51
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen Atlas From Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. Front Immunol 2022; 13:831849. [PMID: 35401574 PMCID: PMC8987778 DOI: 10.3389/fimmu.2022.831849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. We used DS-affinity proteomics to define the autoantigen-ome of lung fibroblasts and bioinformatics analyses to study the relationship between autoantigenic proteins and COVID-induced alterations. Using DS-affinity, we identified an autoantigen-ome of 408 proteins from human HFL1 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigen-ome have thus far been found to be altered at protein or RNA levels in SARS-CoV-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a connection between COVID infection and autoimmunity. The vast number of COVID-altered proteins with high intrinsic propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles suggests a need for long-term monitoring of autoimmunity in COVID. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic, such as "long COVID" syndrome. Summary Sentence An autoantigen-ome by dermatan sulfate affinity from human lung HFL1 cells may explain neurological and autoimmune manifestations of COVID-19.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | | | - Michael H. Roehrl
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
52
|
Maiti AK. Identification of G-quadruplex DNA sequences in SARS-CoV2. Immunogenetics 2022; 74:455-463. [PMID: 35303126 PMCID: PMC8931451 DOI: 10.1007/s00251-022-01257-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
G-quadruplex structure or Putative Quadruplex Sequences (PQSs) are abundant in human, microbial, DNA, or RNA viral genomes. These sequences in RNA viral genome play critical roles in integration into human genome as LTR (Long Terminal Repeat), genome replication, chromatin rearrangements, gene regulation, antigen variation (Av), and virulence. Here, we investigated whether the genome of SARS-CoV2, an RNA virus, contained such potential G-quadruplex structures. Using bioinformatic tools, we searched for such sequences and found thirty-seven (forward strand (twenty-five) + reverse strand (Twelve)) QGRSs (Quadruplex forming G-Rich Sequences)/PQSs in SARS-CoV2 genome. These sequences are dispersed mainly in the upstream of SARS-CoV2 genes. We discuss whether existing PQS/QGRS ligands could inhibit the SARS-CoV2 replication and gene transcription as has been observed in other RNA viruses. Further experimental validation would determine the role of these G-quadruplex sequences in SARS-CoV2 genome function to survive in the host cells and identify therapeutic agents to destabilize these PQSs/QGRSs.
Collapse
Affiliation(s)
- Amit K Maiti
- Mydnavar, Department of Genetics and Genomics, 2645 Somerset Boulevard, Troy, MI, 48084, USA.
| |
Collapse
|
53
|
Wang JY, Roehrl MW, Roehrl VB, Roehrl MH. A master autoantigen-ome links alternative splicing, female predilection, and COVID-19 to autoimmune diseases. J Transl Autoimmun 2022; 5:100147. [PMID: 35237749 PMCID: PMC8872718 DOI: 10.1016/j.jtauto.2022.100147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune responses facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequalae to COVID-19 and clues to the rare adverse effects of the currently available mRNA and viral vector-based COVID vaccines.
Collapse
Affiliation(s)
| | | | | | - Michael H. Roehrl
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine BCMB Graduate Program in Biomedical Sciences, New York, NY, USA
| |
Collapse
|
54
|
Mo Y, To KKW, Zhou R, Liu L, Cao T, Huang H, Du Z, Lim CYH, Yim LY, Luk TY, Chan JMC, Chik TSH, Lau DPL, Tsang OTY, Tam AR, Hung IFN, Yuen KY, Chen Z. Mitochondrial Dysfunction Associates With Acute T Lymphocytopenia and Impaired Functionality in COVID-19 Patients. Front Immunol 2022; 12:799896. [PMID: 35095881 PMCID: PMC8795605 DOI: 10.3389/fimmu.2021.799896] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in rapid T lymphocytopenia and functional impairment of T cells. The underlying mechanism, however, remains incompletely understood. In this study, we focused on characterizing the phenotype and kinetics of T-cell subsets with mitochondrial dysfunction (MD) by multicolor flow cytometry and investigating the association between MD and T-cell functionality. While 73.9% of study subjects displayed clinical lymphocytopenia upon hospital admission, a significant reduction of CD4 or CD8 T-cell frequency was found in all asymptomatic, symptomatic, and convalescent cases. CD4 and CD8 T cells with increased MD were found in both asymptomatic and symptomatic patients within the first week of symptom onset. Lower proportion of memory CD8 T cell with MD was found in severe patients than in mild ones at the stage of disease progression. Critically, the frequency of T cells with MD in symptomatic patients was preferentially associated with CD4 T-cell loss and CD8 T-cell hyperactivation, respectively. Patients bearing effector memory CD4 and CD8 T cells with the phenotype of high MD exhibited poorer T-cell responses upon either phorbol 12-myristate-13-acetate (PMA)/ionomycin or SARS-CoV-2 peptide stimulation than those with low MD. Our findings demonstrated an MD-associated mechanism underlying SARS-CoV-2-induced T lymphocytopenia and functional impairment during the acute phase of infection.
Collapse
Affiliation(s)
- Yufei Mo
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kelvin Kai-Wang To
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Center for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Runhong Zhou
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Liu
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tianyu Cao
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haode Huang
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Zhenglong Du
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chun Yu Hubert Lim
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lok-Yan Yim
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tsz-Yat Luk
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jacky Man-Chun Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Thomas Shiu-Hong Chik
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Daphne Pui-Ling Lau
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Owen Tak-Yin Tsang
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Anthony Raymond Tam
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwok-Yung Yuen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Center for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Center for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
55
|
Suratekar R, Ghosh P, Niesen MJM, Donadio G, Anand P, Soundararajan V, Venkatakrishnan AJ. High diversity in Delta variant across countries revealed by genome-wide analysis of SARS-CoV-2 beyond the Spike protein. Mol Syst Biol 2022; 18:e10673. [PMID: 35156767 PMCID: PMC8842124 DOI: 10.15252/msb.202110673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
The highly contagious Delta variant of SARS-CoV-2 has become a prevalent strain globally and poses a public health challenge around the world. While there has been extensive focus on understanding the amino acid mutations in the Delta variant's Spike protein, the mutational landscape of the rest of the SARS-CoV-2 proteome (25 proteins) remains poorly understood. To this end, we performed a systematic analysis of mutations in all the SARS-CoV-2 proteins from nearly 2 million SARS-CoV-2 genomes from 176 countries/territories. Six highly prevalent missense mutations in the viral life cycle-associated Membrane (I82T), Nucleocapsid (R203M, D377Y), NS3 (S26L), and NS7a (V82A, T120I) proteins are almost exclusive to the Delta variant compared to other variants of concern (mean prevalence across genomes: Delta = 99.74%, Alpha = 0.06%, Beta = 0.09%, and Gamma = 0.22%). Furthermore, we find that the Delta variant harbors a more diverse repertoire of mutations across countries compared to the previously dominant Alpha variant. Overall, our study underscores the high diversity of the Delta variant between countries and identifies a list of amino acid mutations in the Delta variant's proteome for probing the mechanistic basis of pathogenic features such as high viral loads, high transmissibility, and reduced susceptibility against neutralization by vaccines.
Collapse
|
56
|
An overview of human proteins and genes involved in SARS-CoV-2 infection. Gene 2022; 808:145963. [PMID: 34530086 PMCID: PMC8437745 DOI: 10.1016/j.gene.2021.145963] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023]
Abstract
As of July 2021, the outbreak of coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has led to more than 200 million infections and more than 4.2 million deaths globally. Complications of severe COVID-19 include acute kidney injury, liver dysfunction, cardiomyopathy, and coagulation dysfunction. Thus, there is an urgent need to identify proteins and genetic factors associated with COVID-19 susceptibility and outcome. We comprehensively reviewed recent findings of host-SARS-CoV-2 interactome analyses. To identify genetic variants associated with COVID-19, we focused on the findings from genome and transcriptome wide association studies (GWAS and TWAS) and bioinformatics analysis. We described established human proteins including ACE2, TMPRSS2, 40S ribosomal subunit, ApoA1, TOM70, HLA-A, and PALS1 interacting with SARS-CoV-2 based on cryo-electron microscopy results. Furthermore, we described approximately 1000 human proteins showing evidence of interaction with SARS-CoV-2 and highlighted host cellular processes such as innate immune pathways affected by infection. We summarized the evidence on more than 20 identified candidate genes in COVID-19 severity. Predicted deleterious and disruptive genetic variants with possible effects on COVID-19 infectivity have been also summarized. These findings provide novel insights into SARS-CoV-2 biology and infection as well as potential strategies for development of novel COVID therapeutic targets and drug repurposing.
Collapse
|
57
|
Spedding M, Marvaud R, Marck A, Delarochelambert Q, Toussaint JF. Aging, VO 2 max, entropy, and COVID-19. Indian J Pharmacol 2022; 54:58-62. [PMID: 35343209 PMCID: PMC9012415 DOI: 10.4103/ijp.ijp_442_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The decline in human performance with age at 5000 m, an athletic event requiring high VO2 max, is remarkably precise, and unavoidable, and related to entropy, even at an individual level. Women and men show an identical age-related decline, up to ~100 years old. The precision of the decline shows the limitations for therapy of aging. Mortality incidence for COVID-19 shows a similar relationship. We propose that initial VO2 max has a critical role in COVID sensitivity because of the direct relationship of disease severity with oxygen use, and the parallel decline in aging.
Collapse
Affiliation(s)
- Michael Spedding
- Spedding Research Solutions SAS, 6 Rue Ampère, 78110 Le Vésinet, France
| | - Robin Marvaud
- Spedding Research Solutions SAS, 6 Rue Ampère, 78110 Le Vésinet, France
| | - Adrien Marck
- IRMES (Institut de Recherche bioMédicale et d'Épidémiologie du Sport), INSEP (Institut national du sport, de l'expertise et de la performance), 11, avenue du Tremblay, 75012 Paris, France
| | - Quentin Delarochelambert
- IRMES (Institut de Recherche bioMédicale et d'Épidémiologie du Sport), INSEP (Institut national du sport, de l'expertise et de la performance), 11, avenue du Tremblay, 75012 Paris; Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université Bourgogne Franche-Comté, Faculté des Sciences Mirande, 9 avenue Alain Savary, 21000 Dijon; Scientific Department, French Ski Federation, 50 rue des marquisats, 74000 Annecy, France
| | - Jean Francois Toussaint
- IRMES (Institut de Recherche bioMédicale et d'Épidémiologie du Sport), INSEP (Institut national du sport, de l'expertise et de la performance), 11, avenue du Tremblay, 75012 Paris; EA7329, Université de Paris, 12, rue de l'École de Médecine, 75006 Paris; CIMS, Hôtel-Dieu, Assistance Publique - Hôpitaux de Paris, Parvis-Notre-Dame, 75004 Paris, France
| |
Collapse
|
58
|
Gao L, Li GS, Li JD, He J, Zhang Y, Zhou HF, Kong JL, Chen G. Identification of the susceptibility genes for COVID-19 in lung adenocarcinoma with global data and biological computation methods. Comput Struct Biotechnol J 2021; 19:6229-6239. [PMID: 34840672 PMCID: PMC8605816 DOI: 10.1016/j.csbj.2021.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction The risk of infection with COVID-19 is high in lung adenocarcinoma (LUAD) patients, and there is a dearth of studies on the molecular mechanism underlying the high susceptibility of LUAD patients to COVID-19 from the perspective of the global differential expression landscape. Objectives To fill the research void on the molecular mechanism underlying the high susceptibility of LUAD patients to COVID-19 from the perspective of the global differential expression landscape. Methods Herein, we identified genes, specifically the differentially expressed genes (DEGs), correlated with the susceptibility of LUAD patients to COVID-19. These were obtained by calculating standard mean deviation (SMD) values for 49 SARS-CoV-2-infected LUAD samples and 24 non-affected LUAD samples, as well as 3931 LUAD samples and 3027 non-cancer lung samples from 40 pooled RNA-seq and microarray datasets. Hub susceptibility genes significantly related to COVID-19 were further selected by weighted gene co-expression network analysis. Then, the hub genes were further analyzed via an examination of their clinical significance in multiple datasets, a correlation analysis of the immune cell infiltration level, and their interactions with the interactome sets of the A549 cell line. Results A total of 257 susceptibility genes were identified, and these genes were associated with RNA splicing, mitochondrial functions, and proteasomes. Ten genes, MEA1, MRPL24, PPIH, EBNA1BP2, MRTO4, RABEPK, TRMT112, PFDN2, PFDN6, and NDUFS3, were confirmed to be the hub susceptibility genes for COVID-19 in LUAD patients, and the hub susceptibility genes were significantly correlated with the infiltration of multiple immune cells. Conclusion In conclusion, the susceptibility genes for COVID-19 in LUAD patients discovered in this study may increase our understanding of the high risk of COVID-19 in LUAD patients.
Collapse
Key Words
- CI, confidence interval
- COVID-19
- COVID-19, coronavirus disease 2019
- DEG
- DEG, differentially expressed genes
- FC, fold change
- FPKM, fragments per kilobase per million
- GTEx, Genotype-tissue Expression
- HPA, human protein atlas
- IHC, immunohistochemistry
- Immune infiltration
- LUAD
- LUAD, lung adenocarcinoma
- PPI, protein-to-protein interaction
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SMD, standard mean difference
- SROC, summarized receiver’s operating characteristics
- Susceptibility
- TF, transcription factor
- TPM, transcripts per million reads
- WGCNA
- WGCNA, weighted gene co-expression network analysis
Collapse
Affiliation(s)
- Li Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Guo-Sheng Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yu Zhang
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324. Jingwu Rd, Jinan, Shandong 250021, PR China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jin-Liang Kong
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| |
Collapse
|
59
|
Rauti R, Shahoha M, Leichtmann-Bardoogo Y, Nasser R, Paz E, Tamir R, Miller V, Babich T, Shaked K, Ehrlich A, Ioannidis K, Nahmias Y, Sharan R, Ashery U, Maoz BM. Effect of SARS-CoV-2 proteins on vascular permeability. eLife 2021; 10:69314. [PMID: 34694226 PMCID: PMC8545399 DOI: 10.7554/elife.69314] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 infection leads to severe disease associated with cytokine storm, vascular dysfunction, coagulation, and progressive lung damage. It affects several vital organs, seemingly through a pathological effect on endothelial cells. The SARS-CoV-2 genome encodes 29 proteins, whose contribution to the disease manifestations, and especially endothelial complications, is unknown. We cloned and expressed 26 of these proteins in human cells and characterized the endothelial response to overexpression of each, individually. Whereas most proteins induced significant changes in endothelial permeability, nsp2, nsp5_c145a (catalytic dead mutant of nsp5), and nsp7 also reduced CD31, and increased von Willebrand factor expression and IL-6, suggesting endothelial dysfunction. Using propagation-based analysis of a protein–protein interaction (PPI) network, we predicted the endothelial proteins affected by the viral proteins that potentially mediate these effects. We further applied our PPI model to identify the role of each SARS-CoV-2 protein in other tissues affected by coronavirus disease (COVID-19). While validating the PPI network model, we found that the tight junction (TJ) proteins cadherin-5, ZO-1, and β-catenin are affected by nsp2, nsp5_c145a, and nsp7 consistent with the model prediction. Overall, this work identifies the SARS-CoV-2 proteins that might be most detrimental in terms of endothelial dysfunction, thereby shedding light on vascular aspects of COVID-19.
Collapse
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Meishar Shahoha
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Rami Nasser
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Paz
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rina Tamir
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Miller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tal Babich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kfir Shaked
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Yaakov Nahmias
- Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Ben Meir Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
60
|
Cellular host factors for SARS-CoV-2 infection. Nat Microbiol 2021; 6:1219-1232. [PMID: 34471255 DOI: 10.1038/s41564-021-00958-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed millions of lives and caused a global economic crisis. No effective antiviral drugs are currently available to treat infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The medical need imposed by the pandemic has spurred unprecedented research efforts to study coronavirus biology. Every virus depends on cellular host factors and pathways for successful replication. These proviral host factors represent attractive targets for antiviral therapy as they are genetically more stable than viral targets and may be shared among related viruses. The application of various 'omics' technologies has led to the rapid discovery of proviral host factors that are required for the completion of the SARS-CoV-2 life cycle. In this Review, we summarize insights into the proviral host factors that are required for SARS-CoV-2 infection that were mainly obtained using functional genetic and interactome screens. We discuss cellular processes that are important for the SARS-CoV-2 life cycle, as well as parallels with non-coronaviruses. Finally, we highlight host factors that could be targeted by clinically approved molecules and molecules in clinical trials as potential antiviral therapies for COVID-19.
Collapse
|
61
|
McArdle A, Washington KE, Chazarin Orgel B, Binek A, Manalo DM, Rivas A, Ayres M, Pandey R, Phebus C, Raedschelders K, Fert-Bober J, Van Eyk JE. Discovery Proteomics for COVID-19: Where We Are Now. J Proteome Res 2021; 20:4627-4639. [PMID: 34550702 PMCID: PMC8482317 DOI: 10.1021/acs.jproteome.1c00475] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the pandemic coronavirus disease 2019 (COVID-19), which has had a devastating impact on society. Here, we summarize proteomic research that has helped elucidate hallmark proteins associated with the disease with respect to both short- and long-term diagnosis and prognosis. Additionally, we review the highly variable humoral response associated with COVID-19 and the increased risk of autoimmunity.
Collapse
Affiliation(s)
- Angela McArdle
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Kirstin E. Washington
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Blandine Chazarin Orgel
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Aleksandra Binek
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Danica-Mae Manalo
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Alejandro Rivas
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Matthew Ayres
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Rakhi Pandey
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Connor Phebus
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Koen Raedschelders
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Justyna Fert-Bober
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department
of Cardiology, Smidt Heart Institute, Cedars-Sinai
Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E. Van Eyk
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department
of Cardiology, Smidt Heart Institute, Cedars-Sinai
Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
62
|
May DG, Martin-Sancho L, Anschau V, Liu S, Chrisopulos RJ, Scott KL, Halfmann CT, Peña RD, Pratt D, Campos AR, Roux KJ. A BioID-derived proximity interactome for SARS-CoV-2 proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34580671 PMCID: PMC8475972 DOI: 10.1101/2021.09.17.460814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The novel coronavirus SARS-CoV-2 is responsible for the ongoing COVID-19 pandemic and has caused a major health and economic burden worldwide. Understanding how SARS-CoV-2 viral proteins behave in host cells can reveal underlying mechanisms of pathogenesis and assist in development of antiviral therapies. Here we use BioID to map the SARS-CoV-2 virus-host interactome using human lung cancer derived A549 cells expressing individual SARS-CoV-2 viral proteins. Functional enrichment analyses revealed previously reported and unreported cellular pathways that are in association with SARS-CoV-2 proteins. We have also established a website to host the proteomic data to allow for public access and continued analysis of host-viral protein associations and whole-cell proteomes of cells expressing the viral-BioID fusion proteins. Collectively, these studies provide a valuable resource to potentially uncover novel SARS-CoV-2 biology and inform development of antivirals.
Collapse
|
63
|
Zheng YX, Wang L, Kong WS, Chen H, Wang XN, Meng Q, Zhang HN, Guo SJ, Jiang HW, Tao SC. Nsp2 has the potential to be a drug target revealed by global identification of SARS-CoV-2 Nsp2-interacting proteins. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1134-1141. [PMID: 34159380 DOI: 10.1093/abbs/gmab088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health threat since December 2019, and there is still no highly effective drug to control the pandemic. To facilitate drug target identification for drug development, studies on molecular mechanisms, such as SARS-CoV-2 protein interactions, are urgently needed. In this study, we focused on Nsp2, a non-structural protein with largely unknown function and mechanism. The interactome of Nsp2 was revealed through the combination of affinity purification mass spectrometry (AP-MS) and stable isotope labeling by amino acids in cell culture (SILAC), and 84 proteins of high-confidence were identified. Gene ontology analysis demonstrated that Nsp2-interacting proteins are involved in several biological processes such as endosome transport and translation. Network analysis generated two clusters, including ribosome assembly and vesicular transport. Bio-layer interferometry (BLI) assay confirmed the bindings between Nsp2- and 4-interacting proteins, i.e. STAU2 (Staufen2), HNRNPLL, ATP6V1B2, and RAP1GDS1 (SmgGDS), which were randomly selected from the list of 84 proteins. Our findings provide insights into the Nsp2-host interplay and indicate that Nsp2 may play important roles in SARS-CoV-2 infection and serve as a potential drug target for anti-SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Yun-Xiao Zheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Sha Kong
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Ning Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingfeng Meng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Nan Zhang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Juan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-Wei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
64
|
Huang SSY, Toufiq M, Saraiva LR, Van Panhuys N, Chaussabel D, Garand M. Transcriptome and Literature Mining Highlight the Differential Expression of ERLIN1 in Immune Cells during Sepsis. BIOLOGY 2021; 10:755. [PMID: 34439987 PMCID: PMC8389572 DOI: 10.3390/biology10080755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022]
Abstract
Sepsis results from the dysregulation of the host immune system. This highly variable disease affects 19 million people globally, and accounts for 5 million deaths annually. In transcriptomic datasets curated from public repositories, we observed a consistent upregulation (3.26-5.29 fold) of ERLIN1-a gene coding for an ER membrane prohibitin and a regulator of inositol 1, 4, 5-trisphosphate receptors and sterol regulatory element-binding proteins-under septic conditions in healthy neutrophils, monocytes, and whole blood. In vitro expression of the ERLIN1 gene and proteins was measured by stimulating the whole blood of healthy volunteers to a combination of lipopolysaccharide and peptidoglycan. Septic stimulation induced a significant increase in ERLIN1 expression; however, ERLIN1 was differentially expressed among the immune blood cell subsets. ERLIN1 was uniquely increased in whole blood neutrophils, and confirmed in the differentiated HL60 cell line. The scarcity of ERLIN1 in sepsis literature indicates a knowledge gap between the functions of ERLIN1, calcium homeostasis, and cholesterol and fatty acid biosynthesis, and sepsis. In combination with experimental data, we bring forth the hypothesis that ERLIN1 is variably modulated among immune cells in response to cellular perturbations, and has implications for ER functions and/or ER membrane protein components during sepsis.
Collapse
Affiliation(s)
- Susie S. Y. Huang
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (L.R.S.); (N.V.P.); (D.C.)
| | - Mohammed Toufiq
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (L.R.S.); (N.V.P.); (D.C.)
| | - Luis R. Saraiva
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (L.R.S.); (N.V.P.); (D.C.)
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Nicholas Van Panhuys
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (L.R.S.); (N.V.P.); (D.C.)
| | - Damien Chaussabel
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (L.R.S.); (N.V.P.); (D.C.)
| | - Mathieu Garand
- Research Department, Sidra Medicine, Doha 26999, Qatar; (M.T.); (L.R.S.); (N.V.P.); (D.C.)
| |
Collapse
|
65
|
Wang JY, Roehrl MW, Roehrl VB, Roehrl MH. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.30.454526. [PMID: 34373855 PMCID: PMC8351778 DOI: 10.1101/2021.07.30.454526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune responses facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequalae to COVID-19 and clues to the rare but reported adverse effects of the currently available COVID vaccines.
Collapse
Affiliation(s)
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
66
|
Xu W, Pei G, Liu H, Ju X, Wang J, Ding Q, Li P. Compartmentalization-aided interaction screening reveals extensive high-order complexes within the SARS-CoV-2 proteome. Cell Rep 2021; 36:109482. [PMID: 34297909 PMCID: PMC8285250 DOI: 10.1016/j.celrep.2021.109482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Bearing a relatively large single-stranded RNA genome in nature, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes sophisticated replication/transcription complexes (RTCs), mainly composed of a network of nonstructural proteins and nucleocapsid protein, to establish efficient infection. In this study, we develop an innovative interaction screening strategy based on phase separation in cellulo, namely compartmentalization of protein-protein interactions in cells (CoPIC). Utilizing CoPIC screening, we map the interaction network among RTC-related viral proteins. We identify a total of 47 binary interactions among 14 proteins governing replication, discontinuous transcription, and translation of coronaviruses. Further exploration via CoPIC leads to the discovery of extensive ternary complexes composed of these components, which infer potential higher-order complexes. Taken together, our results present an efficient and robust interaction screening strategy, and they indicate the existence of a complex interaction network among RTC-related factors, thus opening up opportunities to understand SARS-CoV-2 biology and develop therapeutic interventions for COVID-19.
Collapse
Affiliation(s)
- Weifan Xu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China
| | - Gaofeng Pei
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongrui Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Ju
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiang Ding
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
67
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Profile from Jurkat T-Lymphoblasts Provides a Molecular Guide for Investigating Autoimmune Sequelae of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.05.451199. [PMID: 34729561 PMCID: PMC8562547 DOI: 10.1101/2021.07.05.451199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In order to understand autoimmune phenomena contributing to the pathophysiology of COVID-19 and post-COVID syndrome, we have been profiling autoantigens (autoAgs) from various cell types. Although cells share numerous autoAgs, each cell type gives rise to unique COVID-altered autoAg candidates, which may explain the wide range of symptoms experienced by patients with autoimmune sequelae of SARS-CoV-2 infection. Based on the unifying property of affinity between autoantigens (autoAgs) and the glycosaminoglycan dermatan sulfate (DS), this paper reports 140 candidate autoAgs identified from proteome extracts of human Jurkat T-cells, of which at least 105 (75%) are known targets of autoantibodies. Comparison with currently available multi-omic COVID-19 data shows that 125 (89%) of DS-affinity proteins are altered at protein and/or RNA levels in SARS-CoV-2-infected cells or patients, with at least 94 being known autoAgs in a wide spectrum of autoimmune diseases and cancer. Protein alterations by ubiquitination and phosphorylation in the viral infection are major contributors of autoAgs. The autoAg protein network is significantly associated with cellular response to stress, apoptosis, RNA metabolism, mRNA processing and translation, protein folding and processing, chromosome organization, cell cycle, and muscle contraction. The autoAgs include clusters of histones, CCT/TriC chaperonin, DNA replication licensing factors, proteasome and ribosome proteins, heat shock proteins, serine/arginine-rich splicing factors, 14-3-3 proteins, and cytoskeletal proteins. AutoAgs such as LCP1 and NACA that are altered in the T cells of COVID patients may provide insight into T-cell responses in the viral infection and merit further study. The autoantigen-ome from this study contributes to a comprehensive molecular map for investigating acute, subacute, and chronic autoimmune disorders caused by SARS-CoV-2.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
68
|
Almasy KM, Davies JP, Plate L. Comparative Host Interactomes of the SARS-CoV-2 Nonstructural Protein 3 and Human Coronavirus Homologs. Mol Cell Proteomics 2021; 20:100120. [PMID: 34186245 PMCID: PMC8236078 DOI: 10.1016/j.mcpro.2021.100120] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023] Open
Abstract
Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold-like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, nonstructural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) data set for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance, nuclear protein import for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.
Collapse
Affiliation(s)
- Katherine M Almasy
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan P Davies
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
69
|
Gassen NC, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua RL, Trimpert J, Heinemann N, Niemeyer C, Weege F, Hönzke K, Aschman T, Heinz DE, Weckmann K, Ebert T, Zellner A, Lennarz M, Wyler E, Schroeder S, Richter A, Niemeyer D, Hoffmann K, Meyer TF, Heppner FL, Corman VM, Landthaler M, Hocke AC, Morkel M, Osterrieder N, Conrad C, Eils R, Radbruch H, Giavalisco P, Drosten C, Müller MA. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun 2021; 12:3818. [PMID: 34155207 PMCID: PMC8217552 DOI: 10.1038/s41467-021-24007-w] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 μM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.
Collapse
Affiliation(s)
- Nils C Gassen
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany.
| | - Jan Papies
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Thomas Bajaj
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Jackson Emanuel
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | | | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Christine Niemeyer
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Friderike Weege
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Katja Hönzke
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Aschman
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel E Heinz
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Katja Weckmann
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Tim Ebert
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Andreas Zellner
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Martina Lennarz
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Simon Schroeder
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Karen Hoffmann
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas F Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, UKSH, Christian Albrechts University of Kiel, Kiel, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- IRI Life Sciences, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morkel
- Institute for Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolaus Osterrieder
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Data Science Unit, Heidelberg University Hospital and BioQuant, Heidelberg, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany.
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
70
|
Gupta M, Azumaya CM, Moritz M, Pourmal S, Diallo A, Merz GE, Jang G, Bouhaddou M, Fossati A, Brilot AF, Diwanji D, Hernandez E, Herrera N, Kratochvil HT, Lam VL, Li F, Li Y, Nguyen HC, Nowotny C, Owens TW, Peters JK, Rizo AN, Schulze-Gahmen U, Smith AM, Young ID, Yu Z, Asarnow D, Billesbølle C, Campbell MG, Chen J, Chen KH, Chio US, Dickinson MS, Doan L, Jin M, Kim K, Li J, Li YL, Linossi E, Liu Y, Lo M, Lopez J, Lopez KE, Mancino A, Moss FR, Paul MD, Pawar KI, Pelin A, Pospiech TH, Puchades C, Remesh SG, Safari M, Schaefer K, Sun M, Tabios MC, Thwin AC, Titus EW, Trenker R, Tse E, Tsui TKM, Wang F, Zhang K, Zhang Y, Zhao J, Zhou F, Zhou Y, Zuliani-Alvarez L, Agard DA, Cheng Y, Fraser JS, Jura N, Kortemme T, Manglik A, Southworth DR, Stroud RM, Swaney DL, Krogan NJ, Frost A, Rosenberg OS, Verba KA. CryoEM and AI reveal a structure of SARS-CoV-2 Nsp2, a multifunctional protein involved in key host processes. RESEARCH SQUARE 2021:rs.3.rs-515215. [PMID: 34031651 PMCID: PMC8142659 DOI: 10.21203/rs.3.rs-515215/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.
Collapse
Affiliation(s)
- Meghna Gupta
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Caleigh M. Azumaya
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Michelle Moritz
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Sergei Pourmal
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Amy Diallo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Gregory E. Merz
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Andrea Fossati
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Axel F. Brilot
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Devan Diwanji
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Evelyn Hernandez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Nadia Herrera
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Huong T. Kratochvil
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Victor L. Lam
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Fei Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yang Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Henry C. Nguyen
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Carlos Nowotny
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Tristan W. Owens
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Jessica K. Peters
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Alexandrea N. Rizo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Ursula Schulze-Gahmen
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Amber M. Smith
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Iris D. Young
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Zanlin Yu
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Daniel Asarnow
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Christian Billesbølle
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Melody G. Campbell
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Current affiliation: Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jen Chen
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kuei-Ho Chen
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Un Seng Chio
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Miles Sasha Dickinson
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Loan Doan
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Mingliang Jin
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kate Kim
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Junrui Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yen-Li Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Edmond Linossi
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yanxin Liu
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Megan Lo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Jocelyne Lopez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kyle E. Lopez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Adamo Mancino
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Frank R. Moss
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Michael D. Paul
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Komal Ishwar Pawar
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Adrian Pelin
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Thomas H. Pospiech
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Cristina Puchades
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Soumya Govinda Remesh
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Maliheh Safari
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kaitlin Schaefer
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Ming Sun
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Current affiliation: Beam Therapeutics, Cambridge, MA 02139, USA
| | - Mariano C Tabios
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Aye C. Thwin
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Erron W. Titus
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Raphael Trenker
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Eric Tse
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Tsz Kin Martin Tsui
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Feng Wang
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kaihua Zhang
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yang Zhang
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Jianhua Zhao
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Fengbo Zhou
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lorena Zuliani-Alvarez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - David A Agard
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Yifan Cheng
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - James S Fraser
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Natalia Jura
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tanja Kortemme
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- The University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, CA 94158, USA
| | - Aashish Manglik
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Daniel R. Southworth
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Robert M Stroud
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Frost
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Oren S Rosenberg
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Kliment A Verba
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
71
|
Gupta M, Azumaya CM, Moritz M, Pourmal S, Diallo A, Merz GE, Jang G, Bouhaddou M, Fossati A, Brilot AF, Diwanji D, Hernandez E, Herrera N, Kratochvil HT, Lam VL, Li F, Li Y, Nguyen HC, Nowotny C, Owens TW, Peters JK, Rizo AN, Schulze-Gahmen U, Smith AM, Young ID, Yu Z, Asarnow D, Billesbølle C, Campbell MG, Chen J, Chen KH, Chio US, Dickinson MS, Doan L, Jin M, Kim K, Li J, Li YL, Linossi E, Liu Y, Lo M, Lopez J, Lopez KE, Mancino A, Moss FR, Paul MD, Pawar KI, Pelin A, Pospiech TH, Puchades C, Remesh SG, Safari M, Schaefer K, Sun M, Tabios MC, Thwin AC, Titus EW, Trenker R, Tse E, Tsui TKM, Wang F, Zhang K, Zhang Y, Zhao J, Zhou F, Zhou Y, Zuliani-Alvarez L, Agard DA, Cheng Y, Fraser JS, Jura N, Kortemme T, Manglik A, Southworth DR, Stroud RM, Swaney DL, Krogan NJ, Frost A, Rosenberg OS, Verba KA. CryoEM and AI reveal a structure of SARS-CoV-2 Nsp2, a multifunctional protein involved in key host processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.10.443524. [PMID: 34013269 PMCID: PMC8132225 DOI: 10.1101/2021.05.10.443524] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.
Collapse
Affiliation(s)
- Meghna Gupta
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Caleigh M Azumaya
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Michelle Moritz
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Sergei Pourmal
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Amy Diallo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Gregory E Merz
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Andrea Fossati
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Axel F Brilot
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Devan Diwanji
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Evelyn Hernandez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Nadia Herrera
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Huong T Kratochvil
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Victor L Lam
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Fei Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yang Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Henry C Nguyen
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Carlos Nowotny
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Tristan W Owens
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Jessica K Peters
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Alexandrea N Rizo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Ursula Schulze-Gahmen
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Amber M Smith
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Iris D Young
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Zanlin Yu
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Daniel Asarnow
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Christian Billesbølle
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Melody G Campbell
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Current affiliation: Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jen Chen
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kuei-Ho Chen
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Un Seng Chio
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Miles Sasha Dickinson
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Loan Doan
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Mingliang Jin
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kate Kim
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Junrui Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yen-Li Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Edmond Linossi
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yanxin Liu
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Megan Lo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Jocelyne Lopez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kyle E Lopez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Adamo Mancino
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Frank R Moss
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Michael D Paul
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Komal Ishwar Pawar
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Adrian Pelin
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Thomas H Pospiech
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Cristina Puchades
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Soumya Govinda Remesh
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Maliheh Safari
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kaitlin Schaefer
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Ming Sun
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Current affiliation: Beam Therapeutics, Cambridge, MA 02139, USA
| | - Mariano C Tabios
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Aye C Thwin
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Erron W Titus
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Raphael Trenker
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Eric Tse
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Tsz Kin Martin Tsui
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Feng Wang
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kaihua Zhang
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yang Zhang
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Jianhua Zhao
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Fengbo Zhou
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lorena Zuliani-Alvarez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - David A Agard
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Yifan Cheng
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - James S Fraser
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Natalia Jura
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tanja Kortemme
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- The University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, CA 94158, USA
| | - Aashish Manglik
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Daniel R Southworth
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Robert M Stroud
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Frost
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Oren S Rosenberg
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Kliment A Verba
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
72
|
Altincekic N, Korn SM, Qureshi NS, Dujardin M, Ninot-Pedrosa M, Abele R, Abi Saad MJ, Alfano C, Almeida FCL, Alshamleh I, de Amorim GC, Anderson TK, Anobom CD, Anorma C, Bains JK, Bax A, Blackledge M, Blechar J, Böckmann A, Brigandat L, Bula A, Bütikofer M, Camacho-Zarco AR, Carlomagno T, Caruso IP, Ceylan B, Chaikuad A, Chu F, Cole L, Crosby MG, de Jesus V, Dhamotharan K, Felli IC, Ferner J, Fleischmann Y, Fogeron ML, Fourkiotis NK, Fuks C, Fürtig B, Gallo A, Gande SL, Gerez JA, Ghosh D, Gomes-Neto F, Gorbatyuk O, Guseva S, Hacker C, Häfner S, Hao B, Hargittay B, Henzler-Wildman K, Hoch JC, Hohmann KF, Hutchison MT, Jaudzems K, Jović K, Kaderli J, Kalniņš G, Kaņepe I, Kirchdoerfer RN, Kirkpatrick J, Knapp S, Krishnathas R, Kutz F, zur Lage S, Lambertz R, Lang A, Laurents D, Lecoq L, Linhard V, Löhr F, Malki A, Bessa LM, Martin RW, Matzel T, Maurin D, McNutt SW, Mebus-Antunes NC, Meier BH, Meiser N, Mompeán M, Monaca E, Montserret R, Mariño Perez L, Moser C, Muhle-Goll C, Neves-Martins TC, Ni X, Norton-Baker B, Pierattelli R, Pontoriero L, Pustovalova Y, Ohlenschläger O, Orts J, Da Poian AT, Pyper DJ, Richter C, Riek R, Rienstra CM, Robertson A, et alAltincekic N, Korn SM, Qureshi NS, Dujardin M, Ninot-Pedrosa M, Abele R, Abi Saad MJ, Alfano C, Almeida FCL, Alshamleh I, de Amorim GC, Anderson TK, Anobom CD, Anorma C, Bains JK, Bax A, Blackledge M, Blechar J, Böckmann A, Brigandat L, Bula A, Bütikofer M, Camacho-Zarco AR, Carlomagno T, Caruso IP, Ceylan B, Chaikuad A, Chu F, Cole L, Crosby MG, de Jesus V, Dhamotharan K, Felli IC, Ferner J, Fleischmann Y, Fogeron ML, Fourkiotis NK, Fuks C, Fürtig B, Gallo A, Gande SL, Gerez JA, Ghosh D, Gomes-Neto F, Gorbatyuk O, Guseva S, Hacker C, Häfner S, Hao B, Hargittay B, Henzler-Wildman K, Hoch JC, Hohmann KF, Hutchison MT, Jaudzems K, Jović K, Kaderli J, Kalniņš G, Kaņepe I, Kirchdoerfer RN, Kirkpatrick J, Knapp S, Krishnathas R, Kutz F, zur Lage S, Lambertz R, Lang A, Laurents D, Lecoq L, Linhard V, Löhr F, Malki A, Bessa LM, Martin RW, Matzel T, Maurin D, McNutt SW, Mebus-Antunes NC, Meier BH, Meiser N, Mompeán M, Monaca E, Montserret R, Mariño Perez L, Moser C, Muhle-Goll C, Neves-Martins TC, Ni X, Norton-Baker B, Pierattelli R, Pontoriero L, Pustovalova Y, Ohlenschläger O, Orts J, Da Poian AT, Pyper DJ, Richter C, Riek R, Rienstra CM, Robertson A, Pinheiro AS, Sabbatella R, Salvi N, Saxena K, Schulte L, Schiavina M, Schwalbe H, Silber M, Almeida MDS, Sprague-Piercy MA, Spyroulias GA, Sreeramulu S, Tants JN, Tārs K, Torres F, Töws S, Treviño MÁ, Trucks S, Tsika AC, Varga K, Wang Y, Weber ME, Weigand JE, Wiedemann C, Wirmer-Bartoschek J, Wirtz Martin MA, Zehnder J, Hengesbach M, Schlundt A. Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications. Front Mol Biosci 2021; 8:653148. [PMID: 34041264 PMCID: PMC8141814 DOI: 10.3389/fmolb.2021.653148] [Show More Authors] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 01/18/2023] Open
Abstract
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.
Collapse
Affiliation(s)
- Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sophie Marianne Korn
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nusrat Shahin Qureshi
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie Dujardin
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Martí Ninot-Pedrosa
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Rupert Abele
- Institute for Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie Jose Abi Saad
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Fabio C. L. Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Islam Alshamleh
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gisele Cardoso de Amorim
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil
| | - Thomas K. Anderson
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cristiane D. Anobom
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chelsea Anorma
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adriaan Bax
- LCP, NIDDK, NIH, Bethesda, MD, United States
| | | | - Julius Blechar
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Louis Brigandat
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Anna Bula
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Matthias Bütikofer
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | | | - Teresa Carlomagno
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Icaro Putinhon Caruso
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Feixia Chu
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Marquise G. Crosby
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Karthikeyan Dhamotharan
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Isabella C. Felli
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yanick Fleischmann
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | | | - Christin Fuks
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Angelo Gallo
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Santosh L. Gande
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Juan Atilio Gerez
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Dhiman Ghosh
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Francisco Gomes-Neto
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Oksana Gorbatyuk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | | | - Sabine Häfner
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Bing Hao
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Bruno Hargittay
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - K. Henzler-Wildman
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie T. Hutchison
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Katarina Jović
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Janina Kaderli
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Iveta Kaņepe
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert N. Kirchdoerfer
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - John Kirkpatrick
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Robin Krishnathas
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Felicitas Kutz
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne zur Lage
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Roderick Lambertz
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andras Lang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Douglas Laurents
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Verena Linhard
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Löhr
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anas Malki
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Tobias Matzel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Damien Maurin
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Seth W. McNutt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Nathane Cunha Mebus-Antunes
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beat H. Meier
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Miguel Mompeán
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Elisa Monaca
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Roland Montserret
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | | | - Celine Moser
- IBG-4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Thais Cristtina Neves-Martins
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xiamonin Ni
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Roberta Pierattelli
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Letizia Pontoriero
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Yulia Pustovalova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | - Julien Orts
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Andrea T. Da Poian
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dennis J. Pyper
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roland Riek
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Chad M. Rienstra
- Department of Biochemistry and National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anderson S. Pinheiro
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Nicola Salvi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Linda Schulte
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marco Schiavina
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mara Silber
- IBG-4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcius da Silva Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | | | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Niklas Tants
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Felix Torres
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Sabrina Töws
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Miguel Á. Treviño
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Ying Wang
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Marco E. Weber
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Julia E. Weigand
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Christoph Wiedemann
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria Alexandra Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johannes Zehnder
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Schlundt
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
73
|
Ahsan N, Rao RSP, Wilson RS, Punyamurtula U, Salvato F, Petersen M, Ahmed MK, Abid MR, Verburgt JC, Kihara D, Yang Z, Fornelli L, Foster SB, Ramratnam B. Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches. Proteomics 2021; 21:e2000279. [PMID: 33860983 PMCID: PMC8250252 DOI: 10.1002/pmic.202000279] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
While protein–protein interaction is the first step of the SARS‐CoV‐2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)‐based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS‐CoV‐2‐mediated infections in humans. Comparative analysis of cell‐lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS‐CoV‐2 infection is still incomplete and the tissue‐specific response to SARS‐CoV‐2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross‐comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K‐Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS‐CoV‐2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS‐CoV‐2 responsive age‐, gender‐dependent, tissue‐specific protein targets.
Collapse
Affiliation(s)
- Nagib Ahsan
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
| | - R. Shyama Prasad Rao
- Biostatistics and Bioinformatics DivisionYenepoya Research CenterYenepoya UniversityMangaluruIndia
| | - Rashaun S. Wilson
- Keck Mass Spectrometry and Proteomics ResourceYale UniversityNew HavenConnecticutUSA
| | - Ujwal Punyamurtula
- COBRE Center for Cancer Research DevelopmentProteomics Core FacilityRhode Island HospitalProvidenceRhode IslandUSA
| | - Fernanda Salvato
- Department of Plant and Microbial BiologyCollege of Agriculture and Life SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Max Petersen
- Signal Transduction Lab, Division of Hematology/OncologyRhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidenceRhode IslandUSA
| | - Mohammad Kabir Ahmed
- Department of BiochemistryFaculty of MedicineUniversiti Kuala Lumpur Royal College of Medicine PerakIpohPerakMalaysia
| | - M. Ruhul Abid
- Department of SurgeryCardiovascular Research CenterRhode Island HospitalWarren Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
| | - Jacob C. Verburgt
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Daisuke Kihara
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Zhibo Yang
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
| | - Luca Fornelli
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
- Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Steven B. Foster
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
| | - Bharat Ramratnam
- COBRE Center for Cancer Research DevelopmentProteomics Core FacilityRhode Island HospitalProvidenceRhode IslandUSA
- Division of Infectious DiseasesDepartment of MedicineWarren Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
74
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An autoantigen profile of human A549 lung cells reveals viral and host etiologic molecular attributes of autoimmunity in COVID-19. J Autoimmun 2021; 120:102644. [PMID: 33971585 PMCID: PMC8075847 DOI: 10.1016/j.jaut.2021.102644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae. Our work provides a rich resource for studies into “long COVID” and related autoimmune sequelae.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
75
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen-ome from HS-Sultan B-Lymphoblasts Offers a Molecular Map for Investigating Autoimmune Sequelae of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.05.438500. [PMID: 33851168 PMCID: PMC8043459 DOI: 10.1101/2021.04.05.438500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To understand how COVID-19 may induce autoimmune diseases, we have been compiling an atlas of COVID-autoantigens (autoAgs). Using dermatan sulfate (DS) affinity enrichment of autoantigenic proteins extracted from HS-Sultan lymphoblasts, we identified 362 DS-affinity proteins, of which at least 201 (56%) are confirmed autoAgs. Comparison with available multi-omic COVID data shows that 315 (87%) of the 362 proteins are affected in SARS-CoV-2 infection via altered expression, interaction with viral components, or modification by phosphorylation or ubiquitination, at least 186 (59%) of which are known autoAgs. These proteins are associated with gene expression, mRNA processing, mRNA splicing, translation, protein folding, vesicles, and chromosome organization. Numerous nuclear autoAgs were identified, including both classical ANAs and ENAs of systemic autoimmune diseases and unique autoAgs involved in the DNA replication fork, mitotic cell cycle, or telomerase maintenance. We also identified many uncommon autoAgs involved in nucleic acid and peptide biosynthesis and nucleocytoplasmic transport, such as aminoacyl-tRNA synthetases. In addition, this study found autoAgs that potentially interact with multiple SARS-CoV-2 Nsp and Orf components, including CCT/TriC chaperonin, insulin degrading enzyme, platelet-activating factor acetylhydrolase, and the ezrin-moesin-radixin family. Furthermore, B-cell-specific IgM-associated ER complex (including MBZ1, BiP, heat shock proteins, and protein disulfide-isomerases) is enriched by DS-affinity and up-regulated in B-cells of COVID-19 patients, and a similar IgH-associated ER complex was also identified in autoreactive pre-B1 cells in our previous study, which suggests a role of autoreactive B1 cells in COVID-19 that merits further investigation. In summary, this study demonstrates that virally infected cells are characterized by alterations of proteins with propensity to become autoAgs, thereby providing a possible explanation for infection-induced autoimmunity. The COVID autoantigen-ome provides a valuable molecular resource and map for investigation of COVID-related autoimmune sequelae and considerations for vaccine design.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
76
|
Eymieux S, Blanchard E, Uzbekov R, Hourioux C, Roingeard P. Annulate lamellae and intracellular pathogens. Cell Microbiol 2021; 23:e13328. [PMID: 33740320 DOI: 10.1111/cmi.13328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Annulate lamellae (AL) have been observed many times over the years on electron micrographs of rapidly dividing cells, but little is known about these unusual organelles consisting of stacked sheets of endoplasmic reticulum-derived membranes with nuclear pore complexes (NPCs). Evidence is growing for a role of AL in viral infection. AL have been observed early in the life cycles of the hepatitis C virus (HCV) and, more recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), suggesting a specific induction of mechanisms potentially useful to these pathogens. Like other positive-strand RNA viruses, these viruses induce host cells membranes rearrangements. The NPCs of AL could potentially mediate exchanges between these partially sealed compartments and the cytoplasm. AL may also be involved in regulating Ca2+ homeostasis or cell cycle control. They were recently observed in cells infected with Theileria annulata, an intracellular protozoan parasite inducing cell proliferation. Further studies are required to clarify their role in intracellular pathogen/host-cell interactions.
Collapse
Affiliation(s)
- Sébastien Eymieux
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Emmanuelle Blanchard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Rustem Uzbekov
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Christophe Hourioux
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| |
Collapse
|
77
|
Molinari M. ER-phagy responses in yeast, plants, and mammalian cells and their crosstalk with UPR and ERAD. Dev Cell 2021; 56:949-966. [PMID: 33765438 DOI: 10.1016/j.devcel.2021.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/24/2022]
Abstract
ER-phagy, literally endoplasmic reticulum (ER)-eating, defines the constitutive or regulated clearance of ER portions within metazoan endolysosomes or yeast and plant vacuoles. The advent of electron microscopy led to the first observations of ER-phagy over 60 years ago, but only recently, with the discovery of a set of regulatory proteins named ER-phagy receptors, has it been dissected mechanistically. ER-phagy receptors are activated by a variety of pleiotropic and ER-centric stimuli. They promote ER fragmentation and engage luminal, membrane-bound, and cytosolic factors, eventually driving lysosomal clearance of select ER domains along with their content. After short historical notes, this review introduces the concept of ER-phagy responses (ERPRs). ERPRs ensure lysosomal clearance of ER portions expendable during nutrient shortage, nonfunctional, present in excess, or containing misfolded proteins. They cooperate with unfolded protein responses (UPRs) and with ER-associated degradation (ERAD) in determining ER size, function, and homeostasis.
Collapse
Affiliation(s)
- Maurizio Molinari
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland; School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
78
|
Lo Cascio E, Toto A, Babini G, De Maio F, Sanguinetti M, Mordente A, Della Longa S, Arcovito A. Structural determinants driving the binding process between PDZ domain of wild type human PALS1 protein and SLiM sequences of SARS-CoV E proteins. Comput Struct Biotechnol J 2021; 19:1838-1847. [PMID: 33758649 PMCID: PMC7970798 DOI: 10.1016/j.csbj.2021.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022] Open
Abstract
Short Linear Motifs (SLiMs) are functional protein microdomains that typically mediate interactions between a short linear region in one protein and a globular domain in another. Surface Plasmon Resonance assays have been performed to determine the binding affinity between PDZ domain of wild type human PALS1 protein and tetradecapeptides representing the SLiMs sequences of SARS-CoV-1 and SARS-CoV-2 E proteins (E-SLiMs). SARS-CoV-2 E-SLiM binds to the human target protein with a higher affinity compared to SARS-CoV-1, showing a difference significantly greater than previously reported using the F318W mutant of PALS1 protein and shorter target peptides. Moreover, molecular dynamics simulations have provided clear evidence of the structural determinants driving this binding process. Specifically, the Arginine 69 residue in the SARS-CoV-2 E-SLiM is the key residue able to both enhance the specific polar interaction with negatively charged pockets of the PALS1 PDZ domain and reduce significantly the mobility of the viral peptide. These experimental and computational data are reinforced by the comparison of the interaction between the PALS1 PDZ domain with the natural ligand CRB1, as well as the corresponding E-SLiMs of other coronavirus members such as MERS and OCF43. Our results provide a model at the molecular level of the strategies used to mimic the endogenous SLiM peptide in the binding of the tight junctions of the host cell, explaining one of the possible reasons of the severity of the infection and pulmonary inflammation by SARS-CoV-2.
Collapse
Affiliation(s)
- Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Gabriele Babini
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Flavio De Maio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Alvaro Mordente
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Stefano Della Longa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
79
|
Almasy KM, Davies JP, Plate L. Comparative host interactomes of the SARS-CoV-2 nonstructural protein 3 and human coronavirus homologs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.08.434440. [PMID: 33758849 PMCID: PMC7987008 DOI: 10.1101/2021.03.08.434440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, non-structural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) dataset for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance nuclear protein important for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.
Collapse
Affiliation(s)
- Katherine M. Almasy
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
80
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Profile of Human A549 Lung Cells Reveals Viral and Host Etiologic Molecular Attributes of Autoimmunity in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.21.432171. [PMID: 33655248 PMCID: PMC7924268 DOI: 10.1101/2021.02.21.432171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
81
|
Flores-Alanis A, Cruz-Rangel A, Rodríguez-Gómez F, González J, Torres-Guerrero CA, Delgado G, Cravioto A, Morales-Espinosa R. Molecular Epidemiology Surveillance of SARS-CoV-2: Mutations and Genetic Diversity One Year after Emerging. Pathogens 2021; 10:184. [PMID: 33572190 PMCID: PMC7915391 DOI: 10.3390/pathogens10020184] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/16/2022] Open
Abstract
In December 2019, the first cases of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified in the city of Wuhan, China. Since then, it has spread worldwide with new mutations being reported. The aim of the present study was to monitor the changes in genetic diversity and track non-synonymous substitutions (dN) that could be implicated in the fitness of SARS-CoV-2 and its spread in different regions between December 2019 and November 2020. We analyzed 2213 complete genomes from six geographical regions worldwide, which were downloaded from GenBank and GISAID databases. Although SARS-CoV-2 presented low genetic diversity, there has been an increase over time, with the presence of several hotspot mutations throughout its genome. We identified seven frequent mutations that resulted in dN substitutions. Two of them, C14408T>P323L and A23403G>D614G, located in the nsp12 and Spike protein, respectively, emerged early in the pandemic and showed a considerable increase in frequency over time. Two other mutations, A1163T>I120F in nsp2 and G22992A>S477N in the Spike protein, emerged recently and have spread in Oceania and Europe. There were associations of P323L, D614G, R203K and G204R substitutions with disease severity. Continuous molecular surveillance of SARS-CoV-2 will be necessary to detect and describe the transmission dynamics of new variants of the virus with clinical relevance. This information is important to improve programs to control the virus.
Collapse
Affiliation(s)
- Alejandro Flores-Alanis
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico; (A.F.-A.); (G.D.); (A.C.)
| | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - Flor Rodríguez-Gómez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico;
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | | | - Gabriela Delgado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico; (A.F.-A.); (G.D.); (A.C.)
| | - Alejandro Cravioto
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico; (A.F.-A.); (G.D.); (A.C.)
| | - Rosario Morales-Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico; (A.F.-A.); (G.D.); (A.C.)
| |
Collapse
|
82
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Atlas from Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.24.427965. [PMID: 33501444 PMCID: PMC7836114 DOI: 10.1101/2021.01.24.427965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. Using DS affinity, we identified an autoantigenome of 408 proteins from human fetal lung fibroblast HFL11 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigenome have thus far been found to be altered at protein or RNA levels in SARS-Cov-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a strong connection between viral infection and autoimmunity. The vast number of COVID-altered proteins with propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles raises concerns about potential adverse effects of mRNA vaccines. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
83
|
Terracciano R, Preianò M, Fregola A, Pelaia C, Montalcini T, Savino R. Mapping the SARS-CoV-2-Host Protein-Protein Interactome by Affinity Purification Mass Spectrometry and Proximity-Dependent Biotin Labeling: A Rational and Straightforward Route to Discover Host-Directed Anti-SARS-CoV-2 Therapeutics. Int J Mol Sci 2021; 22:E532. [PMID: 33430309 PMCID: PMC7825748 DOI: 10.3390/ijms22020532] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) are the vital engine of cellular machinery. After virus entry in host cells the global organization of the viral life cycle is strongly regulated by the formation of virus-host protein interactions. With the advent of high-throughput -omics platforms, the mirage to obtain a "high resolution" view of virus-host interactions has come true. In fact, the rapidly expanding approaches of mass spectrometry (MS)-based proteomics in the study of PPIs provide efficient tools to identify a significant number of potential drug targets. Generation of PPIs maps by affinity purification-MS and by the more recent proximity labeling-MS may help to uncover cellular processes hijacked and/or altered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), providing promising therapeutic targets. The possibility to further validate putative key targets from high-confidence interactions between viral bait and host protein through follow-up MS-based multi-omics experiments offers an unprecedented opportunity in the drug discovery pipeline. In particular, drug repurposing, making use of already existing approved drugs directly targeting these identified and validated host interactors, might shorten the time and reduce the costs in comparison to the traditional drug discovery process. This route might be promising for finding effective antiviral therapeutic options providing a turning point in the fight against the coronavirus disease-2019 (COVID-19) outbreak.
Collapse
Affiliation(s)
- Rosa Terracciano
- Department of Experimental and Clinical Medicine, University “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Mariaimmacolata Preianò
- Department of Health Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy; (M.P.); (A.F.)
| | - Annalisa Fregola
- Department of Health Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy; (M.P.); (A.F.)
| | - Corrado Pelaia
- Respiratory Medicine Unit, University “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Tiziana Montalcini
- Department of Experimental and Clinical Medicine, University “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Rocco Savino
- Department of Medical and Surgical Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy
| |
Collapse
|