51
|
Affiliation(s)
- Jason A Campagna
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
52
|
Wilkemeyer MF, Menkari CE, Charness ME. Novel antagonists of alcohol inhibition of l1-mediated cell adhesion: multiple mechanisms of action. Mol Pharmacol 2002; 62:1053-60. [PMID: 12391267 DOI: 10.1124/mol.62.5.1053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
1-Octanol antagonizes ethanol inhibition of L1-mediated cell adhesion and prevents ethanol teratogenesis in mouse whole embryo culture. Herein, we identify a new series of alcohol antagonists and study their mechanism of action. Cell aggregation assays were carried out in ethanol-sensitive, human L1-transfected NIH/3T3 cells in the absence and presence of 100 mM ethanol or 2 mM 1-butanol and candidate antagonists. Antagonist potency for 1-alcohols increased progressively over 5 log orders from 1-pentanol (C5) to 1-dodecanol (C12). Antagonist potency declined from 1-dodecanol (C12) to 1-tridecanol (C13), and 1-tetradecanol (C14) and 1-pentadecanol (C15) were inactive. The presence and position of a double bond in the 1-butanol molecule determined whether a compound was a full agonist (1-butanol), a mixed agonist-antagonist (2-buten-1-ol), or an antagonist (3-buten-1-ol). Increasing the concentration of agonist (1-butanol or ethanol) overcame the antagonism of 3-buten-1-ol, benzyl alcohol, cyclopentanol, and 3-pentanol, but not that of 4-methyl-1-pentanol, 2-methyl-2-pentanol, 1-pentanol, 2-pentanol, 1-octanol, and 2,6-di-isopropylphenol (propofol), suggesting that the mechanisms of antagonism may differ between these groups of compounds. These findings suggest that selective straight, branched, and cyclic alcohols may act at multiple, discrete sites to antagonize the actions of ethanol and 1-butanol on L1-mediated cell-cell adhesion.
Collapse
|
53
|
Cárcamo JM, Pedraza A, Bórquez-Ojeda O, Golde DW. Vitamin C suppresses TNF alpha-induced NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochemistry 2002; 41:12995-3002. [PMID: 12390026 DOI: 10.1021/bi0263210] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular stimuli signal for activation of the transcription factor NFkappaB, leading to gene expression regulating processes involved in immune responses, inflammation, and cell survival. Tumor necrosis factor-alpha (TNFalpha) activates NFkappaB via a well-defined kinase pathways involving NFkappaB-inducing kinase (NIK), which activates downstream multisubunit IkappaB kinases (IKK). IKK in turn phosphorylates IkappaB, the central regulator of NFkappaB function. We found that intracellular vitamin C inhibits TNFalpha-induced activation of NFkappaB in human cell lines (HeLa, monocytic U937, myeloid leukemia HL-60, and breast MCF7) and primary endothelial cells (HUVEC) in a dose-dependent manner. Vitamin C is an important antioxidant, and most cells accumulate ascorbic acid (AA) intracellularly by transporting the oxidized form of the vitamin, dehydroascorbic acid (DHA). Because ascorbic acid is a strong pro-oxidant in the presence of transition metals in vitro, we loaded cells with vitamin C by incubating them with DHA. Vitamin C-loaded cells showed significantly decreased TNFalpha-induced nuclear translocation of NFkappaB, NFkappaB-dependent reporter transcription, and IkappaBalpha phosphorylation. Our data point to a mechanism of vitamin C suppression of NFkappaB activation by inhibiting TNFalpha-induced activation of NIK and IKKbeta kinases independent of p38 MAP kinase. These results suggest that intracellular vitamin C can influence inflammatory, neoplastic, and apoptotic processes via inhibition of NFkappaB activation.
Collapse
Affiliation(s)
- Juan M Cárcamo
- Program in Molecular Pharmacology and Chemistry and Department of Clinical Chemistry, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 451, New York, New York 10021, USA
| | | | | | | |
Collapse
|
54
|
Ikeda K, Kobayashi T, Kumanishi T, Yano R, Sora I, Niki H. Molecular mechanisms of analgesia induced by opioids and ethanol: is the GIRK channel one of the keys? Neurosci Res 2002; 44:121-131. [PMID: 12354627 DOI: 10.1016/s0168-0102(02)00094-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Opioids and ethanol have been used since ancient times for pain relief. Opioid signaling is mediated by various effectors, including G protein-activated inwardly rectifying potassium (GIRK) channels, adenylyl cyclases, voltage-dependent calcium channels, phospholipase Cbeta(PLCbeta), and mitogen-activated protein kinases, although it has been unclear which effector mediates the analgesic effects of opioids. Ethanol induces a variety of physiological phenomena via various proteins, including GIRK channels rather than via membrane lipids. GIRK channel activation by either G proteins or ethanol is impaired in weaver mutant mice. The mutant mice may therefore serve as a useful animal model for studying the role of GIRK channels in vivo. Reduced analgesia by using either opioids or ethanol in weaver mutant mice suggests that GIRK channels are important effectors in both opioid- and ethanol-induced analgesia. This hypothesis is supported by similar findings in GIRK2 knockout mice. Among the various effectors coupled with opioid receptors and various targets of ethanol, GIRK channels are the only molecules whose involvement in opioid- and ethanol-induced analgesia has been demonstrated in vivo. The GIRK channel is potentially one of the key molecules in furthering the understanding of the pain control system and in developing advanced analgesics with fewer adverse effects.
Collapse
Affiliation(s)
- Kazutaka Ikeda
- Department of Molecular Psychiatry, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan.
| | | | | | | | | | | |
Collapse
|
55
|
Björnström K, Sjölander A, Schippert A, Eintrei C. A tyrosine kinase regulates propofol-induced modulation of the beta-subunit of the GABA(A) receptor and release of intracellular calcium in cortical rat neurones. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 175:227-35. [PMID: 12100362 DOI: 10.1046/j.1365-201x.2002.00991.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Propofol, an intravenous anaesthetic, has been shown to interact with the beta-subunit of the gamma-amino butyric acid(A) (GABA(A)) receptor and also to cause changes in [Ca2+]i. The GABA(A) receptor, a suggested target for anaesthetics, is known to be regulated by kinases. We have investigated if tyrosine kinase is involved in the intracellular signal system used by propofol to cause anaesthesia. We used primary cell cultured neurones from newborn rats, pre-incubated with or without a tyrosine kinase inhibitor before propofol stimulation. The effect of propofol on tyrosine phosphorylation and changes in [Ca2+]i were investigated. Propofol (3 microg mL(-1), 16.8 microM) increased intracellular calcium levels by 122 +/- 34% (mean +/- SEM) when applied to neurones in calcium free medium. This rise in [Ca2+]i was lowered by 68% when the cells were pre-incubated with the tyrosine kinase inhibitor herbimycin A before exposure to propofol (P < 0.05). Propofol caused an increase (33 +/- 10%) in tyrosine phosphorylation, with maximum at 120 s, of the beta-subunit of the GABA(A)-receptor. This tyrosine phosphorylation was decreased after pre-treatment with herbimycin A (44 +/- 7%, P < 0.05), and was not affected by the absence of exogenous calcium in the medium. Tyrosine kinase participates in the propofol signalling system by inducing the release of calcium from intracellular stores and by modulating the beta-subunit of the GABA(A)-receptor.
Collapse
Affiliation(s)
- K Björnström
- Department of Anaesthesiology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
56
|
Rebecchi MJ, Pentyala SN. Anaesthetic actions on other targets: protein kinase C and guanine nucleotide-binding proteins. Br J Anaesth 2002; 89:62-78. [PMID: 12173242 DOI: 10.1093/bja/aef160] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- M J Rebecchi
- Departments of Anesthesiology and Physiology & Biophysics, School of Medicine, State University of New York, Stony Brook, NY 11794-8480, USA
| | | |
Collapse
|
57
|
Reyes AM, Bustamante F, Rivas CI, Ortega M, Donnet C, Rossi JP, Fischbarg J, Vera JC. Nicotinamide is not a substrate of the facilitative hexose transporter GLUT1. Biochemistry 2002; 41:8075-81. [PMID: 12069599 DOI: 10.1021/bi0256328] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been proposed that GLUT1, a membrane protein that transports hexoses and the oxidized form of vitamin C, dehydroascorbic acid, is also a transporter of nicotinamide (Sofue, M., Yoshimura, Y., Nishida, M., and Kawada, J. (1992) Biochem. J. 288, 669-674). To ascertain this, we studied the transport of 2-deoxy-D-glucose, 3-O-methyl-D-glucose, and nicotinamide in human erythrocytes and right-side-out and inside-out erythrocyte membrane vesicles. The transport of nicotinamide was saturable, with a K(M) for influx and efflux of 6.1 and 6.2 mM, respectively. We found that transport of the hexoses was not competed by nicotinamide in both the erythrocytes and the erythrocyte vesicles. Likewise, the transport of nicotinamide was not affected by hexoses or by inhibitors of glucose transport such as cytochalasin B, genistein, and myricetin. On the other hand, nicotinamide blocked the binding of cytochalasin B to human erythrocyte membranes but did so in a noncompetitive manner. Using GLUT1-transfected CHO cells, we demonstrated that increased expression of GLUT1 was paralleled by a corresponding increase in hexose transport but that there were no changes in nicotinamide transport. Moreover, nicotinamide failed to affect the transport of hexoses in both control and GLUT1-transfected CHO cells. Therefore, our results indicates that GLUT1 does not transport nicotinamide, and we propose instead the existence of other systems for the translocation of nicotinamide across cell membranes.
Collapse
Affiliation(s)
- Alejandro M Reyes
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
The inhibitory effects of n-alcohols (methanol to dodecanol) on glycine-activated currents were studied in neurons freshly dissociated from the ventral tegmental area of neonatal rats using whole-cell patch-clamp recording technique. Ethanol enhanced and depressed glycine-activated currents in 35% and 45%, respectively, of neurons of ventral tegmental area of neonatal rats. In this report, we extended our focus of ethanol-induced inhibition of glycine currents to other straight-chain alcohols. Aliphatic n-alcohols, which have carbon numbers less than nine, suppressed glycine currents in 45% (71/158) of the neurons. All results from this study are obtained from the 45% of cells displaying inhibition; the other 55% of the neurons were not studied. Alcohol potency increased as the number of carbon atoms increased from one to five, and was at a maximal plateau from five to nine; alcohols with 10 or more carbons did not inhibit glycine-activated currents. Thus, a 'cutoff' point in their potency for inhibition of glycine receptor function occurred at about decanol. A coapplication of dodecanol with ethanol eliminated the inhibition resulting from ethanol. Thus, dodecanol may bind to the receptor silently and compete with ethanol. These observations indicate that straight-chain n-alcohols exhibit a 'cutoff' point in their potency for inhibition of the glycine receptor function between nine and 10 carbon atoms. The inability of longer alcohols to change the activation properties of the receptors may contribute to the cutoff effect.
Collapse
Affiliation(s)
- Liang Tao
- Department of Anesthesiology, New Jersey Medical School (UMDNJ), 185 South Orange Avenue, Newark, New Jersey, NJ 07103-2714, U.S.A
- Department of Pharmacology & Physiology, New Jersey Medical School (UMDNJ), 185 South Orange Avenue, Newark, New Jersey, NJ 07103-2714, U.S.A
| | - Jiang Hong Ye
- Department of Anesthesiology, New Jersey Medical School (UMDNJ), 185 South Orange Avenue, Newark, New Jersey, NJ 07103-2714, U.S.A
- Department of Pharmacology & Physiology, New Jersey Medical School (UMDNJ), 185 South Orange Avenue, Newark, New Jersey, NJ 07103-2714, U.S.A
- Author for correspondence:
| |
Collapse
|
59
|
Gomez RS, Barbosa J, Guatimosim C, Massensini AR, Gomez MV, Prado MAM. Translocation of protein kinase C by halothane in cholinergic cells. Brain Res Bull 2002; 58:55-9. [PMID: 12121813 DOI: 10.1016/s0361-9230(02)00755-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase C (PKC) is a signal transducing enzyme that is an important regulator of multiple physiologic processes and a potential molecular target for volatile anaesthetic actions. However, the effects of these agents on PKC activity are not yet fully understood. Volatile anaesthetics increase intracellular calcium concentration ([Ca(2+)](i)) in a variety of cells, thus their effects on PKC activity may be indirect due to [Ca(2+)](i) increase. Alternatively, the anaesthetics could directly stimulate PKC activity. In order to distinguish these two possibilities in intact cells, we used a fully functional green fluorescent protein conjugated PKCbetaII (GFP-PKCbetaII) and confocal microscopy to evaluate the dynamic redistribution of PKC in living SN56 cells, a cholinergic cell line, in response to halothane. Halothane induced PKC translocation in SN56 cells transfected with GFP-PKCbetaII. This effect was not suppressed by dantrolene, a drug that blocks halothane-induced Ca(2+) release from intracellular stores in these cells. These findings indicate that halothane induces PKC translocation in SN56 cells independently of its ability to release calcium from internal stores.
Collapse
Affiliation(s)
- R S Gomez
- Departamento de Cirurgia, Faculdade de Medicina da UFMG, Belo Horizonte-Minas Gerais, Brazil.
| | | | | | | | | | | |
Collapse
|
60
|
Othman T, Sinclair CJD, Haughey N, Geiger JD, Parkinson FE. Ethanol alters glutamate but not adenosine uptake in rat astrocytes: evidence for protein kinase C involvement. Neurochem Res 2002; 27:289-96. [PMID: 11958530 DOI: 10.1023/a:1014955111742] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in brain. By stimulating neuronal activity, glutamate increases cellular energy utilization, enhances ATP hydrolysis and promotes the formation of adenosine. Adenosine has receptor-mediated effects that reduce or oppose the excitatory effects of glutamate. As a possible mechanism for ethanol's ability to inhibit excitatory effects of glutamate and enhance inhibitory effects of adenosine, we tested the hypothesis that ethanol promotes [3H]glutamate uptake and inhibits [3H]adenosine uptake. Using primary cultures of rat astrocytes, we found that acute treatment with ethanol (50 mM, 30 min) inhibited [3H]glutamate uptake and reduced protein kinase C (PKC)-induced stimulation of [3H]glutamate uptake. Prolonged treatment (50 mM, 3 day) with ethanol, however, increased both [3H]glutamate uptake and PKC activity. Contrary to other cell types, neither acute or chronic ethanol exposure affected [3H]adenosine uptake in astrocytes. These data indicate that in rat cortical astrocytes ethanol affects [3H]glutamate uptake but not [3H]adenosine uptake by affecting PKC modulation of transporter activity.
Collapse
Affiliation(s)
- Timothy Othman
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
61
|
Ethanol-Induced Translocation of Protein Kinase A Occurs in Two Phases: Control by Different Molecular Mechanisms. Alcohol Clin Exp Res 2002. [DOI: 10.1097/00000374-200203000-00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
62
|
Dohrman DP, Chen HM, Gordon AS, Diamond I. Ethanol-Induced Translocation of Protein Kinase A Occurs in Two Phases: Control by Different Molecular Mechanisms. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02553.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
63
|
Ogiri Y, Sun F, Hayami S, Fujimura A, Yamamoto K, Yaita M, Kojo S. Very low vitamin C activity of orally administered L-dehydroascorbic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:227-229. [PMID: 11754572 DOI: 10.1021/jf010910f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The biological activity of L-dehydroascorbic acid (DHA), which is easily formed from L-ascorbic acid (ASC) during storage and cooking processes, has been considered to be equivalent to that of ASC on the basis of studies made several decades ago, when a specific method to determine ASC was not available. The nutritional activity of orally ingested DHA has now been evaluated by comparing ASC concentrations in 12 tissues of rats administered four different doses of ASC. Determinations were made by using the specific and sensitive method, which had been developed by us. Here it is shown that the efficiency of DHA was almost 10% of that of ASC on a molar basis, based on animal experiments using the inherently scorbutic ODS rat, which is a convenient human model animal to investigate the metabolism of vitamin C. On the basis of these findings, it is proposed that it is necessary to reevaluate the nutritional requirement of vitamin C based on both ASC and DHA contents of foods.
Collapse
Affiliation(s)
- Yukako Ogiri
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
Itoh T, Namba T, Fukuda K, Semenza GL, Hirota K. Reversible inhibition of hypoxia-inducible factor 1 activation by exposure of hypoxic cells to the volatile anesthetic halothane. FEBS Lett 2001; 509:225-9. [PMID: 11741593 DOI: 10.1016/s0014-5793(01)03119-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Volatile anesthetics modulate a variety of physiological and pathophysiological responses including hypoxic responses. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that mediates cellular and systemic homeostatic responses to reduced O(2) availability in mammals, including erythropoiesis, angiogenesis, and glycolysis. We demonstrate for the first time that the volatile anesthetic halothane blocks HIF-1 activity and downstream target gene expressions induced by hypoxia in the human hepatoma-derived cell line, Hep3B. Halothane reversibly blocks hypoxia-induced HIF-1alpha protein accumulation and transcriptional activity at clinically relevant doses.
Collapse
Affiliation(s)
- T Itoh
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
65
|
Martin S, Diebolt M, Andriantsitohaina R. [Moderate alcohol consumption and cardiovascular diseases]. PATHOLOGIE-BIOLOGIE 2001; 49:769-74. [PMID: 11762141 DOI: 10.1016/s0369-8114(01)00241-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While excessive ethanol consumption can result in higher rate of morbidity and mortality resulting from several diseases including cancer and cirrhosis, epidemiological studies suggest that moderate alcohol ingestion reduces the risk of cardiovascular diseases. However, the precise mechanisms by which moderate alcohol consumption protects against coronary heart disease (CHD) is not fully understood. Epidemiological studies suggest that alcohol consumption influences several risk factors for CHD including blood pressure, plasma cholesterol levels, platelet function, and fibrinolytic parameters, preventing both vascular thrombosis and occlusion. Turning to molecular and cellular levels, ethanol has been shown to act on several signal transduction mechanisms involve in the inhibition of smooth muscle cells proliferation and migration and in the activation of the release of vasoactive factors from vascular cells such as nitric oxide (NO). The latter is of importance since NO has been shown to possess antioxidant, antiaggregant properties, to regulate vascular tone and to inhibit both proliferation of smooth muscle cells and adhesion of leukocytes. Altogether, the above mentioned beneficial properties of moderate concentration of ethanol might help to explain the cardio- and vascular protection induced by ethanol. This review compels several bibliographic data concerning the cardiovascular effect of moderate alcohol consumption.
Collapse
Affiliation(s)
- S Martin
- Pharmacologie et physicochimie des interactions cellulaires et moléculaires, UMR CNRS 7034, université Louis Pasteur, faculté de pharmacie, BP 24, 67401 Illkirch, France
| | | | | |
Collapse
|
66
|
Liu Q, Vera JC, Peng H, Golde DW. The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity. Biochemistry 2001; 40:7874-81. [PMID: 11425315 DOI: 10.1021/bi002850x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The glucose transporter GLUT1 has three short amino acid sequences (domains I-III) with homology to typical ATP-binding domains. GLUT1 is a facilitative transporter, however, and transports its substrates down a concentration gradient without a specific requirement for energy or hydrolysis of ATP. Therefore, we assessed the functional role of the predicted ATP-binding domains in GLUT1 by site-directed mutagenesis and expression in Xenopus oocytes. For each mutant, we determined the level of protein expression and the kinetics of transport under zero-trans influx, zero-trans efflux, and equilibrium exchange conditions. Although all five mutants were expressed at levels similar to that of the wild-type GLUT1, each single amino acid change in domains I or III profoundly affected GLUT1 function. The mutants Gly116-->Ala in domain I and Gly332-->Ala in domain III exhibited only 10-20% of the transport activity of the wild-type GLUT1. The mutants Gly111-->Ala in domain I and Leu336-->Ala in domain III showed altered kinetic properties; neither the apparent Km nor the Vmax for 3-methylglucose transport were increased under equilibrium exchange conditions, and they did not show the expected level of countertransport acceleration. The mutant Lys117-->Arg in domain I showed a marked increase in the apparent Km for 3-methylglucose transport under zero-trans efflux and equilibrium exchange conditions while maintaining countertransport acceleration. These results indicate that the predicted ATP-binding domains I and III in GLUT1 are important components of the region in GLUT1 involved in transport of the substrate and that their integrity is critical for maintaining the activity and kinetic properties of the transporter.
Collapse
Affiliation(s)
- Q Liu
- Program in Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | | | | | | |
Collapse
|
67
|
Vera JC, Reyes AM, Velásquez FV, Rivas CI, Zhang RH, Strobel P, Slebe JC, Núñez-Alarcón J, Golde DW. Direct inhibition of the hexose transporter GLUT1 by tyrosine kinase inhibitors. Biochemistry 2001; 40:777-90. [PMID: 11170395 DOI: 10.1021/bi001660j] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The facilitative hexose transporter GLUT1 is a multifunctional protein that transports hexoses and dehydroascorbic acid, the oxidized form of vitamin C, and interacts with several molecules structurally unrelated to the transported substrates. Here we analyzed in detail the interaction of GLUT1 with a group of tyrosine kinase inhibitors that include natural products of the family of flavones and isoflavones and synthetic compounds such as the tyrphostins. These compounds inhibited, in a dose-dependent manner, the transport of hexoses and dehydroascorbic acid in human myeloid HL-60 cells, in transfected Chinese hamster ovary cells overexpressing GLUT1, and in normal human erythrocytes, and blocked the glucose-displaceable binding of cytochalasin B to GLUT1 in erythrocyte ghosts. Kinetic analysis of transport data indicated that only tyrosine kinase inhibitors with specificity for ATP binding sites inhibited the transport activity of GLUT1 in a competitive manner. In contrast, those inhibitors that are competitive with tyrosine but not with ATP failed to inhibit hexose uptake or did so in a noncompetitive manner. These results, together with recent evidence demonstrating that GLUT1 is a nucleotide binding protein, support the concept that the inhibitory effect on transport is related to the direct interaction of the inhibitors with GLUT1. We conclude that predicted nucleotide-binding motifs present in GLUT1 are important for the interaction of the tyrosine kinase inhibitors with the transporter and may participate directly in the binding transport of substrates by GLUT1.
Collapse
Affiliation(s)
- J C Vera
- Program in Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Slater SJ, Stagliano BA, Seiz JL, Curry JP, Milano SK, Gergich KJ, Stubbs CD. Effects of ethanol on protein kinase C activity induced by filamentous actin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1544:207-16. [PMID: 11341930 DOI: 10.1016/s0167-4838(00)00222-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Protein kinase C (PKC) can be activated by interaction with filamentous actin (F-actin) in the absence of membrane lipids (S.J. Slater, S.K. Milano, B.A. Stagliano, K.J. Gergich, J.P. Curry, F.J. Taddeo and C.D. Stubbs, Biochemistry 39 (2000) 271-280). Here, the effects of ethanol on the F-actin-induced activities of a panel of PKC isoforms consisting of 'conventional' (cPKC) alpha, betaI, gamma, 'novel' (nPKC) delta, epsilon and 'atypical' (aPKC) zeta were investigated using purified PKC and F-actin. Ethanol was found to inhibit the Ca2+- and phorbol ester-dependent activities of cPKCalpha and betaI, and the Ca2+- and phorbol ester-independent activity of cPKCgamma, whereas the activities of nPKCdelta, epsilon and aPKCzeta were unaffected. Although the activities of cPKCalpha and betaI induced by saturating levels of phorbol ester were inhibited by ethanol, the binding of these isozymes to F-actin was unaffected within the same phorbol ester concentration range. Conversely, within submaximal levels of phorbol ester, cPKCalpha and betaI activities were unaffected by ethanol whereas binding to F-actin was inhibited. The potency of the inhibition of F-actin-induced cPKCbetaI activity increased with n-alkanol chain length up to n-hexanol, after which it declined. The results indicate that PKC activities associated with F-actin, and therefore cellular processes involving the actin cytoskeleton, are potential targets for ethanol action. The effects of ethanol on these processes may differ according to the particular regulating PKC isoform, its intracellular localization and the presence of activators and cofactors.
Collapse
Affiliation(s)
- S J Slater
- Department of Anatomy, Pathology, and Cell Biology, Room 271 JAH, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
The pharmacological effects of ethanol are complex and widespread without a well-defined target. Since glutamatergic and GABAergic innervation are both dense and diffuse and account for more than 80% of the neuronal circuitry in the human brain, alterations in glutamatergic and GABAergic function could affect the function of all neurotransmitter systems. Here, we review recent progress in glutamatergic and GABAergic systems with a special focus on their roles in alcohol dependence and alcohol withdrawal-induced seizures. In particular, NMDA-receptors appear to play a central role in alcohol dependence and alcohol-induced neurological disorders. Hence, NMDA receptor antagonists may have multiple functions in treating alcoholism and other addictions and they may become important therapeutics for numerous disorders including epilepsy, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's chorea, anxiety, neurotoxicity, ischemic stroke, and chronic pain. One of the new family of NMDA receptor antagonists, such as DETC-MESO, which regulate the redox site of NMDA receptors, may prove to be the drug of choice for treating alcoholism as well as many neurological diseases.
Collapse
Affiliation(s)
- K M Davis
- Department of Medical Chemistry, 1043 Haworth Hall, University of Kansas, Lawrence, KS 66045-2106, USA
| | | |
Collapse
|
70
|
Kötter K, Jin S, Klein J. Inhibition of astroglial cell proliferation by alcohols: interference with the protein kinase C-phospholipase D signaling pathway. Int J Dev Neurosci 2000; 18:825-31. [PMID: 11154852 DOI: 10.1016/s0736-5748(00)00044-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Ethanol inhibits astroglial cell proliferation, an effect that may contribute to the development of alcoholic embryopathy in humans. In the present study, we investigated inhibitory effects of ethanol and butanol isomers (1-, 2- and t-butanol) on astroglial cell proliferation induced by the strongly mitogenic phorbol ester, 4beta-phorbol-12alpha,13beta-dibutyrate (PDB). 4beta-Phorbol-12alpha,13beta-dibutyrate (PDB) induced a 10-fold increase of [3H] thymidine incorporation in cortical astrocytes prepared from newborn rats (EC50: 70 nM) which was blocked by Ro 31-8220, a cell-permeable protein kinase C (PKC) inhibitor. Ethanol blocked PDB-induced astroglial proliferation in a concentration-dependent manner; significant effects were already seen at 0.1% (v/v). Concomitantly, ethanol caused the formation of phosphatidylethanol (PEth) by phospholipase D (PLD) and reduced PLD-mediated formation of phosphatidic acid (PA). The butanols also inhibited the mitogenic action of phorbol ester; the inhibitory potency of the butanols was 1-butanol > 2-butanol > t-butanol. The same range of potencies was observed for the inhibitory activity of the butanols towards protein kinase C activity measured in vitro. At 0.3% concentration, 1-butanol potently suppressed the PDB-induced formation of phosphatidic acid while 2- and t-butanol were less active. Taken together, our results suggest that ethanol and 1-butanol exert a specific inhibitory effect on PKC-dependent astroglial cell proliferation by synergistically inhibiting PKC activity and the PLD signaling pathway.
Collapse
Affiliation(s)
- K Kötter
- Department of Pharmacology, University of Mainz, Germany
| | | | | |
Collapse
|
71
|
Kudoh A, Matsuki A. Halothane and Sevoflurane Decrease Norepinephrine-Stimulated Glucose Transport in Neonatal Cardiomyocyte. Anesth Analg 2000. [DOI: 10.1213/00000539-200011000-00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
72
|
Kudoh A, Matsuki A. Halothane and sevoflurane decrease norepinephrine-stimulated glucose transport in neonatal cardiomyocyte. Anesth Analg 2000; 91:1151-9. [PMID: 11049901 DOI: 10.1097/00000539-200011000-00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Catecholamine regulates myocardial glucose use. However, the effect of inhaled anesthetics on myocardial glucose transport stimulated by catecholamine is unclear. We studied the effect of halothane and sevoflurane on uptake of 2-deoxyglucose stimulated by norepinephrine in neonatal cardiomyocytes and the mechanism that modulates glucose transport. We studied the effects of halothane and sevoflurane on norepinephrine (NE)-stimulated glucose uptake and the effects of halothane and sevoflurane on glucose uptake stimulated by W7 (a calcium releasing agent), phorbol 12 myristate-13-acetate (a protein kinase C agonist), and LiCl. Sevoflurane decreased NE-stimulated glucose uptake from 63.7 +/- 7.0 to 41.2 +/- 3.7 pmol h(-1) mg protein(-1), and halothane also attenuated NE-stimulated glucose uptake to 37.8 +/- 5.7 pmol h(-1) mg protein(-1). W7 at 10 micromol/L increased glucose uptake from 16.4 +/- 1.4 to 41.2 +/- 3. 4 pmol h(-1) mg protein(-1). The stimulation was inhibited in the presence of 0.8 mmol/L sevoflurane and 0.58 mmol/L halothane to 23.9 +/- 3.7 and 25.6 +/- 3.6 pmol h(-1) mg protein(-1), respectively. Halothane and sevoflurane did not significantly affect the glucose uptake stimulated by 1 nmol/L insulin, 10 micromol/L PMA, or 10 mmol/L LiCl. We conclude that halothane and sevoflurane decrease NE-stimulated glucose uptake through decrease in intracellular calcium in cardiomyocytes. IMPLICATIONS The effect of inhaled anesthetics on myocardial glucose uptake during administration of catecholamine is unclear. The myocardial glucose uptake is stimulated not only by catecholamine, but also by insulin, protein kinase C, and increase of intracellular calcium. We examined the effects of halothane and sevoflurane on glucose uptake.
Collapse
Affiliation(s)
- A Kudoh
- Department of Anesthesiology, University of Hirosaki School of Medicine, Hirosaki, Japan
| | | |
Collapse
|
73
|
Shinohara K, Funabashi T, Mitushima D, Kimura F. Effects of gap junction blocker on vasopressin and vasoactive intestinal polypeptide rhythms in the rat suprachiasmatic nucleus in vitro. Neurosci Res 2000; 38:43-7. [PMID: 10997577 DOI: 10.1016/s0168-0102(00)00141-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We examined effects of gap junction blockers, octanol and halothane, on circadian rhythms in the release of arginine-vasopressin (AVP) and vasoactive intestinal polypeptide (VIP) in suprachiasmatic nucleus (SCN) slice cultures of the rat. Circadian rhythms in AVP and VIP release maintained when the SCN culture was treated with octanol for 42 h. However, the release of AVP and VIP showed no circadian rhythms after 7 days incubation with octanol or halothane. Circadian rhythmicity in the two peptide rhythms appeared after the removal of the drug from the culture medium. These findings suggested that the gap junction communication may be involved in intercellular coupling within each subpopulation of AVP or VIP neurons in the SCN.
Collapse
Affiliation(s)
- K Shinohara
- Department of Physiology, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | | | |
Collapse
|
74
|
Abstract
UNLABELLED Inositol 1,4,5-triphosphate (IP(3)) plays an important role in excitation-contraction coupling and malignant hyperthermia in skeletal muscle. We investigated whether sevoflurane affects IP(3) formation in L(6) skeletal muscle cells and studied the mechanisms that modulate IP(3). Sevoflurane stimulated IP(3) production from a basal level of 78.4 +/- 6.1 to 730.0 +/- 53.1 pmol. mg. protein(-1) in 2 mM of sevoflurane in a dose-dependent manner. A dose of 10 microM of U73122 (a phospholipase C antagonist) significantly decreased 0.8 mM of sevoflurane-stimulated IP(3) production from 387. 8 +/- 24.7 to 247.8 +/- 19.8 pmol. mg. protein(-1). A dose of 100 microM of (p-amylcinnamoyl) anthranilic acid (a PLA(2) antagonist) also significantly decreased sevoflurane-stimulated IP(3) production to 282.0 +/- 24.0 pmol. mg. protein(-1). Exposure to 1 microM of genistein and tyrphostin A23 (tyrosine kinase inhibitors) significantly decreased sevoflurane-stimulated IP(3) production to 241.0 +/- 35.3 and 267.4 +/- 32.9 pmol. mg. protein(-1). Sevoflurane-stimulated IP(3) production was significantly decreased by 10 microM of 8-(N,N-diethylamino) octyl-3,4-5-trimathoxybenzoate (an intracellular calcium antagonist) and 100 microM and 1 mM of guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS), a guanosine 5'triphosphate-binding protein inhibitor. Elevation of IP(3) production was significantly higher in halothane than in sevoflurane and isoflurane at the same concentration of 0.8 mM. We conclude that sevoflurane-stimulated IP(3) production involves phospholipase C, phospholipase A(2), tyrosine kinase, and guanosine 5'triphosphate-binding protein and the stimulation is associated with concentration of intracellular ionized calcium. IMPLICATIONS Inhaled anesthetics increase intracellular ionized calcium in the skeletal muscle cell and the ionized calcium increase is partly released from the intracellular store by inositol 1,4,5-triphosphate (IP(3)) formation. IP(3) plays an important role in excitation-contraction coupling and malignant hyperthermia. We studied whether sevoflurane affects IP(3) formation and the mechanisms that modulate IP(3).
Collapse
Affiliation(s)
- A Kudoh
- Department of Anesthesiology, University of Hirosaki School of Medicine, Japan
| | | |
Collapse
|
75
|
Kudoh A, Matsuki A. Sevoflurane Stimulates Inositol 1,4,5-Trisphosphate in Skeletal Muscle. Anesth Analg 2000. [DOI: 10.1213/00000539-200008000-00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
76
|
Kveder M, Pifat G, Jelovecki A, Klaić B, Pecar S, Schara M. The EPR study of LDL perturbed by alcohols with different molecular architecture. Alcohol 2000; 21:141-7. [PMID: 10963937 DOI: 10.1016/s0741-8329(00)00082-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this work, the interaction of different isomers of lower aliphatic alcohols with LDL representing a complex macromolecular assembly is investigated in vitro. Emphasis is given to the comparison of the impact of molecular architecture of methanol, ethanol, propanol (n-, iso-) and butanol (n-, iso-, sec-, tert-) in perturbing the lipid-protein assembly. The geometrical characteristics as well as the lipophilicity of the respective alcohol are considered. The EPR method combined with the spin labeling of both the apoB and the lipid monolayer allowed parallel detection of changes provoked in both phases. In addition to the change in protein environment, the spectral decomposition of the experimental data revealed a decrease in lipid ordering with the increasing concentration of the alcohols. This phenomenon for aliphatic alcohols is linearly correlated with the equal volume occupation (EVO) of alcohol in LDL. The results support the molecular mechanism of alcohol action through its interference with the lipid-protein interactions in LDL, which could be applicable to the molecular mechanism of alcohol interaction with integral membrane proteins.
Collapse
Affiliation(s)
- M Kveder
- Ruder Bosković Institute, FK/LMR, Bijenicka 54, 10000 Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
77
|
Shinohara K, Hiruma H, Funabashi T, Kimura F. GABAergic modulation of gap junction communication in slice cultures of the rat suprachiasmatic nucleus. Neuroscience 2000; 96:591-6. [PMID: 10717439 DOI: 10.1016/s0306-4522(99)00556-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We employed morphological and electrophysiological methods in order to elucidate mechanisms which are responsible for communication between cellular oscillators in the cultured rat suprachiasmatic nucleus, the site of the endogenous biological clock that regulates circadian rhythms in mammals. When a gap junction-permeable dye, Lucifer Yellow, was injected into single neurons in the suprachiasmatic nucleus culture, the dye was transferred to neighboring cells in a gap junction blocker-sensitive manner. Optical imaging of neural activity evoked by electrical stimulation in the culture revealed that the spread of depolarization was inhibited by gap junction blockers but not by a blocker of voltage-dependent Na(+) channels. Depolarization propagation was inhibited by muscimol, a GABA(A) receptor agonist, in a dose-dependent manner and the inhibition was reversed by bicuculline, a GABA(A) receptor antagonist. Furthermore, muscimol inhibited dye-transfer between neurons in the suprachiasmatic nucleus culture in a dose-dependent fashion.These independent lines of evidence suggest that the gap junction communication is involved in interneuronal communication in the suprachiasmatic nucleus slice culture and that the coupling state between neurons is not static but dynamically regulated via GABA(A) receptor systems.
Collapse
Affiliation(s)
- K Shinohara
- Department of Physiology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Japan
| | | | | | | |
Collapse
|
78
|
Abstract
Increasing evidence suggests that alcohols act within specific binding pockets of selective neural proteins; however, antagonists at these sites have not been identified. 1-Alcohols from methanol through 1-butanol inhibit with increasing potency the cell-cell adhesion mediated by the immunoglobulin cell adhesion molecule L1. An abrupt cutoff exists after 1-butanol, with 1-pentanol and higher 1-alcohols showing no effect. Here, we demonstrate surprisingly strict structural requirements for alcohol inhibition of cell-cell adhesion in L1-transfected NIH 3T3 fibroblasts and in NG108-15 neuroblastoma x glioma hybrid cells treated with BMP-7, an inducer of L1 and neural cell adhesion molecule. The target site discriminates the tertiary structure of straight-chain and branched-chain alcohols and appears to comprise both a hydrophobic binding site and an adjacent hydrophilic allosteric site. Modifications to the 2- and 3-carbon positions of 1-butanol increased potency, whereas modifications that restrict movement about the 4-carbon abolished activity. The effects of ethanol and 1-butanol on cell-cell adhesion were antagonized by 1-pentanol (IC(50) = 715 microM) and 1-octanol (IC(50) = 3.6 microM). Antagonism by 1-octanol was complete, reversible, and noncompetitive. 1-Octanol also antagonized ethanol inhibition of BMP-7 morphogenesis in NG108-15 cells. 1-Octanol and related compounds may prove useful in dissecting the role of altered cell adhesion in ethanol-induced injury of the nervous system.
Collapse
|
79
|
Wilkemeyer MF, Sebastian AB, Smith SA, Charness ME. Antagonists of alcohol inhibition of cell adhesion. Proc Natl Acad Sci U S A 2000; 97:3690-5. [PMID: 10725368 PMCID: PMC16301 DOI: 10.1073/pnas.97.7.3690] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence suggests that alcohols act within specific binding pockets of selective neural proteins; however, antagonists at these sites have not been identified. 1-Alcohols from methanol through 1-butanol inhibit with increasing potency the cell-cell adhesion mediated by the immunoglobulin cell adhesion molecule L1. An abrupt cutoff exists after 1-butanol, with 1-pentanol and higher 1-alcohols showing no effect. Here, we demonstrate surprisingly strict structural requirements for alcohol inhibition of cell-cell adhesion in L1-transfected NIH 3T3 fibroblasts and in NG108-15 neuroblastoma x glioma hybrid cells treated with BMP-7, an inducer of L1 and neural cell adhesion molecule. The target site discriminates the tertiary structure of straight-chain and branched-chain alcohols and appears to comprise both a hydrophobic binding site and an adjacent hydrophilic allosteric site. Modifications to the 2- and 3-carbon positions of 1-butanol increased potency, whereas modifications that restrict movement about the 4-carbon abolished activity. The effects of ethanol and 1-butanol on cell-cell adhesion were antagonized by 1-pentanol (IC(50) = 715 microM) and 1-octanol (IC(50) = 3.6 microM). Antagonism by 1-octanol was complete, reversible, and noncompetitive. 1-Octanol also antagonized ethanol inhibition of BMP-7 morphogenesis in NG108-15 cells. 1-Octanol and related compounds may prove useful in dissecting the role of altered cell adhesion in ethanol-induced injury of the nervous system.
Collapse
Affiliation(s)
- M F Wilkemeyer
- Neurology Service, Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | | | | | | |
Collapse
|
80
|
Olsowski A, Monden I, Krause G, Keller K. Cysteine scanning mutagenesis of helices 2 and 7 in GLUT1 identifies an exofacial cleft in both transmembrane segments. Biochemistry 2000; 39:2469-74. [PMID: 10704196 DOI: 10.1021/bi992160x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cysteine scanning mutagenesis in conjunction with site-directed chemical modification of sulfhydryl groups by p-chloromercuribenzenesulfonate (pCMBS) or N-ethylmaleimide (NEM) was applied to putative transmembrane segments (TM) 2 and 7 of the cysteine-less glucose transporter GLUT1. Valid for both helices, the majority of cysteine substitution mutants functioned as active glucose transporters. The residues F72, G75, G76, G79, and S80 within helix 2 and G286 and N288 within helix 7 were irreplaceable because the mutant transporters displayed transport activities that were lower than 10% of Cys-less GLUT1. The indicated cluster of glycine residues within TM 2 is located on one face of the helix and may provide space for a bulky hydrophobic counterpart interacting with another transmembrane segment or lipid side chains. Characteristic for helix 7, three glutamine residues (Q279, Q282, and Q283) played an important role in transport activity of Cys-less GLUT1 because an individual replacement with cysteine reduced their transport rates by about 80%. ParaCMBS-sensitivity scanning of both transmembrane segments detected several membrane-harbored residues to be accessible to the extracellular aqueous solvent. The pCMBS-reactive sulfhydryl groups were located exclusively in the exofacial half of the plasma membrane and, when presented in a helical model, lie along one side of the helices. Taken together, transmembrane segments 2 and 7 form clefts accessible to the extracellular aqueous solvent. The lining residues are however excluded from interaction with intracellular solutes, as justified by microinjection of pCMBS into the cytoplasm of Xenopus oocytes.
Collapse
Affiliation(s)
- A Olsowski
- Institut für Pharmakologie, Freie Universität Berlin, Thielallee 67-73, D-14195 Berlin, FRG, Institut für Molekulare Pharmakologie, Alfred Kowalke Str. 4, D-10315 Berlin, Germany
| | | | | | | |
Collapse
|
81
|
Ha CE, Petersen CE, Park DS, Harohalli K, Bhagavan NV. Investigations of the effects of ethanol on warfarin binding to human serum albumin. J Biomed Sci 2000; 7:114-21. [PMID: 10754385 DOI: 10.1007/bf02256617] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Ethanol effects on warfarin binding to human serum albumin (HSA) have been studied by equilibrium dialysis and fluorescence methods at pH 7.4 in phosphate-buffered saline at 37 degrees C. In the presence of various amounts of ethanol fluorescence intensity of bound warfarin decreased significantly but this intensity reduction was not solely from displacement of bound warfarin from HSA. By comparing fluorescence and equilibrium dialysis data we concluded that fluorescence intensity reduction of warfarin was mainly the result of changes in the surrounding environment of the warfarin binding site by ethanol interaction with HSA and that displacement of bound warfarin was not significant compared to the fluorescence intensity changes. The dissociation constant of warfarin binding to HSA decreased with an increasing amount of ethanol. From the changes in fluorescence intensity upon warfarin binding to HSA with the presence of ethanol ranging from 0 to 5.0% the following dissociation constants (Kd) were determined: 0% ethanol 5.39 +/- 0.2 microM, 0.1% ethanol 5.86 +/- 0.1 microM, 0.3% ethanol 5.83 +/- 0.2 microM, 0.5% ethanol 6.76 +/- 0.1 microM, 1% ethanol 7.01 +/- 0.1 microM, 3% ethanol 9.9 +/- 0.7 microM, 5% ethanol 13.01 +/- 0.1 microM. From the equilibrium dialysis with the same ranges of ethanol presence the following Kd values were obtained: 0% ethanol 6. 62 +/- 1.6 microM, 0.1% ethanol 6.81 +/- 1.1 microM, 0.3% ethanol 8. 26 +/- 2.5 microM, 0.5% ethanol 8.86 +/- 1.9 microM, 1% ethanol 11. 01 +/- 4.2 microM, 3% ethanol 20.75 +/- 2.4 microM, 5% ethanol 21.67 +/- 2.2 microM. The results suggest that warfarin bound to HSA was displaced by ethanol. These data indicate that ethanol influence on warfarin binding to HSA may alter the pharmacokinetics of warfarin.
Collapse
Affiliation(s)
- C E Ha
- Department of Biochemistry and Biophysics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | | | | | | | |
Collapse
|
82
|
O'Leary G, Bacon CL, Odumeru O, Fagan C, Fitzpatrick T, Gallagher HC, Moriarty DC, Regan CM. Antiproliferative actions of inhalational anesthetics: comparisons to the valproate teratogen. Int J Dev Neurosci 2000; 18:39-45. [PMID: 10708904 DOI: 10.1016/s0736-5748(99)00109-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The antiproliferative potential of the volatile anesthetics isoflurane, enflurane and sevoflurane was determined and compared to the valproate teratogen. The in vitro system employed, a G1 phase proliferative arrest endpoint in C6 glioma, has served previously to discriminate agents with known teratogenic potential in vivo. Based on estimated IC(50) values that were within twice the estimated minimum aveolar concentration value, the rank antiproliferative potency of the inhalational anesthetics employed was isoflurane=enflurane>>sevoflurane. Flow cytometric analysis of growth-arrested cell populations failed to reveal specific accumulation in any cell cycle phase and the lack of a G1 phase-specific effect was confirmed by the absence of a transient, time-dependent sialylation event in synchronized cells. The antiproliferative mechanism of volatile anesthetics, and valproate, was mediated at hydrophobic binding sites, as increasing the hydration sphere of the drug-micelle complex, using the hygroscopic qualities of the dimethylsulfoxide vehicle, completely reversed this effect. Our findings suggest inhalational anesthetics lack the specific in vitro characteristics of the valproate teratogen.
Collapse
Affiliation(s)
- G O'Leary
- University Department of Anesthesia, Mater Misericordiae Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Little HJ. The contribution of electrophysiology to knowledge of the acute and chronic effects of ethanol. Pharmacol Ther 1999; 84:333-53. [PMID: 10665833 DOI: 10.1016/s0163-7258(99)00040-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This review describes the effects of ethanol on the components of neuronal transmission and the relationship of such effects to the behavioural actions of ethanol. The concentrations of ethanol with acute actions on voltage-sensitive ion channels are first described, then the actions of ethanol on ligand-gated ion channels, including those controlled by cholinergic receptors, 5-hydroxytryptamine receptors, the various excitatory amino acid receptors, and gamma-aminobutyric acid receptors. Acute effects of ethanol are then described on brain areas thought to be involved in arousal and attention, the reinforcing effects of ethanol, the production of euphoria, the actions of ethanol on motor control, and the amnesic effects of ethanol; the acute effects of ethanol demonstrated by EEG studies are also discussed. Chronic effects of alcohol on neuronal transmission are described in the context of the various components of the ethanol withdrawal syndrome, withdrawal hyperexcitability, dysphoria and anhedonia, withdrawal anxiety, craving, and relapse drinking. Electrophysiological studies on the genetic influences on the effects of ethanol are discussed, particularly the acute actions of ethanol and electrophysiological differences reported in individuals predisposed to alcoholism. The conclusion notes the concentration of studies on the classical transmitters, with relative neglect of the effects of ethanol on peptides and on neuronal interactions between brain areas and integrated patterns of neuronal activity.
Collapse
Affiliation(s)
- H J Little
- Department of Psychology, Durham University, UK.
| |
Collapse
|
84
|
Shen YM, Chertihin OI, Biltonen RL, Sando JJ. Lipid-dependent activation of protein kinase C-alpha by normal alcohols. J Biol Chem 1999; 274:34036-44. [PMID: 10567370 DOI: 10.1074/jbc.274.48.34036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Significant stimulation of protein kinase C-alpha (PKCalpha) by n-alcohols was observed in characterized lipid systems composed of phosphatidylcholine/phosphatidylserine/dioleoylglycerol (PC/PS/DO). The logarithm of the alcohol concentrations to achieve half-maximal PKC stimulation (ED(50)) and of the maximal PKC stimulation by alcohols were both linear functions of alcohol chain length, consistent with the Meyer-Overton effect. Binding of phorbol esters to PKC was not significantly affected by octanol. Octanol increased, up to 4-fold, the affinity of PKC binding to the lipid bilayers in both the absence and presence of DO. However, octanol increased PKC activity much more significantly than it enhanced binding of the enzyme to the lipid bilayers, suggesting that the stimulation of PKC is not merely a reflection of the increase in PKC bilayer binding affinity. (31)P NMR experiments did not reveal formation of non-lamellar phases with octanol. Differential scanning calorimetry suggested that alcohols, like diacylglycerol, induce formation of compositionally distinct domains and the maximal enzyme activity with alcohol resided roughly in the putative domain-coexistence region. These results suggest that alcohols are mimicking diacylglycerol in activating PKC, not by binding to the high affinity phorbol ester binding site, but by altering lipid structure and by enhancing PKC-bilayer binding.
Collapse
Affiliation(s)
- Y M Shen
- Department of Pharmacology, The University of Virginia Health Sciences Center, Charlottesville, Virginia 22903, USA
| | | | | | | |
Collapse
|
85
|
Mounsey JP, Patel MK, Mistry D, John JE, Moorman JR. Protein kinase C co-expression and the effects of halothane on rat skeletal muscle sodium channels. Br J Pharmacol 1999; 128:989-98. [PMID: 10556936 PMCID: PMC1571721 DOI: 10.1038/sj.bjp.0702877] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Voltage-gated Na channels, which are potential targets for general anaesthetics, are substrates for PKC, which phosphorylates a conserved site in the channel inactivation gate. We investigated the idea that PKC modulates the effect of volatile anaesthetics on Na channels via phosphorylation of this inactivation gate site. 2. Na currents through rat skeletal muscle Na channel alpha-subunits expressed in Xenopus oocytes were measured by two-microelectrode voltage clamp in the presence of the volatile anaesthetic agent halothane (2-bromo-2-chloro-1,1,1-trifluroethane). PKC activity was modulated by co-expression of a constitutively active PKC alpha-isozyme. 3. Halothane (0.4 mM) had no effect on Na currents. With co-expression of PKC, however, halothane dose-dependently enhanced the rate of Na current decay and caused a small, but statistically significant reduction in Na current amplitude. 4. The enhancement of Na current decay was absent in a Na channel mutant in which the inactivation gate phosphorylation site was disabled. Effects of halothane on amplitude were independent of this mutation. 5. Co-expression of a PKC alpha-isozyme permits an effect of halothane to hasten current decay and reduce current amplitude, at least in part through interaction with the inactivation gate phosphorylation site. We speculate that the interaction between halothane and Na channels is direct, and facilitated by PKC activity and by phosphorylation of a site in the channel inactivation gate.
Collapse
Affiliation(s)
- J P Mounsey
- Department of Internal Medicine (Cardiovascular Division), Box 6012, MR4 Building, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | | | | | |
Collapse
|
86
|
Hiney JK, Dearth RK, III FL, Wood S, Srivastava V, Dees WL. Effects of Ethanol on Leptin Secretion and the Leptin-Induced Luteinizing Hormone (LH) Release From Late Juvenile Female Rats. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04074.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
87
|
Constantinescu A, Diamond I, Gordon AS. Ethanol-induced translocation of cAMP-dependent protein kinase to the nucleus. Mechanism and functional consequences. J Biol Chem 1999; 274:26985-91. [PMID: 10480911 DOI: 10.1074/jbc.274.38.26985] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanol induces translocation of the catalytic subunit (Calpha) of cAMP-dependent protein kinase (PKA) from the Golgi area to the nucleus in NG108-15 cells. Ethanol also induces translocation of the RIIbeta regulatory subunit of PKA to the nucleus; RI and Cbeta are not translocated. Nuclear PKA activity in ethanol-treated cells is no longer regulated by cAMP. Gel filtration and immunoprecipitation analysis confirm that ethanol blocks the reassociation of Calpha with RII but does not induce dissociation of these subunits. Ethanol also reduces inhibition of Calpha by the PKA inhibitor PKI. Pre-incubation of Calpha with ethanol decreases phosphorylation of Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) and casein but has no effect on the phosphorylation of highly charged molecules such as histone H1 or protamine. cAMP-response element-binding protein (CREB) phosphorylation by Calpha is also increased in ethanol-treated cells. This increase in CREB phosphorylation is inhibited by the PKA antagonist (R(p))-cAMPS and by an adenosine receptor antagonist. These results suggest that ethanol affects a cascade of events allowing for sustained nuclear localization of Calpha and prolonged CREB phosphorylation. These events may account for ethanol-induced changes in cAMP-dependent gene expression.
Collapse
Affiliation(s)
- A Constantinescu
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California, San Francisco, California 94110-3518, USA
| | | | | |
Collapse
|
88
|
|
89
|
Karon BS, Autry JM, Shi Y, Garnett CE, Inesi G, Jones LR, Kutchai H, Thomas DD. Different anesthetic sensitivities of skeletal and cardiac isoforms of the Ca-ATPase. Biochemistry 1999; 38:9301-7. [PMID: 10413504 DOI: 10.1021/bi990190u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously shown that low levels of the volatile anesthetic halothane activate the Ca-ATPase in skeletal sarcoplasmic reticulum (SR), but inhibit the Ca-ATPase in cardiac SR. In this study, we ask whether the differential inhibition is due to (a) the presence of the regulatory protein phospholamban in cardiac SR, (b) different lipid environments in skeletal and cardiac SR, or (c) the different Ca-ATPase isoforms present in the two tissues. By expressing skeletal (SERCA 1) and cardiac (SERCA 2a) isoforms of the Ca-ATPase in Sf21 insect cell organelles, we found that differential anesthetic effects in skeletal and cardiac SR are due to differential sensitivities of the SERCA 1 and SERCA 2a isoforms to anesthetics. Low levels of halothane inhibit the SERCA 2a isoform of the Ca-ATPase, and have little effect on the SERCA 1 isoform. The biochemical mechanism of halothane inhibition involves stabilization of E2 conformations of the Ca-ATPase, suggesting direct anesthetic interaction with the ATPase. This study establishes a biochemical model for the mechanism of action of an anesthetic on a membrane protein, and should lead to the identification of anesthetic binding sites on the SERCA 1 and SERCA 2a isoforms of the Ca-ATPase.
Collapse
Affiliation(s)
- B S Karon
- Department of Biochemistry, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Domenicotti C, Paola D, Vitali A, Nitti M, Cottalasso D, Poli G, Pronzato MA, Marinari UM. Primary role of alcohol dehydrogenase pathway in acute ethanol-induced impairment of protein kinase C-dependent signaling system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 463:321-30. [PMID: 10352701 DOI: 10.1007/978-1-4615-4735-8_39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- C Domenicotti
- Department of Experimental Medicine, University of Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Slater SJ, Milano SK, Stagliano BA, Gergich KJ, Ho C, Mazurek A, Taddeo FJ, Kelly MB, Yeager MD, Stubbs CD. Synergistic activation of protein kinase Calpha, -betaI, and -gamma isoforms induced by diacylglycerol and phorbol ester: roles of membrane association and activating conformational changes. Biochemistry 1999; 38:3804-15. [PMID: 10090770 DOI: 10.1021/bi982778r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase Calpha (PKCalpha) has been shown to contain two discrete activator sites with differing binding affinities for phorbol esters and diacylglycerols. The interaction of diacylglycerol with a low-affinity phorbol ester binding site leads to enhanced high-affinity phorbol ester binding and to a potentiated level of activity [Slater, S. J., Ho, C., Kelly, M. B., Larkin, J. D. , Taddeo, F. J., Yeager, M. D., and Stubbs, C. D. (1996) J. Biol. Chem. 271, 4627-4631]. In this study, the mechanism of this enhancement of activity was examined with respect to the Ca2+ dependences of membrane association and accompanying conformational changes that lead to activation. The association of PKCalpha with membranes containing 12-O-tetradecanoylphorbol 13-acetate (TPA) or 1, 2-dioleoylglycerol (DAG), determined from tryptophan to dansyl-PE resonance energy transfer (RET) measurements, was found to occur at relatively low Ca2+ levels (</=1 microM). However, PKCalpha was found to be inactive even though membrane association was complete at these Ca2+ levels and further titration of Ca2+ to a concentration of approximately 100 microM was required for activation. This increase in Ca2+ concentration also led to a further increase in RET, which was due to a Ca2+-induced activating conformational change, as verified by an accompanying increase in the PKCalpha tryptophan fluorescence anisotropy. Coaddition of DAG and TPA resulted in a reduction in the Ca2+ levels required for both the conformational change and enzyme activation. Also, it was found that incubation of the enzyme with TPA alone resulted in a time-dependent increase in the Ca2+-independent PKCalpha activity, the rate and extent of which was further enhanced upon coaddition with DAG. Tauhe results suggest that the enhanced level of activity induced by coaddition of DAG and TPA involves both Ca2+-dependent and Ca2+-independent activating conformational changes which result in active conformers of PKCalpha distinct from those formed by interaction with either activator separately.
Collapse
Affiliation(s)
- S J Slater
- Department of Anatomy, Pathology, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Bowers BJ, Owen EH, Collins AC, Abeliovich A, Tonegawa S, Wehner JM. Decreased Ethanol Sensitivity and Tolerance Development in gamma-Protein Kinase C Null Mutant Mice Is Dependent on Genetic Background. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04127.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
93
|
Komatsu H, Kanno T, Matsumoto Y, Kodama T. Alcohol-induced biphasic inhibition of myosin subfragment 1 K-EDTA-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1430:14-24. [PMID: 10082929 DOI: 10.1016/s0167-4838(98)00272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Butanol-induced inhibition of K-EDTA-ATPase of myosin subfragment 1 proceeded by biphasic kinetics, consisting of rapid and slow inactivations. The extent of the rapid inactivation, which was estimated by extrapolating the process of slow inactivation to zero time of the incubation period, was saturated with butanol concentration. Recovery of activity by dilution in the rapid phase indicates that the rapid process is reversible. The slow inactivation was concomitant with a partial denaturation of the 50 kDa domain of S1, which was detected by limited tryptic digestion. Other alcohols (methanol, ethanol, propanol and hexanol) also inhibited the K-EDTA-ATPase in the rapid phase. The Ki decreased with an increase in the number of methylene groups of alcohol. When K-EDTA-ATPase activity in the rapid phase was plotted against viscosity, surface tension or dielectric constant, the curves were different for each of the various alcohol solutions. The rapid inactivation appears to be caused by a binding of the alkyl group to S1, rather than by solvent effects. The kinetics of rapid butanol inhibitions indicate that butanol reduces the maximum activity of ATPase but enhances an apparent affinity of S1 with ATP. These indications suggest that alcohol stabilizes S1.KATP intermediate. The rapid K-EDTA-ATPase inhibition was observed at the same alcohol concentration where S1 Mg-ATPase was activated.
Collapse
Affiliation(s)
- H Komatsu
- Department of Biochemical Science and Engineering, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502,
| | | | | | | |
Collapse
|
94
|
Avdulov NA, Chochina SV, Igbavboa U, Warden CS, Schroeder F, Wood WG. Lipid binding to sterol carrier protein-2 is inhibited by ethanol. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:37-45. [PMID: 9931423 DOI: 10.1016/s0005-2760(98)00178-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sterol carrier protein-2 (SCP-2) is an intracellular lipid carrier protein that binds cholesterol, phospholipids, fatty acids and other ligands. It has been reported that expression of SCP-2 was increased in brain nerve endings or synaptosomes of chronic ethanol-treated mice and it was shown that cholesterol homeostasis was altered in brain membranes of chronic ethanol-treated animals. Ethanol may interfere with the capacity of SCP-2 to bind cholesterol as well as other lipids. This hypothesis was tested using recombinant SCP-2 and fluorescent-labeled cholesterol, phosphatidylcholine (PC), and stearic acid. The association constants (Ka) of the ligand-SCP-2 complex were in the following order: NBD-cholesterol>NBD-PC>NBD-stearic acid. Ethanol, beginning at a concentration of 25 mM, significantly reduced the affinity of NBD-cholesterol and NBD-PC for SCP-2. Effects of ethanol on the Ka of NBD-stearic acid was significant only at the highest concentration that was examined (200 mM). Ethanol significantly increased the Bmax of NBD-cholesterol for SCP-2 but did not have a significant effect on the Bmax of NBD-PC. Similar results were found for effects of ethanol on the Kas and Bmaxs using pyrene-labeled cholesterol and PC. In conclusion, ethanol beginning at a physiological concentration of 25 mM inhibited binding of cholesterol and PC to SCP-2. However, effects of ethanol on lipid binding to SCP-2 were dependent on the type of lipid. Ethanol in vivo may interfere with lipid binding to SCP-2 and disrupt lipid trafficking within cells.
Collapse
Affiliation(s)
- N A Avdulov
- Geriatric Research, Education and Clinical Center, VA Medical Center and Department of Pharmacology, University of Minnesota School of Medicine, 11G, One Veterans Drive, Minneapolis, MN 55417, USA
| | | | | | | | | | | |
Collapse
|
95
|
Chaisuksant Y, Yu Q, Connell DW. The internal critical level concept of nonspecific toxicity. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 1999; 162:1-41. [PMID: 10392041 DOI: 10.1007/978-1-4612-1528-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The internal lethal concentration (ILC) can be an effective approach in describing the toxicity of a chemical to aquatic organisms that can complement the use of the external toxic concentration characteristic of the LC50. The ILC is an estimate of the toxicant concentration close to the target site and can be estimated from bioconcentration relationships and acute toxicity data. The observed ILC values were found to be consistent for organic compounds exerting the same mode of toxic action. The nonspecific toxicants have the lowest toxicity and the highest ILC values, whereas the chemicals exhibiting specific modes of action have lower concentrations and higher toxicity. There are some reports that the ILC value decreases with increasing exposure periods for various organic chemicals with aquatic organisms. The nonspecific toxicants possibly exhibit their toxic action at the target site by at least two different mechanisms depending on the toxicant concentrations. First, the toxicants bind directly to membrane proteins at relatively low concentrations, resulting in reversible toxic effect. Second, the toxicants inhibit the membrane proteins, and alterations in the lipid bilayers occur at toxicant concentrations sufficient to produce mortality of the organisms. The nonspecific toxicity expressed as acute and chronic toxicity measures are found to correlate well with log Kow. However, the relationship between the ILC and log Kow is less satisfactory because the values of ILC are relatively consistent compared to those of LC50.
Collapse
Affiliation(s)
- Y Chaisuksant
- Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | | | | |
Collapse
|
96
|
Chapter 10 Lipid Membrane and Ligand-Gated Ion Channels in General Anesthetic Action. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)61048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
97
|
Castoldi AF, Barni S, Randine G, Costa LG, Manzo L. Ethanol selectively interferes with the trophic action of NMDA and carbachol on cultured cerebellar granule neurons undergoing apoptosis. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 111:279-89. [PMID: 9838163 DOI: 10.1016/s0165-3806(98)00135-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exposure of mature rat cerebellar granule neurons to non-depolarizing conditions (5 mM K+) for 24 h resulted in the onset of apoptosis. NMDA, forskolin, carbachol and GABA attenuated low K+-induced toxicity, although to a different extent, with NMDA and GABA being the most effective agents. When cells were co-exposed for 24 h to ethanol, the survival promoting action of NMDA and carbachol, but not that of forskolin and GABA, was attenuated. By contrast, a 24 h cell pre-treatment with ethanol, followed by its removal prior to K+ deprivation, was ineffective towards the neurotrophic action of NMDA and carbachol. The concomitant presence of alcohol and neurotrophic factors was not required for the pro-apoptotic effect of ethanol to be manifest after a long-term alcohol exposure: inhibition of NMDA- and carbachol-mediated neurotrophism was still observed when cells were pre-exposed for 72 h to alcohol in depolarizing conditions, prior to the challenge with 5 mM K+-containing medium and the test compounds in the absence of ethanol. The present study shows that ethanol promotes apoptotic cell death of cultured cerebellar neurons by selectively inhibiting the neurotrophic effect of NMDA and carbachol, and suggests that alcohol may cause permanent changes in the control mechanisms of apoptosis: this finding may have significant implications for the in vivo toxicity of prenatal ethanol exposure on the developing cerebellum.
Collapse
Affiliation(s)
- A F Castoldi
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | | | | | | |
Collapse
|
98
|
Hendrickson RJ, Cahill PA, McKillop IH, Sitzmann JV, Redmond EM. Ethanol inhibits mitogen activated protein kinase activity and growth of vascular smooth muscle cells in vitro. Eur J Pharmacol 1998; 362:251-9. [PMID: 9874178 DOI: 10.1016/s0014-2999(98)00771-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to determine the effect of ethanol on vascular smooth muscle cell proliferation and mitogen activated protein kinase (MAPK) signaling. Rat aortic smooth muscle cell growth in vitro was determined by measuring cell counts and [3H]thymidine incorporation. MAPK signaling was determined by assessing MEK (also referred to as MAPK kinase) activity by measuring phosphorylated extracellular signal-regulated kinase (pp44ERK - 1 and pp42ERK - 2) expression, and ERK activity by measuring ERK-2-dependent phosphorylation of myelin basic protein (MBP). In quiesced smooth muscle cells, ethanol treatment (24 h) inhibited serum-stimulated mitogenesis in a dose-dependent manner, (IC50 = 60 mM), in the absence of any effect on smooth muscle cell viability. In addition, ethanol treatment caused a significant shift to the right in the smooth muscle cell growth curve, extending the population doubling time from approximately 48 h (control) to approximately 70 h (ethanol). Acute (15 min) ethanol treatment reduced serum-stimulated pp44ERK - 1 and pp42ERK - 2 expression in a dose dependent fashion; 24.5+/-1.5% and 77.6+/-3.2% inhibition for 20 mM and 160 mM ethanol, respectively. Furthermore, there was a significant dose-dependent decrease in ERK2 activity in ethanol treated smooth muscle cells as compared to control smooth muscle cells. These data demonstrate an inhibitory effect of ethanol on smooth muscle cell proliferation and MAPK signalling in vitro. It is tempting to speculate that these actions of ethanol may contribute to its cardiovascular effects in vivo.
Collapse
Affiliation(s)
- R J Hendrickson
- Georgetown University Medical Center, Department of Surgery, Pasquerilla Healthcare Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
99
|
Abstract
(1) Protein kinase C is a family of phospholipid-dependent protein kinases which are involved in the regulation of diverse cellular functions. (2) Evidence is emerging that certain general anesthetics can stimulate the activity of protein kinase C by interacting with the regulatory domain of the enzyme, possibly with the diacylglycerol binding sites. Anesthetics also potentiate activation-dependent down-regulation of the enzyme. (3) A role for PKC in the mediation and or modulation of the cellular effects of general anesthetics is a potential molecular target for anesthetic action.
Collapse
Affiliation(s)
- H C Hemmings
- Department of Anesthesiology, Cornell University Medical College, New York, NY 10021, USA.
| |
Collapse
|
100
|
Pierzchalska M, Michalik M, Stepień E, Korohoda W. Changes in morphology of human skin fibroblasts induced by local anaesthetics: role of actomyosin contraction. Eur J Pharmacol 1998; 358:235-44. [PMID: 9822890 DOI: 10.1016/s0014-2999(98)00623-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Local anaesthetics block action potentials in the membranes of excitable cells but their effects on non-excitable cells are less well known. Some local anaesthetics are applied directly onto the skin, and for this reason the effect of procaine (p-aminobenzoic acid diethylamino-etyl ester hydrochloride) and tetracaine (4-[butylamino]benzoic acid 2-[dimethylamino]ethyl ester) upon the morphology and cytoskeleton organisation of human skin fibroblasts was investigated. The time lapse video recording of fibroblasts cultured in serum-enriched medium revealed that the cells rapidly change shape after the addition of the anaesthetic. These effects were fully reversible. The microscopic observations were confirmed by quantitative analysis of projected cell area and cell shape parameters. Local anaesthetics significantly changed the actin cytoskeleton organisation, inducing total disappearance of stress fibres. Serum-starvation or myosin light chain kinase inhibitors, KT 5926 inhibitor (8R*,9S*,11S*)-(-)-9-hydroxy-9-methoxycarbonyl-8-methyl-14-n-propoxy-2,3 ,9, 10-tetrahydro-8,11-epoxy,1H,8H,11H-2,7b,11a-triazadibenzo[a,g]c ycloocta[cde] trinden-1-one or wortmannin, which induce the 'relaxed' morphology of the cells, prevent both the anaesthetic-induced changes in cell shape and the disassembly of stress fibres. Together, the observations suggest that local anaesthetics affect the actomyosin system, inducing contraction.
Collapse
Affiliation(s)
- M Pierzchalska
- Department of Cell Biology, Jagiellonian University, Cracow, Poland
| | | | | | | |
Collapse
|