51
|
Qayum A, Harrath K, Li R, Woldu AR, Chu PK, Hu L, Lu F, Yao X. Dynamically Reconstructed Fe-CoOOH Semi-Crystalline Electrocatalyst for Efficient Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408854. [PMID: 39580694 DOI: 10.1002/smll.202408854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/01/2024] [Indexed: 11/26/2024]
Abstract
The development of robust and efficient electrocatalysts for the oxygen evolution reaction (OER) has been the main focus of water electrolysis but remains a great challenge. Here, the synthesis of a highly active and ultra-stable Fe-CoOOH electrocatalyst is reported by steering raw cobalt foam via an in situ solution combustion method assisted by a galvanic replacement reaction and subsequent electrochemical reconstruction of the CoFeOx pre-catalyst. In/ex situ electrochemical analysis and physicochemical characterizations show that the CoFeOx undergoes quick chemical and slow morphological reconstruction to Fe-CoOOH nanosheets. The Fe-CoOOH possesses a semi-crystalline nature with distinct short-range ordering and outstanding OER activity with overpotentials as low as 271 and 291 mV at current densities of 500 and 1,000 mA cm-2, respectively. The remarkable stability under 1,000 mA cm-2 for at least 700 h is achieved. Theoretical calculations confirm the crucial role of Fe doping in facilitating surface reconstruction, enhancing OER activity, and improving the stability of the Fe-CoOOH. Comparative analysis with other transition metals doping reveals the unique ability of Fe to adsorb onto the CoOOH surface, thereby modulating the electronic density and facilitating faster adsorption of reaction intermediates. This work represents valuable insights into the surface reconstruction and doping processes.
Collapse
Affiliation(s)
- Abdul Qayum
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P. R. China
| | - Karim Harrath
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Science, Guanzhou, 341000, P. R. China
| | - Rui Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P. R. China
| | - Abebe Reda Woldu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Liangsheng Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| | - Fushen Lu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| | - Xiangdong Yao
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
- School of Advanced Energy, Sun Yat-sen University (Shenzhen), Shenzhen, 518107, P. R. China
| |
Collapse
|
52
|
Jin B, Zhang W, Wei S, Zhang K, Wang H, Liu G, Li J. Magnesium-promoted rapid self-reconstruction of NiFe-based electrocatalysts toward efficient oxygen evolution. J Colloid Interface Sci 2025; 677:208-216. [PMID: 39089127 DOI: 10.1016/j.jcis.2024.07.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
The acceleration of active sites formation through surface reconstruction is widely acknowledged as the crucial factor in developing high-performance oxygen evolution reaction (OER) catalysts for water splitting. Herein, a simple one-step corrosion method and magnesium (Mg)-promoted strategy are reported to develop the NiFe-based catalyst with enhanced OER performance. The Mg is introduced in NiFe materials to preparate a "pre-catalyst" Mg-Ni/Fe2O3. In-situ Raman shows that Mg doping would accelerate the self-reconstruction of Ni/Fe2O3 to form active NiOOH species during OER. In-situ infrared indicates that Mg doping benefits the formation of *OOH intermediate. Theoretical analysis further confirms that Mg doping can optimize the adsorption of oxygen intermediates, accelerating the OER kinetics. Accordingly, the Mg-Ni/Fe2O3 catalyst exhibits excellent OER performance with overpotential of 168 mV at 10 mA cm-2. The anion exchange membrane water electrolyzer achieved 200 mA cm-2 at voltage of 1.53 V, showing excellent stability over 500 h as well. This work demonstrates the potential of Mg-promoted strategy in regulating the activity of transition metal-based OER electrocatalysts.
Collapse
Affiliation(s)
- Boxuan Jin
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wenwen Zhang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuaichong Wei
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Kai Zhang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hongyu Wang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guihua Liu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Jingde Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
53
|
Hu W, Huang B, Sun M, Du J, Hai Y, Yin W, Wang X, Gao W, Zhao C, Yue Y, Li Z, Li C. Doping Ti into RuO 2 to Accelerate Bridged-Oxygen-Assisted Deprotonation for Acidic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411709. [PMID: 39614718 DOI: 10.1002/adma.202411709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/12/2024] [Indexed: 12/01/2024]
Abstract
The development of efficient and durable electrocatalysts for the acidic oxygen evolution reaction (OER) is essential for advancing renewable hydrogen energy technology. However, the slow deprotonation kinetics of oxo-intermediates, involving the four proton-coupled electron steps, hinder the acidic OER progress. Herein, a RuTiOx solid solution electrocatalyst is investigated, which features bridged oxygen (Obri) sites that act as proton acceptors, accelerating the deprotonation of oxo-intermediates. Electrochemical tests, infrared spectroscopy, and density functional theory results reveal that the moderate proton adsorption energy on Obri sites facilitates fast deprotonation kinetics through the adsorbate evolution mechanism. This process effectively prevents the over-oxidation and deactivation of Ru sites caused by the lattice oxygen mechanism. Consequently, RuTiOx shows a low overpotential of 198 mV at 10 mA cm-2 geo and performance exceeding 1400 h at 50 mA cm-2 geo with negligible deactivation. These insights into the OER mechanism and the structure-function relationship are crucial for the advancement of catalytic systems.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 100872, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 100872, China
| | - Jing Du
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yang Hai
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523000, China
| | - Wen Yin
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaomei Wang
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wensheng Gao
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Chunyang Zhao
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ya Yue
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zelong Li
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
54
|
Jiang J, Li L, Sun R, Wei Y, Xi C, Zhou S, Han S, Huang X. Se vacancies and interface engineering modulated bifunctionality prussian blue analogue derivatives for overall water splitting. J Colloid Interface Sci 2025; 677:904-921. [PMID: 39178670 DOI: 10.1016/j.jcis.2024.08.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
It is a challenging task to design and synthesize stable, and high-performance non-precious metals bifunctional catalysts for water-splitting. Herein, the coupling between Se vacancy and interface engineering is highlighted to synthesize a unique CoFeSe hollow nanocubes structure on MXene-modified nickel foam (NF) by in-situ phase transition from bifunctionality prussian blue analogue (PBA) derivatives (VSe-CoFeSe@MXene/NF). DFT theory reveals that the Se vacancy and interface engineering modulate the surface electronic structure and optimize the surface adsorption energy of the intermediates. Experimental data also confirm that the as-prepared CoFeSe@MF catalyst exhibits advanced electrocatalytic properties, 283 mV (OER) and 67 mV (HER) are required to drive the current density of 10 mA cm-2. Notably, it is assembled into a two-electrode system for integral water decomposition, which only requires a low cell potential of 1.57 V at current of 10 mA cm-2, together with excellent durability for 48 h. The strategy is expected to provide a new direction for the design and construction of highly efficient collaborative integrated water decomposition electrocatalysts.
Collapse
Affiliation(s)
- Jibo Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China.
| | - Lei Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Ran Sun
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Ying Wei
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Chang Xi
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Shaobo Zhou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China.
| | - Xing Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| |
Collapse
|
55
|
Liu LB, Tang YF, Liu S, Yu M, Fu XZ, Luo JL, Xiao W, Liu S. Vacancy-Activated Surface Reconstruction of Perovskite Nanofibers for Efficient Lattice Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67830-67838. [PMID: 39620639 DOI: 10.1021/acsami.4c16293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Inducing the surface reconstruction of perovskites to promote the oxygen evolution reaction (OER) has garnered increasing attention due to the enhanced catalytic activities caused by the self-reconstructed electroactive species. However, the high reconstruction potential, limited electrolyte penetration, and accessibility to the perovskite surface greatly hindered the formation of self-reconstructed electroactive species. Herein, trace Ce-doped La0.95Ce0.05Ni0.8Fe0.2O3-δ nanofibers (LCNF-NFs) were synthesized via electrospinning and postcalcination to boost surface reconstruction. The upshift of the O 2p band center induced by the rich oxygen vacancies lowered the reconstruction potential, and the specific one-dimensional nanostructure effectively enabled enhanced electrolyte accessibility and permeation to the LCNF-NFs. These collectively caused massive in situ generation of self-reconstructed electroactive Ni/FeO(OH) species on the surface. As a result, the surface-reconstructed LCNF-NFs exhibited accelerated lattice kinetics with a comparatively lower Tafel slope of 50.12 mV dec-1, together with an overpotential of only 342.3 mV to afford a current density of 10 mA cm-2 in 0.1 M KOH, which is superior to that of pristine LaNi0.8Fe0.2O3-δ nanoparticles (NPs) and the same stoichiometric La0.95Ce0.05Ni0.8Fe0.2O3-δ NPs, commercial IrO2, and most of the state-of-the-art OER electrocatalysts. This study provided deep insights into the surface reconstruction behaviors induced by oxygen defects and an intellectual approach for constructing electroactive species in situ on perovskites for various energy storage and conversion devices.
Collapse
Affiliation(s)
- Lin-Bo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Yu-Feng Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Shuo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Mulin Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wei Xiao
- College of Electronic Science and Technology, Key Laboratory of Satellite Navigation Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
56
|
Guo R, Zhao Z, Su Z, Liang J, Qu W, Li X, Shang Y. Interfacial Effects of NiFe-Based Bifunctional Electrocatalysts for Highly Efficient Overall Water Splitting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26339-26349. [PMID: 39576740 DOI: 10.1021/acs.langmuir.4c04136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The reasonable design of highly efficient NiFe-based bifunctional electrocatalysts is imperative for water splitting and alleviation of the energy crisis. Herein, the NiFe-based bifunctional electrocatalysts are designed and grown in situ on Ni foam by a simple hydrothermal method. The interfacial effect among NiFe-LDH, Fe5O7(OH), and NiFe2O4 exposes more catalytic active sites, modulated electronic structure, and optimization of the electrocatalytic performances. The overpotentials of NiFe-LDH/Fe5O7(OH)/NiFe2O4/NF-15h (NFN/NF-15h) for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are 78 and 208 mV at 10 mA cm-2, respectively. Overall water splitting can drive 10 mA cm-2 with a cell voltage of only 1.538 V. This work contributes a feasible idea for the design and synthesis of NiFe-based bifunctional electrocatalysts with outstanding water splitting performance.
Collapse
Affiliation(s)
- Rui Guo
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhifeng Zhao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhanhua Su
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jing Liang
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Weili Qu
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiaofeng Li
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yongchen Shang
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
57
|
Chen M, Guo C, Qin L, Wang L, Qiao L, Chi K, Tang Z. Atomically Precise Cu Nanoclusters: Recent Advances, Challenges, and Perspectives in Synthesis and Catalytic Applications. NANO-MICRO LETTERS 2024; 17:83. [PMID: 39625605 PMCID: PMC11615184 DOI: 10.1007/s40820-024-01555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalities. Among that, Cu nanoclusters have been gaining continuous increasing research attentions, thanks to the low cost, diversified structures, and superior catalytic performance for various reactions. In this review, we first summarize the recent progress regarding the synthetic methods of atomically precise Cu nanoclusters and the coordination modes between Cu and several typical ligands and then discuss the catalytic applications of these Cu nanoclusters with some explicit examples to explain the atomical-level structure-performance relationship. Finally, the current challenges and future research perspectives with some critical thoughts are elaborated. We hope this review can not only provide a whole picture of the current advances regarding the synthesis and catalytic applications of atomically precise Cu nanoclusters, but also points out some future research visions in this rapidly booming field.
Collapse
Affiliation(s)
- Mengyao Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Chengyu Guo
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lei Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Liang Qiao
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Kebin Chi
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Harbin, 150001, People's Republic of China.
| |
Collapse
|
58
|
Zheng J, Meng D, Guo J, Zhang A, Wang Z. Construction of "Metal Defect/Oxygen Defect Junction" in ZnFe 2O 4-NiCo 2O 4 Heterostructures for Enhancing Electrocatalytic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407177. [PMID: 39291902 DOI: 10.1002/smll.202407177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Defect engineering is a promising approach to improve the conductivity and increase the active sites of transition metal oxides used as catalysts for the oxygen evolution reaction (OER). However, when metal defects and oxygen defects coexist closely within the same crystal, their compensating charges can diminish the benefits of both defect structures on the catalyst's local electronic structure. To address this limitation, a novel strategy that employs the heterostructure interface of ZnFe2O4-NiCo2O4 to spatially separate the metal defects from the oxygen defects is proposed. This configuration positions the two types of defects on opposite sides of the heterojunction interface, creating a unique structure termed the "metal-defect/oxygen-defect junction". Physical characterization and simulations reveal that this configuration enhances electron transfer at the heterostructure interface, increases the oxidation state of Fe on the catalyst surface, and boosts bulk charge carrier concentration. These improvements enhance active site performance, facilitating hydroxyl adsorption and deprotonation, thereby reducing the overpotential required for the OER.
Collapse
Affiliation(s)
- Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Dapeng Meng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Junxin Guo
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Anyu Zhang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
59
|
Cheng B, Zhan H, Lu Y, Xing D, Lv X, Frauenheim T, Zhou P, Wang S, Zou Y. Oxygen Defect Site Filling Strategy Induced Moderate Enrichment of Reactants for Efficient Electrocatalytic Biomass Upgrading. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410725. [PMID: 39494629 DOI: 10.1002/advs.202410725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/05/2024] [Indexed: 11/05/2024]
Abstract
The electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) provides a feasible approach for the efficient utilization of biomass. Defect regulation is an effective strategy in the field of biomass upgrading to enhance the adsorption capacity of reactants and thus increase the activity. However, how to select appropriate strategies to regulate the over-enrichment of reactants induced by excessive oxygen vacancy is still a huge challenge. In this work, the defect-filling strategy to design and construct an element-filled oxygen vacancy site layered double hydroxide (S─Ov─LDH) is adopted, which achieves a significant reduction in the electrolysis potential of biomass platform molecule HMF oxidation reaction and a significant increase in current density. Physical characterizations, electrochemical measurements, and theoretical calculations prove that the formation of metal─S bond in the second shell effectively regulates the electronic structure of the material, thus weakening the over-strong adsorption of HMF and OH- induced by excessive oxygen vacancy, promoting the formation of high-valence Co3+ during the reaction, and forming new adsorption sites. This work discusses the catalytic enhancement mechanism of defect filling in detail, fills the gap of defect filling in the field of biomass upgrading, and provides favorable guidance for the further development of defect regulation strategies.
Collapse
Affiliation(s)
- Baixue Cheng
- State Key Laboratory of Bio-fibers and ECo─textiles, College of Materials Science and Engineering, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Haoyu Zhan
- State Key Laboratory of Bio-fibers and ECo─textiles, College of Materials Science and Engineering, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Yankun Lu
- State Key Laboratory of Bio-fibers and ECo─textiles, College of Materials Science and Engineering, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Danning Xing
- Shandong Institute of Advanced Technology, Jinan, 250100, P. R. China
| | - Xingshuai Lv
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Thomas Frauenheim
- School of Science, Constructor University, 28759, Bremen, Germany
- Beijing Computational Science Research Center, Beijing, 100193, P. R. China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Peng Zhou
- State Key Laboratory of Bio-fibers and ECo─textiles, College of Materials Science and Engineering, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
60
|
Chen K, Park J, Yadav S, Kim G, Dao V, Uthirakumar P, Lee IH. Sputtering induced the architecture of "needle mushroom" shaped Cu2O-NiCo2O4 heterostructure with novel morphology and abundant interface for high-efficiency electrochemical water oxidation. J Chem Phys 2024; 161:194707. [PMID: 39555763 DOI: 10.1063/5.0221991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/29/2024] [Indexed: 11/19/2024] Open
Abstract
Oxygen evolution reaction (OER) is widely recognized as a bottleneck in the kinetics and activity of decomposition water. Unique geometric design and compositional regulation are important technologies for achieving significant activity and excellent kinetics, but they continue to face obstacles in reaction thermodynamics and kinetic response. Here, a "needle mushroom" shaped Cu2O-NiCo2O4 heterostructure with abundant active sites and optimized conductivity that is grown on the Nickel-foam (NF) (labeled as Cu2O-NiCo2O4/NF-2) is prepared using advanced magnetron sputtering strategies for electrochemical water oxidation. Based on the excellent geometric advantages and efficient charge transfer capabilities, the catalyst of Cu2O-NiCo2O4/NF-2 shows superior electrocatalytic activity (low overpotential) and kinetics (low electrochemical impedance) compared with nanoneedle shaped Cu2O-NiCo2O4/NF-1 and NiCo2O4/NF for OER in alkaline medium. This work demonstrates a practical and economical strategy toward the fabrication of ternary transition metal oxides for water oxidation.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaehong Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sunny Yadav
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gyucheol Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Vandung Dao
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Periyayya Uthirakumar
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - In-Hwan Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
61
|
Xie C, Chen W, Wang Y, Yang Y, Wang S. Dynamic evolution processes in electrocatalysis: structure evolution, characterization and regulation. Chem Soc Rev 2024; 53:10852-10877. [PMID: 39382539 DOI: 10.1039/d3cs00756a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Reactions on electrocatalytic interfaces often involve multiple processes, including the diffusion, adsorption, and conversion of reaction species and the interaction between reactants and electrocatalysts. Generally, these processes are constantly changing rather than being in a steady state. Recently, dynamic evolution processes on electrocatalytic interfaces have attracted increasing attention owing to their significant roles in catalytic reaction kinetics. In this review, we aim to provide insights into the dynamic evolution processes in electrocatalysis to emphasize the importance of unsteady-state processes in electrocatalysis. Specifically, the dynamic structure evolution of electrocatalysts, methods for the characterization of the dynamic evolution and the strategies for the regulation of the dynamic evolution for improving electrocatalytic performance are summarized. Finally, the conclusion and outlook on the research on dynamic evolution processes in electrocatalysis are presented. It is hoped that this review will provide a deeper understanding of dynamic evolution in electrocatalysis, and studies of electrocatalytic reaction processes and kinetics on the unsteady-state microscopic spatial and temporal scales will be given more attention.
Collapse
Affiliation(s)
- Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yahui Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
62
|
Ma S, Wang K, Rafique M, Han J, Fu Q, Jiang S, Wang X, Yao T, Xu P, Song B. Reconstruction of Ferromagnetic/Paramagnetic Cobalt-Based Electrocatalysts under Gradient Magnetic Fields for Enhanced Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202412821. [PMID: 39105426 DOI: 10.1002/anie.202412821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
The rational manipulation of the surface reconstruction of catalysts is a key factor in achieving highly efficient water oxidation, but it is a challenge due to the complex reaction conditions. Herein, we introduce a novel in situ reconstruction strategy under a gradient magnetic field to form highly catalytically active species on the surface of ferromagnetic/paramagnetic CoFe2O4@CoBDC core-shell structure for electrochemical oxygen evolution reaction (OER). We demonstrate that the Kelvin force from the cores' local gradient magnetic field modulates the shells' surface reconstruction, leading to a higher proportion of Co2+ as active sites. These Co sites with optimized electronic configuration exhibit more favorable adsorption energy for oxygen-containing intermediates and lower the activation energy of the overall catalytic reaction. As a result, a significant enhancement in OER performance is achieved with a large current density increment about 128 % at 1.63 V and an overpotential reduction by 28 mV at 10 mA cm-2 after reconstruction. Interestingly, after removing the external magnetic field, the activity could persist for over 100 h. This work showcases the directional surface reconstruction of catalysts under a gradient magnetic field for enhanced water oxidation.
Collapse
Affiliation(s)
- Shengyu Ma
- School of Physics, Harbin Institute of Technology, 150001, Harbin, China
| | - Kaixi Wang
- Zhengzhou Research Institute, Harbin Institute of Technology, 450046, Zhengzhou, China
| | - Moniba Rafique
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, 150001, Harbin, China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, 150001, Harbin, China
| | - Qiang Fu
- School of Physics, Harbin Institute of Technology, 150001, Harbin, China
| | - Sida Jiang
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001, Harbin, China
| | - Xianjie Wang
- School of Physics, Harbin Institute of Technology, 150001, Harbin, China
| | - Tai Yao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, 150001, Harbin, China
| | - Ping Xu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Bo Song
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001, Harbin, China
- National Key Laboratory of Laser Spatial Information, 150001, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, 450046, Zhengzhou, China
- Frontier Research Center of Space Environment Interacting with Matter, Harbin Institute of Technology, 150001, Harbin, China
| |
Collapse
|
63
|
Cai M, Zhang Y, He P, Zhang Z. Recent Advances in Revealing the Electrocatalytic Mechanism for Hydrogen Energy Conversion System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405008. [PMID: 39075971 DOI: 10.1002/smll.202405008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Indexed: 07/31/2024]
Abstract
In light of the intensifying global energy crisis and the mounting demand for environmental protection, it is of vital importance to develop advanced hydrogen energy conversion systems. Electrolysis cells for hydrogen production and fuel cell devices for hydrogen utilization are indispensable in hydrogen energy conversion. As one of the electrolysis cells, water splitting involves two electrochemical reactions, hydrogen evolution reaction and oxygen evolution reaction. And oxygen reduction reaction coupled with hydrogen oxidation reaction, represent the core electrocatalytic reactions in fuel cell devices. However, the inherent complexity and the lack of a clear understanding of the structure-performance relationship of these electrocatalytic reactions, have posed significant challenges to the advancement of research in this field. In this work, the recent development in revealing the mechanism of electrocatalytic reactions in hydrogen energy conversion systems is reviewed, including in situ characterization and theoretical calculation. First, the working principles and applications of operando measurements in unveiling the reaction mechanism are systematically introduced. Then the application of theoretical calculations in the design of catalysts and the investigation of the reaction mechanism are discussed. Furthermore, the challenges and opportunities are also summarized and discussed for paving the development of hydrogen energy conversion systems.
Collapse
Affiliation(s)
- Mingxin Cai
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiran Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Peilei He
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhicheng Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
64
|
Chen D, Mu S. Molten Salt-Assisted Synthesis of Catalysts for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408285. [PMID: 39246151 DOI: 10.1002/adma.202408285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Indexed: 09/10/2024]
Abstract
A breakthrough in manufacturing procedures often enables people to obtain the desired functional materials. For the field of energy conversion, designing and constructing catalysts with high cost-effectiveness is urgently needed for commercial requirements. Herein, the molten salt-assisted synthesis (MSAS) strategy is emphasized, which combines the advantages of traditional solid and liquid phase synthesis of catalysts. It not only provides sufficient kinetic accessibility, but effectively controls the size, morphology, and crystal plane features of the product, thus possessing promising application prospects. Specifically, the selection and role of the molten salt system, as well as the mechanism of molten salt assistance are analyzed in depth. Then, the creation of the catalyst by the MSAS and the electrochemical energy conversion related application are introduced in detail. Finally, the key problems and countermeasures faced in breakthroughs are discussed and look forward to the future. Undoubtedly, this systematical review and insights here will promote the comprehensive understanding of the MSAS and further stimulate the generation of new and high efficiency catalysts.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
65
|
Yin ZH, Liu H, Hu JS, Wang JJ. The breakthrough of oxide pathway mechanism in stability and scaling relationship for water oxidation. Natl Sci Rev 2024; 11:nwae362. [PMID: 39588208 PMCID: PMC11587812 DOI: 10.1093/nsr/nwae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/27/2024] Open
Abstract
An in-depth understanding of electrocatalytic mechanisms is essential for advancing electrocatalysts for the oxygen evolution reaction (OER). The emerging oxide pathway mechanism (OPM) streamlines direct O-O radical coupling, circumventing the formation of oxygen vacancy defects featured in the lattice oxygen mechanism (LOM) and bypassing additional reaction intermediates (*OOH) inherent to the adsorbate evolution mechanism (AEM). With only *O and *OH as intermediates, OPM-driven electrocatalysts stand out for their ability to disrupt traditional scaling relationships while ensuring stability. This review compiles the latest significant advances in OPM-based electrocatalysis, detailing design principles, synthetic methods, and sophisticated techniques to identify active sites and pathways. We conclude with prospective challenges and opportunities for OPM-driven electrocatalysts, aiming to advance the field into a new era by overcoming traditional constraints.
Collapse
Affiliation(s)
- Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
66
|
Ye B, Zhang Y, Li C, Zhang T, Li Y, Li T, Huang F, Tang C, Chen R, Tang T, Noori A, Zhou L, Xia X, Mousavi MF, Zhang Y. N-Doped Carbon Modified (Ni xFe 1-x)Se Supported on Vertical Graphene toward Efficient and Stable OER Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404545. [PMID: 39128132 DOI: 10.1002/smll.202404545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Indexed: 08/13/2024]
Abstract
NiFe-based nanomaterials are extensively studied as one of the promising candidates for the oxygen evolution reaction (OER). However, their practical application is still largely impeded by the unsatisfied activity and poor durability caused by the severe leaching of active species. Herein, a rapid and facile combustion method is developed to synthesize the vertical graphene (VG) supported N-doped carbon modified (NixFe1-x)Se composites (NC@(NixFe1-x)Se/VG). The interconnected heterostructure of obtained materials plays a vital role in boosting the catalytic performance, offering rich active sites and convenient pathways for rapid electron and ion transport. The incorporation of Se into NiFe facilitates the formation of active species via in situ surface reconstruction. According to density functional theory (DFT) calculations, the in situ formation of a Ni0.75Fe0.25Se/Ni0.75Fe0.25OOH layer significantly enhances the catalytic activity of NC@(NixFe1-x)Se/VG. Furthermore, the surface-adsorbed selenoxide species contribute to the stabilization of the catalytic active phase and increase the overall stability. The obtained NC@(NixFe1-x)Se/VG exhibits a low overpotential of 220 mV at 20 mA cm-2 and long-term stability over 300 h. This work offers a novel perspective on the design and fabrication of OER electrocatalysts with high activity and stability.
Collapse
Affiliation(s)
- Beirong Ye
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Yuefei Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Chen Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Tengfei Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Yongqi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Ting Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Fengyu Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Chong Tang
- School of Electrical Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Renhong Chen
- School of Electrical Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Tao Tang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Abolhassan Noori
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Liujiang Zhou
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Xinhui Xia
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mir F Mousavi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| |
Collapse
|
67
|
Xu Z, Deng K, Zhang Y, Zhu B, Yang J, Xue M, Jin H, He G, Zheng G, Zheng J, Wu D. Reinforced Magnetic-Responsive Electro-Ionic Artificial Muscles by 3D Laser-Induced Graphene Nano-Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407106. [PMID: 39380392 DOI: 10.1002/adma.202407106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/12/2024] [Indexed: 10/10/2024]
Abstract
Efficient ion transport and enriched responsive modals via modulating electrochemical properties of conductivity and capacitance are essential for soft electro-ionic actuators. However, cost-effective and straightforward approaches to achieve expedited fabrication of active electrode materials capable of multimodal-responsiveness remain limited. Herein, this work reports the one-step ultrafast laser direct patterning method, to readily synthesize electro- and magneto-active electrode material, derived from the unique cobalt-phosphorus co-doped core-shell heterostructures within 3D graphene frameworks, for fulfilling the dual-mode responsive electro-ionic actuators. The designed nanofiber-structured heterointerfaces across electrodes and electrolytes further promote highly efficient electron/ion transfer. The developed soft actuator exhibits superior actuation performance of peak-to-peak displacement to 13.08 mm under an ultra-low ±0.5 V, with doubled direct current deflection under 200 mT at 1 V, an ultrafast response of 1.38 s and long-term stability (>90% retention for ≈106 000 cycles), even detectable bending to ≈280 µm under exceptional ±10 mV. The promising demonstration of promoting differentiation and proliferation of stem cells under mechanical strain and electrical stimuli, sheds more light as well on the possibility of facilitating biomedical soft robotics with ultrahigh actuation performance.
Collapse
Affiliation(s)
- Zhenjin Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Keqi Deng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Bin Zhu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jianhui Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Mingcheng Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Gonghan He
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jianyi Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Dezhi Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
68
|
Zhang L, Zhang N, Shang H, Sun Z, Wei Z, Wang J, Lei Y, Wang X, Wang D, Zhao Y, Sun Z, Zhang F, Xiang X, Zhang B, Chen W. High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation. Nat Commun 2024; 15:9440. [PMID: 39487139 PMCID: PMC11530662 DOI: 10.1038/s41467-024-53871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Double-atom catalysts (DACs) have opened distinctive paradigms in the field of rapidly developing atomic catalysis owing to their great potential for promoting catalytic performance in various reaction systems. However, increasing the loading and extending the service life of metal active centres represents a considerable challenge for the efficient utilization of DACs. Here, we rationally design asymmetric nitrogen, sulfur-coordinated diatomic iron centres on highly defective nitrogen-doped carbon nanosheets (denoted A-Fe2S1N5/SNC, A: asymmetric), which possess the atomic configuration of the N2S1Fe-FeN3 moiety. The abundant defects and low-electronegativity heteroatoms in the carbon-based framework endow A-Fe2S1N5/SNC with a high loading of 6.72 wt%. Furthermore, A-Fe2S1N5/SNC has a low overpotential of 193 mV for the oxygen evolution reaction (OER) at 10 mA cm-2, outperforming commercial RuO2 catalysts. In addition, A-Fe2S1N5/SNC exhibits extraordinary stability, maintaining > 97% activity for over 2000 hours during the OER process. This work provides a practical scheme for simultaneously balancing the activity and stability of DACs towards electrocatalysis applications.
Collapse
Affiliation(s)
- Lili Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ning Zhang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, P. R. China
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zihao Wei
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Yuanting Lei
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaochen Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yafei Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhongti Sun
- School of Materials Science and Engineering, Jiangsu University, Zhen-Jiang, Jiangsu, 212013, P. R. China.
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
69
|
Liu S, Jia B, Wang Y, Zhao Y, Liu L, Fan F, Qin Y, Liu J, Jiang Y, Liu H, Zhao H, Li H, Zhou W, Wu H, Zhang D, Qu X, Qin M. Topological Synthesis of 2D High-Entropy Multimetallic (Oxy)hydroxide for Enhanced Lattice Oxygen Oxidation Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409530. [PMID: 39344144 DOI: 10.1002/adma.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Owing to sluggish reaction kinetics and high potential, oxygen evolution reaction (OER) electrocatalysts face a trade-off between activity and stability. Herein, an innovative topological strategy is presented for preparing 2D multimetallic (oxy)hydroxide, including ternary CoFeZn, quaternary CoFeMnZn, and high-entropy CoFeMnCuZn. The key to the synthesis lies in using Ca-rich brownmillerite oxide as a precursor, which possesses inherent structural flexibility enabling tailored elemental adjustments and topologically transforms from a point-shared structure of metal-oxygen octahedrons into an edge-shared structure under alkaline conditions. The presence of Zn in the catalysts causes a shift in the center of the O2p band toward the Fermi level, resulting in more Co4+ species, which drive holes into oxygen ligands to promote intramolecular oxygen coupling. The triggered lattice oxidation mechanism is identified by detecting peroxo-like (O2 2-) negative species using tetramethylammonium chemical probe, along with 18O isotope labeling experiments. As a result, the catalyst demonstrates an overpotential of 267 mV at 10 mA cm-2, ranking it among the top-performing non-Ni-based catalysts. Importantly, the catalysts also show high Fe-leaching resistance during OER compared to conventional NiFe and CoFe hydroxides/(oxy)hydroxides. The assembled zinc-air battery enables stable operation for over 225 h at a low charging voltage of 1.93 V.
Collapse
Affiliation(s)
- Sijia Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Baorui Jia
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528000, China
| | - Yong Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Yongzhi Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Materials Science and Engineering, National University, Singapore, 117575, Singapore
| | - Luan Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fengsong Fan
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yunpu Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianfang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yirui Jiang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongru Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hong Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenxiang Zhou
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haoyang Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Deyin Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuanhui Qu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mingli Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| |
Collapse
|
70
|
Zhang Y, Liu J, Xu Y, Xie C, Wang S, Yao X. Design and regulation of defective electrocatalysts. Chem Soc Rev 2024; 53:10620-10659. [PMID: 39268976 DOI: 10.1039/d4cs00217b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Electrocatalysts are the key components of electrochemical energy storage and conversion devices. High performance electrocatalysts can effectively reduce the energy barrier of the chemical reactions, thereby improving the conversion efficiency of energy devices. The electrocatalytic reaction mainly experiences adsorption and desorption of molecules (reactants, intermediates and products) on a catalyst surface, accompanied by charge transfer processes. Therefore, surface control of electrocatalysts plays a pivotal role in catalyst design and optimization. In recent years, many studies have revealed that the rational design and regulation of a defect structure can result in rearrangement of the atomic structure on the catalyst surface, thereby efficaciously promoting the electrocatalytic performance. However, the relationship between defects and catalytic properties still remains to be understood. In this review, the types of defects, synthesis methods and characterization techniques are comprehensively summarized, and then the intrinsic relationship between defects and electrocatalytic performance is discussed. Moreover, the application and development of defects are reviewed in detail. Finally, the challenges existing in defective electrocatalysts are summarized and prospected, and the future research direction is also suggested. We hope that this review will provide some principal guidance and reference for researchers engaged in defect and catalysis research, better help researchers understand the research status and development trends in the field of defects and catalysis, and expand the application of high-performance defective electrocatalysts to the field of electrocatalytic engineering.
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, P. R. China.
| | - Jingjing Liu
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, P. R. China.
| | - Yangfan Xu
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong 518107, P. R. China.
| | - Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xiangdong Yao
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong 518107, P. R. China.
| |
Collapse
|
71
|
Li H, Lin Y, Duan J, Wen Q, Liu Y, Zhai T. Stability of electrocatalytic OER: from principle to application. Chem Soc Rev 2024; 53:10709-10740. [PMID: 39291819 DOI: 10.1039/d3cs00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hydrogen energy, derived from the electrolysis of water using renewable energy sources such as solar, wind, and hydroelectric power, is considered a promising form of energy to address the energy crisis. However, the anodic oxygen evolution reaction (OER) poses limitations due to sluggish kinetics. Apart from high catalytic activity, the long-term stability of electrocatalytic OER has garnered significant attention. To date, several research studies have been conducted to explore stable electrocatalysts for the OER. A comprehensive review is urgently warranted to provide a concise overview of the recent advancements in the electrocatalytic OER stability, encompassing both electrocatalyst and device developments. This review aims to succinctly summarize the primary factors influencing OER stability, including morphological/phase change and electrocatalyst dissolution, as well as mechanical detachment, alongside chemical, mechanical, and operational degradation observed in devices. Furthermore, an overview of contemporary approaches to enhance stability is provided, encompassing electrocatalyst design (structural regulation, protective layer coating, and stable substrate anchoring) and device optimization (bipolar plates, gas diffusion layers, and membranes). Hopefully, more attention will be paid to ensuring the stable operation of electrocatalytic OER and the future large-scale water electrolysis applications. This review presents design principles aimed at addressing challenges related to the stability of electrocatalytic OER.
Collapse
Affiliation(s)
- HuangJingWei Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Yu Lin
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205, P. R. China
| | - Qunlei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| |
Collapse
|
72
|
Mannu P, Dharman RK, Nga TTT, Mariappan A, Shao YC, Ishii H, Huang YC, Kandasami A, Oh TH, Chou WC, Chen CL, Chen JL, Dong CL. Tuning of Oxygen Vacancies in Co 3O 4 Electrocatalyst for Effectiveness in Urea Oxidation and Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403744. [PMID: 39434462 DOI: 10.1002/smll.202403744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/30/2024] [Indexed: 10/23/2024]
Abstract
The development of an excellent multifunctional electrocatalyst that is based on non-precious metal is critical for improving the electrochemical processes of the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the urea oxidation reaction (UOR) in alkaline media. This study demonstrates that incorporating Mo into Co3O4 facilitated the formation of rich oxygen vacancies (Vo), which promotes effective nitrate adsorption and activation in urea electrolysis. Subsequently, in situ/operando X-ray absorption spectroscopy is used to explore the active sites in Mo-Co3O4-3 under OER, indicating the oxygen vacancies are first filled with OH• in Mo-Co3O4; facilitated the pre-oxidation of low-valence Co, and promoted the reconstruction/deprotonation of intermediate Co-OOH•. Mo-Co3O4-3 electrocatalysts show impressive HER, OER, and UOR with low overpotentials of 141 mV, 220 mV, and 1.32 V, respectively, at 10 mA cm-2 in an alkaline medium. Furthermore, in situ/Operando Raman spectroscopy results reveal the importance of CoOOH active sites for enhanced electrochemical performance in Mo-Co3O4-3 compared to the pure Co3O4. The urea electrolyzer with Mo-Co3O4 electrocatalysts acts as an anode and the cathode delivers 1.42 V at 10 mA cm-2. A viable approach to creating effective UOR electrocatalysts involves synergistic engineering exploiting doping and oxygen vacancies.
Collapse
Affiliation(s)
- Pandian Mannu
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | | | - Ta Thi Thuy Nga
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Athibala Mariappan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Yu-Cheng Shao
- Spring-8 Group & Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hirofumi Ishii
- Spring-8 Group & Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Asokan Kandasami
- Department of Physics & Centre for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Wu-Ching Chou
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chi-Liang Chen
- Spring-8 Group & Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Jeng-Lung Chen
- Spring-8 Group & Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| |
Collapse
|
73
|
Bai Y, Liang W, Zhang H. Constructing surface protective film of V-Se-O to promote zinc ion storage by surface oxygen implantation strategy. J Colloid Interface Sci 2024; 672:455-464. [PMID: 38850870 DOI: 10.1016/j.jcis.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Interfacial chemical modification is an effective strategy to adjust the strong Coulombic ion-lattice interactions with high valence cations experienced by electrode materials, facilitating the reaction kinetic. In this paper, a simple and fast surface oxygen implantation strategy was designed to adjust the electronic structure of stainless steel (SS) supported vanadium diselenide (VSe2) nanosheets and form a surface protective film, which effectively accelerates the reaction kinetics of Zn2+ and extends the cycle life of the battery. It is demonstrated that the conductivity, pseudocapacitance and specific capacity can be tuned by selectively introducing oxygen species to the surface, which provides an important reference for the design of electrodes with controlled surface chemistry. Density functional theory (DFT) calculations also confirm that the electronic structure can be adjusted by surface oxygen injection strategy, which not only improves the conductivity, but also adjusts the adsorption energy, thus providing favorable conditions for zinc ion storage. Benefiting from the selenium vacancies and pores generated by the removal of part of selenium, and the oxide film formed on the surfaces, the VSe2-xOx-SS-30 electrode showed higher specific capacity (188.4 mAh/g at 0.5 A g-1 after 50 cycles), better rate performance (107.1 mAh/g at 4 A g-1) and more satisfactory cycling stability (83.1 mAh/g at 5 A g-1 after 1800 cycles) than VSe2-SS electrode. Importantly, the flexible quasi-solid-state VSe2-xOx-SS-30//Zn battery also exhibits high specific capacity and excellent environmental adaptability. Furthermore, the zinc (de)intercalation and transformation reactions mechanism was revealed by some ex-situ/in-situ techniques.
Collapse
Affiliation(s)
- Youcun Bai
- School of Materials Science and Engineering, Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenhao Liang
- Department of Mechanical Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Heng Zhang
- School of Materials Science and Engineering, Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
74
|
Jin L, Cheng C, Guo C, Wabaidur SM, Zhong Y, Hu Y. One-Step Decoration of Subnanometer MoO x Clusters on Bi 11VO 19 Nanotubes for Visible-Light-Driven Water Oxidation. CHEMSUSCHEM 2024; 17:e202400450. [PMID: 38660929 DOI: 10.1002/cssc.202400450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
For the sluggish reaction kinetics due to a four-electron transfer process, water oxidation is always a major obstacle to solar splitting of water to hydrogen. It remains a tough challenge to develop efficient nonnoble-metal photocatalysts for water oxidation. Herein, we decorate the host photocatalyst of Bi11VO19 nanotubes with the coatalyst of subnanometer MoOx clusters (denoted as Bi11VO19/MoOx hetero-nanotubes) via a one-step cation-exchange solvothermal reaction using Na2V6O16 nanowires as the hard template. It is observed that the morphology and microstructure of Bi11VO19/MoOx hetero-nanotubes vary with the dosage of Mo source and polyvinylpyrrolidone, as well as with the solvent composition. The optimized Bi11VO19/MoOx hetero-nanotubes significantly enhance the photooxidation of water to oxygen with visible light, delivering an oxygen production rate of 790 μmol g-1 h-1, which is 12 times that of bare Bi11VO19 nanotubes. In situ X-ray photoelectron spectroscopy and (photo)electrochemical characterization suggest that the enhanced photoactivity may be caused by the decorated cocatalyst of MoOx clusters, which extracts electrons from Bi11VO19 nanotubes, leaving an abundance of holes for water photooxidation. This work demonstrates a potential strategy to develop photocatalysts for energy conversion by constructing Bi11VO19-based nanostructures.
Collapse
Affiliation(s)
- Linfeng Jin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
- Department of Physics, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Chao Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Changfa Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | | | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yong Hu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
75
|
Zhang D, Wu Q, Wu L, Cheng L, Huang K, Chen J, Yao X. Optimal Electrocatalyst Design Strategies for Acidic Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401975. [PMID: 39120481 PMCID: PMC11481214 DOI: 10.1002/advs.202401975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Indexed: 08/10/2024]
Abstract
Hydrogen, a clean resource with high energy density, is one of the most promising alternatives to fossil. Proton exchange membrane water electrolyzers are beneficial for hydrogen production because of their high current density, facile operation, and high gas purity. However, the large-scale application of electrochemical water splitting to acidic electrolytes is severely limited by the sluggish kinetics of the anodic reaction and the inadequate development of corrosion- and highly oxidation-resistant anode catalysts. Therefore, anode catalysts with excellent performance and long-term durability must be developed for anodic oxygen evolution reactions (OER) in acidic media. This review comprehensively outlines three commonly employed strategies, namely, defect, phase, and structure engineering, to address the challenges within the acidic OER, while also identifying their existing limitations. Accordingly, the correlation between material design strategies and catalytic performance is discussed in terms of their contribution to high activity and long-term stability. In addition, various nanostructures that can effectively enhance the catalyst performance at the mesoscale are summarized from the perspective of engineering technology, thus providing suitable strategies for catalyst design that satisfy industrial requirements. Finally, the challenges and future outlook in the area of acidic OER are presented.
Collapse
Affiliation(s)
- Dongdong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Qilong Wu
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Liyun Wu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Lina Cheng
- Institute for Green Chemistry and Molecular EngineeringSun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
- School of Advanced Energy and IGCMEShenzhen CampusSun Yat‐Sen University (SYSU)ShenzhenGuangdong518100P. R. China
| |
Collapse
|
76
|
Huang Y, Wu Y, Lu Y, Chen J, Lin H, Chen C, Chen C, Jing C, Zhou J, Zhang L, Wang Y, Chou W, Wang S, Hu Z, Dong C. Direct Identification of O─O Bond Formation Through Three-Step Oxidation During Water Splitting by Operando Soft X-ray Absorption Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401236. [PMID: 39090836 PMCID: PMC11515896 DOI: 10.1002/advs.202401236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/14/2024] [Indexed: 08/04/2024]
Abstract
Anionic redox allows the direct formation of O─O bonds from lattice oxygens and provides higher catalytic in the oxygen evolution reaction (OER) than does the conventional metal ion mechanism. While previous theories have predicted and experiments have suggested the possible O─O bond, it has not yet been directly observed in the OER process. In this study, operando soft X-ray absorption spectroscopy (sXAS) at the O K-edge and the operando Raman spectra is performed on layered double CoFe hydroxides (LDHs) after intercalation with [Cr(C2O4)3]3-, and revealed a three-step oxidation process, staring from Co2+ to Co3+, further to Co4+ (3d6L), and ultimately leading to the formation of O─O bonds and O2 evolution above a threshold voltage (1.4 V). In contrast, a gradual oxidation of Fe is observed in CoFe LDHs. The OER activity exhibits a significant enhancement, with the overpotential decreasing from 300 to 248 mV at 10 mA cm-2, following the intercalation of [Cr(C2O4)3]3- into CoFe LDHs, underscoring a crucial role of anionic redox in facilitating water splitting.
Collapse
Affiliation(s)
- Yu‐Cheng Huang
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
- Department of ElectrophysicsNational Yang Ming Chiao Tung UniversityHsinchu300093Taiwan
| | - Yujie Wu
- State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAdvanced Catalytic Engineering Research Center of the Ministry of EducationHunan UniversityChangsha410082China
| | - Ying‐Rui Lu
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Jeng‐Lung Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Hong‐Ji Lin
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chien‐Te Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chi‐Liang Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chao Jing
- Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Jing Zhou
- Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Yanyong Wang
- State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAdvanced Catalytic Engineering Research Center of the Ministry of EducationHunan UniversityChangsha410082China
| | - Wu‐Ching Chou
- Department of ElectrophysicsNational Yang Ming Chiao Tung UniversityHsinchu300093Taiwan
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAdvanced Catalytic Engineering Research Center of the Ministry of EducationHunan UniversityChangsha410082China
| | - Zhiwei Hu
- Max‐Planck‐Institute for Chemical Physics of Solids01187DresdenGermany
| | - Chung‐Li Dong
- Research Center for X‐ray Science & Department of PhysicsTamkang UniversityNew Taipei25137Taiwan
| |
Collapse
|
77
|
Jiang R, Zhang J, Gao J, Xie Y, Wu L, Wang Y, Xu Z, Wu ZS, Yuan S, Xu G. Redox Promoted Rapid and Deep Reconstruction of Defect-Rich Nickel Precatalysts for Efficient Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401384. [PMID: 38940385 DOI: 10.1002/smll.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/15/2024] [Indexed: 06/29/2024]
Abstract
Understanding the reconstruction mechanism to rationally design cost-effective electrocatalysts for oxygen evolution reaction (OER) is still challenging. Herein, a defect-rich NiMoO4 precatalyst is used to explore its OER activity and reconstruction mechanism. In situ generated oxygen vacancies, distorted lattices, and edge dislocations expedite the deep reconstruction of NiMoO4 to form polycrystalline Ni (oxy)hydroxides for alkaline oxygen evolution. It only needs ≈230 and ≈285 mV to reach 10 and 100 mA cm-2, respectively. The reconstruction boosted by the redox of Ni is confirmed experimentally by sectionalized cyclic voltammetry activations at different specified potential ranges combined with ex situ characterization techniques. Subsequently, the reconstruction route is presented based on the acid-base electronic theory. Accordingly, the dominant contribution of the adsorbate evolution mechanism to reconstruction during oxygen evolution is revealed. This work develops a novel route to synthesize defect-rich materials and provides new tactics to investigate the reconstruction.
Collapse
Affiliation(s)
- Renzheng Jiang
- Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Jinfeng Zhang
- Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Jiajian Gao
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Yingpeng Xie
- Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Liyun Wu
- Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zichen Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shisheng Yuan
- Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Guangwen Xu
- Key Laboratory of Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, China
| |
Collapse
|
78
|
Xie H, Zhang Y, Liu P, Duo X, Hu Z, Yu J, Wang Z, Yao G, Feng L, Huang X, Ouyang R, Wang Y. Rb-Doped Perovskite Oxides: Surface Enrichment and Structural Reconstruction During the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400668. [PMID: 38881363 DOI: 10.1002/smll.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Alkali-metal doped perovskite oxides have emerged as promising materials due to their unique properties and broad applications in various fields, including photovoltaics and catalysis. Understanding the complex interplay between alkali metal doping, structural modifications, and their impact on performance remains a crucial challenge. In this study, this challenge is addressed by investigating the synthesis and properties of Rb-doped perovskite oxides. These results reveal that the doping of Rb into perovskite oxides function as a structural modifier in the as-synthesized samples and during the oxygen evolution reaction (OER) as well. Electron microscopy and first-principles calculations confirm the enrichment of Rb on the surface of the as-synthesized sample. Further investigations into the electrocatalytic reaction revealed that the Rb-doped perovskite underwent drastic restructuring with Rb leaching and formation of strontium oxide.
Collapse
Affiliation(s)
- Huachao Xie
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Yuxuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Panpan Liu
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Xuyao Duo
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhonghui Hu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Jia Yu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Zihan Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Guodong Yao
- State Key, Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Xing Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Runhai Ouyang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Yuanqing Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
79
|
Lin HY, Yang QQ, Lin MY, Xu HG, Tang X, Fu HQ, Wu H, Zhu M, Zhou L, Yuan HY, Dai S, Liu PF, Yang HG. Enriched Oxygen Coverage Localized within Ir Atomic Grids for Enhanced Oxygen Evolution Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408045. [PMID: 39177118 DOI: 10.1002/adma.202408045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Inefficient active site utilization of oxygen evolution reaction (OER) catalysts have limited the energy efficiency of proton exchange membrane (PEM) water electrolysis. Here, an atomic grid structure is demonstrated composed of high-density Ir sites (≈10 atoms per nm2) on reactive MnO2-x support which mediates oxygen coverage-enhanced OER process. Experimental characterizations verify the low-valent Mn species with decreased oxygen coordination in MnO2-x exert a pivotal impact in the enriched oxygen coverage on the surface during OER process, and the distributed Ir atomic grids, where highly electrophilic Ir─O(II-δ)- bonds proceed rapidly, render intense nucleophilic attack of oxygen radicals. Thereby, this metal-support cooperation achieves ultra-low overpotentials of 166 mV at 10 mA cm-2 and 283 mV at 500 mA cm-2, together with a striking mass activity which is 380 times higher than commercial IrO2 at 1.53 V. Moreover, its high OER performance also markedly surpasses the commercial Ir black catalyst in PEM electrolyzers with long-term stability.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qian Qian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Miao Yu Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Guan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huai Qin Fu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Haoran Wu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
80
|
Zhou Y, Jiang J, Yin H, Zhang S. In situ fabrication of a plasmonic Bi@Bi 2O 2CO 3 core-shell heterostructure for photocatalytic CO 2 reduction: structural insights into selectivity modulation. Dalton Trans 2024; 53:16066-16075. [PMID: 39295573 DOI: 10.1039/d4dt02203c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The precise design of active sites and light absorbers is essential for developing highly efficient photocatalysts for CO2 reduction. Core-shell heterostructures constructed based on large-sized plasmonic Bi metals are ideal candidates because of the utilization of full-spectrum light and effective charge separation. However, the mechanism of selectivity modulation of large-sized Bi@semiconductor photocatalysts has yet to be explored in depth. Herein, a plasmonic Bi@Bi2O2CO3 core-shell heterostructure was successfully synthesized via a facile solvothermal treatment in deep eutectic solvents, demonstrating highly efficient photocatalytic CO2 reduction. This structure features a sizeable Bi sphere with a thin, epitaxially grown Bi2O2CO3 shell, which allows for the utilization of the entire light spectrum. Additionally, the oxygen vacancies in the Bi2O2CO3 shell can rapidly trap electrons transferred from the Bi core via Bi-O-Bi bonds, thereby forming abundant electron-rich interfaces that serve as the active sites for activating reactant molecules and facilitating the reaction.
Collapse
Affiliation(s)
- Yannan Zhou
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Jingyun Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Hang Yin
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Shouren Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| |
Collapse
|
81
|
Shi J, Chen W, Wu Y, Zhu Y, Xie C, Jiang Y, Huang YC, Dong CL, Zou Y. Sulfur filling activates vacancy-induced C-C bond cleavage in polyol electrooxidation. Natl Sci Rev 2024; 11:nwae271. [PMID: 39301081 PMCID: PMC11409883 DOI: 10.1093/nsr/nwae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024] Open
Abstract
Using the electrochemical polyol oxidation reaction (POR) to produce formic acid over nickel-based oxides/hydroxides (NiO x H y ) is an attractive strategy for the electrochemical upgrading of biomass-derived polyols. The key step in the POR, i.e. the cleavage of the C-C bond, depends on an oxygen-vacancy-induced mechanism. However, a high-energy oxygen vacancy is usually ineffective for Schottky-type oxygen-vacancy-rich β-Ni(OH)2 (VSO-β-Ni(OH)2). As a result, both β-Ni(OH)2 and VSO-β-Ni(OH)2 cannot continuously catalyze oxygen-vacancy-induced C-C bond cleavage during PORs. Here, we report a strategy of oxygen-vacancy-filling with sulfur to synthesize a β-Ni(OH)2 (S-VO-β-Ni(OH)2) catalyst, whose oxygen vacancies are protected by filling with sulfur atoms. During PORs over S-VO-β-Ni(OH)2, the pre-electrooxidation-induced loss of sulfur and structural self-reconstruction cause the in-situ generation of stable Frenkel-type oxygen vacancies for activating vacancy-induced C-C bond cleavage, thus leading to excellent POR performances. This work provides an intelligent approach for guaranteeing the sustaining action of the oxygen-vacancy-induced catalytic mechanism in electrooxidation reactions.
Collapse
Affiliation(s)
- Jianqiao Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Wei Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Yandong Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Yanwei Zhu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Yimin Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Yu-Cheng Huang
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, China
| | - Chung-Li Dong
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, China
| | - Yuqin Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
82
|
Cheng W, Fan P, Jin W. Visualizing the Structure and Dynamics of Transition Metal-Based Electrocatalysts Using Synchrotron X-Ray Absorption Spectroscopy. CHEMSUSCHEM 2024:e202401306. [PMID: 39343747 DOI: 10.1002/cssc.202401306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
As the global energy structure evolves and clean energy technologies advance, electrocatalysis has become a focal point as a critical conversion pathway in the new energy sector. Transitional metal electrocatalysts (TMEs) with their distinctive electronic structures and redox properties show great potential in electrocatalytic reactions. However, complex reaction mechanisms and kinetic limitations hinder the improvement of energy conversion efficiency, highlighting the necessity for comprehensive studies on structure and performance of electrocatalysts. X-ray Absorption Fine Structure (XAFS) spectra stand out as a robust tool for examining the electrocatalyst's structures and performance due to its atomic selectivity and sensitivity to local environments. This review delves into the application of XAFS technology in characterizing TMEs, providing in-depth analyses of X-ray Absorption Near-Edge Structure (XANES) spectra, and Extended XAFS (EXAFS) spectra in both R-space and k-space. These analyses reveal intrinsic structural information, electronic interactions, catalyst stability, and aggregation morphology. Furthermore, the paper examines advancements in in-situ XAFS techniques for real-time monitoring of active site changes, capturing critical intermediate and transitional states, and elucidating the evolution of active species during electrocatalytic reactions. These insights deepen our understanding on structure-activity relationship of electrocatalysts and offer valuable guidance for designing and developing highly active and stable electrocatalysts.
Collapse
Affiliation(s)
- Wen Cheng
- Center for Instrumental Analysis, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Peng Fan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
83
|
Wu F, Jiao Y, Ge JL, Zhu Y, Feng C, Wu Z, Li Q. Zn-facilitated surface reconstruction of Ni-MOF for an enhanced oxygen evolution reaction. Dalton Trans 2024; 53:15093-15100. [PMID: 39212297 DOI: 10.1039/d4dt02040e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Facilitating the surface reconstruction of pre-catalysts has been considered an effective strategy for constructing low-cost and highly efficient OER electrocatalysts. Metal doping is a feasible way to activate the surface reconstruction, thus enhancing the OER performance. Herein, we report a facile hydrothermal method to synthesize a series of Zn-doped Ni-MOF on nickel foam (NiZn-MOF/NF) as promising pre-catalysts toward the oxygen evolution reaction (OER). The Zn leaching of NiZn-MOF/NF can promote the surface self-reconstruction of NiZn-MOF/NF into oxygen-vacancy-rich NiOOH after electrochemical activation. Benefiting from the optimized electronic structure, abundant defects, more accessible active sites, and enhanced electrical conductivity, the reconstructed metal oxyhydroxide hybrids exhibit better electrocatalytic activity than the catalysts transformed from Ni-MOF/NF without Zn doping. The optimized NiZn-MOF/NF-OH as an OER catalyst has an overpotential of 336 mV at 100 mA cm-2, and a Tafel slope of 65.9 mV dec-1, as well as stability over 12 h. This work reveals that Zn cation-doping/leaching induces the surface reconstruction of pre-catalysts for enhanced oxygen catalytic activity, which provides a new approach for the development of advanced electrocatalysts.
Collapse
Affiliation(s)
- Fang Wu
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| | - Yuhong Jiao
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| | - Jin-Long Ge
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| | - Yujun Zhu
- Department of Pharmacy and Biomedical Engineering, Anhui Medical University, Hefei 230000, China.
| | - Chao Feng
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| | - Zhong Wu
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| | - Qiu Li
- School of Materials and Chemical Engineering, Bengbu University, Bengbu, Anhui 233030, China.
- Silicon Based New Materials Engineering Research Center of Anhui Province, Bengbu University, Bengbu, Anhui 233030, China.
| |
Collapse
|
84
|
Guo Z, Zhu Q, Wang S, Jiang M, Fan X, Zhang W, Han M, Wu X, Hou X, Zhang Y, Shao Z, Shi J, Zhong X, Li S, Wu X, Huang K, Feng S. Manipulating the Spin State of Spinel Octahedral Sites via a π-π Type Orbital Coupling to Boost Water Oxidation. Angew Chem Int Ed Engl 2024; 63:e202406711. [PMID: 38923764 DOI: 10.1002/anie.202406711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Spin state is often regarded as the crucial valve to release the reactivity of energy-related catalysts, yet it is also challenging to precisely manipulate, especially for the active center ions occupied at the specific geometric sites. Herein, a π-π type orbital coupling of 3d (Co)-2p (O)-4f (Ce) was employed to regulate the spin state of octahedral cobalt sites (CoOh) in the composite of Co3O4/CeO2. More specifically, the equivalent high-spin ratio of CoOh can reach to 54.7 % via tuning the CeO2 content, thereby triggering the average eg filling (1.094) close to the theoretical optimum value. The corresponding catalyst exhibits a superior water oxidation performance with an overpotential of 251 mV at 10 mA cm-2, rivaling most cobalt-based oxides state-of-the-art. The π-π type coupling corroborated by the matched energy levels between Ce t1u/t2u-O and CoOh t2g-O π type bond in the calculated crystal orbital Hamilton population and partial density of states profiles, stimulates a π-donation between O 2p and π-symmetric Ce 4fyz 2 orbital, consequently facilitating the electrons hopping from t2g to eg orbital of CoOh. This work offers an in-depth insight into understanding the 4f and 3d orbital coupling for spin state optimization in composite oxides.
Collapse
Affiliation(s)
- Zhangtao Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shaohua Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Mengpei Jiang
- Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua RD, Shenyang, 110016, China
| | - Xinxin Fan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wanyu Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Mei Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaotian Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiangyan Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yaowen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jingyu Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xia Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shuting Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
85
|
Rollier FA, Muravev V, Parastaev A, van de Poll RCJ, Heinrichs JMJJ, Ligt B, Simons JFM, Figueiredo MC, Hensen EJM. Restructuring of Cu-based Catalysts during CO Electroreduction: Evidence for the Dominant Role of Surface Defects on the C 2+ Product Selectivity. ACS Catal 2024; 14:13246-13259. [PMID: 39263539 PMCID: PMC11385435 DOI: 10.1021/acscatal.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
CO is the key reaction intermediate in the Cu-catalyzed electroreduction of CO2 to products containing C-C bonds. Herein, we investigate the impact of the particle size of CuO precursors on the direct electroreduction of CO (CORR) to C2+ products. Flame spray pyrolysis was used to prepare CuO particles with sizes between 4 and 30 nm. In situ synchrotron wide-angle X-ray scattering (WAXS), quasi-in situ X-ray photoelectron spectroscopy, and transmission electron microscopy demonstrated that, during CORR, the CuO precursors transformed into ∼30 nm metallic Cu particles with a crystalline domain size of ∼17 nm, independently of the initial size of the CuO precursors. Despite their similar morphology, the samples presented different Faradaic efficiencies (FEs) to C2+ products. The Cu particles derived from medium-sized (10-20 nm) CuO precursors were the most selective to C2+ products (FE 60%), while those derived from CuO precursors smaller than 10 nm displayed a high FE to H2. As the oxidation state, the particle and the crystallite sizes of these samples were similar after CORR, the differences in product distribution are attributed to the type and density of surface defects on the metallic Cu particles, as supported by studying electrochemical oxidation of the reduced Cu particles during CV cycling in combination with synchrotron WAXS. Cu particles derived from <10 nm CuO contained a higher density of more under-coordinated defects, resulting in a higher FE to H2 than Cu particles derived from 10 to 30 nm CuO. Bulk oxidation was most prominent and stable for Cu particles derived from medium-sized CuO, which indicated the more disordered nature of their surface compared to Cu particles derived from 30 nm CuO precursors and their lower reactivity compared to Cu particles derived from small CuO. Cu particles derived from <10 nm CuO initially displayed intense redox behavior, quickly fading during subsequent CVs. Our results evidence the significant restructuring during the electrochemical reduction of CuO precursors into Cu particles of similar size. The differences in CORR performance of these Cu particles of similar size can be correlated to different surface structures, qualitatively resolved by studying surface and bulk oxidation, which affect the competition between CO dimerization to yield C2+ products and undesired H2 evolution.
Collapse
Affiliation(s)
- Floriane A Rollier
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Valery Muravev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Rim C J van de Poll
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Jason M J J Heinrichs
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Bianca Ligt
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Jérôme F M Simons
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Marta Costa Figueiredo
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
86
|
He L, Zhou J, Sun Y, Liu D, Liu X. Efficient removal of tetracycline hydrochloride by high entropy oxides in visible photo-Fenton catalytic process. ENVIRONMENTAL TECHNOLOGY 2024; 45:4656-4669. [PMID: 37947044 DOI: 10.1080/09593330.2023.2283054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/28/2023] [Indexed: 11/12/2023]
Abstract
A novel type of oxide material, high entropy oxide (Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)3O4 (MFO) composites with spinel structure were successfully synthesized by a simple solution combustion in this paper, and it was first applied to the degradation of antibiotic organic pollutants in water by photo-Fenton. SEM and BET characterization showed that the composite was porous and had a large specific surface area. XPS results showed that Fe, Mn, Cu, Co and Ni all participated in the redox reaction of the catalytic process. The redox pairs of Mn2+/Mn3+, Cu+/Cu2+, Co2+/Co3+, Ni2+/Ni3+ can accelerate the Fe2+/Fe3+ redox cycling in MFO to activate H2O2 and produce more reactive oxygen species. The catalytic performance of MFO composite was investigated using tetracycline hydrochloride (TC-HCl) as a model pollutant. The results displayed that the degradation rate of TC-HCl by MFO was 92.9% when the initial pH was 4, the dose of H2O2 was 50 mM, and the irradiation time was 60 min. The high entropy oxide MFO composites could build up an internal electric field, which restrains electron-hole recombination, improves the transfer of photogenerated charge carriers and maximize photocatalytic property. In addition, the free radical capture experiment determined that the main active species of the degradation reaction were e-, •O2- and •OH. The synergistic effect of the five components in the high entropy oxide strengthens lattice distortion and defects, increases oxygen vacancies, and thus has enhanced catalytic effect for TC-HCl degradation. This work shows that high entropy oxides have excellent catalytic performance for tetracycline organic pollutants, and it is speculated that high entropy oxides have good application prospects in the field of advanced oxidation technology for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Lin He
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Jiabin Zhou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Yixi Sun
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Dan Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Xianjie Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| |
Collapse
|
87
|
Liang Z, Zhou G, Tan H, Mou Y, Zhang J, Guo H, Yang S, Lei H, Zheng H, Zhang W, Lin H, Cao R. Constructing Co 4(SO 4) 4 Clusters within Metal-Organic Frameworks for Efficient Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408094. [PMID: 39096074 DOI: 10.1002/adma.202408094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Multinuclear metal clusters are ideal candidates to catalyze small molecule activation reactions involving the transfer of multiple electrons. However, synthesizing active metal clusters is a big challenge. Herein, on constructing an unparalleled Co4(SO4)4 cluster within porphyrin-based metal-organic frameworks (MOFs) and the electrocatalytic features of such Co4(SO4)4 clusters for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is reported. The reaction of CoII sulfate and metal complexes of tetrakis(4-pyridyl)porphyrin under solvothermal conditions afforded Co4-M-MOFs (M═Co, Cu, and Zn). Crystallographic studies revealed that these Co4-M-MOFs have the same framework structure, having the Co4(SO4)4 clusters connected by metalloporphyrin units through Co─Npyridyl bonds. In the Co4(SO4)4 cluster, the four CoII ions are chemically and symmetrically equivalent and are each coordinated with four sulfate O atoms to give a distorted cube-like structure. Electrocatalytic studies showed that these Co4-M-MOFs are all active for electrocatalytic OER and ORR. Importantly, by regulating the activity of the metalloporphyrin units, it is confirmed that the Co4(SO4)4 cluster is active for oxygen electrocatalysis. With the use of Co porphyrins as connecting units, Co4-Co-MOF displays the highest electrocatalytic activity in this series of MOFs by showing a 10 mA cm-2 OER current density at 357 mV overpotential and an ORR half-wave potential at 0.83 V versus reversible hydrogen electrode (RHE). Theoretical studies revealed the synergistic effect of two proximal Co atoms in the Co4(SO4)4 cluster in OER by facilitating the formation of O─O bonds. This work is of fundamental significance to present the construction of Co4(SO4)4 clusters in framework structures for oxygen electrocatalysis and to demonstrate the cooperation between two proximal Co atoms in such clusters during the O─O bond formation process.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guojun Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Huang Tan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yonghong Mou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jieling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
88
|
Xu HM, Huang CJ, Zhu HR, Zhang ZJ, Shuai TY, Zhan QN, Fominski VY, Li GR. Amorphous P-CoO X Promotes the Formation of Hypervalent Ni Species in NiFe LDHs by Amorphous/Crystalline Interfaces for Excellent Catalytic Performance of Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400201. [PMID: 39031757 DOI: 10.1002/smll.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Indexed: 07/22/2024]
Abstract
Water electrolysis has become an attractive hydrogen production method. Oxygen evolution reaction (OER) is a bottleneck of water splitting as its four-electron transfer procedure presents sluggish reaction kinetics. Designing composite catalysts with high performance for efficient OER still remains a huge challenge. Here, the P-doped cobalt oxide/NiFe layered double hydroxides (P-CoOX/NiFe LDHs) composite catalysts with amorphous/crystalline interfaces are successfully prepared for OER by hydrothermal-electrodeposition combined method. The results of electrochemical characterizations, operando Raman spectra, and DFT theoretical calculations have demonstrated the electrons in the P-CoOX/NiFe LDHs heterointerfaces are easily transferred from Ni2+ to Co3+ because that the amorphous configuration of P-CoOX can well induce Ni-O-Co orbital coupling. The electron transfer of Ni2+ to the surrounding Fe3+ and Co3+ will lead to the unoccupied eg orbitals of Ni3+ that can promote water dissociation and accelerate *OOH migration to improve OER catalytic performance. The optimized P-CoOX/NiFe LDHs exhibit superior catalytic performance for OER with a very low overpotential of 265 mV at 300 mA cm-2 and excellent long-term stability of 500 h with almost no attenuation at 100 mA cm-2. This work will provide a new method to design high-performance NiFe LDHs-based catalysts for OER.
Collapse
Affiliation(s)
- Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Vyacheslav Yu Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russia
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
89
|
Qi J, Chen Q, Chen M, Zhang W, Shen X, Li J, Shangguan E, Cao R. Promoting Oxygen Evolution Electrocatalysis by Coordination Engineering in Cobalt Phosphate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403310. [PMID: 38773872 DOI: 10.1002/smll.202403310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
Understanding the structure-activity correlation is an important prerequisite for the rational design of high-efficiency electrocatalysts at the atomic level. However, the effect of coordination environment on electrocatalytic oxygen evolution reaction (OER) remains enigmatic. In this work, the regulation of proton transfer involved in water oxidation by coordination engineering based on Co3(PO4)2 and CoHPO4 is reported. The HPO4 2- anion has intermediate pKa value between Co(II)-H2O and Co(III)-H2O to be served as an appealing proton-coupled electron transfer (PCET) induction group. From theoretical calculations, the pH-dependent OER properties, deuterium kinetic isotope effects, operando electrochemical impedance spectroscopy (EIS) and Raman studies, the CoHPO4 catalyst beneficially reduces the energy barrier of proton hopping and modulates the formation energy of high-valent Co species, thereby enhancing OER activity. This work demonstrates a promising strategy that involves tuning the local coordination environment to optimize PCET steps and electrocatalytic activities for electrochemical applications. In addition, the designed system offers a motif to understand the structure-efficiency relationship from those amino-acid residue with proton buffer ability in natural photosynthesis.
Collapse
Affiliation(s)
- Jing Qi
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Qizhen Chen
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Mingxing Chen
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinxin Shen
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
90
|
Jiang X, Ma X, Yang Y, Liu Y, Liu Y, Zhao L, Wang P, Zhang Y, Lin Y, Wei Y. Enhancing the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Through Cascade Structure Tuning for Highly Stable Biomass Upgrading. NANO-MICRO LETTERS 2024; 16:275. [PMID: 39168930 PMCID: PMC11339012 DOI: 10.1007/s40820-024-01493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
Electrocatalytic 5-hydroxymethylfurfural oxidation reaction (HMFOR) provides a promising strategy to convert biomass derivative to high-value-added chemicals. Herein, a cascade strategy is proposed to construct Pd-NiCo2O4 electrocatalyst by Pd loading on Ni-doped Co3O4 and for highly active and stable synergistic HMF oxidation. An elevated current density of 800 mA cm-2 can be achieved at 1.5 V, and both Faradaic efficiency and yield of 2,5-furandicarboxylic acid remained close to 100% over 10 consecutive electrolysis. Experimental and theoretical results unveil that the introduction of Pd atoms can modulate the local electronic structure of Ni/Co, which not only balances the competitive adsorption of HMF and OH- species, but also promote the active Ni3+ species formation, inducing high indirect oxidation activity. We have also discovered that Ni incorporation facilitates the Co2+ pre-oxidation and electrophilic OH* generation to contribute direct oxidation process. This work provides a new approach to design advanced electrocatalyst for biomass upgrading.
Collapse
Affiliation(s)
- Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Xianhui Ma
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yuanteng Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yang Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Penglei Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
- School of Materials Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
91
|
Zhang L, Bai J, Zhang S, Liu Y, Ye J, Fan W, Debroye E, Liu T. Atomically Dispersed Iridium on Polyimide Support for Acidic Oxygen Evolution. ACS NANO 2024; 18:22095-22103. [PMID: 39114966 DOI: 10.1021/acsnano.4c05377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Designing a high-performing iridium (Ir) single-atom catalyst is desired for acidic water electrolysis, which shows enormous potential given its high catalytic activity toward acidic oxygen evolution reaction (OER) with minimum usage of precious Ir metal. However, it still remains a substantial challenge to stabilize the Ir single atoms during the OER operation without sacrificing the activity. Here, we report a high-performing OER catalyst by immobilizing Ir single atoms on a polyimide support, which exhibits a high mass activity on a carbon paper electrode while simultaneously achieving outstanding stability with negligible decay for 360 h. The resulting electrode (denoted as Ir1-PI@CP) reaches a 49.7-fold improvement in mass activity compared to the counterpart electrode prepared without polyimide support. Both our experimental and theoretical results suggest that, owing to the strong metal-support interactions, the polyimide support can enhance the Ir 5d states of Ir single atoms in Ir1-PI@CP, which can tailor the adsorption energies of intermediates and decrease the thermodynamic barrier at the rate-determining step of the OER, but also facilitate the proton-electron-transfer process and improve the reaction kinetics. This work offers an alternative avenue for developing single-atom catalysts with superior activity and durability toward various catalytic systems and beyond.
Collapse
Affiliation(s)
- Longsheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Shouhan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunxia Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinyu Ye
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Elke Debroye
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
92
|
Wang Y, He H, Lv H, Jia F, Liu B. Two-dimensional single-crystalline mesoporous high-entropy oxide nanoplates for efficient electrochemical biomass upgrading. Nat Commun 2024; 15:6761. [PMID: 39117608 PMCID: PMC11310307 DOI: 10.1038/s41467-024-50721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Mesoporous single crystals have received more attention than ever in catalysis-related applications due to their unique structural functions. Despite great efforts, their progress in engineering crystallinity and composition has been remarkably slower than expected. In this manuscript, a template-free strategy is developed to prepare two-dimensional high-entropy oxide (HEO) nanoplates with single-crystallinity and penetrated mesoporosity, which further ensures precise control over high-entropy compositions and crystalline phases. Single-crystalline mesoporous HEOs (SC-MHEOs) disclose high electrocatalytic performance in 5-hydroxymethylfurfural oxidation reaction (HMFOR) for efficient biomass upgrading, with remarkable HMF conversion of 99.3% and superior 2,5-furandicarboxylic acid (FDCA) selectivity of 97.7%. Moreover, with nitrate reduction as coupling cathode reaction, SC-MHEO realizes concurrent electrosynthesis of value-added FDCA and ammonia in the two-electrode cell. Our study provides a powerful paradigm for producing a library of novel mesoporous single crystals for important catalysis-related applications, especially in the two-electrode cell.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Hangjuan He
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Fengrui Jia
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China.
| |
Collapse
|
93
|
Zhou W, Li B, Liu X, Jiang J, Bo S, Yang C, An Q, Zhang Y, Soldatov MA, Wang H, Wei S, Liu Q. In situ tuning of platinum 5d valence states for four-electron oxygen reduction. Nat Commun 2024; 15:6650. [PMID: 39103370 PMCID: PMC11300625 DOI: 10.1038/s41467-024-51157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
The oxygen reduction reaction (ORR) catalyzed by efficient and economical catalysts is critical for sustainable energy devices. Although the newly-emerging atomically dispersed platinum catalysts are highly attractive for maximizing atomic utilization, their catalytic selectivity and durability are severely limited by the inflexible valence transformation between Pt and supports. Here, we present a structure by anchoring Pt atoms onto valence-adjustable CuOx/Cu hybrid nanoparticle supports (Pt1-CuOx/Cu), in which the high-valence Cu (+2) in CuOx combined with zero-valent Cu (0) serves as a wide-range valence electron reservoir (0‒2e) to dynamically adjust the Pt 5d valence states during the ORR. In situ spectroscopic characterizations demonstrate that the dynamic evolution of the Pt 5d valence electron configurations could optimize the adsorption strength of *OOH intermediate and further accelerate the dissociation of O = O bonds for the four-electron ORR. As a result, the Pt1-CuOx/Cu catalysts deliver superior ORR performance with a significantly enhanced four-electron selectivity of over 97% and long-term durability.
Collapse
Affiliation(s)
- Wanlin Zhou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Baojie Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Xinyu Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Jingjing Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Chenyu Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Qizheng An
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Yuhao Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Mikhail A Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China.
| |
Collapse
|
94
|
Liu W, Ding X, Cheng J, Jing J, Li T, Huang X, Xie P, Lin X, Ding H, Kuang Y, Zhou D, Sun X. Inhibiting Dissolution of Active Sites in 80 °C Alkaline Water Electrolysis by Oxyanion Engineering. Angew Chem Int Ed Engl 2024; 63:e202406082. [PMID: 38807303 DOI: 10.1002/anie.202406082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Commercial alkaline water electrolysers typically operate at 80 °C to minimize energy consumption. However, NiFe-based catalysts, considered as one of the most promising candidates for anode, encounter the bottleneck of high solubility at such temperatures. Herein, we discover that the dissolution of NiFe layered double hydroxides (NiFe-LDH) during operation not only leads to degradation of anode itself, but also deactivates cathode for water splitting, resulting in decay of overall electrocatalytic performance. Aiming to suppress the dissolution, we employed oxyanions as inhibitors in electrolyte. The added phosphates to the electrolyte inhibit the loss of NiFe-LDH active sites at 400 mA cm-2 to 1/3 of the original amount, thus reducing the rate of performance decay by 25-fold. Furthermore, the usage of borates, sulfates, and carbonates yields similar results, demonstrating the reliability and universality of the active site dissolution inhibitor, and its role in elevated water electrolysis.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoqian Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jingjin Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianlei Jing
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tianshui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pengpeng Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xichang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hanlin Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yun Kuang
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
95
|
Liang J, Li K, Shi F, Li J, Gu JN, Xue Y, Bao C, Guo M, Jia J, Fan M, Sun T. Constructing High-Performance Cobalt-Based Environmental Catalysts from Spent Lithium-Ion Batteries: Unveiling Overlooked Roles of Copper and Aluminum from Current Collectors. Angew Chem Int Ed Engl 2024; 63:e202407870. [PMID: 38748475 DOI: 10.1002/anie.202407870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 07/21/2024]
Abstract
Converting spent lithium-ion batteries (LIBs) cathode materials into environmental catalysts has drawn more and more attention. Herein, we fabricated a Co3O4-based catalyst from spent LiCoO2 LIBs (Co3O4-LIBs) and found that the role of Al and Cu from current collectors on its performance is nonnegligible. The density functional theory calculations confirmed that the doping of Al and/or Cu upshifts the d-band center of Co. A Fenton-like reaction based on peroxymonosulfate (PMS) activation was adopted to evaluate its activity. Interestingly, Al doping strengthened chemisorption for PMS (from -2.615 eV to -2.623 eV) and shortened Co-O bond length (from 2.540 Å to 2.344 Å) between them, whereas Cu doping reduced interfacial charge-transfer resistance (from 28.347 kΩ to 6.689 kΩ) excepting for the enhancement of the above characteristics. As expected, the degradation activity toward bisphenol A of Co3O4-LIBs (0.523 min-1) was superior to that of Co3O4 prepared from commercial CoC2O4 (0.287 min-1). Simultaneously, the reasons for improved activity were further verified by comparing activity with catalysts doped Al and/or Cu into Co3O4. This work reveals the role of elements from current collectors on the performance of functional materials from spent LIBs, which is beneficial to the sustainable utilization of spent LIBs.
Collapse
Affiliation(s)
- Jianxing Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Kan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Feng Shi
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., 201620, Shanghai, P. R. China
| | - Jingdong Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Jia-Nan Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Yixin Xue
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Chenyu Bao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Mingming Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| | - Maohong Fan
- College of Engineering and Physical Sciences, School of Energy Resources, University of Wyoming, 82071, Laramie, WY, USA
- College of Engineering, Georgia Institute of Technology, 30332, Atlanta, GA, USA
| | - Tonghua Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai, P. R. China
| |
Collapse
|
96
|
Li A, Tang X, Cao R, Song D, Wang F, Yan H, Chen H, Wei Z. Directed Surface Reconstruction of Fe Modified Co 2VO 4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self-Terminating Surface Deterioration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401818. [PMID: 38529734 DOI: 10.1002/adma.202401818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Affordable highly efficient catalysts for electrochemical oxygen evolution reaction (OER) play pivotal roles in green hydrogen production via water electrolysis. Regarding the non-noble metal-based electrocatalysts, considerable efforts are made to decipher the cation leaching and surface reconstruction; yet, little attention is focused on correlating them with catalytical activity and stability. Herein, in situ reconstruction of Fe-modified Co2VO4 precursor catalyst to form a highly active (Fe,V)-doped CoOOH phase for OER is reported, during which partial leaching of V accelerates the surface reconstruction and the V reserved in the reconstructed CoOOH layer in the form of alkali-resistant V2O3 serves for dynamic charge compensation and prevention of excessive loss of lattice oxygen and Co dissolution. Fe substitution facilitates Co pre-oxidation and endows the catalysts with structural flexibility by elevating O 2p band level; hence, encouraging participation of lattice oxygen in OER. The optimized Co2Fe0.25V0.75O4 electrode can afford current densities of 10 and 500 mA cm-2 at low overpotentials of 205 and 320 mV, respectively, with satisfactory stability over 600 h. By coupling with Pt/C cathode, the assembled alkaline electrolyzer can deliver 500 mA cm-2 at a low cell voltage of 1.798 V, better than that of commercial RuO2 (+) || Pt/C (-).
Collapse
Affiliation(s)
- Ang Li
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Xiaoxia Tang
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Runjie Cao
- College of Polymer Science and Engineering, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu, 610064, China
| | - Dongcai Song
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Fangzheng Wang
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Hua Yan
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Hongmei Chen
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| |
Collapse
|
97
|
Luo H, Li L, Lin F, Zhang Q, Wang K, Wang D, Gu L, Luo M, Lv F, Guo S. Sub-2 nm Microstrained High-Entropy-Alloy Nanoparticles Boost Hydrogen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403674. [PMID: 38794827 DOI: 10.1002/adma.202403674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/12/2024] [Indexed: 05/26/2024]
Abstract
High-entropy alloys (HEAs) confine multifarious elements into the same lattice, leading to intense lattice distortion effect. The lattice distortion tends to induce local microstrain at atomic level and thus affect surface adsorptions toward different adsorbates in various electrocatalytic reactions, yet remains unexplored. Herein, this work reports a class of sub-2 nm IrRuRhMoW HEA nanoparticles (NPs) with distinct local microstrain induced by lattice distortion for boosting alkaline hydrogen oxidation (HOR) and evolution reactions (HER). This work demonstrates that the distortion-rich HEA catalysts with optimized electronic structure can downshift the d-band center and generate uncoordinated oxygen sites to enhance the surface oxophilicity. As a result, the IrRuRhMoW HEA NPs show a remarkable HOR kinetic current density of 8.09 mA µg-1 PGM at 50 mV versus RHE, 8.89, 22.47 times higher than those of IrRuRh NPs without internal strain and commercial Pt/C, respectively, which is the best value among all the reported non-Pt based catalysts. IrRuRhMoW HEA NPs also display great HER performances with a turnover frequency (TOF) value of 5.93 H2 s-1 at 70 mV versus RHE, 4.6-fold higher than that of Pt/C catalyst, exceeding most noble metal-based catalysts. Experimental characterizations and theoretical studies collectively confirm that weakened hydrogen (Had) and enhanced hydroxyl (OHad) adsorption are achieved by simultaneously modulating the hydrogen adsorption binding energy and surface oxophilicity originated from intensified ligand effect and microstrain effect over IrRuRhMoW HEA NPs, which guarantees the remarkable performances toward HOR/HER.
Collapse
Affiliation(s)
- Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Dawei Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
98
|
Jiang B, Li H, Wang W, Wang H. Optical in situ deciphering of the surface reconstruction-assistant multielectron transfer event of single Co 3O 4 nanoparticles. Proc Natl Acad Sci U S A 2024; 121:e2407146121. [PMID: 39018196 PMCID: PMC11287257 DOI: 10.1073/pnas.2407146121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
Surface reconstruction determines the fate of catalytic sites on the near-surface during the oxygen evolution reaction. However, deciphering the conversion mechanism of various intermediate-states during surface reconstruction remains a challenge. Herein, we employed an optical imaging technique to draw the landscape of dynamic surface reconstruction on individual Co3O4 nanoparticles. By regulating the surface states of Co3O4 nanoparticles, we explored dynamic growth of the CoOx(OH)y sublayer on single Co3O4 nanoparticles and directly identified the conversion between two dynamics. Rich oxygen vacancies induced more active sites on the surface and prolonged surface reconstruction, which enhanced electrochemical redox and oxygen evolution. These results were further verified by in situ electrochemical extinction spectroscopy of single Co3O4 nanoparticles. We elucidate the heterogeneous evolution of surface reconstruction on individual Co3O4 nanoparticles and present a unique perspective to understand the fate of catalytic species on the nanosurface, which is of enduring significance for investigating the heterogeneity of multielectron-transfer events.
Collapse
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| |
Collapse
|
99
|
Kreider M, Yu H, Osmieri L, Parimuha MR, Reeves KS, Marin DH, Hannagan RT, Volk EK, Jaramillo TF, Young JL, Zelenay P, Alia SM. Understanding the Effects of Anode Catalyst Conductivity and Loading on Catalyst Layer Utilization and Performance for Anion Exchange Membrane Water Electrolysis. ACS Catal 2024; 14:10806-10819. [PMID: 39050897 PMCID: PMC11264204 DOI: 10.1021/acscatal.4c02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Anion exchange membrane water electrolysis (AEMWE) is a promising technology to produce hydrogen from low-cost, renewable power sources. Recently, the efficiency and durability of AEMWE have improved significantly due to advances in the anion exchange polymers and catalysts. To achieve performances and lifetimes competitive with proton exchange membrane or liquid alkaline electrolyzers, however, improvements in the integration of materials into the membrane electrode assembly (MEA) are needed. In particular, the integration of the oxygen evolution reaction (OER) catalyst, ionomer, and transport layer in the anode catalyst layer has significant impacts on catalyst utilization and voltage losses due to the transport of gases, hydroxide ions, and electrons within the anode. This study investigates the effects of the properties of the OER catalyst and the catalyst layer morphology on performance. Using cross-sectional electron microscopy and in-plane conductivity measurements for four PGM-free catalysts, we determine the catalyst layer thickness, uniformity, and electronic conductivity and further use a transmission line model to relate these properties to the catalyst layer resistance and utilization. We find that increased loading is beneficial for catalysts with high electronic conductivity and uniform catalyst layers, resulting in up to 55% increase in current density at 2 V due to decreased kinetic and catalyst layer resistance losses, while for catalysts with lower conductivity and/or less uniform catalyst layers, there is minimal impact. This work provides important insights into the role of catalyst layer properties beyond intrinsic catalyst activity in AEMWE performance.
Collapse
Affiliation(s)
- Melissa
E. Kreider
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Haoran Yu
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Luigi Osmieri
- Materials
Physics and Applications Division, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Makenzie R. Parimuha
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Kimberly S. Reeves
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Daniela H. Marin
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ryan T. Hannagan
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Emily K. Volk
- Advanced
Energy Systems Graduate Program, Colorado
School of Mines, Golden, Colorado 80401, United States
| | - Thomas F. Jaramillo
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - James L. Young
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials
Physics and Applications Division, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shaun M. Alia
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
100
|
Cai Z, Li L, Ding P, Pang D, Xu M, Xu Z, Kang J, Guo T, Teobaldi G, Wang Z, Liu LM, Guo L. High-Valence Cu Induced by Photoelectric Reconstruction for Dynamically Stable Oxygen Evolution Sites. J Am Chem Soc 2024; 146:19295-19302. [PMID: 38943666 DOI: 10.1021/jacs.4c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Oxygen vacancies are generally considered to play a crucial role in the oxygen evolution reaction (OER). However, the generation of active sites created by oxygen vacancies is inevitably restricted by their condensation and elimination reactions. To overcome this limitation, here, we demonstrate a novel photoelectric reconstruction strategy to incorporate atomically dispersed Cu into ultrathin (about 2-3 molecular) amorphous oxyhydroxide (a-CuM, M = Co, Ni, Fe, or Zn), facilitating deprotonation of the reconstructed oxyhydroxide to generate high-valence Cu. The in situ XAFS results and first-principles calculations reveal that Cu atoms are stabilized at high valence during the OER process due to Jahn-Teller distortion, resulting in para-type double oxygen vacancies as dynamically stable catalytic sites. The optimal a-CuCo catalyst exhibits a record-high mass activity of 3404.7 A g-1 at an overpotential of 300 mV, superior to the benchmarking hydroxide and oxide catalysts. The developed photoelectric reconstruction strategy opens up a new pathway to construct in situ stable oxygen vacancies by high-valence Cu single sites, which extends the design rules for creating dynamically stable active sites.
Collapse
Affiliation(s)
- Zhi Cai
- School of Chemistry, Beihang University, Beijing 100191, China
- School of Physics, Beihang University, Beijing 100191, China
| | - Lidong Li
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Peijia Ding
- School of Physics, Beihang University, Beijing 100191, China
| | - Dawei Pang
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Mingyuan Xu
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Ziyan Xu
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Jianxin Kang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Tianqi Guo
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Gilberto Teobaldi
- Scientific Computing Department, STFC UKRI, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Lin Guo
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|