming human retinal pigmented epithelial cells to neurons using recombinant proteins. Stem Cells Transl Med 2014; 3:1526-34. [PMID: 25298373 DOI: 10.5966/sctm.2014-0038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Somatic cells can be reprogrammed to an altered lineage by overexpressing specific transcription factors. To avoid introducing exogenous genetic material into the genome of host cells, cell-penetrating peptides can be used to deliver transcription factors into cells for reprogramming. Position-dependent C-end rule (CendR) cell- and tissue-penetrating peptides provide an alternative to the conventional cell-penetrating peptides, such as polyarginine. In this study, we used a prototypic, already active CendR peptide, RPARPAR, to deliver the transcription factor SOX2 to retinal pigmented epithelial (RPE) cells. We demonstrated that RPE cells can be directly reprogrammed to a neuronal fate by introduction of SOX2. Resulting neuronal cells expressed neuronal marker mRNAs and proteins and downregulated expression of RPE markers. Cells produced extensive neurites and developed synaptic machinery capable of dye uptake after depolarization with potassium. The RPARPAR-mediated delivery of SOX2 alone was sufficient to allow cell lineage reprogramming of both fetal and stem cell-derived RPE cells to become functional neurons.
Collapse
Affiliation(s)
- Qirui Hu
- Center for Stem Cell Biology and Engineering and Center for Nanomedicine and Sanford-Burnham Medical Research Institute, University of California Santa Barbara, Santa Barbara, California, USA; Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Renwei Chen
- Center for Stem Cell Biology and Engineering and Center for Nanomedicine and Sanford-Burnham Medical Research Institute, University of California Santa Barbara, Santa Barbara, California, USA; Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Tambet Teesalu
- Center for Stem Cell Biology and Engineering and Center for Nanomedicine and Sanford-Burnham Medical Research Institute, University of California Santa Barbara, Santa Barbara, California, USA; Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Erkki Ruoslahti
- Center for Stem Cell Biology and Engineering and Center for Nanomedicine and Sanford-Burnham Medical Research Institute, University of California Santa Barbara, Santa Barbara, California, USA; Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering and Center for Nanomedicine and Sanford-Burnham Medical Research Institute, University of California Santa Barbara, Santa Barbara, California, USA; Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
76
|
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
77
|
Erazo-Oliveras A, Najjar K, Dayani L, Wang TY, Johnson GA, Pellois JP. Protein delivery into live cells by incubation with an endosomolytic agent. Nat Methods 2014; 11:861-7. [PMID: 24930129 PMCID: PMC4131206 DOI: 10.1038/nmeth.2998] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 05/09/2014] [Indexed: 12/19/2022]
Abstract
We report that a tetramethylrhodamine-labeled dimer of the cell-penetrating peptide TAT, dfTAT, penetrates live cells by escaping from endosomes with high efficiency. By mediating endosomal leakage, dfTAT also delivers proteins into cultured cells after a simple co-incubation procedure. We achieved cytosolic delivery in several cell lines and primary cells and observed that only a relatively small amount of material remained trapped inside endosomes. Delivery did not require a binding interaction between dfTAT and a protein, multiple molecules could be delivered simultaneously, and delivery could be repeated. dfTAT-mediated delivery did not noticeably affect cell viability, cell proliferation or gene expression. dfTAT-based intracellular delivery should be useful for cell-based assays, cellular imaging applications and the ex vivo manipulation of cells.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Kristina Najjar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Laila Dayani
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Ting-Yi Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Gregory A. Johnson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
78
|
Yainoy S, Houbloyfa P, Eiamphungporn W, Isarankura-Na-Ayudhya C, Prachayasittikul V. Engineering of chimeric catalase-Angiopep-2 for intracellular protection of brain endothelial cells against oxidative stress. Int J Biol Macromol 2014; 68:60-6. [DOI: 10.1016/j.ijbiomac.2014.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/13/2014] [Accepted: 04/14/2014] [Indexed: 12/13/2022]
|
79
|
Ookubo N, Michiue H, Kitamatsu M, Kamamura M, Nishiki TI, Ohmori I, Matsui H. The transdermal inhibition of melanogenesis by a cell-membrane-permeable peptide delivery system based on poly-arginine. Biomaterials 2014; 35:4508-16. [DOI: 10.1016/j.biomaterials.2014.01.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/22/2014] [Indexed: 11/26/2022]
|
80
|
Zhang J, Malik A, Choi H, Ko R, Dissing-Olesen L, MacVicar B. Microglial CR3 Activation Triggers Long-Term Synaptic Depression in the Hippocampus via NADPH Oxidase. Neuron 2014; 82:195-207. [DOI: 10.1016/j.neuron.2014.01.043] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2014] [Indexed: 12/28/2022]
|
81
|
Liu X, Zhao Q, Peng X, Xia S, Shen W, Zong Y, Cheng J, Wu W, Zhang M, Du F, Xu W, Qian H, Shao Q. PTD-mediated intracellular delivery of mutant NFAT minimum DNA binding domain inhibited the proliferation of T cells. Int Immunopharmacol 2014; 19:110-8. [DOI: 10.1016/j.intimp.2014.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 12/01/2022]
|
82
|
Hypoxic resistance of hypodermically transplanted pancreatic islets by using cell-absorbable antioxidant Tat-metallothionein. J Control Release 2013; 172:1092-101. [DOI: 10.1016/j.jconrel.2013.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/13/2013] [Accepted: 09/26/2013] [Indexed: 11/22/2022]
|
83
|
Hua WK, Shiau YH, Lee OK, Lin WJ. Elevation of protein kinase Cα stimulates osteogenic differentiation of mesenchymal stem cells through the TAT-mediated protein transduction system. Biochem Cell Biol 2013; 91:443-8. [PMID: 24219286 DOI: 10.1139/bcb-2013-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate toward various lineages, including the osteogenic lineage, and thus hold great potential for clinic purposes. By using pharmacological inhibitors, protein kinase C (PKC) signaling has been shown to either negatively or positively regulate differentiation of bone, however, due to the low transfection efficiency in MSCs, the role of individual PKC isoforms is still not fully understood. In this study, we established a TAT peptide-mediated transduction system that efficiently delivered PKCα proteins into MSCs in a non-invasive fashion. The increased PKCα protein levels significantly promoted osteogenic differentiation in the murine mesenchymal C3H10T1/2 cells and in primary MSCs from both human and mouse, as demonstrated by the enhanced activity of the osteoblast marker, alkaline phosphatase, and the enhanced expression of the key transcription factor runx2. Mineralization is an important functional indication for bone differentiation. Our results further showed that PKCα promoted expression of the important osteocalcin gene and the accumulation of calcium minerals. Taken together, this study provides direct evidence showing that PKCα positively regulates osteogenic differentiation and demonstrates that the TAT peptide-mediated method enables functional study of specific PKC isoforms in MSCs without using viral infection. This may promote the application of PKCs in therapeutic treatment.
Collapse
Affiliation(s)
- Wei-Kai Hua
- a Institute of Biopharmaceutical Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong St., Taipei 112, Taiwan
| | | | | | | |
Collapse
|
84
|
Abstract
Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds.
Collapse
Affiliation(s)
- Jacqueline Y. Tyler
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
85
|
Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1484-93. [DOI: 10.1016/j.bbamem.2013.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/27/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022]
|
86
|
Alhakamy NA, Nigatu AS, Berkland CJ, Ramsey JD. Noncovalently associated cell-penetrating peptides for gene delivery applications. Ther Deliv 2013; 4:741-57. [PMID: 23738670 PMCID: PMC4207642 DOI: 10.4155/tde.13.44] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The use of various cell-penetrating peptides (CPPs) to deliver genetic material for gene therapy applications has been a topic of interest for more than 20 years. The delivery of genetic material by using CPPs can be divided into two categories: covalently bound and electrostatically bound. Complexity of the synthesis procedure can be a significant barrier to translation when using a strategy requiring covalent binding of CPPs. In contrast, electrostatically complexing CPPs with genetic material or with a viral vector is relatively simple and has been demonstrated to improve gene delivery in both in vitro and in vivo studies. This review highlights gene therapy applications of complexes formed noncovalently between CPPs and genetic material or viruses.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
| | - Adane S Nigatu
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA 74078
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS, USA 66047
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA 74078
| |
Collapse
|
87
|
Abstract
The ability of cell-penetrating peptides to cross plasma membranes has been used for various applications, including the delivery of bioactive molecules to inhibit disease-producing cellular mechanisms. Selective drug delivery into target cells improves drug distribution and decreases dosing and toxicity. In this review, the authors outline the main challenges in the field, namely clarification of mechanisms of entry into cells, as well as current and future perspectives regarding cell-penetrating peptides application for human therapeutics. Here, the authors discuss some of the factors that influence efficacy of delivery and review the current status of preclinical studies and clinical trials involving the use of cell-penetrating peptide-mediated delivery of therapeutics.
Collapse
|
88
|
Tomita U, Yamaguchi S, Maeda Y, Chujo K, Minamihata K, Nagamune T. Protein cell-surface display through in situ enzymatic modification of proteins with a poly(Ethylene glycol)-lipid. Biotechnol Bioeng 2013; 110:2785-9. [PMID: 23592269 DOI: 10.1002/bit.24933] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/27/2013] [Accepted: 04/01/2013] [Indexed: 01/24/2023]
Abstract
Cell-surface display of functional proteins is a powerful and useful tool for regulating and reinforcing cellular functions. Direct incorporation of site-specifically lipidated proteins from the extracellular medium is more rapid, easily controllable and reliable in displaying active proteins than expression through gene transfer. However, undesirable amphiphilic reagents such as organic co-solvents and detergents were required for suppressing aggregation of ordinary lipidated proteins in solution. We report here sortase A-catalyzed modification of proteins with a poly(ethylene glycol)(PEG)-lipid in situ on the surface of living cells. Proteins fused with a recognition tag were site-specifically ligated with the PEG-lipid which was preliminary incorporated into cell membranes. Accordingly, target proteins were successfully displayed on living cells without aggregation under an amphiphilic reagent-free condition. Furthermore, to demonstrate the availability of the present method, Fc domains of immunoglobulin G were displayed on cancer cells, and the phagocytosis of cancer cells with dendritic cells were enhanced through the Fc-Fc receptor interaction. Thus, the present facile chemoenzymatic method for protein display can be utilized for modulating cell-cell interactions in cell and tissue engineering fields.
Collapse
Affiliation(s)
- Urara Tomita
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
89
|
Pietrzyk AJ, Bujacz A, Mueller-Dieckmann J, Lochynska M, Jaskolski M, Bujacz G. Two crystal structures of Bombyx mori lipoprotein 3 - structural characterization of a new 30-kDa lipoprotein family member. PLoS One 2013; 8:e61303. [PMID: 23613829 PMCID: PMC3628942 DOI: 10.1371/journal.pone.0061303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
The 30-kDa family of lipoproteins from insect hemolymph has been the focus of a number of studies over the last few years. Recently, four crystal structures of Bombyx mori lipoprotein 7 have been determined. Here we report two crystal structures of another member of the 30-kDa lipoprotein family, Bombyx mori lipoprotein 3 (Bmlp3). The protein was isolated from its natural source, mulberry silkworm hemolymph. It crystallized in two different crystal forms, Bmlp3-p21 (space group P21) and Bmlp3-c2 (space group C2). The crystal structures were solved by molecular replacement using the coordinates of Bmlp7 as a starting model. The crystals of Bmlp3-p21 diffracted X-rays to 2.4 Å resolution and of Bmlp3-c2 to 2.1 Å resolution. Bmlp3 has an overall fold characteristic of 30-kDa lipoproteins, with a VHS-type N-terminal domain and β-trefoil C-terminal domain. Structural comparison of Bmlp3 and Bmlp7 shows that the loops present in the C-terminal domain are flexible and participate in dimer formation. Additionally, new putative binding sites of Bmlp3 have been analyzed in detail and the electrostatic potential of the protein surface at physiological pH 7.4 conditions has been calculated. The results of these calculations are the starting point for an explanation of the recently reported cell-penetrating properties of the 30-kDa lipoproteins.
Collapse
Affiliation(s)
- Agnieszka J. Pietrzyk
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Bujacz
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | | | | | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Grzegorz Bujacz
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
- * E-mail:
| |
Collapse
|
90
|
Conidi A, van den Berghe V, Huylebroeck D. Aptamers and their potential to selectively target aspects of EGF, Wnt/β-catenin and TGFβ-smad family signaling. Int J Mol Sci 2013; 14:6690-719. [PMID: 23531534 PMCID: PMC3645661 DOI: 10.3390/ijms14046690] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
The smooth identification and low-cost production of highly specific agents that interfere with signaling cascades by targeting an active domain in surface receptors, cytoplasmic and nuclear effector proteins, remain important challenges in biomedical research. We propose that peptide aptamers can provide a very useful and new alternative for interfering with protein–protein interactions in intracellular signal transduction cascades, including those emanating from activated receptors for growth factors. By their targeting of short, linear motif type of interactions, peptide aptamers have joined nucleic acid aptamers for use in signaling studies because of their ease of production, their stability, their high specificity and affinity for individual target proteins, and their use in high-throughput screening protocols. Furthermore, they are entering clinical trials for treatment of several complex, pathological conditions. Here, we present a brief survey of the use of aptamers in signaling pathways, in particular of polypeptide growth factors, starting with the published as well as potential applications of aptamers targeting Epidermal Growth Factor Receptor signaling. We then discuss the opportunities for using aptamers in other complex pathways, including Wnt/β-catenin, and focus on Transforming Growth Factor-β/Smad family signaling.
Collapse
Affiliation(s)
- Andrea Conidi
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Campus Gasthuisberg, Building Ond & Nav4 p.o.box 812, room 05.313, Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
91
|
Cell penetrating recombinant Foxp3 protein enhances Treg function and ameliorates arthritis. Biochem Biophys Res Commun 2013; 434:263-7. [PMID: 23541572 DOI: 10.1016/j.bbrc.2013.02.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022]
Abstract
Foxp3 is the master transcription factor for T regulatory (Treg) cell differentiation and function. This study aimed to test the therapeutic potential of cell penetrating recombinant Foxp3 protein in arthritis. Recombinant Foxp3 protein was fused to a cell penetrating polyarginine (Foxp3-11R) tag to facilitate intracellular transduction. In vitro Foxp3-11R treated CD4(+) T cells showed a 50% increase in suppressive function compared with control protein treated cells. Severity of arthritis in Foxp3-11R treated mice was significantly reduced compared with those treated with a control protein. CD4(+) T cells of lymph nodes and spleen from Foxp3-11R treated mice showed increased levels of Foxp3 expression compared with those of a control protein treated. These results demonstrated that Foxp3-11R can enhance T cell suppressive function and ameliorate experimental arthritis and suggest that cell penetrating recombinant Foxp3 is a potentially useful agent in therapy of arthritis.
Collapse
|
92
|
Improved ex vivo expansion of adult hematopoietic stem cells by overcoming CUL4-mediated degradation of HOXB4. Blood 2013; 121:4082-9. [PMID: 23520338 DOI: 10.1182/blood-2012-09-455204] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Direct transduction of the homeobox (HOX) protein HOXB4 promotes the proliferation of hematopoietic stem cells (HSCs) without induction of leukemogenesis, but requires frequent administration to overcome its short protein half-life (∼1 hour). We demonstrate here that HOXB4 protein levels are post-translationally regulated by the CUL4 ubiquitin ligase, and define the degradation signal sequence (degron) of HOXB4 required for CUL4-mediated destruction. Additional HOX paralogs share the conserved degron in the homeodomain and are also subject to CUL4-mediated degradation, indicating that CUL4 likely controls the stability of all HOX proteins. Moreover, we engineered a degradation-resistant HOXB4 that conferred a growth advantage over wild-type HOXB4 in myeloid progenitor cells. Direct transduction of recombinant degradation-resistant HOXB4 protein to human adult HSCs significantly enhanced their maintenance in a more primitive state both in vitro and in transplanted NOD/SCID/IL2R-γ(null) mice compared with transduction with wild-type HOXB4 protein. Our studies demonstrate the feasibility of engineering a stable HOXB4 variant to overcome a major technical hurdle in the ex vivo expansion of adult HSCs and early progenitors for human therapeutic use.
Collapse
|
93
|
Design, synthesis, and evaluation of fluorescent cell-penetrating peptidic antagonists of Grb2-SH2 for targeting MCF-7 breast cancer cells. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0538-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
94
|
Gabanyi I, Lojudice FH, Kossugue PM, Rebelato E, Demasi MA, Sogayar MC. VP22 herpes simplex virus protein can transduce proteins into stem cells. Braz J Med Biol Res 2013; 46:121-7. [PMID: 23369972 PMCID: PMC3854363 DOI: 10.1590/1414-431x20122148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/02/2012] [Indexed: 12/02/2022] Open
Abstract
The type I herpes simplex virus VP22 tegument protein is abundant and well known
for its ability to translocate proteins from one cell to the other. In spite of
some reports questioning its ability to translocate proteins by attributing the
results observed to fixation artifacts or simple attachment to the cell
membrane, VP22 has been used to deliver several proteins into different cell
types, triggering the expected cell response. However, the question of the
ability of VP22 to enter stem cells has not been addressed. We investigated
whether VP22 could be used as a tool to be applied in stem cell research and
differentiation due to its capacity to internalize other proteins without
altering the cell genome. We generated a VP22.eGFP construct to evaluate whether
VP22 could be internalized and carry another protein with it into two different
types of stem cells, namely adult human dental pulp stem cells and mouse
embryonic stem cells. We generated a VP22.eGFP fusion protein and demonstrated
that, in fact, it enters stem cells. Therefore, this system may be used as a
tool to deliver various proteins into stem cells, allowing stem cell research,
differentiation and the generation of induced pluripotent stem cells in the
absence of genome alterations.
Collapse
Affiliation(s)
- I Gabanyi
- Universidade de São Paulo, Centro de Terapia Celular e Molecular, Departamento de Bioquímica, Instituto de Química, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
95
|
Fang B, Jiang L, Zhang M, Ren FZ. A novel cell-penetrating peptide TAT-A1 delivers siRNA into tumor cells selectively. Biochimie 2013; 95:251-7. [DOI: 10.1016/j.biochi.2012.09.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/17/2012] [Indexed: 12/20/2022]
|
96
|
YIN JIKAI, CAI ZHONGLIANG, ZHANG LI, ZHANG JIAN, HE XIANLI, DU XILIN, WANG QING, LU JIANGUO. A recombined fusion protein PTD-Grb2-SH2 inhibits the proliferation of breast cancer cells in vitro. Int J Oncol 2013; 42:1061-9. [DOI: 10.3892/ijo.2013.1768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/17/2012] [Indexed: 11/05/2022] Open
|
97
|
Pourmousa M, Wong-ekkabut J, Patra M, Karttunen M. Molecular dynamic studies of transportan interacting with a DPPC lipid bilayer. J Phys Chem B 2012; 117:230-41. [PMID: 23214935 DOI: 10.1021/jp310255r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Translocation of peptides through cellular membranes is a fundamental problem in developing antimicrobial peptides and in drug delivery. There is a class of peptides, known as cell-penetrating peptides, that are able to penetrate membranes without disrupting them. They can carry pharmacological compounds, thus a promising strategy for drug delivery. The physical mechanisms that facilitate translocation are not known. We have used large-scale molecular dynamics simulations to study the penetration of transportan across a zwitterionic dipalmitoyl-phosphatidyl-choline (DPPC) bilayer. We obtained the free energy profile for one peptide inside the bilayer and discuss the response of the bilayer to the presence of transportan. We also discuss the importance of lysine residues and speculate on the possible penetration mechanism of the peptide and propose a graded-like penetration process.
Collapse
Affiliation(s)
- Mohsen Pourmousa
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | |
Collapse
|
98
|
A protein delivery system using 30Kc19 cell-penetrating protein originating from silkworm. Biomaterials 2012; 33:9127-34. [DOI: 10.1016/j.biomaterials.2012.08.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/28/2012] [Indexed: 02/03/2023]
|
99
|
Yang Y, Liu B, Dong J, Zhang L, Pang M, Rong L. Proteins reprogramming: present and future. ScientificWorldJournal 2012; 2012:453185. [PMID: 23226982 PMCID: PMC3512271 DOI: 10.1100/2012/453185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/07/2012] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are of great clinical interest for they are derived from one's own somatic cells and have the potential of committed differentiation without immunological rejection after autografting. However, the use of viral and other modified vectors may still cause tumorigenesis due to chromosome insertion mutation, leading to limited practical use. iPSCs generated by reprogramming proteins overcome the potential safety risk and complicated manipulation procedures, thus they own better application prospective, yet some technical difficulties need to be studied and resolved, for instance, low reprogramming efficiency, unclear transduction, and reprogramming mechanism. In this paper, we summarize the current progress of proteins reprogramming technology for generation of iPSCs and discuss the promising efficiency-improved reprogramming methods by proteins plus other kinds of chemical compounds.
Collapse
Affiliation(s)
- Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 0086-510630, China
| | | | | | | | | | | |
Collapse
|
100
|
Farmer LM, Le BN, Nelson DJ. CLC-3 chloride channels moderate long-term potentiation at Schaffer collateral-CA1 synapses. J Physiol 2012; 591:1001-15. [PMID: 23165767 DOI: 10.1113/jphysiol.2012.243485] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The chloride channel CLC-3 is expressed in the brain on synaptic vesicles and postsynaptic membranes. Although CLC-3 is broadly expressed throughout the brain, the CLC-3 knockout mouse shows complete, selective postnatal neurodegeneration of the hippocampus, suggesting a crucial role for the channel in maintaining normal brain function. CLC-3 channels are functionally linked to NMDA receptors in the hippocampus; NMDA receptor-dependent Ca(2+) entry, activation of Ca(2+)/calmodulin kinase II and subsequent gating of CLC-3 link the channels via a Ca(2+)-mediated feedback loop. We demonstrate that loss of CLC-3 at mature synapses increases long-term potentiation from 135 ± 4% in the wild-type slice preparation to 154 ± 7% above baseline (P < 0.001) in the knockout; therefore, the contribution of CLC-3 is to reduce synaptic potentiation by ∼40%. Using a decoy peptide representing the Ca(2+)/calmodulin kinase II phosphorylation site on CLC-3, we show that phosphorylation of CLC-3 is required for its regulatory function in long-term potentiation. CLC-3 is also expressed on synaptic vesicles; however, our data suggest functionally separable pre- and postsynaptic roles. Thus, CLC-3 confers Cl(-) sensitivity to excitatory synapses, controls the magnitude of long-term potentiation and may provide a protective limit on Ca(2+) influx.
Collapse
Affiliation(s)
- Laurel M Farmer
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|