51
|
NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol 2018; 11:1011-1023. [PMID: 29743611 DOI: 10.1038/s41385-018-0021-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS), initially categorized as toxic by-products of aerobic metabolism, have often been called a double-edged sword. ROS are considered indispensable when host defense and redox signaling is concerned and a threat in inflammatory or degenerative diseases. This generalization does not take in account the diversity of oxygen metabolites being generated, their physicochemical characteristics and their production by distinct enzymes in space and time. NOX/DUOX NADPH oxidases are the only enzymes solely dedicated to ROS production and the prime ROS producer for intracellular and intercellular communication due to their widespread expression and intricate regulation. Here we discuss new insights of how NADPH oxidases act via ROS as multifaceted regulators of the intestinal barrier in homeostasis, infectious disease and intestinal inflammation. A closer look at monogenic VEOIBD and commensals as ROS source supports the view of H2O2 as key beneficial messenger in the barrier ecosystem.
Collapse
|
52
|
Antimicrobial actions of dual oxidases and lactoperoxidase. J Microbiol 2018; 56:373-386. [PMID: 29858825 DOI: 10.1007/s12275-018-7545-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
The NOX/DUOX family of NADPH oxidases are transmembrane proteins generating reactive oxygen species as their primary enzymatic products. NADPH oxidase (NOX) 1-5 and Dual oxidase (DUOX) 1 and 2 are members of this family. These enzymes have several biological functions including immune defense, hormone biosynthesis, fertilization, cell proliferation and differentiation, extracellular matrix formation and vascular regulation. They are found in a variety of tissues such as the airways, salivary glands, colon, thyroid gland and lymphoid organs. The discovery of NADPH oxidases has drastically transformed our view of the biology of reactive oxygen species and oxidative stress. Roles of several isoforms including DUOX1 and DUOX2 in host innate immune defense have been implicated and are still being uncovered. DUOX enzymes highly expressed in the respiratory and salivary gland epithelium have been proposed as the major sources of hydrogen peroxide supporting mucosal oxidative antimicrobial defenses. In this review, we shortly present data on DUOX discovery, structure and function, and provide a detailed, up-to-date summary of discoveries regarding antibacterial, antiviral, antifungal, and antiparasitic functions of DUOX enzymes. We also present all the literature describing the immune functions of lactoperoxidase, an enzyme working in partnership with DUOX to produce antimicrobial substances.
Collapse
|
53
|
van der Vliet A, Danyal K, Heppner DE. Dual oxidase: a novel therapeutic target in allergic disease. Br J Pharmacol 2018; 175:1401-1418. [PMID: 29405261 DOI: 10.1111/bph.14158] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
NADPH oxidases (NOXs) represent a family of enzymes that mediate regulated cellular production of reactive oxygen species (ROS) and play various functional roles in physiology. Among the NOX family, the dual oxidases DUOX1 and DUOX2 are prominently expressed in epithelial cell types at mucosal surfaces and have therefore been considered to have important roles in innate host defence pathways. Recent studies have revealed important insights into the host defence mechanisms of DUOX enzymes, which control innate immune response pathways in response to either microbial or allergic triggers. In this review, we discuss the current level of understanding with respect to the biological role(s) of DUOX enzymes and the unique role of DUOX1 in mediating innate immune responses to epithelial injury and allergens and in the development of allergic disease. These novel findings highlight DUOX1 as an attractive therapeutic target, and opportunities for the development of selective inhibitor strategies will be discussed.
Collapse
Affiliation(s)
- Albert van der Vliet
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA.,Vermont Lung Center, University of Vermont, Burlington, VT, USA
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA.,Vermont Lung Center, University of Vermont, Burlington, VT, USA
| | - David E Heppner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
54
|
Yildiz S, Mazel-Sanchez B, Kandasamy M, Manicassamy B, Schmolke M. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. MICROBIOME 2018; 6:9. [PMID: 29321057 PMCID: PMC5763955 DOI: 10.1186/s40168-017-0386-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/14/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Microbiota integrity is essential for a growing number of physiological processes. Consequently, disruption of microbiota homeostasis correlates with a variety of pathological states. Importantly, commensal microbiota provide a shield against invading bacterial pathogens, probably by direct competition. The impact of viral infections on host microbiota composition and dynamics is poorly understood. Influenza A viruses (IAV) are common respiratory pathogens causing acute infections. Here, we show dynamic changes in respiratory and intestinal microbiota over the course of a sublethal IAV infection in a mouse model. RESULTS Using a combination of 16S rRNA gene-specific next generation sequencing and qPCR as well as culturing of bacterial organ content, we found body site-specific and transient microbiota responses. In the lower respiratory tract, we observed only minor qualitative changes in microbiota composition. No quantitative impact on bacterial colonization after IAV infection was detectable, despite a robust antimicrobial host response and increased sensitivity to bacterial super infection. In contrast, in the intestine, IAV induced robust depletion of bacterial content, disruption of mucus layer integrity, and higher levels of antimicrobial peptides in Paneth cells. As a functional consequence of IAV-mediated microbiota depletion, we demonstrated that the small intestine is rendered more susceptible to bacterial pathogen invasion, in a Salmonella typhimurium super infection model. CONCLUSION We show for the first time the consequences of IAV infection for lower respiratory tract and intestinal microbiobiota in a qualitative and quantitative fashion. The discrepancy of relative 16S rRNA gene next-generation sequencing (NGS) and normalized 16S rRNA gene-specific qPCR stresses the importance of combining qualitative and quantitative approaches to correctly analyze composition of organ associated microbial communities. The transiently induced dysbiosis underlines the overall stability of microbial communities to effects of acute infection. However, during a short-time window, specific ecological niches might lose their microbiota shield and remain vulnerable to bacterial invasion.
Collapse
Affiliation(s)
- Soner Yildiz
- Department of Microbiology and Molecular Medicine, University Medical Center (CMU), University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Béryl Mazel-Sanchez
- Department of Microbiology and Molecular Medicine, University Medical Center (CMU), University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | | | - Balaji Manicassamy
- Department of Microbiology, University of Chicago, Chicago, IL 60637 USA
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University Medical Center (CMU), University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
55
|
Barko P, McMichael M, Swanson K, Williams D. The Gastrointestinal Microbiome: A Review. J Vet Intern Med 2018; 32:9-25. [PMID: 29171095 PMCID: PMC5787212 DOI: 10.1111/jvim.14875] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022] Open
Abstract
The gastrointestinal microbiome is a diverse consortium of bacteria, archaea, fungi, protozoa, and viruses that inhabit the gut of all mammals. Studies in humans and other mammals have implicated the microbiome in a range of physiologic processes that are vital to host health including energy homeostasis, metabolism, gut epithelial health, immunologic activity, and neurobehavioral development. The microbial genome confers metabolic capabilities exceeding those of the host organism alone, making the gut microbiome an active participant in host physiology. Recent advances in DNA sequencing technology and computational biology have revolutionized the field of microbiomics, permitting mechanistic evaluation of the relationships between an animal and its microbial symbionts. Changes in the gastrointestinal microbiome are associated with diseases in humans and animals including inflammatory bowel disease, asthma, obesity, metabolic syndrome, cardiovascular disease, immune-mediated conditions, and neurodevelopmental conditions such as autism spectrum disorder. While there remains a paucity of data regarding the intestinal microbiome in small animals, recent studies have helped to characterize its role in host animal health and associated disease states. This review is intended to familiarize small animal veterinarians with recent advances in the field of microbiomics and to prime them for a future in which diagnostic tests and therapies will incorporate these developments into clinical practice.
Collapse
Affiliation(s)
- P.C. Barko
- Veterinary Clinical MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIL
| | - M.A. McMichael
- Veterinary Clinical MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIL
| | - K.S. Swanson
- Veterinary Clinical MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIL
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL
| | - D.A. Williams
- Veterinary Clinical MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIL
| |
Collapse
|
56
|
Rigoni A, Poulsom R, Jeffery R, Mehta S, Lewis A, Yau C, Giannoulatou E, Feakins R, Lindsay JO, Colombo MP, Silver A. Separation of Dual Oxidase 2 and Lactoperoxidase Expression in Intestinal Crypts and Species Differences May Limit Hydrogen Peroxide Scavenging During Mucosal Healing in Mice and Humans. Inflamm Bowel Dis 2017; 24:136-148. [PMID: 29272487 DOI: 10.1093/ibd/izx024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND DUOX2 and DUOXA2 form the predominant H2O2-producing system in human colorectal mucosa. Inflammation, hypoxia, and 5-aminosalicylic acid increase H2O2 production, supporting innate defense and mucosal healing. Thiocyanate reacts with H2O2 in the presence of lactoperoxidase (LPO) to form hypothiocyanate (OSCN-), which acts as a biocide and H2O2 scavenging system to reduce damage during inflammation. We aimed to discover the organization of Duox2, Duoxa2, and Lpo expression in colonic crypts of Lieberkühn (intestinal glands) of mice and how distributions respond to dextran sodium sulfate (DSS)-induced colitis and subsequent mucosal regeneration. METHODS We studied tissue from DSS-exposed mice and human biopsies using in situ hybridization, reverse transcription quantitative polymerase chain reaction, and cDNA microarray analysis. RESULTS Duox2 mRNA expression was mostly in the upper crypt quintile while Duoxa2 was more apically focused. Most Lpo mRNA was in the basal quintile, where stem cells reside. Duox2 and Duoxa2 mRNA were increased during the induction and resolution of DSS colitis, while Lpo expression did not increase during the acute phase. Patterns of Lpo expression differed from Duox2 in normal, inflamed, and regenerative mouse crypts (P < 0.001). We found no evidence of LPO expression in the human gut. CONCLUSIONS The spatial and temporal separation of H2O2-consuming and -producing enzymes enables a thiocyanate- H2O2 "scavenging" system in murine intestinal crypts to protect the stem/proliferative zones from DNA damage, while still supporting higher H2O2 concentrations apically to aid mucosal healing. The absence of LPO expression in the human gut suggests an alternative mechanism or less protection from DNA damage during H2O2-driven mucosal healing.
Collapse
Affiliation(s)
- Alice Rigoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Richard Poulsom
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rosemary Jeffery
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shameer Mehta
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amy Lewis
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christopher Yau
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Roger Feakins
- Department of Histopathology, The Royal London Hospital, London, UK
| | - James O Lindsay
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
57
|
Li Y, Lv M, Su C, Long S, Zhang W, Conway KL, Li W, Xavier RJ, Shi HN. p40 phox -Deficient Mice Exhibit Impaired Bacterial Clearance and Enhanced Pro-inflammatory Responses during Salmonella enterica serovar Typhimurium Infection. Front Immunol 2017; 8:1270. [PMID: 29062317 PMCID: PMC5640886 DOI: 10.3389/fimmu.2017.01270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major cause of acute gastroenteritis in humans. During infection, reactive oxygen species (ROS), generated from NADPH oxidase (a multisubunit enzyme complex), are required for pathogen killing upon phagocytosis and for regulating pro-inflammatory signaling in phagocytic cells. Mutations in subunits forming the NADPH complex may lead to enhanced susceptibility to infection and inflammatory disease. Compared to other NADPH oxidase subunits, the function of p40phox is relatively understudied, particularly in the context of intestinal bacterial infection. In this study, we utilized genetically engineered mice to determine the role of p40phox in the response to S. Typhimurium infection. We show that mice lacking p40phox are more susceptible to oral infection with S. Typhimurium, as demonstrated by significantly enhanced bacterial dissemination to spleen and liver, and development of exacerbated bacterial colitis. Moreover, we demonstrate that the increased infection and disease severity are correlated with markedly increased F4/80+ macrophage and Ly6G+ neutrophil infiltration in the infected tissues, coincident with significantly elevated pro-inflammatory cytokines (IL-1β and TNF-α) and chemoattractant molecules in the infected tissues. Functional analysis of macrophages and neutrophils further shows that p40phox deficiency impairs bacteria- or PMA-induced intracellular ROS production as well as intracellular killing of Salmonella. These observations indicate that the p40phox subunit of NADPH oxidase plays an essential role in suppressing intracellular multiplication of Salmonella in macrophages and in the regulation of both systemic and mucosal inflammatory responses to bacterial infection.
Collapse
Affiliation(s)
- Yali Li
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Zhejiang University College of Animal Sciences, Hangzhou, China.,Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Meili Lv
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Sichuan University, Chengdu, China
| | - Chienwen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shaorong Long
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Wei Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Qinghai University Medical College, Xining, China
| | - Kara L Conway
- Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Weifen Li
- Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Ramnik J Xavier
- Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
58
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, et alEgea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Show More Authors] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
59
|
Defensive Mutualism Rescues NADPH Oxidase Inactivation in Gut Infection. Cell Host Microbe 2017; 19:651-63. [PMID: 27173933 DOI: 10.1016/j.chom.2016.04.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/09/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023]
Abstract
NOX/DUOX family of NADPH oxidases are expressed in diverse tissues and are the primary enzymes for the generation of reactive oxygen species (ROS). The intestinal epithelium expresses NOX1, NOX4, and DUOX2, whose functions are not well understood. To address this, we generated mice with complete or epithelium-restricted deficiency in the obligatory NOX dimerization partner Cyba (p22(phox)). We discovered that NOX1 regulates DUOX2 expression in the intestinal epithelium, which magnified the epithelial ROS-deficiency. Unexpectedly, epithelial deficiency of Cyba resulted in protection from C. rodentium and L. monocytogenes infection. Microbiota analysis linked epithelial Cyba deficiency to an enrichment of H2O2-producing bacterial strains in the gut. In particular, elevated levels of lactobacilli physically displaced and attenuated C. rodentium virulence by H2O2-mediated suppression of the virulence-associated LEE pathogenicity island. This transmissible compensatory adaptation relied on environmental factors, an important consideration for prevention and therapy of enteric disease.
Collapse
|
60
|
Aviello G, Knaus UG. ROS in gastrointestinal inflammation: Rescue Or Sabotage? Br J Pharmacol 2017; 174:1704-1718. [PMID: 26758851 PMCID: PMC5446568 DOI: 10.1111/bph.13428] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/09/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
The intestine is composed of many distinct cell types that respond to commensal microbiota or pathogens with immune tolerance and proinflammatory signals respectively. ROS produced by mucosa-resident cells or by newly recruited innate immune cells are essential for antimicrobial responses and regulation of signalling pathways including processes involved in wound healing. Impaired ROS production due to inactivating patient variants in genes encoding NADPH oxidases as ROS source has been associated with Crohn's disease and pancolitis, whereas overproduction of ROS due to up-regulation of oxidases or altered mitochondrial function was linked to ileitis and ulcerative colitis. Here, we discuss recent advances in our understanding of how maintaining a redox balance is crucial to preserve gut homeostasis. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- G Aviello
- National Children's Research CentreOur Lady's Children's HospitalDublinIreland
| | - UG Knaus
- National Children's Research CentreOur Lady's Children's HospitalDublinIreland
- Conway Institute, School of MedicineUniversity College DublinDublinIreland
| |
Collapse
|
61
|
Abstract
The intestinal microbiota consists of a dynamic organization of bacteria, viruses, archaea, and fungal species essential for maintaining gut homeostasis and protecting the host against pathogenic invasion. When dysregulated, the intestinal microbiota can contribute to colorectal cancer development. Though the microbiota is multifaceted in its ability to induce colorectal cancer, this review will focus on the capability of the microbiota to induce colorectal cancer through the modulation of immune function and the production of microbial-derived metabolites. We will also explore an experimental technique that is revolutionizing intestinal research. By elucidating the interactions of microbial species with epithelial tissue, and allowing for drug screening of patients with colorectal cancers, organoid development is a novel culturing technique that is innovating intestinal research. As a cancer that remains one of the leading causes of cancer-related deaths worldwide, it is imperative that scientific findings are translated into the creation of effective therapeutics to treat colorectal cancer.
Collapse
Affiliation(s)
- Sofia Oke
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, 1 King’s College Cir, MSB 7302, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
62
|
Abstract
The microbiota is composed of commensal bacteria and other microorganisms that live on the epithelial barriers of the host. The commensal microbiota is important for the health and survival of the organism. Microbiota influences physiological functions from the maintenance of barrier homeostasis locally to the regulation of metabolism, haematopoiesis, inflammation, immunity and other functions systemically. The microbiota is also involved in the initiation, progression and dissemination of cancer both at epithelial barriers and in sterile tissues. Recently, it has become evident that microbiota, and particularly the gut microbiota, modulates the response to cancer therapy and susceptibility to toxic side effects. In this Review, we discuss the evidence for the ability of the microbiota to modulate chemotherapy, radiotherapy and immunotherapy with a focus on the microbial species involved, their mechanism of action and the possibility of targeting the microbiota to improve anticancer efficacy while preventing toxicity.
Collapse
Affiliation(s)
- Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
63
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
64
|
A Mesh-Duox pathway regulates homeostasis in the insect gut. Nat Microbiol 2017; 2:17020. [PMID: 28248301 PMCID: PMC5332881 DOI: 10.1038/nmicrobiol.2017.20] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/23/2017] [Indexed: 12/26/2022]
Abstract
The metazoan gut harbors complex communities of commensal and symbiotic bacterial microbes. The quantity and quality of these microbes fluctuate dynamically in response to physiological changes. The mechanisms that hosts developed to respond to and manage such dynamic changes and maintain homeostasis remain largely unknown. Here, we identify a dual oxidase (Duox)-regulating pathway that contributes in maintaining homeostasis in the gut of both Aedes aegypti and Drosophila melanogaster. We show that a gut membrane-associated protein, named Mesh, plays an important role in controlling proliferation of gut bacteria by regulating Duox expression through an Arrestin-mediated MAPK JNK/ERK phosphorylation cascade. Expression of both Mesh and Duox is correlated with the gut bacterial microbiome that, in mosquitoes, increases dramatically soon after a blood meal. Ablation of Mesh abolishes Duox induction leading to an increase of the gut microbiome load. Our study reveals that the Mesh-mediated signaling pathway is a central homeostatic mechanism of the insect gut.
Collapse
|
65
|
Knaus UG, Hertzberger R, Pircalabioru GG, Yousefi SPM, Branco dos Santos F. Pathogen control at the intestinal mucosa - H 2O 2 to the rescue. Gut Microbes 2017; 8:67-74. [PMID: 28080210 PMCID: PMC5341913 DOI: 10.1080/19490976.2017.1279378] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intestinal infections are a global challenge, connected to malnutrition and inadequate hygiene in developing countries, and to expanding antibiotic resistance in developed countries. In general, a healthy host is capable of fighting off gut pathogens or at least to recover from infections quickly. The underlying protective mechanism, termed colonization resistance, is provided by indigenous commensal communities (microbiota) that are shaped and aided by the host's epithelial and innate immune system. Commensal-pathogen interactions are governed by competition for a suitable niche for replication and stable colonization, nutrient availability, species-specific alterations of the metabolic environment, changes in oxygen tension and release of chemicals and proteinaceous toxins (bacteriocins). This protective intestinal milieu is further reinforced by antimicrobial factors and chemicals secreted by the epithelial barrier, by dendritic cell sensing and by homeostasis between T-cell subsets (Treg/Th17) in the lamina propria. The 3 players (host-microbiota-pathogen) communicate via direct interactions or secreted factors. Our recent manuscript illustrates that reactive oxygen species (ROS) are an integral part of colonization resistance and should be considered an interkingdom antivirulence strategy.
Collapse
Affiliation(s)
- Ulla G. Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Rosanne Hertzberger
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - S. Parsa M. Yousefi
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
66
|
Jin SS. Itopride hydrochloride combined with Bifidobacterium triple viable capsules for treatment of abdominal distention in chronic hepatitis B patients with liver cirrhosis. Shijie Huaren Xiaohua Zazhi 2016; 24:4710-4714. [DOI: 10.11569/wcjd.v24.i35.4710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the efficacy of itopride hydrochloride in combination with Bifidobacterium triple viable capsules in the treatment of abdominal distention in chronic hepatitis B patients with liver cirrhosis.
METHODS Eighty-four chronic hepatitis B patients with liver cirrhosis and abdominal distention treated at the Third Hospital Affiliated to Zhejiang University of Chinese Medicine were randomly divided into a control group (n = 42) and an observation group (n = 42). Both groups were given symptomatic treatments including a low-salt diet, liver-protecting agents, diuresis, and nutritional support, and the observation group was additionally given itopride hydrochloride in combination with Bifidobacterium triple viable capsules. Clinical efficacy, symptom score, and ghrelin levels were compared between the two groups.
RESULTS Scores of abdominal distension at 2, 4, and 8 wk after treatment were statistically lower in the observation group than in the control group (P < 0.05). Indexes of liver function after treatment, including alanine transaminase, aspartate transaminase and total bilirubin, were statistically lower than those before treatment in both groups (P < 0.05), and these indexes after treatment were significantly lower in the observation group than in the control group (P < 0.01). Endotoxin, plasma calcitonin, diamine oxidase, interleukin-1β, and tumor necrosis factor-α levels were statistically improved in both groups (P < 0.05), and these indexes after treatment were significantly better in the observation group than in the control group (P < 0.01).
CONCLUSION Itopride hydrochloride combined with Bifidobacterium triple viable capsules can improve abdominal distention, reduce liver function indexes, and strengthen intestinal mucosal barrier function in chronic hepatitis B patients with liver cirrhosis.
Collapse
|
67
|
Chu FF, Esworthy RS, Doroshow JH, Shen B. NADPH oxidase-1 deficiency offers little protection in Salmonella typhimurium-induced typhlitis in mice. World J Gastroenterol 2016; 22:10158-10165. [PMID: 28028364 PMCID: PMC5155175 DOI: 10.3748/wjg.v22.i46.10158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/09/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To test whether Nox1 plays a role in typhlitis induced by Salmonella enterica serovar Typhimurium (S. Tm) in a mouse model.
METHODS Eight-week-old male wild-type (WT) and Nox1 knockout (KO) C57BL6/J (B6) mice were administered metronidazole water for 4 d to make them susceptible to S. Tm infection by the oral route. The mice were given plain water and administered with 4 different doses of S. Tm by oral gavage. The mice were followed for another 4 d. From the time of the metronidazole application, the mice were observed twice daily and weighed daily. The ileum, cecum and colon were removed for sampling at the fourth day post-inoculation. Portions of all three tissues were fixed for histology and placed in RNAlater for mRNA/cDNA preparation and quantitative real-time PCR. The contents of the cecum were recovered for estimation of S. Tm CFU.
RESULTS We found Nox1-knockout (Nox1-KO) mice were not more sensitive to S. Tm colonization and infection than WT B6 mice. This conclusion is based on the following observations: (1) S. Tm-infection induced similar weight loss in Nox1-KO mice compared to WT mice; (2) the same S. Tm CFU was recovered from the cecal content of Nox1-KO and WT mice regardless of the inoculation dose, except the lowest inoculation dose (2 × 106 CFU) for which the Nox1-KO had one-log lower CFU than WT mice; (3) there is no difference in cecal pathology between WT and Nox1-KO groups; and (4) there are no S. Tm infection-induced changes in gene expression levels (IL-1b, TNF-α, and Duox2) between WT and Nox1-KO groups. The Alpi gene expression was more suppressed by S. Tm treatment in WT than the Nox1-KO cecum.
CONCLUSION Nox1 does not protect mice from S. Tm colonization. Nox1-KO provides a very minor protective effect against S. Tm infection. Using NOX1-specific inhibitors for colitis therapy should not increase risks in bacterial infection.
Collapse
|
68
|
Chu FF, Esworthy RS, Doroshow JH, Grasberger H, Donko A, Leto TL, Gao Q, Shen B. Deficiency in Duox2 activity alleviates ileitis in GPx1- and GPx2-knockout mice without affecting apoptosis incidence in the crypt epithelium. Redox Biol 2016; 11:144-156. [PMID: 27930931 PMCID: PMC5148781 DOI: 10.1016/j.redox.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
Mice deficient in glutathione peroxidase (GPx)-1 and -2 (GPx1-/-GPx2-/- double knockout or DKO mice) develop very-early-onset (VEO) ileocolitis, suggesting that lack of defense against reactive oxygen species (ROS) renders susceptibility to intestinal inflammation. Two members of ROS-generating NADPH oxidase family, NOX1 and DUOX2, are highly inducible in the intestinal epithelium. Previously, we reported that Nox1 deficiency ameliorated the pathology in DKO mice (Nox1-TKO). The role of Duox2 in ileocolitis of the DKO mice is evaluated here in Duoxa-TKO mice by breeding DKO mice with Duoxa-/- mice (Duoxa-TKO), which do not have Duox2 activity. Similar to Nox1-TKO mice, Duoxa-TKO mice no longer have growth retardation, shortened intestine, exfoliation of crypt epithelium, crypt abscesses and depletion of goblet cells manifested in DKO mice by 35 days of age. Unlike Nox1-TKO mice, Duoxa-TKO mice still have rampant crypt apoptosis, elevated proliferation, partial loss of Paneth cells and diminished crypt density. Treating DKO mice with NOX inhibitors (di-2-thienyliodonium/DTI and thioridazine/THZ) and an antioxidant (mitoquinone/MitoQ) significantly reduced gut pathology. Furthermore, in the inflamed human colon, DUOX protein expression is highly elevated in the apical, lateral and perinuclear membrane along the whole length of gland. Taken together, we conclude that exfoliation of crypt epithelium, but not crypt apoptosis, is a major contributor to inflammation. Both Nox1 and Duox2 induce exfoliation of crypt epithelium, but only Nox1 induces apoptosis. NOX1 and DUOX2 may be potential therapeutic targets for treating ileocolitis in human patients suffering inflammatory bowel disease (IBD). Glutathione peroxidase-1/2-double knockout mice have very-early-onset ileocolitis. By deletion of Nox1 gene expression, the triple knockout mice are without pathology. By deletion of Duoxa, the mice have milder pathology without crypt exfoliation. The Duoxa triple knock mice still have rampant crypt epithelium apoptosis. Several antioxidants and NOX inhibitors reduce gut inflammation in the DKO mice. DKO mice are an excellent animal model for preclinical testing of NOX inhibitors.
Collapse
Affiliation(s)
- Fong-Fong Chu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China; Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1450 E Duarte Road, Duarte, CA 91010, USA.
| | - R Steven Esworthy
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - James H Doroshow
- Center for Cancer Research and Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Helmut Grasberger
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Agnes Donko
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Thomas L Leto
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
69
|
Abstract
The cause of Crohn’s disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients’ inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
70
|
Abstract
The cause of Crohn's disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients' inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
71
|
Abstract
A number of mechanisms ensure that the intestine is protected from pathogens and also against our own intestinal microbiota. The outermost of these is the secreted mucus, which entraps bacteria and prevents their translocation into the tissue. Mucus contains many immunomodulatory molecules and is largely produced by the goblet cells. These cells are highly responsive to the signals they receive from the immune system and are also able to deliver antigens from the lumen to dendritic cells in the lamina propria. In this Review, we will give a basic overview of mucus, mucins and goblet cells, and explain how each of these contributes to immune regulation in the intestine.
Collapse
Affiliation(s)
- Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
72
|
Yang HT, Yang MC, Sun JJ, Shi XZ, Zhao XF, Wang JX. Dual oxidases participate in the regulation of intestinal microbiotic homeostasis in the kuruma shrimp Marsupenaeus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:153-163. [PMID: 26845611 DOI: 10.1016/j.dci.2016.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
The metazoan gut lumen harbors numerous microbial communities. Tolerance for high bacterial counts and maintenance of microbiota homeostasis remain insufficiently studied. In this study, we identified a novel dual oxidase (MjDUOX2) involved in reactive oxygen species (ROS) production in the kuruma shrimp Marsupenaeus japonicus. MjDUOX2 is a transmembrane protein with an N-signal peptide region (19 aa) and a peroxidase homology domain (PHD, 554 aa) in the extracellular region; seven transmembrane regions; and three EF (calcium-binding region) domains (110 aa), a FAD-binding domain (104 aa), and a NAD-binding domain (156 aa) in the intracellular region. The novel MjDUOX2 exhibits a relatively low similarity (26.84% identity) to a previously reported DUOX in the shrimp (designated as MjDUOX1). The mRNA of MjDUOXs was widely distributed in the hemocytes, heart, hepatopancreas, gills, stomach, and intestine. Oral infection of the shrimp with pathogenic bacteria upregulated the mRNA expression of MjDUOXs and increased the ROS level in the intestine. However, High ROS level could inhibit the expression of MjDUOXs in shrimp after Vibrio anguillarum infection. Knockdown of MjDUOXs by RNA interference (RNAi) decreased the ROS level, increased the bacterial count in the intestine, and decreased the survival rate of the MjDUOX-RNAi shrimp infected with V. anguillarum. These results suggest that MjDUOXs play an important role for microbiota homeostasis in intestine of shrimp.
Collapse
Affiliation(s)
- Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
73
|
Sommer F, Bäckhed F. Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology. Bioessays 2016; 38:455-64. [PMID: 26990415 DOI: 10.1002/bies.201500151] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology.
Collapse
Affiliation(s)
- Felix Sommer
- Department of Molecular and Clinical Medicine, The Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
- Institute for Clinical Molecular Biology, University of Kiel, Kiel, Germany
- Center of Molecular Life Sciences, University of Kiel, Kiel, Germany
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, The Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
74
|
Mesquita I, Varela P, Belinha A, Gaifem J, Laforge M, Vergnes B, Estaquier J, Silvestre R. Exploring NAD+ metabolism in host-pathogen interactions. Cell Mol Life Sci 2016; 73:1225-36. [PMID: 26718485 PMCID: PMC11108276 DOI: 10.1007/s00018-015-2119-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/27/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is a vital molecule found in all living cells. NAD(+) intracellular levels are dictated by its synthesis, using the de novo and/or salvage pathway, and through its catabolic use as co-enzyme or co-substrate. The regulation of NAD(+) metabolism has proven to be an adequate drug target for several diseases, including cancer, neurodegenerative or inflammatory diseases. Increasing interest has been given to NAD(+) metabolism during innate and adaptive immune responses suggesting that its modulation could also be relevant during host-pathogen interactions. While the maintenance of NAD(+) homeostatic levels assures an adequate environment for host cell survival and proliferation, fluctuations in NAD(+) or biosynthetic precursors bioavailability have been described during host-pathogen interactions, which will interfere with pathogen persistence or clearance. Here, we review the double-edged sword of NAD(+) metabolism during host-pathogen interactions emphasizing its potential for treatment of infectious diseases.
Collapse
Affiliation(s)
- Inês Mesquita
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Varela
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Belinha
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Gaifem
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Baptiste Vergnes
- MIVEGEC (IRD 224-CNRS 5290-Université Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, 75006, Paris, France.
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, G1V 4G2, Canada.
| | - Ricardo Silvestre
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
75
|
Grunddal KV, Ratner CF, Svendsen B, Sommer F, Engelstoft MS, Madsen AN, Pedersen J, Nøhr MK, Egerod KL, Nawrocki AR, Kowalski T, Howard AD, Poulsen SS, Offermanns S, Bäckhed F, Holst JJ, Holst B, Schwartz TW. Neurotensin Is Coexpressed, Coreleased, and Acts Together With GLP-1 and PYY in Enteroendocrine Control of Metabolism. Endocrinology 2016; 157:176-94. [PMID: 26469136 DOI: 10.1210/en.2015-1600] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 2 gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are well known to be coexpressed, costored, and released together to coact in the control of key metabolic target organs. However, recently, it became clear that several other gut hormones can be coexpressed in the intestinal-specific lineage of enteroendocrine cells. Here, we focus on the anatomical and functional consequences of the coexpression of neurotensin with GLP-1 and PYY in the distal small intestine. Fluorescence-activated cell sorting analysis, laser capture, and triple staining demonstrated that GLP-1 cells in the crypts become increasingly multihormonal, ie, coexpressing PYY and neurotensin as they move up the villus. Proglucagon promoter and pertussis toxin receptor-driven cell ablation and reappearance studies indicated that although all the cells die, the GLP-1 cells reappear more quickly than PYY- and neurotensin-positive cells. High-resolution confocal fluorescence microscopy demonstrated that neurotensin is stored in secretory granules distinct from GLP-1 and PYY storing granules. Nevertheless, the 3 peptides were cosecreted from both perfused small intestines and colonic crypt cultures in response to a series of metabolite, neuropeptide, and hormonal stimuli. Importantly, neurotensin acts synergistically, ie, more than additively together with GLP-1 and PYY to decrease palatable food intake and inhibit gastric emptying, but affects glucose homeostasis in a more complex manner. Thus, neurotensin is a major gut hormone deeply integrated with GLP-1 and PYY, which should be taken into account when exploiting the enteroendocrine regulation of metabolism pharmacologically.
Collapse
Affiliation(s)
- Kaare V Grunddal
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Cecilia F Ratner
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Berit Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Felix Sommer
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Maja S Engelstoft
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andreas N Madsen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jens Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mark K Nøhr
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andrea R Nawrocki
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Timothy Kowalski
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andrew D Howard
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Steen Seier Poulsen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Stefan Offermanns
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Birgitte Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
76
|
Grasberger H, Gao J, Nagao-Kitamoto H, Kitamoto S, Zhang M, Kamada N, Eaton KA, El-Zaatari M, Shreiner AB, Merchant JL, Owyang C, Kao JY. Increased Expression of DUOX2 Is an Epithelial Response to Mucosal Dysbiosis Required for Immune Homeostasis in Mouse Intestine. Gastroenterology 2015; 149:1849-59. [PMID: 26261005 PMCID: PMC4663159 DOI: 10.1053/j.gastro.2015.07.062] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Dual oxidase 2 (DUOX2), a hydrogen-peroxide generator at the apical membrane of gastrointestinal epithelia, is up-regulated in patients with inflammatory bowel disease (IBD) before the onset of inflammation, but little is known about its effects. We investigated the role of DUOX2 in maintaining mucosal immune homeostasis in mice. METHODS We analyzed the regulation of DUOX2 in intestinal tissues of germ-free vs conventional mice, mice given antibiotics or colonized with only segmented filamentous bacteria, mice associated with human microbiota, and mice with deficiencies in interleukin (IL) 23 and IL22 signaling. We performed 16S ribosomal RNA gene quantitative polymerase chain reaction of intestinal mucosa and mesenteric lymph nodes of Duoxa(-/-) mice that lack functional DUOX enzymes. Genes differentially expressed in Duoxa(-/-) mice compared with co-housed wild-type littermates were correlated with gene expression changes in early-stage IBD using gene set enrichment analysis. RESULTS Colonization of mice with segmented filamentous bacteria up-regulated intestinal expression of DUOX2. DUOX2 regulated redox signaling within mucosa-associated microbes and restricted bacterial access to lymphatic tissues of the mice, thereby reducing microbiota-induced immune responses. Induction of Duox2 transcription by microbial colonization did not require the mucosal cytokines IL17 or IL22, although IL22 increased expression of Duox2. Dysbiotic, but not healthy human microbiota, activated a DUOX2 response in recipient germ-free mice that corresponded to abnormal colonization of the mucosa with distinct populations of microbes. In Duoxa(-/-) mice, abnormalities in ileal mucosal gene expression at homeostasis recapitulated those in patients with mucosal dysbiosis. CONCLUSIONS DUOX2 regulates interactions between the intestinal microbiota and the mucosa to maintain immune homeostasis in mice. Mucosal dysbiosis leads to increased expression of DUOX2, which might be a marker of perturbed mucosal homeostasis in patients with early-stage IBD.
Collapse
Affiliation(s)
- Helmut Grasberger
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Jun Gao
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hiroko Nagao-Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Min Zhang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kathryn A Eaton
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mohamad El-Zaatari
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Andrew B Shreiner
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juanita L Merchant
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - John Y Kao
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
77
|
The Viral Mimetic Polyinosinic:Polycytidylic Acid Alters the Growth Characteristics of Small Intestinal and Colonic Crypt Cultures. PLoS One 2015; 10:e0138531. [PMID: 26414184 PMCID: PMC4587363 DOI: 10.1371/journal.pone.0138531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/01/2015] [Indexed: 12/19/2022] Open
Abstract
Background & Aims The intestinal epithelium is the first line of defense against enteric pathogens. We investigated the response of small intestinal and colonic crypt cultures to a panel of toll-like receptor ligands to assess the impact of microbial pattern recognition on epithelial growth. Methods Primary murine jejunal enteroids and colonoids were cultured with lipopeptide Pam3CSK4, lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (Poly I:C) for 4 to 6 days. Surface area, budding and survival were assessed. Proliferation and numbers of lysozyme positive cells were quantified by flow cytometry. Gene expression was assessed by Nanostring and qRT-PCR. Results Exposure to Pam3CSK4 and LPS had minimal impact on either enteroids or colonoids. In contrast, Poly I:C increased the surface area of enteroids, while colonoids demonstrated decreased budding. Survival was decreased by Poly I:C in enteroids but not in colonoids. Both enteroids and colonoids exhibited upregulated gene expression of chemokines, but these were increased in magnitude in enteroids. Decreases in gene expression associated with epithelial differentiation and lysozyme positive cells were more apparent in enteroids than in colonoids. Baseline gene expression between enteroids and colonoids differed markedly in levels of stem cell and inflammatory markers. The changes in morphology induced by Poly I:C were mediated by the toll-like receptor adaptor molecule 1 (Ticam1) in enteroids but not in colonoids. Conclusions Poly I:C alters the molecular program of epithelial cells and shifts from absorption and digestion towards defense and inflammation. Diversity of responses to microbial patterns in enteroids and colonoids may underlie differences in susceptibility to infection along the intestinal tract.
Collapse
|
78
|
Sommer F, Nookaew I, Sommer N, Fogelstrand P, Bäckhed F. Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biol 2015; 16:62. [PMID: 25887251 PMCID: PMC4404278 DOI: 10.1186/s13059-015-0614-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/16/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The intestinal epithelium separates us from the microbiota but also interacts with it and thus affects host immune status and physiology. Previous studies investigated microbiota-induced responses in the gut using intact tissues or unfractionated epithelial cells, thereby limiting conclusions about regional differences in the epithelium. Here, we sought to investigate microbiota-induced transcriptional responses in specific fractions of intestinal epithelial cells. To this end, we used microarray analysis of laser capture microdissection (LCM)-harvested ileal and colonic tip and crypt epithelial fractions from germ-free and conventionally raised mice and from mice during the time course of colonization. RESULTS We found that about 10% of the host's transcriptome was microbially regulated, mainly including genes annotated with functions in immunity, cell proliferation, and metabolism. The microbial impact on host gene expression was highly site specific, as epithelial responses to the microbiota differed between cell fractions. Specific transcriptional regulators were enriched in each fraction. In general, the gut microbiota induced a more rapid response in the colon than in the ileum. CONCLUSIONS Our study indicates that the microbiota engage different regulatory networks to alter host gene expression in a particular niche. Understanding host-microbiota interactions on a cellular level may facilitate signaling pathways that contribute to health and disease and thus provide new therapeutic strategies.
Collapse
Affiliation(s)
- Felix Sommer
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, 41345, Sweden.
| | - Intawat Nookaew
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden. .,Present Address: Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Nina Sommer
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, 41345, Sweden.
| | - Per Fogelstrand
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, 41345, Sweden.
| | - Fredrik Bäckhed
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, 41345, Sweden. .,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
79
|
Rakoff-Nahoum S, Kong Y, Kleinstein SH, Subramanian S, Ahern PP, Gordon JI, Medzhitov R. Analysis of gene-environment interactions in postnatal development of the mammalian intestine. Proc Natl Acad Sci U S A 2015; 112:1929-36. [PMID: 25691701 PMCID: PMC4343130 DOI: 10.1073/pnas.1424886112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unlike mammalian embryogenesis, which takes place in the relatively predictable and stable environment of the uterus, postnatal development can be affected by a multitude of highly variable environmental factors, including diet, exposure to noxious substances, and microorganisms. Microbial colonization of the intestine is thought to play a particularly important role in postnatal development of the gastrointestinal, metabolic, and immune systems. Major changes in environmental exposure occur right after birth, upon weaning, and during pubertal maturation into adulthood. These transitions include dramatic changes in intestinal contents and require appropriate adaptations to meet changes in functional demands. Here, we attempt to both characterize and provide mechanistic insights into postnatal intestinal ontogeny. We investigated changes in global intestinal gene expression through postnatal developmental transitions. We report profound alterations in small and large intestinal transcriptional programs that accompany both weaning and puberty in WT mice. Using myeloid differentiation factor 88 (MyD88)/TIR-domain-containing adapter-inducing interferon-β (TRIF) double knockout littermates, we define the role of toll-like receptors (TLRs) and interleukin (IL)-1 receptor family member signaling in postnatal gene expression programs and select ontogeny-specific phenotypes, such as vascular and smooth muscle development and neonatal epithelial and mast cell homeostasis. Metaanalysis of the effect of the microbiota on intestinal gene expression allowed for mechanistic classification of developmentally regulated genes by TLR/IL-1R (TIR) signaling and/or indigenous microbes. We find that practically every aspect of intestinal physiology is affected by postnatal transitions. Developmental timing, microbial colonization, and TIR signaling seem to play distinct and specific roles in regulation of gene-expression programs throughout postnatal development.
Collapse
Affiliation(s)
- Seth Rakoff-Nahoum
- Howard Hughes Medical Institute, Department of Immunobiology, Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W. M. Keck Foundation Biotechnology Resource Laboratory, and
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics and Department of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Sathish Subramanian
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108; and
| | - Philip P Ahern
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108; and
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108; and
| | | |
Collapse
|
80
|
Hörmann N, Brandão I, Jäckel S, Ens N, Lillich M, Walter U, Reinhardt C. Gut microbial colonization orchestrates TLR2 expression, signaling and epithelial proliferation in the small intestinal mucosa. PLoS One 2014; 9:e113080. [PMID: 25396415 PMCID: PMC4232598 DOI: 10.1371/journal.pone.0113080] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/19/2014] [Indexed: 01/19/2023] Open
Abstract
The gut microbiota is an environmental factor that determines renewal of the intestinal epithelium and remodeling of the intestinal mucosa. At present, it is not resolved if components of the gut microbiota can augment innate immune sensing in the intestinal epithelium via the up-regulation of Toll-like receptors (TLRs). Here, we report that colonization of germ-free (GF) Swiss Webster mice with a complex gut microbiota augments expression of TLR2. The microbiota-dependent up-regulation of components of the TLR2 signaling complex could be reversed by a 7 day broad-spectrum antibiotic treatment. TLR2 downstream signaling via the mitogen-activated protein kinase (ERK1/2) and protein-kinase B (AKT) induced by bacterial TLR2 agonists resulted in increased proliferation of the small intestinal epithelial cell line MODE-K. Mice that were colonized from birth with a normal gut microbiota (conventionally-raised; CONV-R) showed signs of increased small intestinal renewal and apoptosis compared with GF controls as indicated by elevated mRNA levels of the proliferation markers Ki67 and Cyclin D1, elevated transcripts of the apoptosis marker Caspase-3 and increased numbers of TUNEL-positive cells per intestinal villus structure. In accordance, TLR2-deficient mice showed reduced proliferation and reduced apoptosis. Our findings suggest that a tuned proliferation response of epithelial cells following microbial colonization could aid to protect the host from its microbial colonizers and increase intestinal surface area.
Collapse
Affiliation(s)
- Nives Hörmann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Junior Group Translational Research in Thrombosis and Hemostasis, Mainz, Germany
| | - Inês Brandão
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Junior Group Translational Research in Thrombosis and Hemostasis, Mainz, Germany
| | - Sven Jäckel
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Junior Group Translational Research in Thrombosis and Hemostasis, Mainz, Germany
| | - Nelli Ens
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Junior Group Translational Research in Thrombosis and Hemostasis, Mainz, Germany
| | - Maren Lillich
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Junior Group Translational Research in Thrombosis and Hemostasis, Mainz, Germany
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Junior Group Translational Research in Thrombosis and Hemostasis, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Junior Group Translational Research in Thrombosis and Hemostasis, Mainz, Germany
- * E-mail:
| |
Collapse
|