51
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
52
|
Exploiting protease activation for therapy. Drug Discov Today 2022; 27:1743-1754. [PMID: 35314338 PMCID: PMC9132161 DOI: 10.1016/j.drudis.2022.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/14/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
Abstract
Proteases have crucial roles in homeostasis and disease; and protease inhibitors and recombinant proteases in enzyme replacement therapy have become key therapeutic applications of protease biology across several indications. This review briefly summarises therapeutic approaches based on protease activation and focuses on how recent insights into the spatial and temporal control of the proteolytic activation of growth factors and interleukins are leading to unique strategies for the discovery of new medicines. In particular, two emerging areas are covered: the first is based on antibody therapies that target the process of proteolytic activation of the pro-form of proteins rather than their mature form; the second covers a potentially new class of biopharmaceuticals using engineered, proteolytically activable and initially inactive pro-forms of antibodies or effector proteins to increase specificity and improve the therapeutic window.
Collapse
|
53
|
PLOD2 Is a Prognostic Marker in Glioblastoma That Modulates the Immune Microenvironment and Tumor Progression. Int J Mol Sci 2022; 23:ijms23116037. [PMID: 35682709 PMCID: PMC9181500 DOI: 10.3390/ijms23116037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the role of Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 2 (PLOD2) in glioblastoma (GBM) pathophysiology. To this end, PLOD2 protein expression was assessed by immunohistochemistry in two independent cohorts of patients with primary GBM (n1 = 204 and n2 = 203, respectively). Association with the outcome was tested by Kaplan−Meier, log-rank and multivariate Cox regression analysis in patients with confirmed IDH wild-type status. The biological effects and downstream mechanisms of PLOD2 were assessed in stable PLOD2 knock-down GBM cell lines. High levels of PLOD2 significantly associated with (p1 = 0.020; p2< 0.001; log-rank) and predicted (cohort 1: HR = 1.401, CI [95%] = 1.009−1.946, p1 = 0.044; cohort 2: HR = 1.493; CI [95%] = 1.042−2.140, p2 = 0.029; Cox regression) the poor overall survival of GBM patients. PLOD2 knock-down inhibited tumor proliferation, invasion and anchorage-independent growth. MT1-MMP, CD44, CD99, Catenin D1 and MMP2 were downstream of PLOD2 in GBM cells. GBM cells produced soluble factors via PLOD2, which subsequently induced neutrophils to acquire a pro-tumor phenotype characterized by prolonged survival and the release of MMP9. Importantly, GBM patients with synchronous high levels of PLOD2 and neutrophil infiltration had significantly worse overall survival (p < 0.001; log-rank) compared to the other groups of GBM patients. These findings indicate that PLOD2 promotes GBM progression and might be a useful therapeutic target in this type of cancer.
Collapse
|
54
|
Mo Z, Lin S, Chen W, He C. Protein Ligation and Labeling Enabled by a C-Terminal Tetracysteine Tag. Angew Chem Int Ed Engl 2022; 61:e202115377. [PMID: 35060269 DOI: 10.1002/anie.202115377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 01/01/2023]
Abstract
The hydrazinolysis of S-cyanylated peptide provides an alternative way to afford protein α-hydrazide, a key reagent used in native chemical ligation (NCL), without the aid of any inteins or enzymes. The currently used non-selective S-cyanylation, however, allows no other cysteine in the protein besides the one at the cleavage site. Herein, we report a regioselective S-cyanylation and hydrazinolysis strategy achieved via the fusion of a tetracysteine tag to the C-terminal of the protein of interest. We term it tetracysteine enabled protein ligation (TCEPL). While highly selective, the strategy is applicable for proteins expressed as inclusion bodies, and this was showcased by the efficient semi-synthesis of an iron-sulfur protein rubredoxin and the catalytic and hinge domains of matrix metalloprotease-14 (MMP-14) containing 207 amino acid residues. Furthermore, the TCEPL strategy was exploited for protein C-terminal labeling with amino reagents bearing a variety of functional groups, demonstrating its versatility and generality.
Collapse
Affiliation(s)
- Zeyuan Mo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shaomin Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wentao Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
55
|
The role of tumour microenvironment-driven miRNAs in the chemoresistance of muscle-invasive bladder cancer-a review. Urol Oncol 2022; 40:133-148. [PMID: 35246373 DOI: 10.1016/j.urolonc.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/27/2022]
Abstract
Successful treatment for muscle-invasive bladder cancer is challenged by the ability of cancer cells to resist chemotherapy. While enormous progress has been made toward understanding the divergent molecular mechanisms underlying chemoresistance, the heterogenous interplay between the bladder tumour and its microenvironment presents significant challenges in comprehending the occurrence of chemoresistance. The last decade has seen exponential interest in the exploration of microRNA (miRNA) as a tool in the management of chemoresistance. In this review, we highlight the miRNAs involved in the tumour microenvironment crosstalk that contributes to the chemoresistance in bladder cancer. Decrypting the role of miRNAs in the interplay beholds scope for future clinical translational application in managing the long-standing concerns of chemoresistance in muscle-invasive bladder cancer.
Collapse
|
56
|
Liang Z, Yu J, Gu D, Liu X, Liu J, Wu M, Xu M, Shen M, Duan W, Li W. M2-phenotype tumour-associated macrophages upregulate the expression of prognostic predictors MMP14 and INHBA in pancreatic cancer. J Cell Mol Med 2022; 26:1540-1555. [PMID: 35150061 PMCID: PMC8899166 DOI: 10.1111/jcmm.17191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer is one of the most lethal gastrointestinal tumours, the most common pathological type is pancreatic adenocarcinoma (PAAD). In recent year, immune imbalanced in tumour microenvironment has been shown to play an important role in the evolution of tumours progression, and the efficacy of immunotherapy has been gradually demonstrated in clinical practice. In this study, we propose to construct an immune-related prognostic risk model based on immune-related genes MMP14 and INHBA expression that can assess the prognosis of pancreatic cancer patients and identify potential therapeutic targets for pancreatic cancer, to provide new ideas for the treatment of pancreatic cancer. We also investigate the correlation between macrophage infiltration and MMP14 and INHBA expression. First, the gene expression data of pancreatic cancer and normal pancreatic tissue were obtained from The Cancer Genome Atlas Program (TCGA) and The Genotype-Tissue Expression public database (GTEx). The differentially expressed immune-related genes between pancreatic cancer samples and normal sample were screened by R software. Secondly, univariate Cox regression analysis were used to evaluate the relationship between immune-related genes and the prognosis of pancreatic cancer patients. A polygenic risk score model was constructed by Cox regression analysis. The prognostic nomogram was constructed, and its performance was evaluated comprehensively by internal calibration curve and C-index. Using the risk model, each patient gets a risk score, and was divided into high- or low- risk groups. The proportion of 22 types of immune cells infiltration in pancreatic cancer samples was inferred by CIBERSOFT algorithm, correlation analysis (Pearson method) was used to analyse the correlation between the immune-related genes and immunes cells. Then, we applied macrophage conditioned medium to culture pancreatic cancer cell line PANC1, detected the expression of MMP14 and INHBA by qRT-PCR and Western blot methods. Knock-down MMP14 and INHBA in PANC1 cells by transfected with shRNA lentiviruses. Detection of migration ability of pancreatic cells was done by trans-well cell migration assay. A subcutaneous xenograft tumour model of human pancreatic cancer in nude mice was constructed. In conclusion, an immune-related gene prognostic model was constructed, patients with high-risk scores have poorer survival status, M2-phenotype tumour-associated macrophages (TAMs) up-regulate two immune-related genes, MMP14 and INHBA, which were used to establish the prognostic model. Knock-down of MMP14 and INHBA inhibited invasion of pancreatic cancer.
Collapse
Affiliation(s)
- Zhan‐Wen Liang
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jie Yu
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Dong‐Mei Gu
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Meng Liu
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jin Liu
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Meng‐Yao Wu
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Meng‐Dan Xu
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Meng Shen
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Weiming Duan
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wei Li
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
57
|
Cheshomi H, Bahrami AR, Rafatpanah H, Matin MM. The effects of ellagic acid and other pomegranate ( Punica granatum L.) derivatives on human gastric cancer AGS cells. Hum Exp Toxicol 2022; 41:9603271211064534. [PMID: 35179410 DOI: 10.1177/09603271211064534] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although surgery with or without (neo)adjuvant chemo/radiotherapy, as the standard treatments, can be suitable therapeutic strategies for gastric cancer, side effects and drug resistance are two main treatment obstacles. It has been discovered that pomegranate and its natural derivatives, especially ellagic acid (EA), offer significant anti-cancer effects while causing trivial side effects. In this study, we aimed to explore the anti-cancer effects of EA on a human gastric adenocarcinoma cell line (AGS) as well as in immunocompromised mice bearing human gastric tumors, for the first time. HPLC was used for determining EA in samples. MTT assay, apoptosis and scratch assay, gelatin zymography, and quantitative RT-PCR were used to determine the anti-cancer properties of different concentrations of pomegranate fruit juice, pomegranate peel extract, and EA. Furthermore, the effects of these compounds were investigated on immunosuppressed C57BL/6 mice carrying human gastric cancer tumors. EA could inhibit the proliferation and migration of gastric cancer cells. It also had significant effects on reducing both expression and activity of MMP-2 and MMP-9. Further, it was demonstrated that with alterations in the expression of genes involved in apoptosis and inflammation including P53, BAX, APAF1, BCL2, iNOS, NF-κB, IL-8, and TNF-α, EA treatment led to increased cancer cell death and reduced inflammation. Furthermore, its use in mice bearing gastric tumors resulted in a significant reduction in tumor volume without any obvious side effects. Ellagic acid exhibited anti-cancer effects on gastric adenocarcinoma, and can be considered as a safe anti-cancer agent for further preclinical studies on this cancer.
Collapse
Affiliation(s)
- Hamid Cheshomi
- Department of Biology, Faculty of Science, 48440Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, 48440Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, 48440Ferdowsi University of Mashhad, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, 48440Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
58
|
Yin H, Jin Z, Duan W, Han B, Han L, Li C. Emergence of Responsive Surface-Enhanced Raman Scattering Probes for Imaging Tumor-Associated Metabolites. Adv Healthc Mater 2022; 11:e2200030. [PMID: 35182455 DOI: 10.1002/adhm.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/03/2022] [Indexed: 11/11/2022]
Abstract
As a core hallmark of cancer, metabolic reprogramming alters the metabolic networks of cancer cells to meet their insatiable appetite for energy and nutrient. Tumor-associated metabolites, the products of metabolic reprogramming, are valuable in evaluating tumor occurrence and progress timely and accurately because their concentration variations usually happen earlier than the aberrances demonstrated in tissue structure and function. As an optical spectroscopic technique, surface-enhanced Raman scattering (SERS) offers advantages in imaging tumor-associated metabolites, including ultrahigh sensitivity, high specificity, multiplexing capacity, and uncompromised signal intensity. This review first highlights recent advances in the development of stimuli-responsive SERS probes. Then the mechanisms leading to the responsive SERS signal triggered by tumor metabolites are summarized. Furthermore, biomedical applications of these responsive SERS probes, such as the image-guided tumor surgery and liquid biopsy examination for tumor molecular typing, are summarized. Finally, the challenges and prospects of the responsive SERS probes for clinical translation are also discussed.
Collapse
Affiliation(s)
- Hang Yin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Ziyi Jin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Wenjia Duan
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Bing Han
- Minhang Hospital Fudan University Xinsong Road 170 Shanghai 201100 China
| | - Limei Han
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Cong Li
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
59
|
Mo Z, Lin S, Chen W, He C. Protein Ligation and Labeling Enabled by a C‐Terminal Tetracysteine Tag. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zeyuan Mo
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Shaomin Lin
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Wentao Chen
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Chunmao He
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
60
|
Sun P, Su J, Wang X, Zhou M, Zhao Y, Gu H. Nucleic Acids for Potential Treatment of Rheumatoid Arthritis. ACS APPLIED BIO MATERIALS 2022; 5:1990-2008. [PMID: 35118863 DOI: 10.1021/acsabm.1c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a common systemic inflammatory autoimmune disease that severely affects the life quality of patients. Current therapeutics in clinic mainly focus on alleviating the development of RA or relieving the pain of patients. The emerging biological disease-modifying antirheumatic drugs (DMARDs) require long-term treatment to achieve the expected efficacy. With the development of bionanotechnology, nucleic acids fulfill characters as therapeutics or nanocarriers and can therefore be alternatives to combat RA. This review summarizes the therapeutic RNAs developed through RNA interference (RNAi), nucleic acid aptamers, DNA nanostructures-based drug delivery systems, and nucleic acid vaccines for the applications in RA therapy and diagnosis. Furthermore, prospects of nucleic acids for RA therapy are intensively discussed as well.
Collapse
Affiliation(s)
- Pengchao Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jingjing Su
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xiaonan Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Mo Zhou
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, and Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
61
|
Coordination of two kinesin superfamily motor proteins, KIF3A and KIF13A, is essential for pericellular matrix degradation by membrane-type 1 matrix metalloproteinase (MT1-MMP) in cancer cells. Matrix Biol 2022; 107:1-23. [PMID: 35122963 PMCID: PMC9355896 DOI: 10.1016/j.matbio.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022]
Abstract
MT1-MMP promotes cancer invasion by degrading barrier ECM at the leading edge, and its localization is carried out by direct vesicle transport of MT1-MMP containing vesicles along the microtubule. We identified KIF3A, KIF13A, and KIF9 as kinesins involved in MT1-MMP-containing vesicle trafficking in HT1080 cells. KIF3A and KIF13A transport MT1-MMP-containing vesicles from the trans-Golgi to the endosomes. KIF13A alone then transports the vesicles from endosomes to the plasma membrane for extracellular matrix degradation.
MT1-MMP plays a crucial role in promoting the cellular invasion of cancer cells by degrading the extracellular matrix to create a path for migration. During this process, its localization at the leading edge of migrating cells is critical, and it is achieved by targeted transport of MT1-MMP-containing vesicles along microtubules by kinesin superfamily motor proteins (KIFs). Here we identified three KIFs involved in MT1-MMP vesicle transport: KIF3A, KIF13A, and KIF9. Knockdown of KIF3A and KIF13A effectively inhibited MT1-MMP-dependent collagen degradation and invasion, while knockdown of KIF9 increased collagen degradation and invasion. Our data suggest that KIF3A/KIF13A dependent MT1-MMP vesicles transport takes over upon KIF9 knockdown. Live-cell imaging analyses have indicated that KIF3A and KIF13A coordinate to transport the same MT1-MMP-containing vesicles from the trans-Golgi to the endosomes, and KIF13A alone transports the vesicle from the endosome to the plasma membrane. Taken together, we have identified a unique interplay between three KIFs to regulate leading edge localization of MT1-MMP and MT1-MMP-dependent cancer cell invasion.
Collapse
|
62
|
Abbey CK, Li J, Gang GJ, Stayman JW. Assessment of Boundary Discrimination Performance in a Printed Phantom. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12035:120350N. [PMID: 37051612 PMCID: PMC10089594 DOI: 10.1117/12.2612622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Printed phantoms hold great potential as a tool for examining task-based image quality of x-ray imaging systems. Their ability to produce complex shapes rendered in materials with adjustable attenuation coefficients allows a new level of flexibility in the design of tasks for the evaluation of physical imaging systems. We investigate performance in a fine "boundary discrimination" task in which fine features at the margin of a clearly visible "lesion" are used to classify the lesion as malignant or benign. These tasks are appealing because of their relevance to clinical tasks, and because they typically emphasize higher spatial frequencies relative to more common lesion detection tasks. A 3D printed phantom containing cylindrical shells of varying thickness was used to generate lesions profiles that differed in their edge profiles. This was intended to approximate lesions with indistinct margins that are clinically associated with malignancy. Wall thickness in the phantom ranged from 0.4mm to 0.8mm, which allows for task difficulty to be varied by choosing different thicknesses to represent malignant and benign lesions. The phantom was immersed in a tub filled with water and potassium phosphate to approximate the attenuating background, and imaged repeatedly on a benchtop cone-beam CT scanner. After preparing the image data (reconstruction, ROI Selection, sub-pixel registration), we find that the mean frequency of the lesion profile is 0.11 cyc/mm. The mean frequency of the lesion-difference profile, representative of the discrimination task, is approximately 6 times larger. Model observers show appropriate dose performance in these tasks as well.
Collapse
Affiliation(s)
- Craig K Abbey
- Department of Psychological and Brain Sciences, University of California Santa Barbara
| | - Junyuan Li
- Department of Biomedical Engineering, Johns Hopkins University
| | - Grace J Gang
- Department of Biomedical Engineering, Johns Hopkins University
| | | |
Collapse
|
63
|
Trinh K, Julovi SM, Rogers NM. The Role of Matrix Proteins in Cardiac Pathology. Int J Mol Sci 2022; 23:ijms23031338. [PMID: 35163259 PMCID: PMC8836004 DOI: 10.3390/ijms23031338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) and ECM-regulatory proteins mediate structural and cell-cell interactions that are crucial for embryonic cardiac development and postnatal homeostasis, as well as organ remodeling and repair in response to injury. These proteins possess a broad functionality that is regulated by multiple structural domains and dependent on their ability to interact with extracellular substrates and/or cell surface receptors. Several different cell types (cardiomyocytes, fibroblasts, endothelial and inflammatory cells) within the myocardium elaborate ECM proteins, and their role in cardiovascular (patho)physiology has been increasingly recognized. This has stimulated robust research dissecting the ECM protein function in human health and disease and replicating the genetic proof-of-principle. This review summarizes recent developments regarding the contribution of ECM to cardiovascular disease. The clear importance of this heterogeneous group of proteins in attenuating maladaptive repair responses provides an impetus for further investigation into these proteins as potential pharmacological targets in cardiac diseases and beyond.
Collapse
Affiliation(s)
- Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sohel M. Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
64
|
Yonemura Y, Ishibashi H, Mizumoto A, Tukiyama G, Liu Y, Wakama S, Sako S, Takao N, Kitai T, Katayama K, Kamada Y, Taniguchi K, Fujimoto D, Endou Y, Miura M. The Development of Peritoneal Metastasis from Gastric Cancer and Rationale of Treatment According to the Mechanism. J Clin Med 2022; 11:458. [PMID: 35054150 PMCID: PMC8781335 DOI: 10.3390/jcm11020458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
In the present article, we describe the normal structure of the peritoneum and review the mechanisms of peritoneal metastasis (PM) from gastric cancer (GC). The structure of the peritoneum was studied by a double-enzyme staining method using alkaline-phosphatase and 5'-nucreotidase, scanning electron microscopy, and immunohistological methods. The fundamental structure consists of three layers, mesothelial cells and a basement membrane (layer 1), macula cribriformis (MC) (layer 2), and submesothelial connective tissue containing blood vessels and initial lymphatic vessels, attached to holes in the MC (layer 3). Macro molecules and macrophages migrate from mesothelial stomata to the initial lymphatic vessels through holes in the MC. These structures are characteristically found in the diaphragm, omentum, paracolic gutter, pelvic peritoneum, and falciform ligament. The first step of PM is spillage of cancer cells (peritoneal free cancer cells; PFCCs) into the peritoneal cavity from the serosal surface of the primary tumor or cancer cell contamination from lymphatic and blood vessels torn during surgical procedures. After PFCCs adhere to the peritoneal surface, PMs form by three processes, i.e., (1) trans-mesothelial metastasis, (2) trans-lymphatic metastasis, and (3) superficial growing metastasis. Because the intraperitoneal (IP) dose intensity is significantly higher when generated by IP chemotherapy than by systemic chemotherapy, IP chemotherapy has a great role in the treatment of PFCCs, superficial growing metastasis, trans-lymphatic metastasis and in the early stages of trans-mesothelial metastasis. However, an established trans-mesothelial metastasis has its own interstitial tissue and vasculature which generate high interstitial pressure. Accordingly, it is reasonable to treat established trans-mesothelial metastasis by bidirectional chemotherapy from both IP and systemic chemotherapy.
Collapse
Affiliation(s)
- Yutaka Yonemura
- NPO to Support Peritoneal Surface Malignancy Treatment, Asian School of Peritoneal Surface Malignancy Treatment, 510, Fukushima-Cho, Kyoto 600-8189, Japan
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kishiwada Tokusyukai Hospital, Kishiwada 596-8522, Japan; (H.I.); (G.T.); (Y.L.); (S.W.); (S.S.); (T.K.); (K.K.); (Y.K.)
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kusatsu General Hospital, Kusatsu 525-8585, Japan; (A.M.); (N.T.)
| | - Haruaki Ishibashi
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kishiwada Tokusyukai Hospital, Kishiwada 596-8522, Japan; (H.I.); (G.T.); (Y.L.); (S.W.); (S.S.); (T.K.); (K.K.); (Y.K.)
| | - Akiyoshi Mizumoto
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kusatsu General Hospital, Kusatsu 525-8585, Japan; (A.M.); (N.T.)
| | - Gorou Tukiyama
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kishiwada Tokusyukai Hospital, Kishiwada 596-8522, Japan; (H.I.); (G.T.); (Y.L.); (S.W.); (S.S.); (T.K.); (K.K.); (Y.K.)
| | - Yang Liu
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kishiwada Tokusyukai Hospital, Kishiwada 596-8522, Japan; (H.I.); (G.T.); (Y.L.); (S.W.); (S.S.); (T.K.); (K.K.); (Y.K.)
| | - Satoshi Wakama
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kishiwada Tokusyukai Hospital, Kishiwada 596-8522, Japan; (H.I.); (G.T.); (Y.L.); (S.W.); (S.S.); (T.K.); (K.K.); (Y.K.)
| | - Shouzou Sako
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kishiwada Tokusyukai Hospital, Kishiwada 596-8522, Japan; (H.I.); (G.T.); (Y.L.); (S.W.); (S.S.); (T.K.); (K.K.); (Y.K.)
| | - Nobuyuki Takao
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kusatsu General Hospital, Kusatsu 525-8585, Japan; (A.M.); (N.T.)
| | - Toshiyuki Kitai
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kishiwada Tokusyukai Hospital, Kishiwada 596-8522, Japan; (H.I.); (G.T.); (Y.L.); (S.W.); (S.S.); (T.K.); (K.K.); (Y.K.)
| | - Kanji Katayama
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kishiwada Tokusyukai Hospital, Kishiwada 596-8522, Japan; (H.I.); (G.T.); (Y.L.); (S.W.); (S.S.); (T.K.); (K.K.); (Y.K.)
| | - Yasuyuki Kamada
- Department of Regional Cancer Therapy, Peritoneal Dissemination Center, Kishiwada Tokusyukai Hospital, Kishiwada 596-8522, Japan; (H.I.); (G.T.); (Y.L.); (S.W.); (S.S.); (T.K.); (K.K.); (Y.K.)
| | - Keizou Taniguchi
- Department of Surgery, Mizonokuchi Hospital, Teikyo University School of Medicine, Kawasaki 213-8570, Japan; (K.T.); (D.F.)
| | - Daisuke Fujimoto
- Department of Surgery, Mizonokuchi Hospital, Teikyo University School of Medicine, Kawasaki 213-8570, Japan; (K.T.); (D.F.)
| | - Yoshio Endou
- Central Research Resource Center, Cancer Research Institute, Kanazawa 922-1192, Japan;
| | - Masahiro Miura
- Department of Anatomy, Oita Medical University, Kasama-Machi, Oita 879-5593, Japan;
| |
Collapse
|
65
|
Hey S, Ratt A, Linder S. There and back again: Intracellular trafficking, release and recycling of matrix metalloproteinases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119189. [PMID: 34973301 DOI: 10.1016/j.bbamcr.2021.119189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Matrix metalloproteinases are a family of zinc-dependent endopeptidases that are involved in a large variety of proteolytic processes in physiological and pathological scenarios, including immune cell surveillance, tissue homeostasis, or tumor cell metastasis. This is based on their ability to cleave a plethora of substrates that include components of the extracellular matrix, but also cell surface-associated and intracellular proteins. Accordingly, a tight regulatory web has evolved that closely regulates spatiotemporal activity of specific MMPs. An often underappreciated mechanism of MMP regulation involves their trafficking to and from specific subcellular sites that require MMP activity only for a certain period. In this review, we focus on the current knowledge of MMP intracellular trafficking, their secretion or surface exposure, as well as their recycling back from the cell surface. We discuss molecular mechanisms that enable these steps, in particular microtubule-dependent motility of vesicles that is driven by molecular motors and directed by vesicle regulatory proteins. Finally, we also point out open questions in the field of MMP motility that may become important in the future.
Collapse
Affiliation(s)
- Sven Hey
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Artur Ratt
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
66
|
Li HB, Chen JK, Su ZX, Jin QL, Deng LW, Huang G, Shen JN. Cordycepin augments the chemosensitivity of osteosarcoma to cisplatin by activating AMPK and suppressing the AKT signaling pathway. Cancer Cell Int 2021; 21:706. [PMID: 34953496 PMCID: PMC8709946 DOI: 10.1186/s12935-021-02411-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Background Osteosarcoma is the most common primary bone tumor in children and adolescents. However, some patients with osteosarcoma develop resistance to chemotherapy, leading to a poor clinical prognosis. Hence, effective therapeutic agents that can improve the response to chemotherapy drugs to improve the prognosis of patients with osteosarcoma are urgently needed. Cordycepin has recently emerged as a promising antitumor drug candidate. This study aims to explore the effect of cordycepin in suppressing osteosarcoma in vivo and in vitro and the synergistic effect of cordycepin combined with cisplatin and to demonstrate the underlying molecular mechanism. Methods CCK-8 assay was performed to investigate the inhibition effect of cordycepin combined with cisplatin in osteosarcoma cell lines. The colony formation and invasion abilities were measured by colony formation assay and Transwell assay. Osteosarcoma cells apoptosis was detected by flow cytometry. Western blot analysis were used to detect the expression of cell apoptosis-related proteins and AMPK and AKT/mTOR signaling pathway-related proteins. Finally, we performed the in vivo animal model to further explore whether cordycepin and cisplatin exert synergistic antitumor effects. Results Notably, we found that treatment with cordycepin inhibited cell proliferation, invasion, and induced apoptosis in osteosarcoma cells in vitro and in vivo. Moreover, the combination of cordycepin and cisplatin led to marked inhibition of osteosarcoma cell proliferation and invasion and promoted osteosarcoma cell apoptosis in vitro and in vivo. Mechanistically, we demonstrated that cordycepin enhanced the sensitivity of osteosarcoma cells to cisplatin by activating AMPK and inhibiting the AKT/mTOR signaling pathway. Conclusions In brief, this study provides comprehensive evidence that cordycepin inhibits osteosarcoma cell growth and invasion and induces osteosarcoma cell apoptosis by activating AMPK and inhibiting the AKT/mTOR signaling pathway and enhances the sensitivity of osteosarcoma cells to cisplatin, suggesting that cordycepin is a promising treatment for osteosarcoma.
Collapse
Affiliation(s)
- Hong-Bo Li
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun-Kai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ze-Xin Su
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Lin Jin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Deng
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Gang Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing-Nan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
67
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
68
|
Liu H, Yang F, Chen W, Gong T, Zhou Y, Dai X, Leung W, Xu C. Enzyme-Responsive Materials as Carriers for Improving Photodynamic Therapy. Front Chem 2021; 9:763057. [PMID: 34796163 PMCID: PMC8593389 DOI: 10.3389/fchem.2021.763057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a mini-invasive therapy on malignancies via reactive oxygen species (ROS) induced by photosenitizer (PS) upon light irradiation. However, poor target of PS to tumor limits the clinical application of PDT. Compared with normal tissues, tumor tissues have a unique enzymatic environment. The unique enzymatic environment in tumor tissues has been widely used as a target for developing smart materials to improve the targetability of drugs to tumor. Enzyme-responsive materials (ERM) as a smart material can respond to the enzymes in tumor tissues to specifically deliver drugs. In PDT, ERM was designed to react with the enzymes highly expressed in tumor tissues to deliver PS in the target site to prevent therapeutic effects and avoid its side-effects. In the present paper, we will review the application of ERM in PDT and discuss the challenges of ERM as carriers to deliver PS for further boosting the development of PDT in the management of malignancies.
Collapse
Affiliation(s)
- Houhe Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Science and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fanwen Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenjie Chen
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Science and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Teng Gong
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Science and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Science and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Dai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Science and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wingnang Leung
- School of Nursing, Tung Wah College, Hung Hom, Hong Kong, SAR China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Science and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
69
|
Choi H, Kim E, Choi JY, Park E, Lee HJ. Potent therapeutic targets for treatment of Alzheimer's disease: Amyloid degrading enzymes. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hang Choi
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Eungchan Kim
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Jae Yoon Choi
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Eunsik Park
- Department of Life Sport Education Kongju National University Gongju Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| |
Collapse
|
70
|
Cao X, Liang Y, Hu Z, Li H, Yang J, Hsu EJ, Zhu J, Zhou J, Fu YX. Next generation of tumor-activating type I IFN enhances anti-tumor immune responses to overcome therapy resistance. Nat Commun 2021; 12:5866. [PMID: 34620867 PMCID: PMC8497482 DOI: 10.1038/s41467-021-26112-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023] Open
Abstract
Type I interferon is promising in treating different kinds of tumors, but has been limited by its toxicity, lack of tumor targeting, and very short half-life. To target tumors, reduce systemic toxicity, and increase half-life, here we engineer a masked type I IFN-Fc (ProIFN) with its natural receptor connected by a cleavable linker that can be targeted by tumor-associated proteases. ProIFN has a prolonged serum half-life and shows an improved tumor-targeting effect. Interestingly, ProIFN-treated mice show enhanced DC cross-priming and significant increased CD8+ infiltration and effector function in the tumor microenvironment. ProIFN is able to improve checkpoint blockade efficacy in established tumors, as well as radiation efficacy for both primary and metastatic tumors. ProIFN exhibits superior long-term pharmacokinetics with minimal toxicity in monkeys. Therefore, this study demonstrates an effective tumor-activating IFN that can increase targeted immunity against primary tumor or metastasis and reduce periphery toxicity to the host.
Collapse
Affiliation(s)
- Xuezhi Cao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong Liang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhenxiang Hu
- LivzonBio, Inc., Zhuhai, Guangdong, 519045, China
| | - Huiyu Li
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiaming Yang
- LivzonBio, Inc., Zhuhai, Guangdong, 519045, China
| | - Eric J Hsu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiankun Zhu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jin Zhou
- LivzonBio, Inc., Zhuhai, Guangdong, 519045, China
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
71
|
Li M, Li S, Zhou L, Yang L, Wu X, Tang B, Xie S, Fang L, Zheng S, Hong T. Immune Infiltration of MMP14 in Pan Cancer and Its Prognostic Effect on Tumors. Front Oncol 2021; 11:717606. [PMID: 34604053 PMCID: PMC8484967 DOI: 10.3389/fonc.2021.717606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Matrix metalloproteinase 14 (MMP14) is a member of the MMP family, which interacts with tissue inhibitors of metalloproteinase (TIMPs), and is involved in normal physiological functions such as cell migration, invasion, metastasis, angiogenesis, and proliferation, as well as tumor genesis and progression. However, there has been a lack of relevant reports on the effect of MMP14 across cancers. This study aims to explore the correlation between MMP14 and pan-cancer prognosis, immune infiltration, and the effects of pan-cancer gene mismatch repair (MMR), microsatellite instability (MSI), tumor mutational burden (TMB), DNA methylation, and immune checkpoint genes. Methods In this study, we used bioinformatics to analyze data from multiple databases, including The Cancer Genome Atlas (TCGA), ONCOMINE, and Kaplan–Meier plotter. We investigated the relationship between the expression of MMP14 in tumors and tumor prognosis, the relationship between MMP14 expression and tumor cell immune infiltration, and the relationship between MMR gene MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. Results MMP14 expression is highly associated with the prognosis of a variety of cancers and tumor immune invasion and has important effects on pan oncologic MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. Conclusion MMP14 is highly correlated with tumor prognosis and immune invasion and affects the occurrence and progression of many tumors. All of these results fully indicate that MMP14 may be a biomarker for the prognosis, diagnosis, and treatment of many tumors and provide new ideas and direction for subsequent tumor immune research and treatment strategies.
Collapse
Affiliation(s)
- Minde Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaoyang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenhao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linchun Fang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Suyue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
72
|
Albadawy R, Agwa SHA, Khairy E, Saad M, El Touchy N, Othman M, Matboli M. Clinical Significance of HSPD1/MMP14/ITGB1/miR-6881-5P/Lnc-SPARCL1-1:2 RNA Panel in NAFLD/NASH Diagnosis: Egyptian Pilot Study. Biomedicines 2021; 9:1248. [PMID: 34572434 PMCID: PMC8472260 DOI: 10.3390/biomedicines9091248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis ((NASH) is the progressive form of (non-alcoholic fatty liver disease) (NAFLD), which can progress to liver cirrhosis and hepatocellular carcinoma. There is no available reliable non-invasive diagnostic tool to diagnose NASH, and still the liver biopsy is the gold standard in diagnosis. In this pilot study, we aimed to evaluate the Nod-like receptor (NLR) signaling pathway related RNA panel in the diagnosis of NASH. METHODS Bioinformatics analysis was done, with retrieval of the HSPD1/MMP14/ITGB1/miR-6881-5P/Lnc-SPARCL1-1:2 RNA panel based on the relation to the NLR-signaling pathway. Hepatitis serum markers, lipid profile, NAFLD score and fibrosis score were assessed in the patients' sera. Reverse transcriptase real time polymerase chain reaction (RT-PCR) was done to assess the relative expression of the RNA panel among patients who had NAFLD without steatosis, NAFLD with simple steatosis, NASH and healthy controls. RESULTS We observed up-regulation of Lnc-SPARCL1-1:2 lncRNA that led to upregulation of miR-6881-5P with a subsequent increase in levels of HSPD1, MMP14, and ITGB1 mRNAs. In addition, ROC curve analysis was done, with discriminative cutoff values that aided discrimination between NASH cases and control, and also between NAFLD, simple steatosis and NASH. CONCLUSION This pilot study concluded that HSPD1/MMP14/ITGB1/miR-6881-5P/Lnc-SPARCL1-1:2 panel expression has potential in the diagnosis of NASH, and also differentiation between NAFLD, simple steatosis and NASH cases.
Collapse
Affiliation(s)
- Reda Albadawy
- Department of Gastroentrology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Sara H. A. Agwa
- Molecular Genomics Unit, Clinical Pathology Department, Medical Ain Shams Research Institute (MASRI), School of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Eman Khairy
- Medicinal Biochemistry and Molecular Biology Department, School of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Maha Saad
- Biochemistry Department, Faculty of Medicine, Modern University for Technology and Information, Cairo 11382, Egypt;
| | - Naglaa El Touchy
- Department of Gastroentrology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Mohamed Othman
- Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Marwa Matboli
- Medicinal Biochemistry and Molecular Biology Department, School of Medicine, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
73
|
Vos MC, van der Wurff AAM, van Kuppevelt TH, Massuger LFAG. The role of MMP-14 in ovarian cancer: a systematic review. J Ovarian Res 2021; 14:101. [PMID: 34344453 PMCID: PMC8336022 DOI: 10.1186/s13048-021-00852-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
AIM In order to evaluate the role of MMP-14 in ovarian cancer, a systematic review was conducted. METHODS In March 2020, a search in Pubmed was performed with MMP-14 and ovarian cancer as search terms. After exclusion of the references not on MMP-14 or ovarian cancer or not in English, the studies found were classified into two categories: basic research and clinicopathological research. RESULTS In total, 94 references were found of which 33 were excluded. Two additional articles were found in the reference lists of the included studies. Based on the full texts, another 4 were excluded. Eventually, 59 studies were included in the review, 32 on basic research and 19 on clinicopathological research. 8 studies fell in both categories. The basic research studies show that MMP-14 plays an important role in ovarian cancer in the processes of proliferation, invasion, angiogenesis and metastasis. In clinocopathological research, MMP-14 expression is found in most tumours with characteristics of poor prognosis but this immunohistochemical MMP-14 determination does not seem to be an independent predictor of prognosis. CONCLUSIONS From this systematic review of the literature concerning MMP-14 in ovarian cancer it becomes clear that MMP-14 plays various important roles in the pathophysiology of ovarian cancer. The exact translation of these roles in the pathophysiology to the importance of MMP-14 in clinicopathological research in ovarian cancer and possible therapeutic role of anti-MMP-14 agents needs further elucidation.
Collapse
Affiliation(s)
- M. Caroline Vos
- Department of Obstetrics and Gynaecology, Elisabeth-Tweesteden Hospital, PO Box 90151, 5000 LC Tilburg, the Netherlands
| | | | - Toin H. van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Leon F. A. G. Massuger
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
74
|
Sekine T, Takizawa S, Uchimura K, Miyazaki A, Tsuchiya K. Liver-Specific Overexpression of Prostasin Attenuates High-Fat Diet-Induced Metabolic Dysregulation in Mice. Int J Mol Sci 2021; 22:ijms22158314. [PMID: 34361079 PMCID: PMC8348244 DOI: 10.3390/ijms22158314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 01/20/2023] Open
Abstract
The liver has a most indispensable role in glucose and lipid metabolism where we see some of the most serious worldwide health problems. The serine protease prostasin (PRSS8) cleaves toll-like receptor 4 (TLR4) and regulates hepatic insulin sensitivity under PRSS8 knockout condition. However, liver substrate proteins of PRSS8 other than TLR4 and the effect to glucose and lipid metabolism remain unclarified with hepatic elevation of PRSS8 expression. Here we show that high-fat-diet-fed liver-specific PRSS8 transgenic mice improved glucose tolerance and hepatic steatosis independent of body weight. PRSS8 amplified extracellular signal-regulated kinase phosphorylation associated with matrix metalloproteinase 14 activation in vivo and in vitro. Moreover, in humans, serum PRSS8 levels reduced more in type 2 diabetes mellitus (T2DM) patients than healthy controls and were lower in T2DM patients with increased maximum carotid artery intima media thickness (>1.1 mm). These results identify the regulatory mechanisms of PRSS8 overexpression over glucose and lipid metabolism, as well as excessive hepatic fat storage.
Collapse
Affiliation(s)
- Tetsuo Sekine
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (T.S.); (S.T.); (K.U.)
| | - Soichi Takizawa
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (T.S.); (S.T.); (K.U.)
- Internal Medicine, Yamanashi Prefectural Central Hospital, Kofu 4008506, Japan
| | - Kohei Uchimura
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (T.S.); (S.T.); (K.U.)
| | | | - Kyoichiro Tsuchiya
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (T.S.); (S.T.); (K.U.)
- Correspondence: ; Tel.: +81-55-273-9682
| |
Collapse
|
75
|
Yamahana H, Terashima M, Takatsuka R, Asada C, Suzuki T, Uto Y, Takino T. TGF-β1 facilitates MT1-MMP-mediated proMMP-9 activation and invasion in oral squamous cell carcinoma cells. Biochem Biophys Rep 2021; 27:101072. [PMID: 34381878 PMCID: PMC8339144 DOI: 10.1016/j.bbrep.2021.101072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022] Open
Abstract
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinase
- Con A, concanavalin A
- DMEM, Dulbecco's modified Eagle's medium
- ECM
- ECM, extracellular matrix
- FBS, fetal bovine serum
- Invasion
- MAPK, mitogen-activated protein kinase
- MMP
- MMP, matrix metalloproteinase
- MT1-MMP, membrane type-1 MMP
- OSCC, oral squamous cell carcinoma
- Oral cancer
- PBS, phosphate-buffered saline
- TGF, transforming growth factor
- TGF-β1
- TIMP, tissue inhibitor of MMP
Collapse
Affiliation(s)
- Hirari Yamahana
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Minoru Terashima
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Risa Takatsuka
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Chikako Asada
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshihiro Uto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
76
|
Xia XD, Alabi A, Wang M, Gu HM, Yang RZ, Wang G, Zhang DW. Membrane-type I matrix metalloproteinase (MT1-MMP), lipid metabolism and therapeutic implications. J Mol Cell Biol 2021; 13:513-526. [PMID: 34297054 PMCID: PMC8530520 DOI: 10.1093/jmcb/mjab048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Lipids exert many essential physiological functions, such as serving as a structural component of biological membranes, storing energy, and regulating cell signal transduction. Dysregulation of lipid metabolism can lead to dyslipidemia related to various human diseases, such as obesity, diabetes, and cardiovascular disease. Therefore, lipid metabolism is strictly regulated through multiple mechanisms at different levels, including the extracellular matrix. Membrane-type I matrix metalloproteinase (MT1-MMP), a zinc-dependent endopeptidase, proteolytically cleaves extracellular matrix components, and non-matrix proteins, thereby regulating many physiological and pathophysiological processes. Emerging evidence supports the vital role of MT1-MMP in lipid metabolism. For example, MT1-MMP mediates ectodomain shedding of low-density lipoprotein receptor and increases plasma low-density lipoprotein cholesterol levels and the development of atherosclerosis. It also increases the vulnerability of atherosclerotic plaque by promoting collagen cleavage. Furthermore, it can cleave the extracellular matrix of adipocytes, affecting adipogenesis and the development of obesity. Therefore, the activity of MT1-MMP is strictly regulated by multiple mechanisms, such as autocatalytic cleavage, endocytosis and exocytosis, and post-translational modifications. Here, we summarize the latest advances in MT1-MMP, mainly focusing on its role in lipid metabolism, the molecular mechanisms regulating the function and expression of MT1-MMP, and their pharmacotherapeutic implications.
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Department of Orthopedics, The Sixth Affiliated Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511500, China.,Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Adekunle Alabi
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Maggie Wang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Rui Zhe Yang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Guiqing Wang
- Department of Orthopedics, The Sixth Affiliated Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511500, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| |
Collapse
|
77
|
Oo Y, Nealiga JQL, Suwanborirux K, Chamni S, Ecoy GAU, Pongrakhananon V, Chanvorachote P, Chaotham C. 22-O-(N-Boc-L-glycine) ester of renieramycin M inhibits migratory activity and suppresses epithelial-mesenchymal transition in human lung cancer cells. J Nat Med 2021; 75:949-966. [PMID: 34287745 DOI: 10.1007/s11418-021-01549-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The incidence of metastasis stage crucially contributes to high recurrence and mortality rate in lung cancer patients. Unfortunately, no available treatment inhibits migration, a key metastasis process in lung cancer. In this study, the effect of 22-O-(N-Boc-L-glycine) ester of renieramycin M (22-Boc-Gly-RM), a semi-synthetic amino ester derivative of bistetrahydroisoquinolinequinone alkaloid isolated from Xestospongia sp., on migratory behavior of human lung cancer cells was investigated. Following 24 h of treatment, 22-Boc-Gly-RM at non-toxic concentrations (0.5-1 μM) effectively restrained motility of human lung cancer H460 cells assessed through wound healing, transwell migration, and multicellular spheroid models. The capability to invade through matrix component was also repressed in H460 cells cultured with 0.1-1 µM 22-Boc-Gly-RM. The dose-dependent reduction of phalloidin-stained actin stress fibers corresponded with the downregulated Rac1-GTP level presented via western blot analysis in 22-Boc-Gly-RM-treated cells. Treatment with 0.1-1 μM of 22-Boc-Gly-RM obviously caused suppression of p-FAK/p-Akt signal and consequent inhibition of epithelial-to-mesenchymal transition (EMT), which was evidenced with augmented level of E-cadherin and reduction of N-cadherin expression. The alteration of invasion-related proteins in 22-Boc-Gly-RM-treated H460 cells was indicated by the diminution of matrix metalloproteinases (MT1-MMP, MMP-2, MMP-7, and MMP-9), as well as the upregulation of tissue inhibitors of metalloproteinases (TIMP), TIMP2, and TIMP3. Thus, 22-Boc-Gly-RM is a promising candidate for anti-metastasis treatment in lung cancer through inhibition of migratory features associated with suppression on EMT.
Collapse
Affiliation(s)
- Yamin Oo
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Justin Quiel Lasam Nealiga
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khanit Suwanborirux
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Gea Abigail Uy Ecoy
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Pharmacy, School of Health Care Professions, University of San Carlos, 6000, Cebu, Philippines
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
78
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
79
|
Sun P, Scharnweber T, Wadhwani P, Rabe KS, Niemeyer CM. DNA-Directed Assembly of a Cell-Responsive Biohybrid Interface for Cargo Release. SMALL METHODS 2021; 5:e2001049. [PMID: 34927983 DOI: 10.1002/smtd.202001049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/06/2021] [Indexed: 05/24/2023]
Abstract
The development of a DNA-based cell-responsive biohybrid interface that can be used for spatially confined release of molecular cargo is reported. To this end, tailored DNA-protein conjugates are designed as gatekeepers that can be specifically cleaved by matrix metalloproteases (MMPs), which are secreted by many cancer cells. These gatekeepers can be installed by DNA hybridization on the surface of mesoporous silica nanoparticles (MSNs). The MSNs display another orthogonal DNA oligonucleotide that can be exploited for site-selective immobilization on solid glass surfaces to yield micropatterned substrates for cell adhesion. Using the human fibrosarcoma cell line HT1080 that secretes MMPs, it is demonstrated that the biohybrid surface is specifically modified by the cells to release both MSN-bound gatekeeper proteins and the encapsulated cargo peptide KLA. In view of the enormously high modularity of the system presented here, this approach promising for applications in drug delivery, tissue engineering, or other areas of nanobiotechnology is considered.
Collapse
Affiliation(s)
- Pengchao Sun
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, D-76344, Eggenstein-Leopoldshafen, Germany
- School of Pharmaceutical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, China
| | - Tim Scharnweber
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Parvesh Wadhwani
- Institute for Biological Interfaces (IBG 2), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
80
|
Mechanical Intermittent Compression Affects the Progression Rate of Malignant Melanoma Cells in a Cycle Period-Dependent Manner. Diagnostics (Basel) 2021; 11:diagnostics11061112. [PMID: 34207144 PMCID: PMC8234529 DOI: 10.3390/diagnostics11061112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/31/2022] Open
Abstract
Static mechanical compression is a biomechanical factor that affects the progression of melanoma cells. However, little is known about how dynamic mechanical compression affects the progression of melanoma cells. In the present study, we show that mechanical intermittent compression affects the progression rate of malignant melanoma cells in a cycle period-dependent manner. Our results suggest that intermittent compression with a cycle of 2 h on/2 h off could suppress the progression rate of melanoma cells by suppressing the elongation of F-actin filaments and mRNA expression levels related to collagen degradation. In contrast, intermittent compression with a cycle of 4 h on/4 h off could promote the progression rate of melanoma cells by promoting cell proliferation and mRNA expression levels related to collagen degradation. Mechanical intermittent compression could therefore affect the progression rate of malignant melanoma cells in a cycle period-dependent manner. Our results contribute to a deeper understanding of the physiological responses of melanoma cells to dynamic mechanical compression.
Collapse
|
81
|
Tampa M, Georgescu SR, Mitran MI, Mitran CI, Matei C, Caruntu A, Scheau C, Nicolae I, Matei A, Caruntu C, Constantin C, Neagu M. Current Perspectives on the Role of Matrix Metalloproteinases in the Pathogenesis of Basal Cell Carcinoma. Biomolecules 2021; 11:biom11060903. [PMID: 34204372 PMCID: PMC8235174 DOI: 10.3390/biom11060903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy, which rarely metastasizes but has a great ability to infiltrate and invade the surrounding tissues. One of the molecular players involved in the metastatic process are matrix metalloproteinases (MMPs). MMPs are enzymes that can degrade various components of the extracellular matrix. In the skin, the expression of MMPs is increased in response to various stimuli, including ultraviolet (UV) radiation, one of the main factors involved in the development of BCC. By modulating various processes that are linked to tumor growth, such as invasion and angiogenesis, MMPs have been associated with UV-related carcinogenesis. The sources of MMPs are multiple, as they can be released by both neoplastic and tumor microenvironment cells. Inhibiting the action of MMPs could be a useful therapeutic option in BCC management. In this review that reunites the latest advances in this domain, we discuss the role of MMPs in the pathogenesis and evolution of BCC, as molecules involved in tumor aggressiveness and risk of recurrence, in order to offer a fresh and updated perspective on this field.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Simona Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
- Correspondence: (S.R.G.); (A.C.)
| | - Madalina Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Cristina Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: (S.R.G.); (A.C.)
| | - Cristian Scheau
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Ilinca Nicolae
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Andreea Matei
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| |
Collapse
|
82
|
Adnan M, Siddiqui AJ, Hamadou WS, Snoussi M, Badraoui R, Ashraf SA, Jamal A, Awadelkareem AM, Sachidanandan M, Hadi S, Khan MA, Patel M. Deciphering the Molecular Mechanism Responsible for Efficiently Inhibiting Metastasis of Human Non-Small Cell Lung and Colorectal Cancer Cells Targeting the Matrix Metalloproteinases by Selaginella repanda. PLANTS (BASEL, SWITZERLAND) 2021; 10:979. [PMID: 34068885 PMCID: PMC8156211 DOI: 10.3390/plants10050979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/23/2022]
Abstract
Selaginella species are known to have antimicrobial, antioxidant, anti-inflammatory, anti-diabetic as well as anticancer effects. However, no study has examined the cytotoxic and anti-metastatic efficacy of Selaginella repanda (S. repanda) to date. Therefore, this study aimed to evaluate the potential anti-metastatic properties of ethanol crude extract of S. repanda in human non-small-cell lung (A-549) and colorectal cancer (HCT-116) cells with possible mechanisms. Effect of S. repanda crude extract on the growth, adhesion, migration and invasion of the A-549 and HCT-116 were investigated. We demonstrated that S. repanda crude extract inhibited cell growth of metastatic cells in a dose and time dependent manner. Incubation of A-549 and HCT-116 cells with 100-500 µg/mL of S. repanda crude extract significantly inhibited cell adhesion to gelatin coated surface. In the migration and invasion assay, S. repanda crude extract also significantly inhibited cellular migration and invasion in both A-549 and HCT-116 cells. Moreover, reverse transcription-polymerase chain reaction, and real-time PCR (RT-PCR) analysis revealed that the activity and mRNA level of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP) were inhibited. While the activity of tissue inhibitor matrix metalloproteinase 1 (TIMP-1); an inhibitor of MMPs was stimulated by S. repanda crude extract in a concentration-dependent manner. Therefore, the present study not only indicated the inhibition of motility and invasion of malignant cells by S. repanda, but also revealed that such effects were likely associated with the decrease in MMP-2/-9 expression of both A-549 and HCT-116 cells. This further suggests that S. repanda could be used as a potential source of anti-metastasis agent in pharmaceutical development for cancer therapy.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Mushtaq Ahmad Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain 17666, United Arab Emirates
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 394230, India
| |
Collapse
|
83
|
Mo G, Zhang B, Jiang Q. Role of ARK5 in cancer and other diseases (Review). Exp Ther Med 2021; 22:697. [PMID: 33986861 PMCID: PMC8112134 DOI: 10.3892/etm.2021.10129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors are often exposed to hypoxic and glucose-starved microenvironments. AMP-activated protein kinase (AMPK) is an energy sensor that is stimulated during energy-deficient conditions and protects cells from hypoxic injury by regulating metabolism. AMPK-related protein kinase 5 (ARK5) is a member of the catalytic sub-unit of the AMPK family and has an important role in energy regulation and hypoxia. ARK5 is regulated by Akt and liver kinase B1 and is associated with numerous tumor-related molecules to exert the negative effects of tumors. Studies have revealed ARK5 overexpression in cases of tumor invasion and metastasis and a positive association with the degree of cancer cell malignancy, which is regarded as a key element in determining cancer prognosis. Furthermore, ARK5 downregulation improves drug sensitivity through the epithelial-mesenchymal transition pathway, indicating that it may be a potential therapeutic target. In other non-cancer conditions, ARK5 has various roles in neurodegenerative diseases (Alzheimer's and Huntington's disease), renal disorders (diabetic nephropathy and renal fibrosis) and physiological processes (striated muscle generation). In the present review, the upstream and downstream molecular pathways of ARK5 in cancer and other diseases are described and potential therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Guoheng Mo
- Department of Neurosurgery, Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bohan Zhang
- First Clinical Medical College, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qunguang Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
84
|
Fibroblast MMP14-Dependent Collagen Processing Is Necessary for Melanoma Growth. Cancers (Basel) 2021; 13:cancers13081984. [PMID: 33924099 PMCID: PMC8074311 DOI: 10.3390/cancers13081984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Matrix metalloproteinases (MMPs) were considered as targets for the treatment of various cancers. However, initial trials using broad inhibitors to MMPs have failed, partly attributed to the contrasting functions of these proteases acting as tumor promoters and suppressors, among other reasons. Our data now suggest that specific inhibition of MMP14 might represent a more specific approach, as loss of this protease in fibroblasts resulted in reduced growth of grafted melanomas. Here, we found that deletion of MMP14 in fibroblasts generates a matrix-rich environment that reduces tumor vascularization and melanoma cell proliferation. In in vitro and ex vivo assays, we showed that the latter is mediated by stiffening of the tissue due to collagen accumulation. Additionally, in vivo, we show that independently of MMP14 deletion, a collagen-rich stiff matrix inhibits the growth of melanomas. Abstract Skin homeostasis results from balanced synthesis and degradation of the extracellular matrix in the dermis. Deletion of the proteolytic enzyme MMP14 in dermal fibroblasts (MMP14Sf−/−) leads to a fibrotic skin phenotype with the accumulation of collagen type I, resulting from impaired proteolysis. Here, we show that melanoma growth in these mouse fibrotic dermal samples was decreased, paralleled by reduced tumor cell proliferation and vessel density. Using atomic force microscopy, we found increased peritumoral matrix stiffness of early but not late melanomas in the absence of fibroblast-derived MMP14. However, total collagen levels were increased at late melanoma stages in MMP14Sf−/− mice compared to controls. In ex vivo invasion assays, melanoma cells formed smaller tumor islands in MMP14Sf−/− skin, indicating that MMP14-dependent matrix accumulation regulates tumor growth. In line with these data, in vitro melanoma cell growth was inhibited in high collagen 3D spheroids or stiff substrates. Most importantly, in vivo induction of fibrosis using bleomycin reduced melanoma tumor growth. In summary, we show that MMP14 expression in stromal fibroblasts regulates melanoma tumor progression by modifying the peritumoral matrix and point to collagen accumulation as a negative regulator of melanoma.
Collapse
|
85
|
The multiple roles of actin-binding proteins at invadopodia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33962752 DOI: 10.1016/bs.ircmb.2021.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Invadopodia are actin-rich membrane protrusions that facilitate cancer cell dissemination by focusing on proteolytic activity and clearing paths for migration through physical barriers, such as basement membranes, dense extracellular matrices, and endothelial cell junctions. Invadopodium formation and activity require spatially and temporally regulated changes in actin filament organization and dynamics. About three decades of research have led to a remarkable understanding of how these changes are orchestrated by sequential recruitment and coordinated activity of different sets of actin-binding proteins. In this chapter, we provide an update on the roles of the actin cytoskeleton during the main stages of invadopodium development with a particular focus on actin polymerization machineries and production of pushing forces driving extracellular matrix remodeling.
Collapse
|
86
|
Loss of MT1-MMP in Alveolar Epithelial Cells Exacerbates Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms22062923. [PMID: 33805743 PMCID: PMC7998872 DOI: 10.3390/ijms22062923] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal age-related lung disease whose pathogenesis involves an aberrant response of alveolar epithelial cells (AEC). Activated epithelial cells secrete mediators that participate in the activation of fibroblasts and the excessive deposition of extracellular matrix proteins. Previous studies indicate that matrix metalloproteinase 14 (MMP14) is increased in the lung epithelium in patients with IPF, however, the role of this membrane-type matrix metalloproteinase has not been elucidated. In this study, the role of Mmp14 was explored in experimental lung fibrosis induced with bleomycin in a conditional mouse model of lung epithelial MMP14-specific genetic deletion. Our results show that epithelial Mmp14 deficiency in mice increases the severity and extension of fibrotic injury and affects the resolution of the lesions. Gain-and loss-of-function experiments with human epithelial cell line A549 demonstrated that cells with a deficiency of MMP14 exhibited increased senescence-associated markers. Moreover, conditioned medium from these cells increased fibroblast expression of fibrotic molecules. These findings suggest a new anti-fibrotic mechanism of MMP14 associated with anti-senescent activity, and consequently, its absence results in impaired lung repair. Increased MMP14 in IPF may represent an anti-fibrotic mechanism that is overwhelmed by the strong profibrotic microenvironment that characterizes this disease.
Collapse
|
87
|
Matsuzaki T, Keene DR, Nishimoto E, Noda M. Reversion-inducing cysteine-rich protein with Kazal motifs and MT1-MMP promote the formation of robust fibrillin fibers. J Cell Physiol 2021; 236:1980-1995. [PMID: 32730638 PMCID: PMC7818472 DOI: 10.1002/jcp.29982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/30/2023]
Abstract
Fibrillins (FBNs) form mesh-like structures of microfibrils in various elastic tissues. RECK and FBN1 are co-expressed in many human tissues, suggesting a functional relationship. We found that dermal FBN1 fibers show atypical morphology in mice with reduced RECK expression (RECK-Hypo mice). Dermal FBN1 fibers in mice-lacking membrane-type 1-matrix metalloproteinase (MT1-MMP) show a similar atypical morphology, despite the current notion that MT1-MMP (a membrane-bound protease) and RECK (a membrane-bound protease inhibitor) have opposing functions. Our experiments using dermal fibroblasts indicated that RECK promotes pro-MT1-MMP activation, increases cell-associated gelatinase/collagenase activity, and decreases diffusible gelatinase/collagenase activity, while MT1-MMP stabilizes RECK in these cells. Experiments using purified proteins indicate that RECK and its binding partner ADAMTS10 keep the proteolytic activity of MT1-MMP within a certain range. These findings suggest that RECK, ADAMTS10, and MT1-MMP cooperate to support the formation of robust FBN1 fibers.
Collapse
Affiliation(s)
- Tomoko Matsuzaki
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| | - Douglas R. Keene
- Departments of Medical Genetics, and Biochemistry and Molecular Biology, Shriners Hospital for ChildrenOregon Health and Science UniversityPortlandOregon
| | - Emi Nishimoto
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| | - Makoto Noda
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
88
|
Itoh Y, Ng M, Wiberg A, Inoue K, Hirata N, Paiva KBS, Ito N, Dzobo K, Sato N, Gifford V, Fujita Y, Inada M, Furniss D. A common SNP risk variant MT1-MMP causative for Dupuytren's disease has a specific defect in collagenolytic activity. Matrix Biol 2021; 97:20-39. [PMID: 33592276 DOI: 10.1016/j.matbio.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Dupuytren's Disease (DD) is a common fibroproliferative disease of the palmar fascia. We previously identified a causal association with a non-synonymous variant (rs1042704, p.D273N) in MMP14 (encoding MT1-MMP). In this study, we investigated the functional consequences of this variant, and demonstrated that the variant MT1-MMP (MT1-N273) exhibits only 17% of cell surface collagenolytic activity compared to the ancestral enzyme (MT1-D273). Cells expressing both MT1-D273 and MT1-N273 in a 1:1 ratio, mimicking the heterozygous state, possess 38% of the collagenolytic activity compared to the cells expressing MT1-D273, suggesting that MT1-N273 acts in a dominant negative manner. Consistent with the above observation, patient-derived DD myofibroblasts with the alternate allele demonstrated around 30% of full collagenolytic activity detected in ancestral G/G genotype cells, regardless of the heterozygous (G/A) or homozygous (A/A) state. Small angle X-ray scattering analysis of purified soluble Fc-fusion enzymes allowed us to construct a 3D-molecular envelope of MT1-D273 and MT1-N273, and demonstrate altered flexibility and conformation of the ectodomains due to D273 to N substitution. Taking together, rs1042704 significantly reduces collagen catabolism in tissue, which tips the balance of homeostasis of collagen in tissue, contributing to the fibrotic phenotype of DD. Since around 30% of the worldwide population have at least one copy of the low collagenolytic alternate allele, further investigation of rs1042704 across multiple pathologies is needed.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| | - Michael Ng
- Botnar Research Centre, NDORMS, University of Oxford, Oxford OX3 7HE, UK
| | - Akira Wiberg
- Botnar Research Centre, NDORMS, University of Oxford, Oxford OX3 7HE, UK
| | - Katsuaki Inoue
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxford, UK
| | - Narumi Hirata
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Katiucia Batista Silva Paiva
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Noriko Ito
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Kim Dzobo
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Nanami Sato
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK; Institute for Genetic Medicine, Division of Molecular Oncology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Valentina Gifford
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Yasuyuki Fujita
- Institute for Genetic Medicine, Division of Molecular Oncology, Hokkaido University, Sapporo, Hokkaido, Japan; Department of Molecular Oncology, Kyoto University Medical School, Kyoto, Japan
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Dominic Furniss
- Botnar Research Centre, NDORMS, University of Oxford, Oxford OX3 7HE, UK.
| |
Collapse
|
89
|
Attur M, Lu C, Zhang X, Han T, Alexandre C, Valacca C, Zheng S, Meikle S, Dabovic BB, Tassone E, Yang Q, Kolupaeva V, Yakar S, Abramson S, Mignatti P. Membrane-type 1 Matrix Metalloproteinase Modulates Tissue Homeostasis by a Non-proteolytic Mechanism. iScience 2020; 23:101789. [PMID: 33294797 PMCID: PMC7695985 DOI: 10.1016/j.isci.2020.101789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with a short cytoplasmic tail, is a major effector of extracellular matrix remodeling. Genetic silencing of MT1-MMP in mouse (Mmp14 -/- ) and man causes dwarfism, osteopenia, arthritis, and lipodystrophy, abnormalities ascribed to defective collagen turnover. We have previously shown non-proteolytic functions of MT1-MMP mediated by its cytoplasmic tail, where the unique tyrosine (Y573) controls intracellular signaling. The Y573D mutation blocks TIMP-2/MT1-MMP-induced Erk1/2 and Akt signaling without affecting proteolytic activity. Here, we report that a mouse with the MT1-MMP Y573D mutation (Mmp14 Y573D/Y573D ) shows abnormalities similar to but also different from those of Mmp14 -/- mice. Skeletal stem cells (SSC) of Mmp14 Y573D/Y573D mice show defective differentiation consistent with the mouse phenotype, which is rescued by wild-type SSC transplant. These results provide the first in vivo demonstration that MT1-MMP modulates bone, cartilage, and fat homeostasis by controlling SSC differentiation through a mechanism independent of proteolysis.
Collapse
Affiliation(s)
- Mukundan Attur
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
| | - Cuijie Lu
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
| | - Xiaodong Zhang
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Tianzhen Han
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
| | - Cassidy Alexandre
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Cristina Valacca
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Shuai Zheng
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Sarina Meikle
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | | | - Evelyne Tassone
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Qing Yang
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
| | - Victoria Kolupaeva
- Department of Microbiology, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Shoshana Yakar
- Department of Basic Science & Craniofacial Biology, NYU College of Dentistry, 345 E. 24th Street, NY 10010, USA
| | - Steven Abramson
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
| | - Paolo Mignatti
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
- Department of Cell Biology, NYU School of Medicine, 550 First Avenue, NY 10016, USA
- Corresponding author
| |
Collapse
|
90
|
Tumor cell MT1-MMP is dispensable for osteosarcoma tumor growth, bone degradation and lung metastasis. Sci Rep 2020; 10:19138. [PMID: 33154487 PMCID: PMC7645741 DOI: 10.1038/s41598-020-75995-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 02/03/2023] Open
Abstract
The membrane-anchored matrix metalloprotease MT1-MMP is a potent collagenolytic enzyme with a well-established role in extracellular matrix turnover and cellular invasion into collagen-rich tissues. MT1-MMP is highly expressed in various types of cancer and has been demonstrated to be directly involved in several stages of tumor progression, including primary tumor growth, angiogenesis, invasion and metastasis. Osteosarcoma is the most common type of primary bone cancer. This disease is characterized by invasive tumor growth, leading to extensive bone destruction, and metastasis to the lungs. The tumor cells in human osteosarcoma display a strong expression of MT1-MMP, but the role of MT1-MMP in osteosarcoma progression is currently unknown. In this study, we investigated the role of MT1-MMP during various stages of osteosarcoma development. We utilized an optimized orthotopic murine osteosarcoma model and human osteosarcoma cells in which the MT1-MMP gene was knocked out using CRISPR/Cas9. We observed a strong expression of MT1-MMP in wildtype cells of both primary tumors and lung metastases, but, surprisingly, MT1-MMP deficiency did not affect primary tumor growth, bone degradation or the formation and growth of lung metastases. We therefore propose that, unlike findings reported in other cancers, tumor-expressed MT1-MMP is dispensable for all stages of osteosarcoma progression.
Collapse
|
91
|
Primary Ovarian Tumors With Lymphogenic and Hematogenic Metastasis Express High MMP-14, Which Colocalizes With Highly Sulfated Chondroitin Sulfate in the Stroma. Int J Gynecol Pathol 2020; 39:184-192. [PMID: 30741846 DOI: 10.1097/pgp.0000000000000587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lymphogenic and hematogenic metastases are uncommon in ovarian cancer, especially at presentation. We hypothesized that MMP-14 and MMP-2, CD44, and highly sulfated chondroitin sulfate (CS-E) may be overexpressed in tumors with these metastatic patterns. These molecules are all present in the ovarian tumor microenvironment, wherein they may interact. In an ovarian cancer cohort of 44 patients with metastases in lymph nodes, spleen, and/or liver, the presence of MMP-14, MMP-2, CD44, and CS-E in both the primary tumor and the metastases was determined with immunohistochemistry and related to clinical characteristics. Immunohistochemical expression was found for MMP-14 in all primary tumors as well as in all metastases and for MMP-2 expression in most of the samples. Most primary tumors with synchronous metastases were positive for CS-E, as well as most primary tumors with metachronous lymphogenic metastases. The expression of the MMPs and CS-E in the stroma seemed to colocalize. For CD44 immunohistochemical expression, this relationship was not found. Epithelial MMP-14 on the one hand and stromal CS-E on the other hand seem to be essential players in ovarian cancer with lymphogenic and hematogenic metastases. CD44 expression is not correlated with the other markers. More research on the interaction of these molecules and their role in the process of dissimination of disease is warranted.
Collapse
|
92
|
Claesson-Welsh L. How the matrix metalloproteinase MMP14 contributes to the progression of colorectal cancer. J Clin Invest 2020; 130:1093-1095. [PMID: 32015228 DOI: 10.1172/jci135239] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Certain matrix metalloproteinase (MMP) family proteins have been associated with cell proliferation and invasion in aggressive cancers. However, attempts to target the MMPs with the hope of treating tumors have thus far failed. In this issue of the JCI, Ragusa and coworkers identified an intestinal cancer subgroup of slow-growing, chemotherapy-resistant, and very aggressive matrix-rich tumors that mimic a hard-to-treat colorectal cancer subtype in humans. These tumors showed downregulated levels of the transcription factor prospero homeobox protein 1 (PROX1), which relieved repression of the matrix metalloproteinase MMP14. Upregulated MMP14 levels correlated with blood vessel dysfunction and a lack of cytotoxic T cells. Notably, blockade of proangiogenic factors in combination with stimulation of the CD40 pathway in the mouse cancer model boosted cytotoxic T cell infiltration. The study illustrates how combinatorial treatments for aggressive, T cell-deficient cancers can launch an antitumor immune response.
Collapse
|
93
|
Shimoda M, Ohtsuka T, Okada Y, Kanai Y. Stromal metalloproteinases: Crucial contributors to the tumor microenvironment. Pathol Int 2020; 71:1-14. [PMID: 33074556 DOI: 10.1111/pin.13033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
Proteolytic balance is crucial for the maintenance of tissue homeostasis. In cancer, dysregulated proteolysis is involved in unregulated tissue remodeling and inflammation, leading to the promotion of tumor growth, local invasion, and metastasis. Metalloproteinases, which were first identified as collagen cleaving enzymes, have been shown to extensively degrade extracellular matrix proteins or selectively release cell surface-bound cytokines, growth factors, or their receptors, thereby impacting extracellular matrix integrity, immune cell recruitment and tissue turnover. Although tumor cells produce various metalloproteinases, the major source is thought to be stromal cells infiltrating the tumor. Different types of stromal cells express specific sets of metalloproteinases and their inhibitors, which specifically alter the milieu within the tumor. In this review, recent findings and knowledge regarding metalloproteinases derived from stromal cells during the creation of the tumor microenvironment are described and their contribution to the tumor progression and metastasis discussed.
Collapse
Affiliation(s)
- Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
94
|
Alonso-Herranz L, Sahún-Español Á, Paredes A, Gonzalo P, Gkontra P, Núñez V, Clemente C, Cedenilla M, Villalba-Orero M, Inserte J, García-Dorado D, Arroyo AG, Ricote M. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. eLife 2020; 9:57920. [PMID: 33063665 PMCID: PMC7609061 DOI: 10.7554/elife.57920] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Macrophages (Mφs) produce factors that participate in cardiac repair and remodeling after myocardial infarction (MI); however, how these factors crosstalk with other cell types mediating repair is not fully understood. Here we demonstrated that cardiac Mφs increased the expression of Mmp14 (MT1-MMP) 7 days post-MI. We selectively inactivated the Mmp14 gene in Mφs using a genetic strategy (Mmp14f/f:Lyz2-Cre). This conditional KO (MAC-Mmp14 KO) resulted in attenuated post-MI cardiac dysfunction, reduced fibrosis, and preserved cardiac capillary network. Mechanistically, we showed that MT1-MMP activates latent TGFβ1 in Mφs, leading to paracrine SMAD2-mediated signaling in endothelial cells (ECs) and endothelial-to-mesenchymal transition (EndMT). Post-MI MAC-Mmp14 KO hearts contained fewer cells undergoing EndMT than their wild-type counterparts, and Mmp14-deficient Mφs showed a reduced ability to induce EndMT in co-cultures with ECs. Our results indicate the contribution of EndMT to cardiac fibrosis and adverse remodeling post-MI and identify Mφ MT1-MMP as a key regulator of this process.
Collapse
Affiliation(s)
- Laura Alonso-Herranz
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Álvaro Sahún-Español
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Paredes
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pilar Gonzalo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Polyxeni Gkontra
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Vanessa Núñez
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Clemente
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Marta Cedenilla
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Villalba-Orero
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d'Hebron University Hospital and Research Institute (VHIR), Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David García-Dorado
- Cardiovascular Diseases Research Group, Vall d'Hebron University Hospital and Research Institute (VHIR), Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Mercedes Ricote
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
95
|
Ke JY, Yang J, Li J, Xu Z, Li MQ, Zhu ZL. Baicalein inhibits FURIN-MT1-MMP-mediated invasion of ectopic endometrial stromal cells in endometriosis possibly by reducing the secretion of TGFB1. Am J Reprod Immunol 2020; 85:e13344. [PMID: 32910833 DOI: 10.1111/aji.13344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Endometriosis (EMs) is characterized by the presence of endometrial stroma and glands outside the uterus. Our previous study showed that baicalein inhibited proliferation and induced apoptosis in EMs. However, the effects of baicalein on the invasiveness of ectopic endometrial stromal cells (EcESCs) remain unclear. The aim of this study was to assess the potential anti-invasive effect of baicalein and determine the underlying mechanism. METHODS The invasive and migratory properties of EcESCs were assessed in vitro using Transwell and wound healing assays. The expression of functional markers of EcESCs, including matrix metalloproteases (MMPs), FURIN, and TGFB1, was analyzed using WB and ELISA. Additionally, a mouse model of EMs was treated with baicalein (10 mg/kg/d and 35 mg/kg/d) for 4 weeks. The weight and number of ectopic lesions were determined, and the expression of markers was assessed using immunohistochemistry. RESULTS Baicalein inhibited the invasion of EcESCs and the expression of certain invasion-related proteins, including MMP9, MMP2, and MT1-MMP. Exposure to baicalein reduced the extracellular levels of TGFB1 in EcESCs and the reduced expression of TGFB1, resulting in decreased expression of FURIN in EcESCs, which serves a pivotal role in the transformation of pro-MT1-MMP to activated MT1-MMP. In the mouse model of EMs, intraperitoneal injection of baicalein inhibited the growth of ectopic lesions and reduced MT1-MMP, FURIN, and TGFB1 expression. CONCLUSIONS Baicalein reduced the invasion of EMs, potentially by restricting the FURIN-MT1-MMP-mediated cell invasion of EcESCs maybe through reduction of the autocrine of TGFB1.
Collapse
Affiliation(s)
- Jun-Ya Ke
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhen Xu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ming-Qing Li
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Zhi-Ling Zhu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
96
|
Park KC, Dharmasivam M, Richardson DR. The Role of Extracellular Proteases in Tumor Progression and the Development of Innovative Metal Ion Chelators that Inhibit their Activity. Int J Mol Sci 2020; 21:E6805. [PMID: 32948029 PMCID: PMC7555822 DOI: 10.3390/ijms21186805] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The crucial role of extracellular proteases in cancer progression is well-known, especially in relation to the promotion of cell invasion through extracellular matrix remodeling. This also occurs by the ability of extracellular proteases to induce the shedding of transmembrane proteins at the plasma membrane surface or within extracellular vesicles. This process results in the regulation of key signaling pathways by the modulation of kinases, e.g., the epidermal growth factor receptor (EGFR). Considering their regulatory roles in cancer, therapeutics targeting various extracellular proteases have been discovered. These include the metal-binding agents di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which increase c-MET degradation by multiple mechanisms. Both the direct and indirect inhibition of protease expression and activity can be achieved through metal ion depletion. Considering direct mechanisms, chelators can bind zinc(II) that plays a catalytic role in enzyme activity. In terms of indirect mechanisms, Dp44mT and DpC potently suppress the expression of the kallikrein-related peptidase-a prostate-specific antigen-in prostate cancer cells. The mechanism of this activity involves promotion of the degradation of the androgen receptor. Additional suppressive mechanisms of Dp44mT and DpC on matrix metalloproteases (MMPs) relate to their ability to up-regulate the metastasis suppressors N-myc downstream regulated gene-1 (NDRG1) and NDRG2, which down-regulate MMPs that are crucial for cancer cell invasion.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
| | - Mahendiran Dharmasivam
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
97
|
Fischer T, Riedl R. Challenges with matrix metalloproteinase inhibition and future drug discovery avenues. Expert Opin Drug Discov 2020; 16:75-88. [PMID: 32921161 DOI: 10.1080/17460441.2020.1819235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Matrix metalloproteinases have been in the scope of pharmaceutical drug discovery for decades as promising targets for drug development. Until present, no modulator of the enzyme class survived clinical trials, all failing for various reasons. Nevertheless, the target family did not lose its attractiveness and there is ever more evidence that MMP modulators are likely to overcome the hurdles and result in successful clinical therapies. AREAS COVERED This review provides an overview of past efforts that were taken in the development of MMP inhibitors and insight into promising strategies that might enable drug discovery in the field in the future. Small molecule inhibitors as well as biomolecules are reviewed. EXPERT OPINION Despite the lack of successful clinical trials in the past, there is ongoing research in the field of MMP modulation, proving the target class has not lost its appeal to pharmaceutical research. With ever-growing insights from different scientific fields that shed light on previously unknown correlations, it is now time to use synergies deriving from biological knowledge, chemical structure generation, and clinical application to reach the ultimate goal of bringing MMP derived drugs on a broad front for the benefit of patients into therapeutic use.
Collapse
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| |
Collapse
|
98
|
Sun L, Chen Y, Chen F, Ma F. Peptide-based electrochemical biosensor for matrix metalloproteinase-14 and protein-overexpressing cancer cells based on analyte-induced cleavage of peptide. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
99
|
Thome I, Lacle R, Voß A, Bortolussi G, Pantazis G, Schmidt A, Conrad C, Jacob R, Timmesfeld N, Bartsch JW, Pagenstecher A. Neoplastic Cells are the Major Source of MT-MMPs in IDH1-Mutant Glioma, Thus Enhancing Tumor-Cell Intrinsic Brain Infiltration. Cancers (Basel) 2020; 12:E2456. [PMID: 32872536 PMCID: PMC7565296 DOI: 10.3390/cancers12092456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
Tumor-cell infiltration is a major obstacle to successful therapy for brain tumors. Membrane-type matrix metalloproteinases (MT-MMPs), a metzincin subfamily of six proteases, are important mediators of infiltration. The cellular source of MT-MMPs and their role in glioma biology, however, remain controversial. Thus, we comprehensively analyzed the expression of MT-MMPs in primary brain tumors. All MT-MMPs were differentially expressed in primary brain tumors. In diffuse gliomas, MT-MMP1, -3, and -4 were predominantly expressed by IDH1mutated tumor cells, while macrophages/microglia contributed significantly less to MT-MMP expression. For functional analyses, individual MT-MMPs were expressed in primary mouse p53-/- astrocytes. Invasion and migration potential of MT-MMP-transduced astrocytes was determined via scratch, matrigel invasion, and novel organotypic porcine spinal slice migration (OPoSSM) and invasion assays. Overall, MT-MMP-transduced astrocytes showed enhanced migration compared to controls. MMP14 was the strongest mediator of migration in scratch assays. However, in the OPoSSM assays, the glycosylphosphatidylinositol (GPI)-anchored MT-MMPs MMP17 and MMP25, not MMP14, mediated the highest infiltration rates of astrocytes. Our data unequivocally demonstrate for the first time that glioma cells, not microglia, are the predominant producers of MT-MMPs in glioma and can act as potent mediators of tumor-cell infiltration into CNS tissue. These proteases are therefore promising targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ina Thome
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Raphael Lacle
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Andreas Voß
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Ginette Bortolussi
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Georgios Pantazis
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Ansgar Schmidt
- Departments of Pathology, Philipps University Marburg, 35043 Marburg, Germany;
| | - Catharina Conrad
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Ralf Jacob
- Departments of Clinical Cytobiology and Cytopathology, Philipps University Marburg, 35037 Marburg, Germany;
| | - Nina Timmesfeld
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr University Bochum, 44780 Bochum, Germany;
| | - Jörg W. Bartsch
- Departments of Neurosurgery, Philipps University Marburg, 35043 Marburg, Germany;
- Centre for Mind, Brain, and Behaviour, 35032 Marburg, Germany
| | - Axel Pagenstecher
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
- Centre for Mind, Brain, and Behaviour, 35032 Marburg, Germany
| |
Collapse
|
100
|
Hayase G, Yoshino D. CNC-Milled Superhydrophobic Macroporous Monoliths for 3D Cell Culture. ACS APPLIED BIO MATERIALS 2020; 3:4747-4750. [PMID: 35021721 DOI: 10.1021/acsabm.0c00719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High-strength macroporous monoliths can be obtained by the simple mixing of boehmite nanofiber aqueous acetate dispersions with methyltrimethoxysilane. On the boehmite nanofiber-polymethylsilsesquioxane monoliths, we can fabricate structures smaller than a millimeter in size by computer numerical control (CNC) milling, resulting in a machined surface that is superhydrophobic and biocompatible. Using this strategy, we fabricated a superhydrophobic multiwell plate that holds water droplets to produce 3D cell culture environments for various cell types. We expect these superhydrophobic monoliths to have future applications in 3D tissue construction.
Collapse
Affiliation(s)
- Gen Hayase
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Daisuke Yoshino
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|