51
|
Gheysarzadeh A, Yazdanparast R. Inhibition of H2O2-induced cell death through FOXO1 modulation by EUK-172 in SK-N-MC cells. Eur J Pharmacol 2012; 697:47-52. [PMID: 23041154 DOI: 10.1016/j.ejphar.2012.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/15/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
Abstract
It has been suggested that excess accumulation of reactive oxygen species, termed oxidative stress, may lead to neuronal death resulting in neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. In oxidative stress-induced cell death numerous transcription factors are thought to be involved. One of them is Forkhead box protein O1 (FOXO1) that governs many genes involved in oxidative stress resistance, DNA repair, cell cycle arrest, proliferation and apoptosis. Apparently, FOXO1 activity is tightly linked to post translational modifications including phosphorylation and acetylation, which are modulated by many factors such as oxidative stress. Reactive oxygen species, as the major players in oxidative stress, guide FOXO1 nuclear localization at least by simultaneous c-Jun N-terminal kinase (JNK) activation and Akt/PKB activity suppression. Here, we showed that a synthetic salen-manganese derivative (EUK-172) with strong catalase activity reduced oxidative stress evident through marked reduction in intracellular reactive oxygen species, protein carbonylation and lipid peroxidation. In addition, our results indicated that EUK-172 not only reduced the FOXO1 protein content, but also it inhibited FOXO1 nuclear translocation in H(2)O(2)-exposed SK-N-MC cells. These events attenuated caspase-3 activity and bax/Bcl-2 ratio leading to higher viability of the H(2)O(2)-treated SK-N-MC cells.
Collapse
Affiliation(s)
- Ali Gheysarzadeh
- Institute of Biochemistry and Biophysics, P.O. Box 13145-1384, University of Tehran, Tehran, Iran
| | | |
Collapse
|
52
|
Chiu J, Dawes IW. Redox control of cell proliferation. Trends Cell Biol 2012; 22:592-601. [PMID: 22951073 DOI: 10.1016/j.tcb.2012.08.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/31/2012] [Accepted: 08/08/2012] [Indexed: 11/18/2022]
Abstract
Cell proliferation is regulated by multiple signaling pathways and stress surveillance systems to ensure cell division takes place with fidelity. In response to oxidative stress, cells arrest in the cell-cycle and aberrant redox control of proliferation underlies the pathogenesis of many diseases including cancer and neurodegenerative disorders. Redox sensing of cell-cycle regulation has recently been shown to involve reactive cysteine thiols that function as redox sensors in cell-cycle regulators. By modulating cell-cycle regulators these redox-active thiols ensure cell division is executed at the right redox environment. This review summarizes recent findings on regulation of cell division by the oxidation of cysteines in cell division regulators and the potential of targeting these critical cysteine residues for cancer therapy.
Collapse
Affiliation(s)
- Joyce Chiu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
53
|
Ashwell MA, Lapierre JM, Brassard C, Bresciano K, Bull C, Cornell-Kennon S, Eathiraj S, France DS, Hall T, Hill J, Kelleher E, Khanapurkar S, Kizer D, Koerner S, Link J, Liu Y, Makhija S, Moussa M, Namdev N, Nguyen K, Nicewonger R, Palma R, Szwaya J, Tandon M, Uppalapati U, Vensel D, Volak LP, Volckova E, Westlund N, Wu H, Yang RY, Chan TCK. Discovery and optimization of a series of 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amines: orally bioavailable, selective, and potent ATP-independent Akt inhibitors. J Med Chem 2012; 55:5291-310. [PMID: 22533986 DOI: 10.1021/jm300276x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes the implementation of a biochemical and biophysical screening strategy to identify and optimize small molecule Akt1 inhibitors that act through a mechanism distinct from that observed for kinase domain ATP-competitive inhibitors. With the aid of an unphosphorylated Akt1 cocrystal structure of 12j solved at 2.25 Å, it was possible to confirm that as a consequence of binding these novel inhibitors, the ATP binding cleft contained a number of hydrophobic residues that occlude ATP binding as expected. These Akt inhibitors potently inhibit intracellular Akt activation and its downstream target (PRAS40) in vitro. In vivo pharmacodynamic and pharmacokinetic studies with two examples, 12e and 12j, showed the series to be similarly effective at inhibiting the activation of Akt and an additional downstream effector (p70S6) following oral dosing in mice.
Collapse
Affiliation(s)
- Mark A Ashwell
- ArQule Inc., 19 Presidential Way, Woburn, Massachusetts 01801, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Steichen JM, Kuchinskas M, Keshwani MM, Yang J, Adams JA, Taylor SS. Structural basis for the regulation of protein kinase A by activation loop phosphorylation. J Biol Chem 2012; 287:14672-80. [PMID: 22334660 PMCID: PMC3340281 DOI: 10.1074/jbc.m111.335091] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The catalytic subunit of cAMP-dependent protein kinase (PKA) is a member of the AGC group of protein kinases. Whereas PKA has served as a structural model for the protein kinase superfamily, all previous structures of the catalytic subunit contain a phosphorylated activation loop. To understand the structural effects of activation loop phosphorylation at Thr-197 we used a PKA mutant that does not autophosphorylate at Thr-197. The enzyme crystallized in the apo-state, and the structure was solved to 3.0 Å. The N-lobe is rotated by 18° relative to the wild-type apoenzyme, which illustrates that the enzyme likely exists in a wide range of conformations in solution due to the uncoupling of the N- and C-lobes. Several regions of the protein including the activation loop are disordered in the structure, and there are alternate main chain conformations for the magnesium positioning loop and catalytic loop causing a complete loss of hydrogen bonding between these two active site structural elements. These alterations are reflected in a 20-fold decrease in the apparent phosphoryl transfer rate as measured by pre-steady-state kinetic methods.
Collapse
Affiliation(s)
- Jon M Steichen
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
55
|
Durgadoss L, Nidadavolu P, Valli RK, Saeed U, Mishra M, Seth P, Ravindranath V. Redox modification of Akt mediated by the dopaminergic neurotoxin MPTP, in mouse midbrain, leads to down‐regulation of pAkt. FASEB J 2011; 26:1473-83. [DOI: 10.1096/fj.11-194100] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lalitha Durgadoss
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
| | - Prakash Nidadavolu
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
- Centre for NeuroscienceIndian Institute of ScienceBangaloreIndia
| | - Rupanagudi Khader Valli
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
| | - Uzma Saeed
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
| | - Mamata Mishra
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
| | - Pankaj Seth
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
| | - Vijayalakshmi Ravindranath
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
- Centre for NeuroscienceIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
56
|
Lu XM, Tompkins RG, Fischman AJ. SILAM for quantitative proteomics of liver Akt1/PKBα after burn injury. Int J Mol Med 2011; 29:461-71. [PMID: 22179310 PMCID: PMC3981641 DOI: 10.3892/ijmm.2011.861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/17/2011] [Indexed: 12/27/2022] Open
Abstract
Akt1/protein kinase Bα (Akt1/PKBα) is a downstream mediator of the insulin signaling system. In this study we explored mechanism(s) for its role in burn injury. Akt1/PKBα in liver extracts from mice with burn injury fed with (2H7)-L-Leu was immunoprecipitated and isolated with SDS-PAGE. Two tryptic peptides, one in the kinase loop and a control peptide just outside of the loop were sequenced via nano-LC interfaced with quadruple time-of-flight tandem mass spectrometry (Q-TOF tandem MS). Their relative isotopologue abundances were determined by stable isotope labeling by amino acids in mammalians (SILAM). Relative quantifications based on paired heavy/light peptides were obtained in 3 steps. The first step included homogenization of mixtures of equal amounts of tissue from burned and sham-treated animals (i.e., isotope dilution) and acquisition of uncorrected data based on parent monoisotopic MS ion ratios. The second step included determination of isotopic enrichment of the kinase from burned mice on Day 7 and the third step enrichment correction of partially labeled heavy and light monoisotopic MS ion ratios for relative quantification of bioactivity (loop peptide) and expression level (control peptide). Protein synthesis and enrichment after injury were found to be dependent on tissue and turnover of individual proteins. Three heavy and light monoisotopic ion ratios for albumin peptides from burned mice indicated ~55% enrichment and ~16.7-fold downregulation. In contract, serum amyloid P had ~66% enrichment and was significantly upregulated. Akt1/PKBα had ~56% enrichment and kinase level in response to the burn injury was upregulated compared with the control peptide. However, kinase bioactivity, represented by the Cys296 peptide, was significantly reduced. Overall, we demonstrated that i) quantitative proteomics can be performed without completely labeled mice; ii) measurement of enrichment of acyl-tRNAs is unnecessary and iii) Cys296 plays an important role in kinase activity after burn injury.
Collapse
Affiliation(s)
- X-M Lu
- Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
57
|
Seco J, Ferrer-Costa C, Campanera JM, Soliva R, Barril X. Allosteric regulation of PKCθ: understanding multistep phosphorylation and priming by ligands in AGC kinases. Proteins 2011; 80:269-80. [PMID: 22072623 DOI: 10.1002/prot.23205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 09/12/2011] [Accepted: 09/18/2011] [Indexed: 01/13/2023]
Abstract
Protein kinases play critical roles in cellular activation and differentiation, and are involved in numerous pathophysiological processes. As a critical component of the regulatory circuitry of the cell, the kinase domain has the ability to integrate multiple signals, yielding a predetermined output. In PKC and other protein kinases of the AGC family, several phosphorylation sites control the activity, but these are in turn influenced by the presence of ligands in the binding pocket, which promotes phosphorylation. Here, we take PKC-theta as a prototypical member of the family and use molecular dynamics simulations to investigate the cross-talk that exists between regulatory and functional sites. We first show how the apo-unphosphorylated form of the kinase is populating a conformational space in which access to the ATP binding site and to the activation loop (AL) are simultaneously hindered. This could explain why the inactive state is not only catalytically incompetent but also resistant to activation. AL phosphorylation induces ATP binding site opening, which can then readily accept the cofactor. But the signal transmission mechanism works both ways, and if ligand binding to the unphosphorylated form occurs first, the AL is de-protected and becomes exposed to phosphorylation, thus providing an explanation for the paradoxical activation of PKCs by their inhibitors.
Collapse
Affiliation(s)
- Jesus Seco
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
58
|
Fröhner W, Lopez-Garcia LA, Neimanis S, Weber N, Navratil J, Maurer F, Stroba A, Zhang H, Biondi RM, Engel M. 4-benzimidazolyl-3-phenylbutanoic acids as novel PIF-pocket-targeting allosteric inhibitors of protein kinase PKCζ. J Med Chem 2011; 54:6714-23. [PMID: 21863889 DOI: 10.1021/jm2005892] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein kinase inhibitors with an allosteric mode of action are expected to reach, in many cases, higher selectivity for the target enzyme than ATP-competitive compounds. Therefore, basic research is aiming at identifying and establishing novel sites on the catalytic domain of protein kinases which might be targeted by allosteric inhibitors. We previously published the first structure-activity relationships (SARs) for allosteric activators of protein kinase PDK1. Here, we present the design, synthesis, and SAR data on a series of novel compounds, 4-benzimidazolyl-3-phenylbutanoic acids, that inhibit the atypical protein kinace C (PKC) ζ via binding to the PIF-pocket. Key positions were identified in the compounds that can be modified to increase potency and selectivity. Some congeners showed a high selectivity toward PKCζ, lacking inhibition of the most closely related isoform, PKCι, and of further AGC kinases. Furthermore, evidence is provided that these compounds are also active toward cellular PKCζ without loss of potency compared to the cell-free assay.
Collapse
Affiliation(s)
- Wolfgang Fröhner
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Shearn CT, Fritz KS, Reigan P, Petersen DR. Modification of Akt2 by 4-Hydroxynonenal Inhibits Insulin-Dependent Akt Signaling in HepG2 Cells. Biochemistry 2011; 50:3984-96. [DOI: 10.1021/bi200029w] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. T. Shearn
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - K. S. Fritz
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - P. Reigan
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| |
Collapse
|
60
|
de Keizer PLJ, Burgering BMT, Dansen TB. Forkhead box o as a sensor, mediator, and regulator of redox signaling. Antioxid Redox Signal 2011; 14:1093-106. [PMID: 20626320 DOI: 10.1089/ars.2010.3403] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The forkhead box O (FOXO) family of transcription factors regulates a variety of cellular programs, including cell cycle arrest, reactive oxygen species (ROS) scavenging, and apoptosis, and are of key importance in the decision over cell fate. In animal model systems it has been shown that FOXO is involved in the regulation of long lifespan. FOXO activity is tightly controlled by the insulin signaling pathway and by a multitude of ROS-induced posttranslational modifications. In the cell, ROS levels can be sensed by virtue of stimulatory and inhibitory oxidative modification of cysteine residues within proteins that control various signaling cascades. Recently, it was shown that cysteines in FOXO can also act as sensors of the local redox state. In this review we have outlined the cysteine-dependent redox switches that regulate both the insulin and ROS signaling pathways upstream of FOXO. Further, we describe how FOXO controls ROS levels by transcriptional regulation of a multilayered antioxidant system. Finally, we will discuss how cysteine-based redox signaling to FOXO could play a role in fine-tuning the optimal cellular response to ROS to control organismal lifespan.
Collapse
Affiliation(s)
- Peter L J de Keizer
- Department of Physiological Chemistry, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
61
|
Abstract
Transcription factors are the common convergence points of signal transduction pathways to affect gene transcription. Signal transduction activity results in posttranslational modification (PTM) of transcription factors and the sum of these modifications at any given time point will determine the action of the transcription factor. It has been suggested that these PTMs provide a transcription factor code analogous to the histone code. However, the number and variety of these modifications and the lack of knowledge in general of their dynamics precludes at present a concise view of how combinations of PTMs affect transcription factor function. Also, a single type of PTM such as phosphorylation can have opposing effects on transcription factor activity. Transcription factors of the Forkhead box O (FOXO) class are predominantly regulated through signaling, by phosphoinositide 3-kinase/protein kinase B (also known as AKT) pathway and a reactive oxygen species/c-Jun N-terminal kinase pathway. Both pathways result in increased FOXO phosphorylation yet with opposing result. Whereas PKB-mediated phosphorylation inactivates FOXO, c-Jun N-terminal kinase-mediated phosphorylation results in activation of FOXO. Here we discuss regulation of FOXO transcription factors by phosphorylation as an example for understanding integration of signal transduction at the level of transcription activity.
Collapse
|
62
|
Kikani CK, Antonysamy SA, Bonanno JB, Romero R, Zhang FF, Russell M, Gheyi T, Iizuka M, Emtage S, Sauder JM, Turk BE, Burley SK, Rutter J. Structural bases of PAS domain-regulated kinase (PASK) activation in the absence of activation loop phosphorylation. J Biol Chem 2010; 285:41034-43. [PMID: 20943661 DOI: 10.1074/jbc.m110.157594] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) is an evolutionary conserved protein kinase that coordinates cellular metabolism with metabolic demand in yeast and mammals. The molecular mechanisms underlying PASK regulation, however, remain unknown. Herein, we describe a crystal structure of the kinase domain of human PASK, which provides insights into the regulatory mechanisms governing catalysis. We show that the kinase domain adopts an active conformation and has catalytic activity in vivo and in vitro in the absence of activation loop phosphorylation. Using site-directed mutagenesis and structural comparison with active and inactive kinases, we identified several key structural features in PASK that enable activation loop phosphorylation-independent activity. Finally, we used combinatorial peptide library screening to determine that PASK prefers basic residues at the P-3 and P-5 positions in substrate peptides. Our results describe the key features of the PASK structure and how those features are important for PASK activity and substrate selection.
Collapse
Affiliation(s)
- Chintan K Kikani
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Wu WI, Voegtli WC, Sturgis HL, Dizon FP, Vigers GPA, Brandhuber BJ. Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One 2010; 5:e12913. [PMID: 20886116 PMCID: PMC2944833 DOI: 10.1371/journal.pone.0012913] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 08/24/2010] [Indexed: 11/18/2022] Open
Abstract
AKT1 (NP_005154.2) is a member of the serine/threonine AGC protein kinase family involved in cellular metabolism, growth, proliferation and survival. The three human AKT isozymes are highly homologous multi-domain proteins with both overlapping and distinct cellular functions. Dysregulation of the AKT pathway has been identified in multiple human cancers. Several clinical trials are in progress to test the efficacy of AKT pathway inhibitors in treating cancer. Recently, a series of AKT isozyme-selective allosteric inhibitors have been reported. They require the presence of both the pleckstrin-homology (PH) and kinase domains of AKT, but their binding mode has not yet been elucidated. We present here a 2.7 Å resolution co-crystal structure of human AKT1 containing both the PH and kinase domains with a selective allosteric inhibitor bound in the interface. The structure reveals the interactions between the PH and kinase domains, as well as the critical amino residues that mediate binding of the inhibitor to AKT1. Our work also reveals an intricate balance in the enzymatic regulation of AKT, where the PH domain appears to lock the kinase in an inactive conformation and the kinase domain disrupts the phospholipid binding site of the PH domain. This information advances our knowledge in AKT1 structure and regulation, thereby providing a structural foundation for interpreting the effects of different classes of AKT inhibitors and designing selective ones.
Collapse
Affiliation(s)
- Wen-I Wu
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Walter C. Voegtli
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Hillary L. Sturgis
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Faith P. Dizon
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Guy P. A. Vigers
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Barbara J. Brandhuber
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
64
|
Cheng S, Niv MY. Molecular Dynamics Simulations and Elastic Network Analysis of Protein Kinase B (Akt/PKB) Inactivation. J Chem Inf Model 2010; 50:1602-10. [DOI: 10.1021/ci100076j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shu Cheng
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Masha Y. Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 76100, Israel
| |
Collapse
|
65
|
Wei L, Gao X, Warne R, Hao X, Bussiere D, Gu XJ, Uno T, Liu Y. Design and synthesis of benzoazepin-2-one analogs as allosteric binders targeting the PIF pocket of PDK1. Bioorg Med Chem Lett 2010; 20:3897-902. [PMID: 20627557 DOI: 10.1016/j.bmcl.2010.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 11/26/2022]
Abstract
A novel series of benzoazepin-2-ones were designed and synthesized targeting the PIF pocket of AGC protein kinases, among which a series of thioether-linked benzoazepin-2-ones were discovered to bind to the PIF pocket of 3-phosphoinositide-dependent kinase-1 (PDK1), and to displace the PIF peptide with an EC(50) values in the lower micromolar range. The structure-activity relationships (SARs) of the linker region, tail region, and distal region were explored to further optimize these novel binders which target the PIF pocket of PDK1. When tested in an in vitro PDK1 enzymatic assay using a peptide substrate, the benzodiazepin-2-ones increased the activity of the enzyme in a concentration-dependent fashion, indicating these compounds act as PDK1 allosteric activators. These new compounds may be further developed as therapeutic agents for the treatment of diseases where the PDK1-mediated AGC protein kinases are dysregulated.
Collapse
Affiliation(s)
- Linyi Wei
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Lee JY, Lee YG, Lee J, Yang KJ, Kim AR, Kim JY, Won MH, Park J, Yoo BC, Kim S, Cho WJ, Cho JY. Akt Cys-310-targeted inhibition by hydroxylated benzene derivatives is tightly linked to their immunosuppressive effects. J Biol Chem 2010; 285:9932-9948. [PMID: 20054000 DOI: 10.1074/jbc.m109.074872] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydroxylated benzene metabolite hydroquinone (HQ) is mainly generated from benzene, an important industrial chemical, and is also a common dietary component. Although numerous reports have addressed the tumorigenesis-inducing effects of HQ, few papers have explored its molecular regulatory mechanism in immunological responses. In this study we characterized Akt (protein kinase B)-targeted regulation by HQ and its derivatives, in suppressing inflammatory responses using cellular, molecular, biochemical, and immunopharmacological approaches. HQ down-regulated inflammatory responses such as NO production, surface levels of pattern recognition receptors, and cytokine gene expression with IC(50) values that ranged from 5 to 10 microm. HQ inhibition was mediated by blocking NF-kappaB activation via suppression of its translocation pathway, which is composed of Akt, I kappaB alpha kinase beta, and I kappaB alpha. Of the targets in this pathway, HQ directly targeted and bound to the sulfhydryl group of Cys-310 of Akt and sequentially interrupted the phosphorylation of both Thr-308 and Ser-473 by mediation of beta-mercaptoethanol, according to the liquid chromatography/mass spectroscopy analysis of the interaction of HQ with an Akt-derived peptide. Therefore, our data suggest that Akt and its target site Cys-310 can be considered as a prime molecular target of HQ-mediated immunosuppression and for novel anti-Akt-targeted immunosuppressive drugs.
Collapse
Affiliation(s)
- Ji Yeon Lee
- School of Bioscience and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701
| | - Yong Gyu Lee
- School of Bioscience and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul 156-756
| | - Keum-Jin Yang
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, College of Medicine, Chungnam National University, Daejeon 310-010
| | - Ae Ra Kim
- School of Bioscience and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701
| | - Joo Young Kim
- School of Bioscience and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701
| | - Moo-Ho Won
- Department of Anatomy and Neurobiology and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chucheon 200-702
| | - Jongsun Park
- Department of Pharmacology, Daejeon Regional Cancer Center, Cancer Research Institute, College of Medicine, Chungnam National University, Daejeon 310-010
| | - Byong Chul Yoo
- Research Institute and Hospital, National Cancer Center, Goyang 410-769
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 151-741
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Kwangju 500-757, Korea
| | - Jae Youl Cho
- School of Bioscience and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701.
| |
Collapse
|
67
|
Steichen JM, Iyer GH, Li S, Saldanha SA, Deal MS, Woods VL, Taylor SS. Global consequences of activation loop phosphorylation on protein kinase A. J Biol Chem 2009; 285:3825-3832. [PMID: 19965870 PMCID: PMC2823524 DOI: 10.1074/jbc.m109.061820] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation of the activation loop is one of the most common mechanisms for regulating protein kinase activity. The catalytic subunit of cAMP-dependent protein kinase autophosphorylates Thr(197) in the activation loop when expressed in Escherichia coli. Although mutation of Arg(194) to Ala prevents autophosphorylation, phosphorylation of Thr(197) can still be achieved by a heterologous protein kinase, phosphoinositide-dependent protein kinase (PDK1), in vitro. In this study, we examined the structural and functional consequences of adding a single phosphate to the activation loop of cAMP-dependent protein kinase by comparing the wild type C-subunit to the R194A mutant either in the presence or the absence of activation loop phosphorylation. Phosphorylation of Thr(197) decreased the K(m) by approximately 15- and 7-fold for kemptide and ATP, respectively, increased the stability of the enzyme as measured by fluorescence and circular dichroism, and enhanced the binding between the C-subunit and IP20, a protein kinase inhibitor peptide. Additionally, deuterium exchange coupled to mass spectrometry was used to compare the structural dynamics of these proteins. All of the regions of the C-subunit analyzed underwent amide hydrogen exchange at a higher or equal rate in the unphosphorylated enzyme compared with the phosphorylated enzyme. The largest changes occurred at the C terminus of the activation segment in the p + 1 loop/APE regions and the alphaH-alphaI loop motifs and leads to the prediction of a coordinated phosphorylation-induced salt bridge between two conserved residues, Glu(208) and Arg(280).
Collapse
Affiliation(s)
- Jon M Steichen
- From the Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Ganesh H Iyer
- From the Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Sheng Li
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | - S Adrian Saldanha
- From the Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Michael S Deal
- From the Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Virgil L Woods
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | - Susan S Taylor
- From the Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Departments of Pharmacology, University of California, San Diego, La Jolla, California 92093; the Departments of Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
68
|
Fan SW, George RA, Haworth NL, Feng LL, Liu JY, Wouters MA. Conformational changes in redox pairs of protein structures. Protein Sci 2009; 18:1745-65. [PMID: 19598234 PMCID: PMC2776962 DOI: 10.1002/pro.175] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Disulfides are conventionally viewed as structurally stabilizing elements in proteins but emerging evidence suggests two disulfide subproteomes exist. One group mediates the well known role of structural stabilization. A second redox-active group are best known for their catalytic functions but are increasingly being recognized for their roles in regulation of protein function. Redox-active disulfides are, by their very nature, more susceptible to reduction than structural disulfides; and conversely, the Cys pairs that form them are more susceptible to oxidation. In this study, we searched for potentially redox-active Cys Pairs by scanning the Protein Data Bank for structures of proteins in alternate redox states. The PDB contains over 1134 unique redox pairs of proteins, many of which exhibit conformational differences between alternate redox states. Several classes of structural changes were observed, proteins that exhibit: disulfide oxidation following expulsion of metals such as zinc; major reorganisation of the polypeptide backbone in association with disulfide redox-activity; order/disorder transitions; and changes in quaternary structure. Based on evidence gathered supporting disulfide redox activity, we propose disulfides present in alternate redox states are likely to have physiologically relevant redox activity.
Collapse
Affiliation(s)
- Samuel W Fan
- Structural and Computational Biology Program, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | |
Collapse
|
69
|
Scholz R, Suter M, Weimann T, Polge C, Konarev PV, Thali RF, Tuerk RD, Viollet B, Wallimann T, Schlattner U, Neumann D. Homo-oligomerization and activation of AMP-activated protein kinase are mediated by the kinase domain alphaG-helix. J Biol Chem 2009; 284:27425-37. [PMID: 19651772 PMCID: PMC2785672 DOI: 10.1074/jbc.m109.047670] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/22/2009] [Indexed: 01/12/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a heterotrimeric complex playing a crucial role in maintaining cellular energy homeostasis. Recently, homodimerization of mammalian AMPK and yeast ortholog SNF1 was shown by us and others. In SNF1, it involved specific hydrophobic residues in the kinase domain alphaG-helix. Mutation of the corresponding AMPK alpha-subunit residues (Val-219 and Phe-223) to glutamate reduced the tendency of the kinase to form higher order homo-oligomers, as was determined by the following three independent techniques in vitro: (i) small angle x-ray scattering, (ii) surface plasmon resonance spectroscopy, and (iii) two-dimensional blue native/SDS-PAGE. Recombinant protein as well as AMPK in cell lysates of primary cells revealed distinct complexes of various sizes. In particular, the assembly of very high molecular mass complexes was dependent on both the alphaG-helix-mediated hydrophobic interactions and kinase activation. In vitro and when overexpressed in double knock-out (alpha1(-/-), alpha2(-/-)) mouse embryonic fibroblast cells, activation of mutant AMPK was impaired, indicating a critical role of the alphaG-helix residues for AMPK activation via its upstream kinases. Also inactivation by protein phosphatase 2Calpha was affected in mutant AMPK. Importantly, activation of mutant AMPK by LKB1 was restored by exchanging the corresponding and conserved hydrophobic alphaG-helix residues of LKB1 (Ile-260 and Phe-264) to positively charged amino acids. These mutations functionally rescued LKB1-dependent activation of mutant AMPK in vitro and in cell culture. Our data suggest a physiological role for the hydrophobic alphaG-helix residues in homo-oligomerization of heterotrimers and cellular interactions, in particular with upstream kinases, indicating an additional level of AMPK regulation.
Collapse
Affiliation(s)
- Roland Scholz
- From the Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Marianne Suter
- From the Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Théodore Weimann
- INSERM U884, Laboratory of Fundamental and Applied Bioenergetics, University Joseph Fourier, F-38041 Grenoble, France
| | - Cécile Polge
- INSERM U884, Laboratory of Fundamental and Applied Bioenergetics, University Joseph Fourier, F-38041 Grenoble, France
| | - Petr V. Konarev
- EMBL, DESY, 22603 Hamburg, Germany and the Institute of Crystallography, Russian Academy of Sciences, 117333 Moscow, Russia
| | - Ramon F. Thali
- From the Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Roland D. Tuerk
- From the Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Benoit Viollet
- the Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 75014 Paris, France, and
- the **Institute Cochin IC, INSERM U567, 75014 Paris, France
| | - Theo Wallimann
- From the Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Uwe Schlattner
- INSERM U884, Laboratory of Fundamental and Applied Bioenergetics, University Joseph Fourier, F-38041 Grenoble, France
| | - Dietbert Neumann
- From the Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
70
|
Dettori R, Sonzogni S, Meyer L, Lopez-Garcia LA, Morrice NA, Zeuzem S, Engel M, Piiper A, Neimanis S, Frödin M, Biondi RM. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1). J Biol Chem 2009; 284:30318-27. [PMID: 19723632 DOI: 10.1074/jbc.m109.051151] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The members of the AGC kinase family frequently exhibit three conserved phosphorylation sites: the activation loop, the hydrophobic motif (HM), and the zipper (Z)/turn-motif (TM) phosphorylation site. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates the activation loop of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do not apply for other AGC kinases.
Collapse
Affiliation(s)
- Rosalia Dettori
- Department of Internal Medicine I, Research Group PhosphoSites, Johann Wolfgang Goethe University Hospital, D-60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Hindie V, Stroba A, Zhang H, Lopez-Garcia LA, Idrissova L, Zeuzem S, Hirschberg D, Schaeffer F, Jørgensen TJD, Engel M, Alzari PM, Biondi RM. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1. Nat Chem Biol 2009; 5:758-64. [DOI: 10.1038/nchembio.208] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/24/2009] [Indexed: 02/07/2023]
|
72
|
Guo M, Huang BX, Kim HY. Conformational changes in Akt1 activation probed by amide hydrogen/deuterium exchange and nano-electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1885-91. [PMID: 19462409 PMCID: PMC2752348 DOI: 10.1002/rcm.4085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Amide hydrogen exchange coupled to nano-electrospray ionization mass spectrometry (nano-ESI-MS) has been used to identify and characterize localized conformational changes of Akt upon activation. Active or inactive Akt was incubated in D(2)O buffer, digested with pepsin, and analyzed by nano-ESI-MS to determine the deuterium incorporation. The hydrogen/deuterium (H/D) exchange profiles revealed that Akt undergoes considerable conformational changes in the core structures of all three individual domains after activation. In the PH domain, four beta-strand (beta1, beta2 beta5 and beta6) regions containing membrane-binding residues displayed higher solvent accessibility in the inactive state, suggesting that the PH domain is readily available for the binding to the plasma membrane for activation. In contrast, these beta-strands became less exposed or more folded in the active form, which is favored for the dissociation of Akt from the membrane. The beginning alpha-helix J region and the C-terminal locus (T450-470P) of the regulatory domain showed less folded structures that probably enable substrate entry. Our data also revealed detailed conformational changes of Akt in the kinase domain due to activation, some of which may be attributed to the interaction of the basic residues with phosphorylation sites. Our H/D exchange results indicating the conformational status of Akt at different activation states provided new insight for the regulation of this critical protein involved in cell survival.
Collapse
Affiliation(s)
- Mingquan Guo
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, USA
| | - Bill X. Huang
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, USA
| |
Collapse
|
73
|
Cameron AJM, Escribano C, Saurin AT, Kostelecky B, Parker PJ. PKC maturation is promoted by nucleotide pocket occupation independently of intrinsic kinase activity. Nat Struct Mol Biol 2009; 16:624-30. [PMID: 19465915 DOI: 10.1038/nsmb.1606] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 04/13/2009] [Indexed: 11/09/2022]
Abstract
The protein kinase C (PKC) Ser/Thr kinases account for approximately 2% of the human kinome and regulate diverse cellular behaviors. PKC catalytic activity requires priming phosphorylations at three conserved sites within the kinase domain. Here we demonstrate that priming of PKC is dependent on the conformation of the nucleotide binding pocket but not on its intrinsic kinase activity. Inactive ATP binding site mutants are unprimed, but they become phosphorylated upon occupancy of the ATP binding pocket with inhibitors of PKC. We have exploited this property to screen for PKC inhibitors in vivo. Further, we generated a distinct class of kinase-inactive mutants that maintain the integrity of the ATP binding pocket; such mutants are constitutively primed and functionally distinct from ATP binding site mutants. These data demonstrate that autophosphorylation is not required for PKC priming and show how ATP pocket occupation can enable a kinase to mature as well as function.
Collapse
Affiliation(s)
- Angus J M Cameron
- Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | | | | | | | |
Collapse
|
74
|
Salaski EJ, Krishnamurthy G, Ding WD, Yu K, Insaf SS, Eid C, Shim J, Levin JI, Tabei K, Toral-Barza L, Zhang WG, McDonald LA, Honores E, Hanna C, Yamashita A, Johnson B, Li Z, Laakso L, Powell D, Mansour TS. Pyranonaphthoquinone lactones: a new class of AKT selective kinase inhibitors alkylate a regulatory loop cysteine. J Med Chem 2009; 52:2181-4. [PMID: 19309081 DOI: 10.1021/jm900075g] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The naturally occurring pyranonaphthoquinone (PNQ) antibiotic lactoquinomycin and related aglycones were found to be selective inhibitors of the serine-threonine kinase AKT. A set of synthetic PNQs were prepared and a minimum active feature set and preliminary SAR were determined. PNQ lactones inhibit the proliferation of human tumor cell lines containing constitutively activated AKT and show expected effects on cellular biomarkers. Biochemical data are presented supporting a proposed bioreductive alkylation mechanism of action.
Collapse
Affiliation(s)
- Edward J Salaski
- Departments of Chemical & Screening Sciences and Oncology, Wyeth Research, 401 North Middletown Road, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
3-D structure and dynamics of protein kinase B-new mechanism for the allosteric regulation of an AGC kinase. J Chem Biol 2009; 2:11-25. [PMID: 19568789 DOI: 10.1007/s12154-009-0016-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 12/11/2022] Open
Abstract
New developments regarding the structure and in vivo dynamics of protein kinase B (PKB/Akt) have been recently exposed. Here, we specifically review how the use of multi-disciplinary approaches has resulted in reaching the recent progress made to relate the quaternary structure of PKB to its in vivo function. Using X-ray crystallography, the structure of PKB pleckstrin homology (PH) and kinase domains was determined separately. The molecular mechanisms involved in (a) the binding of the phosphoinositides to the PH domain and (b) the activation of the kinase with the rearrangement of the catalytic site and substrate binding were determined. In vitro, nuclear magnetic resonance and circular dychroism studies gave complementary information on the interaction of the PH domain with the phosphoinositides. However, the molecular nature and the function of the interactions between the PKB domains could not be deduced from the X-ray data since the full-length PKB has not been crystallised. In vitro, dynamic information on the inter-domain conformational changes related to PKB activation states emerged with the use of tandem mass spectrometry. Cell imaging and Förster resonance energy transfer provided in vivo dynamics. Molecular modelling and dynamic simulations in conjunction with mutagenesis and biochemical analysis were used to investigate the complex interactions between the PKB domains in vivo and understand at the molecular level how it linked to its activity. The compilation of the information obtained on the 3-D structure and the spatiotemporal dynamics of this widely studied oncogene could be applied to the study of other proteins. This inter-disciplinary approach led to a more profound understanding of PKB complex activation mechanism in vivo that will shed light onto new ideas and possibilities for modulating its activity.
Collapse
|
76
|
Volonté C, D'Ambrosi N, Amadio S. Protein cooperation: from neurons to networks. Prog Neurobiol 2008; 86:61-71. [PMID: 18722498 DOI: 10.1016/j.pneurobio.2008.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 07/28/2008] [Indexed: 12/30/2022]
Abstract
A constant pattern through the development of cellular life is that not only cells but also subcellular components such as proteins, either being enzymes, receptors, signaling or structural proteins, strictly cooperate. Discerning how protein cooperation originated and propagates over evolutionary time, how proteins work together to a shared outcome far beyond mere interaction, thus represents a theoretical and experimental challenge for evolutionary, molecular, and computational biology, and a timely fruition also for biotechnology. In this review, we describe some basic principles sustaining not only cellular but especially protein cooperative behavior, with particular emphasis on neurobiological systems. We illustrate experimental results and numerical models substantiating that bench research, as well as computer analysis, indeed concurs in recognizing the natural propensity of proteins to cooperate. At the cellular level, we exemplify network connectivity in the thalamus, hippocampus and basal ganglia. At the protein level, we depict numerical models about the receptosome, the protein machinery connecting neurotransmitters or growth factors to specific, unique downstream effector proteins. We primarily focus on the purinergic P2/P1 receptor systems for extracellular purine and pyrimidine nucleotides/nucleosides. By spanning concepts such as single-molecule biology to membrane computing, we seek to stimulate a scientific debate on the implications of protein cooperation in neurobiological systems.
Collapse
Affiliation(s)
- Cinzia Volonté
- Santa Lucia Foundation/CNR, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | | | | |
Collapse
|
77
|
Toral-Barza L, Zhang WG, Huang X, McDonald LA, Salaski EJ, Barbieri LR, Ding WD, Krishnamurthy G, Hu YB, Lucas J, Bernan VS, Cai P, Levin JI, Mansour TS, Gibbons JJ, Abraham RT, Yu K. Discovery of lactoquinomycin and related pyranonaphthoquinones as potent and allosteric inhibitors of AKT/PKB: mechanistic involvement of AKT catalytic activation loop cysteines. Mol Cancer Ther 2007; 6:3028-38. [PMID: 17989320 DOI: 10.1158/1535-7163.mct-07-0211] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The serine/threonine kinase AKT/PKB plays a critical role in cancer and represents a rational target for therapy. Although efforts in targeting AKT pathway have accelerated in recent years, relatively few small molecule inhibitors of AKT have been reported. The development of selective AKT inhibitors is further challenged by the extensive conservation of the ATP-binding sites of the AGC kinase family. In this report, we have conducted a high-throughput screen for inhibitors of activated AKT1. We have identified lactoquinomycin as a potent inhibitor of AKT kinases (AKT1 IC(50), 0.149 +/- 0.045 micromol/L). Biochemical studies implicated a novel irreversible interaction of the inhibitor and AKT involving a critical cysteine residue(s). To examine the role of conserved cysteines in the activation loop (T-loop), we studied mutant AKT1 harboring C296A, C310A, and C296A/C310A. Whereas the ATP-pocket inhibitor, staurosporine, indiscriminately targeted the wild-type and all three mutant-enzymes, the inhibition by lactoquinomycin was drastically diminished in the single mutants C296A and C310A, and completely abolished in the double mutant C296A/C310A. These data strongly implicate the binding of lactoquinomycin to the T-loop cysteines as critical for abrogation of catalysis, and define an unprecedented mechanism of AKT inhibition by a small molecule. Lactoquinomycin inhibited cellular AKT substrate phosphorylation induced by growth factor, loss of PTEN, and myristoylated AKT. The inhibition was substantially attenuated by coexpression of C296A/C310A. Moreover, lactoquinomycin reduced cellular mammalian target of rapamycin signaling and cap-dependent mRNA translation initiation. Our results highlight T-loop targeting as a new strategy for the generation of selective AKT inhibitors.
Collapse
|
78
|
Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Substrate and docking interactions in serine/threonine protein kinases. Chem Rev 2007; 107:5065-81. [PMID: 17949044 PMCID: PMC4012561 DOI: 10.1021/cr068221w] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elizabeth J Goldsmith
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA.
| | | | | | | | | |
Collapse
|
79
|
Malorni W, Campesi I, Straface E, Vella S, Franconi F. Redox features of the cell: a gender perspective. Antioxid Redox Signal 2007; 9:1779-801. [PMID: 17822369 DOI: 10.1089/ars.2007.1596] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse subcellular activities, including cell proliferation,differentiation and, in some instances, cell injury and death. The implications of reactive species inhuman pathology have also been studied in detail. However, although the role of free radicals in the pathogenesis of human diseases has been extensively analyzed in different systems (i.e., in vitro, ex vivo, and in vivo),it is still far from elucidated. In particular, the possible role of gender 4 differences in human pathophysiology associated with reactive species is a promising new field of investigation. Although the complex scenario this presents is still incomplete, important gender-associated "redox features" of cells have already been described in the literature. Here we summarize the different aspects of redox-associated molecules and enzymes in regard to gender differences in terms of the intracellular production and biochemical activity of reactive species. These are often associated with the pathogenetic mechanisms underlying several human morbidities(e.g., degenerative diseases) and can represent a specific target for new pharmacologic strategies. Gender differences may thus pose an important challenge for future studies aimed at the clinical management of diseases characterized by a redox imbalance.
Collapse
Affiliation(s)
- Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy.
| | | | | | | | | |
Collapse
|
80
|
Ikuta M, Kornienko M, Byrne N, Reid JC, Mizuarai S, Kotani H, Munshi SK. Crystal structures of the N-terminal kinase domain of human RSK1 bound to three different ligands: Implications for the design of RSK1 specific inhibitors. Protein Sci 2007; 16:2626-35. [PMID: 17965187 DOI: 10.1110/ps.073123707] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The p90 ribosomal S6 kinases (RSKs) also known as MAPKAP-Ks are serine/threonine protein kinases that are activated by ERK or PDK1 and act as downstream effectors of mitogen-activated protein kinase (MAPK). RSK1, a member of the RSK family, contains two distinct kinase domains in a single polypeptide chain, the regulatory C-terminal kinase domain (CTKD) and the catalytic N-terminal kinase domain (NTKD). Autophosphorylation of the CTKD leads to activation of the NTKD that subsequently phosphorylates downstream substrates. Here we report the crystal structures of the unactivated RSK1 NTKD bound to different ligands at 2.0 A resolution. The activation loop and helix alphaC, key regulatory elements of kinase function, are disordered. The DFG motif of the inactive RSK1 adopts an "active-like" conformation. The beta-PO(4) group in the AMP-PCP complex adopts a unique conformation that may contribute to inactivity of the enzyme. Structures of RSK1 ligand complexes offer insights into the design of novel anticancer agents and into the regulation of the catalytic activity of RSKs.
Collapse
Affiliation(s)
- Mari Ikuta
- Department of Structural Biology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA. mari_ikuta@.merck.com
| | | | | | | | | | | | | |
Collapse
|
81
|
Zhao B, Lehr R, Smallwood AM, Ho TF, Maley K, Randall T, Head MS, Koretke KK, Schnackenberg CG. Crystal structure of the kinase domain of serum and glucocorticoid-regulated kinase 1 in complex with AMP PNP. Protein Sci 2007; 16:2761-9. [PMID: 17965184 DOI: 10.1110/ps.073161707] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine protein kinase of the AGC family which participates in the control of epithelial ion transport and is implicated in proliferation and apoptosis. We report here the 1.9 A crystal structure of the catalytic domain of inactive human SGK1 in complex with AMP-PNP. SGK1 exists as a dimer formed by two intermolecular disulfide bonds between Cys258 in the activation loop and Cys193. Although most of the SGK1 structure closely resembles the common protein kinase fold, the structure around the active site is unique when compared to most protein kinases. The alphaC helix is not present in this inactive form of SGK1 crystal structure; instead, the segment corresponding to the C helix forms a beta-strand that is stabilized by the N-terminal segment of the activation loop through a short antiparallel beta-sheet. Since the differences from other kinases occur around the ATP binding site, this structure can provide valuable insight into the design of selective and highly potent ATP-competitive inhibitors of SGK1 kinase.
Collapse
Affiliation(s)
- Baoguang Zhao
- Department of Computational and Structural Chemistry, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
|
83
|
Zhang M, Fang X, Liu H, Guo R, Wu X, Li B, Zhu F, Ling Y, Griffith BN, Wang S, Yang D. Bioinformatics-based discovery and characterization of an AKT-selective inhibitor 9-chloro-2-methylellipticinium acetate (CMEP) in breast cancer cells. Cancer Lett 2007; 252:244-58. [PMID: 17293030 DOI: 10.1016/j.canlet.2006.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Accepted: 12/27/2006] [Indexed: 01/07/2023]
Abstract
AKT is a promising target for anticancer drug development. In this work, a bioinformatics approach was applied to search for AKT inhibitors based on the correlation analysis between phospho-Ser473 AKT expression level and the antiproliferative data of NCI small molecule compounds against NCI 60 cancer cell lines, the candidate compounds were then subject to AKT kinase assay. The possible effects of potent compound on PI3K/AKT, PDK1, and MAPK, its antiproliferative and apoptosis-inducing effects on breast cancer cells which have high-levels of AKT activation were assessed by Western blot analysis, cell viability assay, and apoptosis assay. One compound, CMEP (NSC632855, 9-chloro-2-methylellipticinium acetate) was identified with all three correlation algorithm, Pearson's, Sperman's, and Kendall's, showing a high-ranked correlation coefficient. CMEP inhibits only AKT, but does not inhibit PI3K, PDK1, or MAPK. CMEP also inhibits heregulin-induced AKT activation, does not inhibit heregulin-induced MAPK activation in MCF-7 breast cancer cells. Increased concentrations of ATP reverse the AKT inhibitory effect of CMEP. CMEP inhibits growth and induces apoptosis in breast cancer cells which have high-levels of AKT activation and lack functional PTEN; however, CMEP only shows a minimal activity in NIH3T3 cells which do not have AKT activation. In conclusion, a lead compound CMEP, as an AKT selective inhibitor has been identified started with a bioinformatics-based approach. CMEP inhibits growth and induces apoptosis in cancer cells which have high-levels of AKT activation and lack PTEN or harbor PTEN mutation.
Collapse
Affiliation(s)
- Manchao Zhang
- Department of Biochemistry and Molecular Pharmacology, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506-9142, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Wang J, Pan S, Berk BC. Glutaredoxin Mediates Akt and eNOS Activation by Flow in a Glutathione Reductase-Dependent Manner. Arterioscler Thromb Vasc Biol 2007; 27:1283-8. [PMID: 17431186 DOI: 10.1161/atvbaha.107.144659] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
The glutathione (GSH)/glutaredoxin (Grx) system regulates activities of many redox sensitive enzymes. This system has been shown to protect cells from hydrogen peroxide–induced apoptosis by regulating the redox state of Akt. Grx can be regulated by redox state; the oxidized Grx is selectively recycled to the reduced form by GSH. Flow can maintain endothelial cells in a reduced state by activating glutathione reductase (GR) and increasing the GSH/GSSG ratio. Because steady laminar flow exerts an antioxidant effect, we hypothesized that Grx mediates flow induced Akt and eNOS phosphorylation in a GR dependent manner.
Methods and Results—
Exposure of endothelial cells (ECs) to physiological steady laminar flow (shear stress=12 dyn/cm
2
) for 5 minutes significantly increased Grx activity (1.9±0.2-fold), and also increased Akt and eNOS phosphorylation. Overexpression of GFP-GR in ECs significantly increased Grx activity by 1.6±0.1-fold. Pretreatment with the GR inhibitor 1,3-bis[2-chloroethyl]-1-nitrosourea (BCNU) for 30 minutes dramatically reduced Grx activity and inhibited the increase in Akt and eNOS phosphorylation induced by flow. Overexpression of wild-type Grx in ECs increased both Akt and eNOS phosphorylation. In contrast, a mutated Grx (C22S/C25S), which lacks thioltransferase activity, had no effect. Therefore, flow-induced Akt and eNOS phosphorylation depend on Grx thioltransferase activity. Downregulation of Grx by small interfering RNA decreased flow induced Akt and eNOS phosphorylation.
Conclusions—
These data suggest that Grx is an important mediator for flow-induced Akt and eNOS activation, and Grx activity depends on GR-mediated changes in EC redox state.
Collapse
Affiliation(s)
- Jing Wang
- University of Rochester, Cardiovascular Research Institute and Department of Medicine, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | |
Collapse
|
85
|
Venkatesan B, Mahimainathan L, Das F, Ghosh-Choudhury N, Ghosh Choudhury G. Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells. J Cell Physiol 2007; 211:457-67. [PMID: 17186497 DOI: 10.1002/jcp.20953] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) contribute to many glomerular diseases by targeting mesangial cells. ROS have been shown to regulate expression of many antioxidant enzymes including catalase. The mechanism by which the expression of catalase protein is regulated by ROS is not precisely known. Here we report that increased intracellular ROS level by hydrogen peroxide (H(2)O(2)) reduced the expression of catalase. H(2)O(2) increased phosphorylation of Akt kinase in a dose-dependent and sustained manner with a concomitant increase in the phosphorylation of FoxO1 transcription factor. Further analysis revealed that H(2)O(2) promoted rapid activation of phosphatidylinositol (PI) 3 kinase. The PI 3 kinase inhibitor Ly294002 and expression of tumor suppressor protein PTEN inhibited Akt kinase activity, resulting in the attenuation of FoxO1 phosphorylation and preventing the downregulating effect of H(2)O(2) on catalase protein level. Dominant negative Akt attenuated the inhibitory effect of H(2)O(2) on expression of catalase. Constitutively active FoxO1 increased the expression of catalase. However, dominant negative FoxO1 inhibited catalase protein level. Catalase transcription was reduced by H(2)O(2) treatment. Furthermore, expression of dominant negative Akt and constitutively active FoxO1 increased catalase transcription, respectively. These results demonstrate that ROS downregulate the expression of catalase in mesangial cells by PI 3 kinase/Akt signaling via FoxO1 as a target.
Collapse
Affiliation(s)
- Balachandar Venkatesan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | | |
Collapse
|
86
|
Calleja V, Alcor D, Laguerre M, Park J, Vojnovic B, Hemmings BA, Downward J, Parker PJ, Larijani B. Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol 2007; 5:e95. [PMID: 17407381 PMCID: PMC1845162 DOI: 10.1371/journal.pbio.0050095] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/06/2007] [Indexed: 11/30/2022] Open
Abstract
Protein kinase B (PKB/Akt) is a pivotal regulator of diverse metabolic, phenotypic, and antiapoptotic cellular controls and has been shown to be a key player in cancer progression. Here, using fluorescent reporters, we shown in cells that, contrary to in vitro analyses, 3-phosphoinositide-dependent protein kinase 1 (PDK1) is complexed to its substrate, PKB. The use of Förster resonance energy transfer detected by both frequency domain and two-photon time domain fluorescence lifetime imaging microscopy has lead to novel in vivo findings. The preactivation complex of PKB and PDK1 is maintained in an inactive state through a PKB intramolecular interaction between its pleckstrin homology (PH) and kinase domains, in a "PH-in" conformer. This domain-domain interaction prevents the PKB activation loop from being phosphorylated by PDK1. The interactive regions for this intramolecular PKB interaction were predicted through molecular modeling and tested through mutagenesis, supporting the derived model. Physiologically, agonist-induced phosphorylation of PKB by PDK1 occurs coincident to plasma membrane recruitment, and we further shown here that this process is associated with a conformational change in PKB at the membrane, producing a "PH-out" conformer and enabling PDK1 access the activation loop. The active, phosphorylated, "PH-out" conformer can dissociate from the membrane and retain this conformation to phosphorylate substrates distal to the membrane. These in vivo studies provide a new model for the mechanism of activation of PKB. This study takes a crucial widely studied regulator (physiology and pathology) and addresses the fundamental question of the dynamic in vivo behaviour of PKB with a detailed molecular mechanism. This has important implications not only in extending our understanding of this oncogenic protein kinase but also in opening up distinct opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Véronique Calleja
- Cell Biophysics Laboratory, Lincoln's Inn Fields Laboratories, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Damien Alcor
- Cell Biophysics Laboratory, Lincoln's Inn Fields Laboratories, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Michel Laguerre
- Institut Européen de Chimie et Biologie, Pessac Cedex, France
| | - Jongsun Park
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Borivoj Vojnovic
- Advanced Technology Development Group, Gray Cancer Institute, Mount Vernon Hospital, Northwood, United Kingdom
| | - Brian A Hemmings
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Julian Downward
- Signal Transduction Laboratory, Lincoln's Inn Fields Laboratories, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Peter J Parker
- Protein Phosphorylation Laboratory, Lincoln's Inn Fields Laboratories, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Banafshé Larijani
- Cell Biophysics Laboratory, Lincoln's Inn Fields Laboratories, London Research Institute, Cancer Research UK, London, United Kingdom
| |
Collapse
|
87
|
Brognard J, Sierecki E, Gao T, Newton AC. PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms. Mol Cell 2007; 25:917-31. [PMID: 17386267 DOI: 10.1016/j.molcel.2007.02.017] [Citation(s) in RCA: 467] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 08/30/2006] [Accepted: 02/20/2007] [Indexed: 11/24/2022]
Abstract
Akt/protein kinase B controls cell growth, proliferation, and survival. We recently discovered a novel phosphatase PHLPP, for PH domain leucine-rich repeat protein phosphatase, which terminates Akt signaling by directly dephosphorylating and inactivating Akt. Here we describe a second family member, PHLPP2, which also inactivates Akt, inhibits cell-cycle progression, and promotes apoptosis. These phosphatases control the amplitude of Akt signaling: depletion of either isoform increases the magnitude of agonist-evoked Akt phosphorylation by almost two orders of magnitude. Although PHLPP1 and PHLPP2 both dephosphorylate the same residue (hydrophobic phosphorylation motif) on Akt, they differentially terminate Akt signaling by regulating distinct Akt isoforms. Knockdown studies reveal that PHLPP1 specifically modulates the phosphorylation of HDM2 and GSK-3alpha through Akt2, whereas PHLPP2 specifically modulates the phosphorylation of p27 through Akt3. Our data unveil a mechanism to selectively terminate Akt-signaling pathways through the differential inactivation of specific Akt isoforms by specific PHLPP isoforms.
Collapse
Affiliation(s)
- John Brognard
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
88
|
Lee YJ, Lee JH, Han HJ. Extracellular adenosine triphosphate protects oxidative stress-induced increase of p21(WAF1/Cip1) and p27(Kip1) expression in primary cultured renal proximal tubule cells: role of PI3K and Akt signaling. J Cell Physiol 2007; 209:802-10. [PMID: 16972266 DOI: 10.1002/jcp.20763] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oxidative stress, the result of cellular production of reactive oxygen species (ROS), has been implicated in causing many renal diseases. Adenosine triphosphate (ATP) is an important extracellular signal in the regulation of many intracellular processes in normal tubular cells as well as in the pathogenesis of cell injury. This study investigated the effect of ATP on H(2)O(2)-induced increase of cyclin kinase inhibitors (CKI) expression and its related signal molecules in primary cultured renal proximal tubule cells (PTCs). H(2)O(2) inhibited DNA synthesis in a concentration- (>50 microM) and time-dependent manner (>2 h), as determined by thymidine and BrdU incorporation, and by increase in the p21(WAF/Cip1) and p27(Kip1) expression levels. In contrast, ATP increased the level of thymidine, BrdU incorporation (>10(-5) M), and decreased the p21(WAF/Cip1) and p27(Kip1) expression levels, suggesting that ATP has a protective effect against H(2)O(2)-induced oxidative damage. Suramin, reactive blue 2 (RB-2), MRS 2159, and MRS 2179 did block the reversing effect of ATP. In addition, AMP-CPP or 2-methylthio-ATP blocked H(2)O(2)-induced inhibition of DNA synthesis, suggesting all these P2 purinoceptors may be potentially involved. ATP-induced stimulation of DNA synthesis was blocked by phosphatidylinositol 3-kinase (PI3K) and Akt inhibitors. These results suggest the involvement of P2 purinoceptors-mediated PI3K/Akt signal pathway in the protective effect of ATP against H(2)O(2)-induced oxidative damage. Indeed, pre-treatment with PI3K or Akt inhibitors did not protect H(2)O(2)-induced lipid peroxide (LPO) production and inhibition of thymidine incorporation. In conclusion, ATP, in part, blocked H(2)O(2)-induced increase of p21(WAF1/Cip1) and p27(Kip1) expression through PI3K and Akt signal pathway in renal PTCs.
Collapse
Affiliation(s)
- Yun Jung Lee
- Department of Veterinary Physiology, Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea
| | | | | |
Collapse
|
89
|
Kato S, Ding J, Du K. Differential activation of CREB by Akt1 and Akt2. Biochem Biophys Res Commun 2007; 354:1061-6. [PMID: 17276404 DOI: 10.1016/j.bbrc.2007.01.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
Members of Akt family are highly conserved protein kinase and yet, they show clearly distinct in vivo functions. Here, we have examined the abilities of Akt1 and Akt2 to activate CREB. We found that, in contrast to Akt1 that induces CREB phosphorylation at Ser-133 and CREB target gene expression, Akt2 was unable to induce CREB phosphorylation at Ser-133 in vivo and CREB target gene expression. This difference is specific to CREB as both Akt1 and Akt2 similarly inhibits FoxO1 mediated gene expression. We further showed that the regulatory domain of Akt plays a critical role to confer Akt substrate specificity as substitution of regulatory domain of Akt1 with that of Akt2 abolished the ability of Akt1 to activate CREB. We suggest that the regulatory domain of Akts contributes to the functional difference between Akt1 and Akt2.
Collapse
Affiliation(s)
- Satomi Kato
- Molecular Oncology Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | |
Collapse
|
90
|
Engel M, Hindie V, Lopez-Garcia LA, Stroba A, Schaeffer F, Adrian I, Imig J, Idrissova L, Nastainczyk W, Zeuzem S, Alzari PM, Hartmann RW, Piiper A, Biondi RM. Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. EMBO J 2006; 25:5469-80. [PMID: 17110931 PMCID: PMC1679772 DOI: 10.1038/sj.emboj.7601416] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 10/10/2006] [Indexed: 12/12/2022] Open
Abstract
Organisms rely heavily on protein phosphorylation to transduce intracellular signals. The phosphorylation of a protein often induces conformational changes, which are responsible for triggering downstream cellular events. Protein kinases are themselves frequently regulated by phosphorylation. Recently, we and others proposed the molecular mechanism by which phosphorylation at a hydrophobic motif (HM) regulates the conformation and activity of many members of the AGC group of protein kinases. Here we have developed specific, low molecular weight compounds, which target the HM/PIF-pocket and have the ability to allosterically activate phosphoinositide-dependent protein kinase 1 (PDK1) by modulating the phosphorylation-dependent conformational transition. The mechanism of action of these compounds was characterized by mutagenesis of PDK1, synthesis of compound analogs, interaction-displacement studies and isothermal titration calorimetry experiments. Our results raise the possibility of developing drugs that target the AGC kinases via a novel mode of action and may inspire future rational development of compounds with the ability to modulate phosphorylation-dependent conformational transitions in other proteins.
Collapse
Affiliation(s)
- Matthias Engel
- Research Group PhosphoSites, Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Valerie Hindie
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
- Structural Biochemistry Unit, Pasteur Institute, Paris, France
| | - Laura A Lopez-Garcia
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Adriana Stroba
- Research Group PhosphoSites, Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | | | - Iris Adrian
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Jochen Imig
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Leila Idrissova
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | | | - Stefan Zeuzem
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Pedro M Alzari
- Structural Biochemistry Unit, Pasteur Institute, Paris, France
| | - Rolf W Hartmann
- Research Group PhosphoSites, Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Albrecht Piiper
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Ricardo M Biondi
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Kirrbergerstr., Homburg 66421, Germany. Tel.: +49 6841 16 23263; Fax: +49 6841 16 23570; E-mail:
| |
Collapse
|
91
|
Gold MG, Barford D, Komander D. Lining the pockets of kinases and phosphatases. Curr Opin Struct Biol 2006; 16:693-701. [PMID: 17084073 DOI: 10.1016/j.sbi.2006.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/06/2006] [Accepted: 10/19/2006] [Indexed: 01/02/2023]
Abstract
The regulation of the activity of kinases and phosphatases is an essential aspect of intracellular signal transduction. Recently determined structures of AGC protein kinases, including isoforms of PKB, PKC, GRK and ROCK, indicate that occupancy of a hydrophobic pocket in the kinase N-lobe by a segment of the protein immediately C terminal to the kinase domain provides a mechanism for regulating kinase activity. In addition, crystal structures of Aurora-A and Aurora-B, which are closely related to AGC family kinases, in complex with their activators, TPX2 and INCENP, respectively, show how allosteric kinase activation is achieved by the binding of the activator protein to an equivalent hydrophobic pocket. Hence, regulation of kinase activity by analogous interactions is a shared regulatory mechanism of these kinases. Two crystal structures have explained the molecular basis of PKA anchoring through its regulatory subunits by members of the AKAP family of scaffold proteins. AKAPs can also interact directly with protein kinase and phosphatase catalytic domains. The crystal structure of the PP1 catalytic subunit in complex with the targeting subunit MYPT1 indicates that there is also scope for intimate phosphatase regulation by scaffold proteins.
Collapse
Affiliation(s)
- Matthew G Gold
- Section of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
92
|
Abstract
Signal transduction via PI 3-kinases plays an important role in regulating the cellular processes of cell growth, survival, proliferation, and motility. The stimulated generation of reactive oxygen species is a necessary component of the signal transduction mechanisms by which many growth factors and cytokines activate this signaling pathway and elicit their cellular responses. Evidence now supports the oxidative inactivation of both tyrosine phosphatases acting upstream of PI 3-kinase, and of the lipid phosphatase PTEN as components of the normal stimulated regulation of PI 3-kinase signaling. However, the effects of chronic oxidative stress appear rather different, particularly a proposed role for nitrosylation of Akt and other targets leading to inhibition of PI 3-kinase signaling during diabetic insulin resistance in muscle. Recently, evidence has also begun to emerge, indicating that physiological redox signaling may display the same tight spatial and temporal specificity as seen with many other signal transduction systems in terms of targeting individual proteins for modification, and of enzymatic reversal mechanisms. This review will focus upon the details of these and other roles for reactive oxygen and nitrogen species in the regulation of PI 3-kinase signaling, both during acute stimulation and chronic oxidative stress, and the evidence for their significance.
Collapse
Affiliation(s)
- Nick R Leslie
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dundee, United Kingdom.
| |
Collapse
|
93
|
Chen ZW, Hassan-Abdulah A, Zhao G, Jorns MS, Mathews FS. Heterotetrameric Sarcosine Oxidase: Structure of a Diflavin Metalloenzyme at 1.85 Å Resolution. J Mol Biol 2006; 360:1000-18. [PMID: 16820168 DOI: 10.1016/j.jmb.2006.05.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/18/2006] [Accepted: 05/30/2006] [Indexed: 11/22/2022]
Abstract
The crystal structure of heterotetrameric sarcosine oxidase (TSOX) from Pseudomonas maltophilia has been determined at 1.85 A resolution. TSOX contains three coenzymes (FAD, FMN and NAD+), four different subunits (alpha, 103 kDa; beta, 44 kDa; gamma, 21 kDa; delta, 11 kDa) and catalyzes the oxidation of sarcosine (N-methylglycine) to yield hydrogen peroxide, glycine and formaldehyde. In the presence of tetrahydrofolate, the oxidation of sarcosine is coupled to the formation of 5,10-methylenetetrahydrofolate. The NAD+ and putative folate binding sites are located in the alpha-subunit. The FAD binding site is in the beta-subunit. FMN is bound at the interface of the alpha and beta-subunits. The FAD and FMN rings are separated by a short segment of the beta-subunit with the closest atoms located 7.4 A apart. Sulfite, an inhibitor of oxygen reduction, is bound at the FMN site. 2-Furoate, a competitive inhibitor with respect to sarcosine, is bound at the FAD site. The sarcosine dehydrogenase and 5,10-methylenetetrahydrofolate synthase sites are 35 A apart but connected by a large internal cavity (approximately 10,000 A3). An unexpected zinc ion, coordinated by three cysteine and one histidine side-chains, is bound to the delta-subunit. The N-terminal half of the alpha subunit of TSOX (alphaA) is closely similar to the FAD-binding domain of glutathione reductase but with NAD+ replacing FAD. The C-terminal half of the alpha subunit of TSOX (alphaB) is similar to the C-terminal half of dimethylglycine oxidase and the T-protein of the glycine cleavage system, proteins that bind tetrahydrofolate. The beta-subunit of TSOX is very similar to monomeric sarcosine oxidase. The gamma-subunit is similar to the C-terminal sub-domain of alpha-TSOX. The delta-subunit shows little similarity with any PDB entry. The alphaA domain/beta-subunit sub-structure of TSOX closely resembles the alphabeta dimer of L-proline dehydrogenase, a heteroctameric protein (alphabeta)4 that shows highest overall similarity to TSOX.
Collapse
Affiliation(s)
- Zhi-wei Chen
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
94
|
Sánchez-Bautista S, Kazaks A, Beaulande M, Torrecillas A, Corbalán-García S, Gómez-Fernández JC. Structural study of the catalytic domain of PKCzeta using infrared spectroscopy and two-dimensional infrared correlation spectroscopy. FEBS J 2006; 273:3273-86. [PMID: 16792700 DOI: 10.1111/j.1742-4658.2006.05338.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The secondary structure of the catalytic domain from protein kinase C zeta was studied using IR spectroscopy. In the presence of the substrate MgATP, there was a significant change in the secondary structure. After heating to 80 degrees C, a 14% decrease in the alpha-helix component was observed, accompanied by a 6% decrease in the beta-pleated sheet; no change was observed in the large loops or in 3(10)-helix plus associated loops. The maximum increase with heating was observed in the aggregated beta-sheet component, with an increase of 14%. In the presence of MgATP, and compared with the sample heated in its absence, there was a substantial decrease in the 3(10)-helix plus associated loops and an increase in alpha-helix. Synchronous 2D-IR correlation showed that the main changes occurred at 1617 cm(-1), which was assigned to changes in the intermolecular aggregated beta-sheet of the denaturated protein. This increase was mainly correlated with the change in alpha-helix. In the presence of MgATP, the main correlation was between aggregated beta-sheet and the large loops component. The asynchronous 2D-correlation spectrum indicated that a number of components are transformed in intermolecularly aggregated beta-sheet, especially the alpha-helix and beta-sheet components. It is interesting that changes in 3(10)-helix plus associated loops and in alpha-helix preceded changes in large loops, which suggests that the open loops structure exists as an intermediate state during denaturation. In summary, IR spectroscopy revealed an important effect of MgATP on the secondary structure and on the thermal unfolding process when this was induced, whereas 2D-IR correlation spectroscopy allowed us to show the establishment of the denaturation pathway of this protein.
Collapse
|
95
|
Urata Y, Ihara Y, Murata H, Goto S, Koji T, Yodoi J, Inoue S, Kondo T. 17Beta-estradiol protects against oxidative stress-induced cell death through the glutathione/glutaredoxin-dependent redox regulation of Akt in myocardiac H9c2 cells. J Biol Chem 2006; 281:13092-13102. [PMID: 16549430 DOI: 10.1074/jbc.m601984200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The GSH/glutaredoxin (GRX) system is involved in the redox regulation of certain enzyme activities, and this system protects cells from H2O2-induced apoptosis by regulating the redox state of Akt (Murata, H., Ihara, Y., Nakamura, H., Yodoi, J., Sumikawa, K., and Kondo, T. (2003) J. Biol. Chem. 278, 50226-50233). Estrogens, such as 17beta-estradiol (E2), play an important role in development, growth, and differentiation and appear to have protective effects on oxidative stress mediated by estrogen receptor alpha (ERalpha). However, the role of the ERbeta-mediated pathway in this cytoprotection and the involvement of E2 in the redox regulation are not well understood. In the present study, we demonstrated that E2 protected cardiac H9c2 cells, expressing ERbeta from H2O2-induced apoptosis concomitant with an increase in the activity of Akt. E2 induced the expression of glutaredoxin (GRX) as well as gamma-glutamylcysteine synthetase, a rate-limiting enzyme for the synthesis of GSH. Inhibitors for both gamma-glutamylcysteine synthetase and GRX and ICI182,780, a specific inhibitor of ERs, abolished the protective effect of E2 on cell survival as well as the activity of Akt, suggesting that ERbeta is involved in the cytoprotection and redox regulation by E2. Transcription of the GRX gene was enhanced by E2. The promoter activity of GRX was up-regulated by an ERbeta-dependent element. These results suggest that the GRX/GSH system is involved in the cytoprotective and genomic effects of E2 on the redox state of Akt, a pathway that is mediated, at least in part, by ERbeta. This mechanism may also play an antiapoptotic role in cancer cells during carcinogenesis or chemotherapy.
Collapse
Affiliation(s)
- Yoshishige Urata
- Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Yoshito Ihara
- Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hiroaki Murata
- Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Junji Yodoi
- Department of Biological Responses, Institute for Viral Research, Graduate School of Medicine, Kyoto University, 53 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Satoshi Inoue
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takahito Kondo
- Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
96
|
Huang BX, Kim HY. Interdomain conformational changes in Akt activation revealed by chemical cross-linking and tandem mass spectrometry. Mol Cell Proteomics 2006; 5:1045-53. [PMID: 16531397 DOI: 10.1074/mcp.m600026-mcp200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Akt, a serine/threonine kinase, plays a critical role in cell survival. Upon growth factor receptor stimulation, cytosolic Akt is recruited to the plasma membrane by phospholipid binding and activated through phosphorylation at Thr(308) and Ser(473). Although crystal structures for the parts of Akt have been reported, neither the three-dimensional structure of the whole molecule nor sequential conformational changes during activation have been demonstrated. In this study, we demonstrated that Akt undergoes dramatic interdomain conformational changes during activation processes by probing the three-dimensional structure of full-length Akt in solution using chemical cross-linking and tandem mass spectrometry. The cross-linking results not only provided new structural information but also revealed distinctive spatial arrangements of individual domains in the Akt molecule in resting, membrane-interacted, phosphorylated, and substrate-bound states. Our data allowed a new model for stepwise interdomain conformational changes in Akt activation sequence, setting a stage for the further investigation on Akt-membrane, Akt-protein, and/or Akt-drug interactions in solution to understand molecular mechanisms involved in physiological and pathophysiological processes of cell survival.
Collapse
Affiliation(s)
- Bill X Huang
- Section of Mass Spectrometry, Laboratory of Membrane Biophysics and Biochemistry, NIAAA, National Institutes of Health, Bethesda, Maryland 20892-9410, USA
| | | |
Collapse
|
97
|
Kaimul Ahsan M, Nakamura H, Tanito M, Yamada K, Utsumi H, Yodoi J. Thioredoxin-1 suppresses lung injury and apoptosis induced by diesel exhaust particles (DEP) by scavenging reactive oxygen species and by inhibiting DEP-induced downregulation of Akt. Free Radic Biol Med 2005; 39:1549-59. [PMID: 16298680 DOI: 10.1016/j.freeradbiomed.2005.07.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/13/2005] [Accepted: 07/29/2005] [Indexed: 11/18/2022]
Abstract
Diesel exhaust particles (DEP) are reactive oxygen species (ROS)-inducing toxic agents that damage lungs. Thioredoxin-1 (Trx-1) is a thiol protein with antioxidant and redox-regulating effects. In this study, we demonstrate that Trx-1 scavenges ROS generated by DEP and attenuates the lung injury. Intratracheal instillation of DEP resulted in the generation of more hydroxyl radicals in control mice than in human Trx-1 (hTrx-1)-transgenic mice as measured by noninvasive L-band in vivo electron spin resonance. DEP caused acute lung damage with massive infiltration of inflammatory cells in control mice, but much less damage in hTrx-1-transgenic mice. The hTrx-1 transgene protected the mice against DEP toxicity. To investigate further the molecular mechanism of the protective role of Trx-1 against DEP-induced lung injury, we used hTrx-1-transfected L-929 cells and recombinant hTrx-1 (rhTrx-1)-pretreated A-549 cells. DEP-induced ROS generation was suppressed by hTrx-1 transfection or pretreatment with rhTrx-1. Endogenous Trx-1 expression was induced by DEP in control cells. The downregulation of Akt phosphorylation by DEP resulted in apoptosis, which was prevented by Trx-1. Moreover, an Akt inhibitor canceled this protective effect of Trx-1. Collectively, the results suggest that Trx-1 exerts antioxidant effects in vivo and in vitro and that this plays a role in protection against DEP-induced lung damage by regulating Akt-mediated antiapoptotic signaling.
Collapse
Affiliation(s)
- M Kaimul Ahsan
- Department of Biological Responses, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
AKT kinases are attractive targets for small molecule drug discovery because of their key role in tumor cell survival/proliferation and their overexpression/activation in many human cancers. This review summarizes studies that support the rationale for targeting AKT kinases in new drug discovery efforts. Structural features of AKT kinase in its inactive and active states, as determined by crystal structure analysis, are described. Recent efforts in the development and biological evaluation of small molecule inhibitors of AKT, and the challenges remaining are summarized. Inhibitors targeting the ATP binding site, PH domain and protein substrate binding site, as well as isoform selective allosteric inhibitors are reviewed. Structure-based design using PKA mutants as surrogates and computer modeling in the discovery of selective inhibitors is discussed. The issues and challenges facing the development of different classes of inhibitors as therapeutics are also discussed.
Collapse
Affiliation(s)
- Chandra C Kumar
- Department of Tumor Biology, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA.
| | | |
Collapse
|
99
|
Abstract
Ten years ago, it was observed that the Akt kinase is activated by phosphorylation via a phosphoinositide 3-kinase (PI-3K)-dependent process. This discovery generated enormous interest because it provided a link between PI-3K, an enzyme known to play a critical role in cellular physiology, and its downstream targets. Subsequently, it was shown that the activity of the core components of the 'PI-3K/Akt pathway' is modulated by a complex network of regulatory proteins and pathways. Some of the Akt-binding partners modulate its activation by external signals by interacting with different domains of the Akt protein. This review focuses on the Akt interacting proteins and the mechanisms by which they regulate Akt activation.
Collapse
Affiliation(s)
- Keyong Du
- Molecular Oncology Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
100
|
Hresko RC, Mueckler M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 2005; 280:40406-16. [PMID: 16221682 DOI: 10.1074/jbc.m508361200] [Citation(s) in RCA: 502] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The insulin-signaling pathway leading to the activation of Akt/protein kinase B has been well characterized except for a single step, the phosphorylation of Akt at Ser-473. Double-stranded DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM) gene product, integrin-linked kinase (ILK), protein kinase Calpha (PKCalpha), and mammalian target of rapamycin (mTOR), when complexed to rapamycin-insensitive companion of mTOR (RICTOR), have all been identified as playing a critical role in Akt Ser-473 phosphorylation. However, the apparently disparate results reported in these studies are difficult to evaluate, given that different stimuli and cell types were examined and that all of the candidate proteins have never been systematically studied in a single system. Additionally, none of these studies were performed in a classical insulin-responsive cell type or tissue such as muscle or fat. We therefore examined each of these candidates in 3T3-L1 adipocytes. In vitro kinase assays, using different subcellular fractions of 3T3-L1 adipocytes, revealed that phosphatidylinositol 3,4,5-trisphosphate-stimulated Ser-473 phosphorylation correlated well with the amount of DNA-PK, mTOR, and RICTOR but did not correlate with levels of ATM, ILK, and PKCalpha. PKCalpha was completely absent from compartments with Ser-473 phosphorylation activity. Although purified DNA-PK could phosphorylate a peptide derived from Akt that contains amino acid Ser-473, it could not phosphorylate full-length Akt2. Vesicles immunoprecipitated from low density microsomes using antibodies directed against mTOR or RICTOR had phosphatidylinositol 3,4,5-trisphosphate-stimulated Ser-473 activity that was sensitive to wortmannin but not staurosporine. In contrast, immunopurified low density microsome vesicles containing ILK could not phosphorylate Akt on Ser-473 in vitro. Small interference RNA knockdown of RICTOR, but not DNA-PK, ATM, or ILK, suppressed insulin-activated Ser-473 phosphorylation and, to a lesser extent, Thr-308 phosphorylation in 3T3-L1 adipocytes. Based on our cell-free kinase and small interference RNA results, we conclude that mTOR complexed to RICTOR is the Ser-473 kinase in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Richard C Hresko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|