51
|
Chen YC, Oses-Prieto JA, Pope LE, Burlingame AL, Dixon SJ, Renslo AR. Reactivity-Based Probe of the Iron(II)-Dependent Interactome Identifies New Cellular Modulators of Ferroptosis. J Am Chem Soc 2020; 142:19085-19093. [PMID: 33124817 DOI: 10.1021/jacs.0c06709] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ferroptosis is an iron-dependent form of cell death resulting from loss or inhibition of cellular machinery that protects from the accumulation of lipid hydroperoxides. Ferroptosis likely serves a tumor suppressing function in normal cellular homeostasis, but certain cancers exploit and become highly dependent on specific nodes of the pathway, presumably to survive under conditions of increased oxidative stress and elevated labile ferrous iron levels. Here we introduce Ferroptosis Inducing Peroxide for Chemoproteomics-1 (FIPC-1), a reactivity-based probe that couples Fenton-type reaction with ferrous iron to subsequent protein labeling via concomitant carbon-centered radical generation. We show that FIPC-1 induces ferroptosis in susceptible cell types and labels cellular proteins in an iron-dependent fashion. Use of FIPC-1 in a quantitative chemoproteomics workflow reproducibly enriched protein targets in the thioredoxin, oxidoreductase, and protein disulfide isomerase (PDI) families, among others. In further interrogating the saturable targets of FIPC-1, we identified the PDI family member P4HB and the functionally uncharacterized protein NT5DC2, a member of the haloacid dehalogenase (HAD) superfamily, as previously unrecognized modulators of ferroptosis. Knockdown of these target genes sensitized cells to known ferroptosis inducers, while PACMA31, a previously reported inhibitor of P4HB, directly induced ferroptosis and was highly synergistic with erastin. Overall, this study introduces a new reactivity-based probe of the ferrous iron-dependent interactome and uncovers new targets for the therapeutic modulation of ferroptosis.
Collapse
Affiliation(s)
- Ying-Chu Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Lauren E Pope
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, California 94305, United States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Scott J Dixon
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, California 94305, United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
52
|
Stojak M, Milczarek M, Kurpinska A, Suraj-Prazmowska J, Kaczara P, Wojnar-Lason K, Banach J, Stachowicz-Suhs M, Rossowska J, Kalviņš I, Wietrzyk J, Chlopicki S. Protein Disulphide Isomerase A1 Is Involved in the Regulation of Breast Cancer Cell Adhesion and Transmigration via Lung Microvascular Endothelial Cells. Cancers (Basel) 2020; 12:cancers12102850. [PMID: 33023153 PMCID: PMC7601413 DOI: 10.3390/cancers12102850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer cell cross-talk with the host endothelium plays a crucial role in metastasis, but the underlying mechanisms are still not fully understood. We studied the involvement of protein disulphide isomerase A1 (PDIA1) in human breast cancer cell (MCF-7 and MDA-MB-231) adhesion and transendothelial migration. For comparison, the role of PDIA1 in proliferation, migration, cell cycle and apoptosis was also assessed. Pharmacological inhibitor, bepristat 2a and PDIA1 silencing were used to inhibit PDIA1. Inhibition of PDIA1 by bepristat 2a markedly decreased the adhesion of breast cancer cells to collagen type I, fibronectin and human lung microvascular endothelial cells. Transendothelial migration of breast cancer cells across the endothelial monolayer was also inhibited by bepristat 2a, an effect not associated with changes in ICAM-1 expression or changes in cellular bioenergetics. The silencing of PDIA1 produced less pronounced anti-adhesive effects. However, inhibiting extracellular free thiols by non-penetrating blocker p-chloromercuribenzene sulphonate substantially inhibited adhesion. Using a proteomic approach, we identified that β1 and α2 integrins were the most abundant among all integrins in breast cancer cells as well as in lung microvascular endothelial cells, suggesting that integrins could represent a target for PDIA1. In conclusion, extracellular PDIA1 plays a major role in regulating the adhesion of cancer cells and their transendothelial migration, in addition to regulating cell cycle and caspase 3/7 activation by intracellular PDIA1. PDIA1-dependent regulation of cancer-endothelial cell interactions involves disulphide exchange and most likely integrin activation but is not mediated by the regulation of ICAM-1 expression or changes in cellular bioenergetics in breast cancer or endothelial cells.
Collapse
Affiliation(s)
- Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Joanna Rossowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
| | - Ivars Kalviņš
- Laboratory of Carbofunctional Compounds, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia;
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.M.); (J.B.); (M.S.-S.); (J.R.)
- Correspondence: (J.W.); (S.C.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland; (M.S.); (A.K.); (J.S.-P.); (P.K.); (K.W.-L.)
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland
- Correspondence: (J.W.); (S.C.)
| |
Collapse
|
53
|
Shergalis A, Xue D, Gharbia FZ, Driks H, Shrestha B, Tanweer A, Cromer K, Ljungman M, Neamati N. Characterization of Aminobenzylphenols as Protein Disulfide Isomerase Inhibitors in Glioblastoma Cell Lines. J Med Chem 2020; 63:10263-10286. [PMID: 32830969 PMCID: PMC8103808 DOI: 10.1021/acs.jmedchem.0c00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Disulfide bond formation is a critical post-translational modification of newly synthesized polypeptides in the oxidizing environment of the endoplasmic reticulum and is mediated by protein disulfide isomerase (PDIA1). In this study, we report a series of α-aminobenzylphenol analogues as potent PDI inhibitors. The lead compound, AS15, is a covalent nanomolar inhibitor of PDI, and the combination of AS15 analogues with glutathione synthesis inhibitor buthionine sulfoximine (BSO) leads to synergistic cell growth inhibition. Using nascent RNA sequencing, we show that an AS15 analogue triggers the unfolded protein response in glioblastoma cells. A BODIPY-labeled analogue binds proteins including PDIA1, suggesting that the compounds are cell-permeable and reach the intended target. Taken together, these findings demonstrate an extensive biochemical characterization of a novel series of highly potent reactive small molecules that covalently bind to PDI.
Collapse
Affiliation(s)
- Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Xue
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fatma Z. Gharbia
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hannah Driks
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Binita Shrestha
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amina Tanweer
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kirin Cromer
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
54
|
Greve E, Lindeman SV, Scartelli C, Lin L, Flaumenhaft R, Dockendorff C. Route exploration and synthesis of the reported pyridone-based PDI inhibitor STK076545. Org Biomol Chem 2020; 18:6665-6681. [PMID: 32812971 DOI: 10.1039/d0ob01205j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The enzyme protein disulfide isomerase (PDI) is essential for the correct folding of proteins and the activation of certain cell surface receptors, and is a promising target for the treatment of cancer and thrombotic conditions. A previous high-throughput screen identified the commercial compound STK076545 as a promising PDI inhibitor. To confirm its activity and support further biological studies, a resynthesis was pursued of the reported β-keto-amide with an N-alkylated pyridone at the α-position. Numerous conventional approaches were complicated by undesired fragmentations or rearrangements. However, a successful 5-step synthetic route was achieved using an aldol reaction with an α-pyridone allyl ester as a key step. An X-ray crystal structure of the final compound confirmed that the reported structure of STK076545 was achieved, however its lack of PDI activity and inconsistent spectral data suggest that the commercial structure was misassigned.
Collapse
Affiliation(s)
- Eric Greve
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.
| | | | | | | | | | | |
Collapse
|
55
|
Tanaka LY, Oliveira PVS, Laurindo FRM. Peri/Epicellular Thiol Oxidoreductases as Mediators of Extracellular Redox Signaling. Antioxid Redox Signal 2020; 33:280-307. [PMID: 31910038 DOI: 10.1089/ars.2019.8012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Significance: Supracellular redox networks regulating cell-extracellular matrix (ECM) and organ system architecture merge with structural and functional (catalytic or allosteric) properties of disulfide bonds. This review addresses emerging evidence that exported thiol oxidoreductases (TORs), such as thioredoxin, protein disulfide isomerases (PDIs), quiescin sulfhydryl oxidases (QSOX)1, and peroxiredoxins, composing a peri/epicellular (pec)TOR pool, mediate relevant signaling. pecTOR functions depend mainly on kinetic and spatial regulation of thiol-disulfide exchange reactions governed by redox potentials, which are modulated by exported intracellular low-molecular-weight thiols, together conferring signal specificity. Recent Advances: pecTOR redox-modulates several targets including integrins, ECM proteins, surface molecules, and plasma components, although clear-cut documentation of direct effects is lacking in many cases. TOR catalytic pathways, displaying common patterns, culminate in substrate thiol reduction, oxidation, or isomerization. Peroxiredoxins act as redox/peroxide sensors, contrary to PDIs, which are likely substrate-targeted redox modulators. Emerging evidence suggests important pecTOR roles in patho(physio)logical processes, including blood coagulation, vascular remodeling, mechanosensing, endothelial function, immune responses, and inflammation. Critical Issues: Effects of pecPDIs supporting thrombosis/platelet activation have been well documented and reached the clinical arena. Roles of pecPDIA1 in vascular remodeling/mechanosensing are also emerging. Extracellular thioredoxin and pecPDIs redox-regulate immunoinflammation. Routes of TOR externalization remain elusive and appear to involve Golgi-independent routes. pecTORs are particularly accessible drug targets. Future Directions: Further understanding mechanisms of thiol redox reactions and developing assays for assessing pecTOR redox activities remain important research avenues. Also, addressing pecTORs as disease markers and achieving more efficient/specific drugs for pecTOR modulation are major perspectives for diagnostic/therapeutic improvements.
Collapse
Affiliation(s)
- Leonardo Y Tanaka
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Percillia V S Oliveira
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
56
|
Khan AB, Gupta N, Rashid Q, Ahmad I, Bano S, Siddiqui U, Abid M, Jairajpuri MA. Quercetin 3, 3′, 4′, 5, 7-O- pentasulfate (QPS): A novel activator of protein disulfide isomerase. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
57
|
Madero-Ayala PA, Mares-Alejandre RE, Ramos-Ibarra MA. A molecular dynamics approach on the Y393C variant of protein disulfide isomerase A1. Chem Biol Drug Des 2020; 96:1341-1347. [PMID: 32352225 DOI: 10.1111/cbdd.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 11/28/2022]
Abstract
Human protein disulfide isomerase A1 (PDIA1) shows both catalytic (i.e., oxidoreductase) and non-catalytic (i.e., chaperone) activities and plays a crucial role in the oxidative folding of proteins within the endoplasmic reticulum. PDIA1 dysregulation is a common trait in numerous pathophysiological conditions, including neurodegenerative disorders and cancerous diseases. The 1178A>G mutation of the human PDIA1-encoding gene is a non-synonymous single nucleotide polymorphism detected in patients with Cole-Carpenter syndrome type 1 (CSS1), a particularly rare bone disease. In vitro studies showed that the encoded variant (PDIA1 Y393C) exhibits limited oxidoreductase activity. To gain knowledge on the structure-function relationship, we undertook a molecular dynamics (MD) approach to examine the structural stability of PDIA1 Y393C. Results showed that significant conformational changes are the structural consequence of the amino acid substitution Tyr>Cys at position 393 of the PDIA1 protein. This structure-based study provides further knowledge about the molecular origin of CCS1.
Collapse
Affiliation(s)
- Pablo A Madero-Ayala
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| | - Rosa E Mares-Alejandre
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| | - Marco A Ramos-Ibarra
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| |
Collapse
|
58
|
Shergalis AG, Hu S, Bankhead A, Neamati N. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacol Ther 2020; 210:107525. [PMID: 32201313 DOI: 10.1016/j.pharmthera.2020.107525] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Protein folding in the endoplasmic reticulum is an oxidative process that relies on protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase 1 (ERO1). Over 30% of proteins require the chaperone PDI to promote disulfide bond formation. PDI oxidizes cysteines in nascent polypeptides to form disulfide bonds and can also reduce and isomerize disulfide bonds. ERO1 recycles reduced PDI family member PDIA1 using a FAD cofactor to transfer electrons to oxygen. ERO1 dysfunction critically affects several diseases states. Both ERO1 and PDIA1 are overexpressed in cancers and implicated in diabetes and neurodegenerative diseases. Cancer-associated ERO1 promotes cell migration and invasion. Furthermore, the ERO1-PDIA1 interaction is critical for epithelial-to-mesenchymal transition. Co-expression analysis of ERO1A gene expression in cancer patients demonstrated that ERO1A is significantly upregulated in lung adenocarcinoma (LUAD), glioblastoma and low-grade glioma (GBMLGG), pancreatic ductal adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP) cancers. ERO1Α knockdown gene signature correlates with knockdown of cancer signaling proteins including IGF1R, supporting the search for novel, selective ERO1 inhibitors for the treatment of cancer. In this review, we explore the functions of ERO1 and PDI to support inhibition of this interaction in cancer and other diseases.
Collapse
Affiliation(s)
- Andrea G Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States
| | - Shuai Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States.
| |
Collapse
|
59
|
Protein disulfide isomerase in cardiovascular disease. Exp Mol Med 2020; 52:390-399. [PMID: 32203104 PMCID: PMC7156431 DOI: 10.1038/s12276-020-0401-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 01/07/2023] Open
Abstract
Protein disulfide isomerase (PDI) participates in the pathogenesis of numerous diseases. Increasing evidence indicates that intravascular cell-derived PDI plays an important role in the initiation and progression of cardiovascular diseases, including thrombosis and vascular inflammation. Recent studies with PDI conditional knockout mice have advanced our understanding of the function of cell-specific PDI in disease processes. Furthermore, the identification and development of novel small-molecule PDI inhibitors has led into a new era of PDI research that transitioned from the bench to bedside. In this review, we will discuss recent findings on the regulatory role of PDI in cardiovascular disease. Efforts to untangle the functions of a large family of enzymes could lead researchers to new therapies for diverse cardiovascular diseases. Members of the protein disulfide isomerase (PDI) family chemically modify other proteins in ways that can alter both their structure and biological activity. Jaehyung Cho of the University of Illinois at Chicago, USA and coworkers have reviewed numerous studies linking PDI with cardiovascular diseases, including thrombosis, heart attack, vascular inflammation, and stroke. The authors also report progress in developing small-molecule PDI inhibitors that could yield the treatment for these conditions.
Collapse
|
60
|
Yu J, Li T, Liu Y, Wang X, Zhang J, Wang X, Shi G, Lou J, Wang L, Wang CC, Wang L. Phosphorylation switches protein disulfide isomerase activity to maintain proteostasis and attenuate ER stress. EMBO J 2020; 39:e103841. [PMID: 32149426 DOI: 10.15252/embj.2019103841] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulated unfolded proteins in the endoplasmic reticulum (ER) trigger the unfolded protein response (UPR) to increase ER protein folding capacity. ER proteostasis and UPR signaling need to be regulated in a precise and timely manner. Here, we identify phosphorylation of protein disulfide isomerase (PDI), one of the most abundant and critical folding catalysts in the ER, as an early event during ER stress. The secretory pathway kinase Fam20C phosphorylates Ser357 of PDI and responds rapidly to various ER stressors. Phosphorylation of Ser357 induces an open conformation of PDI and turns it from a "foldase" into a "holdase", which is critical for preventing protein misfolding in the ER. Phosphorylated PDI also binds to the lumenal domain of IRE1α, a major UPR signal transducer, and attenuates excessive IRE1α activity. Importantly, PDI-S359A knock-in mice display enhanced IRE1α activation and liver damage under acute ER stress. We conclude that the Fam20C-PDI axis constitutes a post-translational response to maintain ER proteostasis and plays a vital role in protecting against ER stress-induced cell death.
Collapse
Affiliation(s)
- Jiaojiao Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianchao Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi'e Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guizhi Shi
- Laboratory Animal Center of Institute of Biophysics, Chinese Academy of Sciences, Aviation General Hospital of Beijing, University of Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
61
|
Gaspar RS, da Silva SA, Stapleton J, Fontelles JLDL, Sousa HR, Chagas VT, Alsufyani S, Trostchansky A, Gibbins JM, Paes AMDA. Myricetin, the Main Flavonoid in Syzygium cumini Leaf, Is a Novel Inhibitor of Platelet Thiol Isomerases PDI and ERp5. Front Pharmacol 2020; 10:1678. [PMID: 32116678 PMCID: PMC7011086 DOI: 10.3389/fphar.2019.01678] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Flavonoids have been characterized as a prominent class of compounds to treat thrombotic diseases through the inhibition of thiol isomerases. Syzygium cumini is a flavonoid-rich medicinal plant that contains myricetin and gallic acid. Little is known about the potential antiplatelet properties of S. cumini and its constituent flavonoids. OBJECTIVE To evaluate the antiplatelet effects and mechanism of action of a polyphenol-rich extract (PESc) from S. cumini leaf and its most prevalent polyphenols, myricetin and gallic acid. METHODS PESc, myricetin, and gallic acid were incubated with platelet-rich plasma and washed platelets to assess platelet aggregation and activation. In vitro platelet adhesion and thrombus formation as well as in vivo bleeding time were performed. Finally, myricetin was incubated with recombinant thiol isomerases to assess its potential to bind and inhibit these, while molecular docking studies predicted possible binding sites. RESULTS PESc decreased platelet activation and aggregation induced by different agonists. Myricetin exerted potent antiplatelet effects, whereas gallic acid did not. Myricetin reduced the ability of platelets to spread on collagen, form thrombi in vitro without affecting hemostasis in vivo. Fluorescence quenching studies suggested myricetin binds to different thiol isomerases with similar affinity, despite inhibiting only protein disulfide isomerase (PDI) and ERp5 reductase activities. Finally, molecular docking studies suggested myricetin formed non-covalent bonds with PDI and ERp5. CONCLUSIONS PESc and its most abundant flavonoid myricetin strongly inhibit platelet function. Additionally, myricetin is a novel inhibitor of ERp5 and PDI, unveiling a new therapeutic perspective for the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Samira Abdalla da Silva
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Jennifer Stapleton
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - João Lucas de Lima Fontelles
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Hiran Reis Sousa
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Vinicyus Teles Chagas
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Shuruq Alsufyani
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
62
|
Abstract
Thiol isomerases are oxidoreductases that mediate disulphide bond formation in nascent proteins of the endoplasmic reticulum to ensure their structural integrity. In addition to its role in protein folding, thiol isomerases can modify allosteric disulphide bonds in both intracellular and extracellular proteins, thereby controlling protein function. The process of disulphide bond formation and cleavage is strictly regulated and responsive to redox conditions. Understanding disulphide bond regulation under different redox environments is critical to understanding physiological and pathological processes related to disulphide bond chemistry. Here we describe protocols for the measurement of disulphide bond modulation by thiol isomerases, including reductase and denitrosylase assays. These methods can be applied to study recombinant thiol isomerases and thiol isomerases in cellular settings.
Collapse
Affiliation(s)
- Roelof H Bekendam
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
63
|
Robinson RM, Reyes L, Duncan RM, Bian H, Strobel ED, Hyman SL, Reitz AB, Dolloff NG. Tuning isoform selectivity and bortezomib sensitivity with a new class of alkenyl indene PDI inhibitor. Eur J Med Chem 2019; 186:111906. [PMID: 31787362 DOI: 10.1016/j.ejmech.2019.111906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Protein disulfide isomerase (PDI, PDIA1) is an emerging therapeutic target in oncology. PDI inhibitors have demonstrated a unique propensity to selectively induce apoptosis in cancer cells and overcome resistance to existing therapies, although drug candidates have not yet progressed to the stage of clinical development. We recently reported the discovery of lead indene compound E64FC26 as a potent pan-PDI inhibitor that enhances the cytotoxic effects of proteasome inhibitors in panels of Multiple Myeloma (MM) cells and MM mouse models. An extensive medicinal chemistry program has led to the generation of a diverse library of indene-containing molecules with varying degrees of proteasome inhibitor potentiating activity. These compounds were generated by a novel nucleophilic aromatic ring cyclization and dehydration reaction from the precursor ketones. The results provide detailed structure activity relationships (SAR) around this indene pharmacophore and show a high degree of correlation between potency of PDI inhibition and bortezomib (Btz) potentiation in MM cells. Inhibition of PDI leads to ER and oxidative stress characterized by the accumulation of misfolded poly-ubiquitinated proteins and the induction of UPR biomarkers ATF4, CHOP, and Nrf2. This work characterizes the synthesis and SAR of a new chemical class and further validates PDI as a therapeutic target in MM as a single agent and in combination with proteasome inhibitors.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Leticia Reyes
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ravyn M Duncan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Haiyan Bian
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Eric D Strobel
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Sarah L Hyman
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Nathan G Dolloff
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
64
|
Guyette J, Cherubin P, Serrano A, Taylor M, Abedin F, O'Donnell M, Burress H, Tatulian SA, Teter K. Quercetin-3-Rutinoside Blocks the Disassembly of Cholera Toxin by Protein Disulfide Isomerase. Toxins (Basel) 2019; 11:E458. [PMID: 31382673 PMCID: PMC6722528 DOI: 10.3390/toxins11080458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Protein disulfide isomerase (PDI) is mainly located in the endoplasmic reticulum (ER) but is also secreted into the bloodstream where its oxidoreductase activity is involved with thrombus formation. Quercetin-3-rutinoside (Q3R) blocks this activity, but its inhibitory mechanism against PDI is not fully understood. Here, we examined the potential inhibitory effect of Q3R on another process that requires PDI: disassembly of the multimeric cholera toxin (CT). In the ER, PDI physically displaces the reduced CTA1 subunit from its non-covalent assembly in the CT holotoxin. This is followed by CTA1 dislocation from the ER to the cytosol where the toxin interacts with its G protein target for a cytopathic effect. Q3R blocked the conformational change in PDI that accompanies its binding to CTA1, which, in turn, prevented PDI from displacing CTA1 from its holotoxin and generated a toxin-resistant phenotype. Other steps of the CT intoxication process were not affected by Q3R, including PDI binding to CTA1 and CT reduction by PDI. Additional experiments with the B chain of ricin toxin found that Q3R could also disrupt PDI function through the loss of substrate binding. Q3R can thus inhibit PDI function through distinct mechanisms in a substrate-dependent manner.
Collapse
Affiliation(s)
- Jessica Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Patrick Cherubin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Albert Serrano
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Faisal Abedin
- Department of Physics, College of Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Morgan O'Donnell
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Helen Burress
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Suren A Tatulian
- Department of Physics, College of Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
65
|
Popielarski M, Ponamarczuk H, Stasiak M, Watała C, Świątkowska M. Modifications of disulfide bonds in breast cancer cell migration and invasiveness. Am J Cancer Res 2019; 9:1554-1582. [PMID: 31497343 PMCID: PMC6727000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023] Open
Abstract
Cancer metastasis involves the adhesion of cancer cells to the endothelium. This process can be mediated by integrins which are surface receptors responsible for interactions with ECM proteins. Integrins β1 and αVβ3 represent factors are involved in cancer progression and metastasis. Activation of integrins can be promoted by thiol-disulfide exchanges initiated by Protein Disulfide Isomerase (PDI). The purpose of this study was to prove the involvement of disulfide rearrangements in the molecules of integrins in the course of cancer cell adhesion and migration through the endothelium. We present the evidence which proves that highly metastatic MDA-MB-231 breast cancer cell lines adhere to endothelial cells are more effective than non-invasive MCF-10A and MCF-7 cell lines and that the attachment of MDA-MB-231 to the endothelium can be attenuated either by the agents blocking free thiol groups (DTNB, cystamine or PCMBS) or by PDI inhibitors (Q3Rut, 16F16 or PACMA-31). Furthermore, we prove that the transendothelial migration of MDA-MB-231 cells and contraction of collagen can be blocked by thiol blockers or PDI inhibitors and that these factors affect exposition of free thiols on integrin molecules.
Collapse
Affiliation(s)
- Marcin Popielarski
- Department of Cytobiology and Proteomics, Medical University of Lodz6/8 Mazowiecka St., 92-215 Lodz, Poland
| | - Halszka Ponamarczuk
- Department of Cytobiology and Proteomics, Medical University of Lodz6/8 Mazowiecka St., 92-215 Lodz, Poland
| | - Marta Stasiak
- Department of Cytobiology and Proteomics, Medical University of Lodz6/8 Mazowiecka St., 92-215 Lodz, Poland
| | - Cezary Watała
- Department of Haemostatic Disorders, Medical University of Lodz6/8 Mazowiecka St., 92-215 Lodz, Poland
| | - Maria Świątkowska
- Department of Cytobiology and Proteomics, Medical University of Lodz6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW The present review provides an overview of recent findings on new members of the protein disulfide isomerase (PDI) family required for thrombosis. RECENT FINDINGS Twenty years ago PDI was shown to mediate platelet aggregation, and 10 years ago PDI was shown to support thrombosis in vivo. Subsequently, other members of this endoplasmic reticulum family of enzymes, ERp57 and ERp5, were demonstrated to support thrombosis. A fourth member, ERp72, was recently shown to be required for platelet accumulation and fibrin deposition in vivo. None of these enzymes can individually support these processes. Moreover, aggregation of platelets deficient in a specific PDI is only recovered by the PDI that is missing. This implies that each PDI has a distinct role in activation of the αIIbβ3 fibrinogen receptor and platelet aggregation. Free thiols can be labeled in both subunits of αIIbβ3, suggesting cysteine-based reactions are involved in relaying conformational changes from the cytoplasmic tails to the integrin headpiece of this integrin. SUMMARY Multiple members of the PDI family support platelet function, and hemostasis and thrombosis with distinct roles in these processes. The individual cysteine targets of each enzyme and how these enzymes are integrated into a network that supports hemostasis and thrombosis remain to be elucidated.
Collapse
|
67
|
Xu S, Liu Y, Yang K, Wang H, Shergalis A, Kyani A, Bankhead A, Tamura S, Yang S, Wang X, Wang CC, Rehemtulla A, Ljungman M, Neamati N. Inhibition of protein disulfide isomerase in glioblastoma causes marked downregulation of DNA repair and DNA damage response genes. Theranostics 2019; 9:2282-2298. [PMID: 31149044 PMCID: PMC6531306 DOI: 10.7150/thno.30621] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
Aberrant overexpression of endoplasmic reticulum (ER)-resident oxidoreductase protein disulfide isomerase (PDI) plays an important role in cancer progression. In this study, we demonstrate that PDI promotes glioblastoma (GBM) cell growth and describe a class of allosteric PDI inhibitors that are selective for PDI over other PDI family members. Methods: We performed a phenotypic screening triage campaign of over 20,000 diverse compounds to identify PDI inhibitors cytotoxic to cancer cells. From this screen, BAP2 emerged as a lead compound, and we assessed BAP2-PDI interactions with gel filtration, thiol-competition assays, and site-directed mutagenesis studies. To assess selectivity, we compared BAP2 activity across several PDI family members in the PDI reductase assay. Finally, we performed in vivo studies with a mouse xenograft model of GBM combining BAP2 and the standard of care (temozolomide and radiation), and identified affected gene pathways with nascent RNA sequencing (Bru-seq). Results: BAP2 and related analogs are novel PDI inhibitors that selectively inhibit PDIA1 and PDIp. Though BAP2 contains a weak Michael acceptor, interaction with PDI relies on Histidine 256 in the b' domain of PDI, suggesting allosteric binding. Furthermore, both in vitro and in vivo, BAP2 reduces cell and tumor growth. BAP2 alters the transcription of genes involved in the unfolded protein response, ER stress, apoptosis and DNA repair response. Conclusion: These results indicate that BAP2 has anti-tumor activity and the suppressive effect on DNA repair gene expression warrants combination with DNA damaging agents to treat GBM.
Collapse
Affiliation(s)
- Shili Xu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yajing Liu
- Radiation Oncology, Rogel Cancer Center, Center for RNA, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Hanxiao Wang
- Radiation Oncology, Rogel Cancer Center, Center for RNA, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anahita Kyani
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shuzo Tamura
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suhui Yang
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chih-chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Alnawaz Rehemtulla
- Radiation Oncology, Rogel Cancer Center, Center for RNA, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Radiation Oncology, Rogel Cancer Center, Center for RNA, University of Michigan, Ann Arbor, MI 48109, USA
- Environmental Health Sciences, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
68
|
Yang S, Shergalis A, Lu D, Kyani A, Liu Z, Ljungman M, Neamati N. Design, Synthesis, and Biological Evaluation of Novel Allosteric Protein Disulfide Isomerase Inhibitors. J Med Chem 2019; 62:3447-3474. [PMID: 30759340 DOI: 10.1021/acs.jmedchem.8b01951] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein disulfide isomerase (PDI) is responsible for nascent protein folding in the endoplasmic reticulum (ER) and is critical for glioblastoma survival. To improve the potency of lead PDI inhibitor BAP2 (( E)-3-(3-(4-hydroxyphenyl)-3-oxoprop-1-en-1-yl)benzonitrile), we designed and synthesized 67 analogues. We determined that PDI inhibition relied on the A ring hydroxyl group of the chalcone scaffold and cLogP increase in the sulfonamide chain improved potency. Docking studies revealed that BAP2 and analogues bind to His256 in the b' domain of PDI, and mutation of His256 to Ala abolishes BAP2 analogue activity. BAP2 and optimized analogue 59 have modest thiol reactivity; however, we propose that PDI inhibition by BAP2 analogues depends on the b' domain. Importantly, analogues inhibit glioblastoma cell growth, induce ER stress, increase expression of G2M checkpoint proteins, and reduce expression of DNA repair proteins. Cumulatively, our results support inhibition of PDI as a novel strategy to treat glioblastoma.
Collapse
Affiliation(s)
- Suhui Yang
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| | - Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| | - Dan Lu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| | - Anahita Kyani
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| | - Ziwei Liu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| | - Mats Ljungman
- Department of Radiation Oncology Rogel Cancer Center , University of Michigan Medical School and Rogel Cancer Center, School of Public Health , Ann Arbor , Michigan 48109 , United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
69
|
Zwicker JI, Schlechter BL, Stopa JD, Liebman HA, Aggarwal A, Puligandla M, Caughey T, Bauer KA, Kuemmerle N, Wong E, Wun T, McLaughlin M, Hidalgo M, Neuberg D, Furie B, Flaumenhaft R. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight 2019; 4:125851. [PMID: 30652973 PMCID: PMC6478409 DOI: 10.1172/jci.insight.125851] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Protein disulfide isomerase (PDI) is a thiol isomerase secreted by vascular cells that is required for thrombus formation. Quercetin flavonoids inhibit PDI activity and block platelet accumulation and fibrin generation at the site of a vascular injury in mouse models, but the clinical effect of targeting extracellular PDI in humans has not been studied. METHODS We conducted a multicenter phase II trial of sequential dosing cohorts to evaluate the efficacy of targeting PDI with isoquercetin to reduce hypercoagulability in cancer patients at high risk for thrombosis. Patients received isoquercetin at 500 mg (cohort A, n = 28) or 1000 mg (cohort B, n = 29) daily for 56 days, with laboratory assays performed at baseline and the end of the study, along with bilateral lower extremity compression ultrasound. The primary efficacy endpoint was a reduction in D-dimer, and the primary clinical endpoint included pulmonary embolism or proximal deep vein thrombosis. RESULTS The administration of 1000 mg isoquercetin decreased D-dimer plasma concentrations by a median of -21.9% (P = 0.0002). There were no primary VTE events or major hemorrhages observed in either cohort. Isoquercetin increased PDI inhibitory activity in plasma (37.0% in cohort A, n = 25, P < 0.001; 73.3% in cohort B, n = 22, P < 0.001, respectively). Corroborating the antithrombotic efficacy, we also observed a significant decrease in platelet-dependent thrombin generation (cohort A median decrease -31.1%, P = 0.007; cohort B median decrease -57.2%, P = 0.004) and circulating soluble P selectin at the 1000 mg isoquercetin dose (median decrease -57.9%, P < 0.0001). CONCLUSIONS Isoquercetin targets extracellular PDI and improves markers of coagulation in advanced cancer patients. TRIAL REGISTRATION Clinicaltrials.gov NCT02195232. FUNDING Quercegen Pharmaceuticals; National Heart, Lung, and Blood Institute (NHLBI; U54HL112302, R35HL135775, and T32HL007917); and NHLBI Consortium Linking Oncology and Thrombosis (U01HL143365).
Collapse
Affiliation(s)
- Jeffrey I. Zwicker
- Division of Hemostasis and Thrombosis and
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin L. Schlechter
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Howard A. Liebman
- Jane Anne Nohl Division of Hematology, University of Southern California, Los Angeles, California, USA
| | | | - Maneka Puligandla
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Kenneth A. Bauer
- Division of Hemostasis and Thrombosis and
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nancy Kuemmerle
- White River Junction Veterans Affairs Medical Center, White River Junction, Vermont, USA
| | - Ellice Wong
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Ted Wun
- Division of Hematology Oncology, University of California Davis School of Medicine, VA Northern California Health Care System, Sacramento, California, USA
| | | | - Manuel Hidalgo
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
70
|
Oliveira PVSD, Garcia-Rosa S, Sachetto ATA, Moretti AIS, Debbas V, De Bessa TC, Silva NT, Pereira ADC, Martins-de-Souza D, Santoro ML, Laurindo FRM. Protein disulfide isomerase plasma levels in healthy humans reveal proteomic signatures involved in contrasting endothelial phenotypes. Redox Biol 2019; 22:101142. [PMID: 30870787 PMCID: PMC6430080 DOI: 10.1016/j.redox.2019.101142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
Redox-related plasma proteins are candidate reporters of protein signatures associated with endothelial structure/function. Thiol-proteins from protein disulfide isomerase (PDI) family are unexplored in this context. Here, we investigate the occurrence and physiological significance of a circulating pool of PDI in healthy humans. We validated an assay for detecting PDI in plasma of healthy individuals. Our results indicate high inter-individual (median = 330 pg/mL) but low intra-individual variability over time and repeated measurements. Remarkably, plasma PDI levels could discriminate between distinct plasma proteome signatures, with PDI-rich (>median) plasma differentially expressing proteins related to cell differentiation, protein processing, housekeeping functions and others, while PDI-poor plasma differentially displayed proteins associated with coagulation, inflammatory responses and immunoactivation. Platelet function was similar among individuals with PDI-rich vs. PDI-poor plasma. Remarkably, such protein signatures closely correlated with endothelial function and phenotype, since cultured endothelial cells incubated with PDI-poor or PDI-rich plasma recapitulated gene expression and secretome patterns in line with their corresponding plasma signatures. Furthermore, such signatures translated into functional responses, with PDI-poor plasma promoting impairment of endothelial adhesion to fibronectin and a disturbed pattern of wound-associated migration and recovery area. Patients with cardiovascular events had lower PDI levels vs. healthy individuals. This is the first study describing PDI levels as reporters of specific plasma proteome signatures directly promoting contrasting endothelial phenotypes and functional responses.
Collapse
Affiliation(s)
- Percíllia Victória Santos de Oliveira
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sheila Garcia-Rosa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Sao Paulo, Brazil
| | | | - Ana Iochabel Soares Moretti
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Victor Debbas
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiphany Coralie De Bessa
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nathalia Tenguan Silva
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alexandre da Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Sao Paulo, Brazil
| | | | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
71
|
Wang L, Zhou J, Wang L, Wang CC, Essex DW. The b' domain of protein disulfide isomerase cooperates with the a and a' domains to functionally interact with platelets. J Thromb Haemost 2019; 17:371-382. [PMID: 30566278 PMCID: PMC6368866 DOI: 10.1111/jth.14366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 01/12/2023]
Abstract
Essentials Protein disulfide isomerase (PDI) interacts with the αIIbβ3 integrin on platelets We generated PDI domain fragments and full-length PDI containing point mutations PDI interacts with αIIbβ3 through the b' domain, with the a and a' domains contributing This is the first report demonstrating PDI binding to a native protein on intact cells SUMMARY: Background Protein disulfide isomerase (PDI) is an oxidoreductase consisting of four domains arranged in the order a-b-b'-a' with an x-linker between the b' and a' domains. PDI binds to αIIb β3 integrin on activated platelets, and potentiates activation of this integrin through the C-terminal CGHC active-site motif. How PDI binds to platelet αIIb β3 is unknown. Objective and methods We used PDI domain fragments and full-length PDI containing point mutations to study inhibition of Alexa 488-labeled PDI binding to thrombin-activated platelets. The effect of the PDI variants on platelet aggregation was tested. Results Only PDI fragments containing the b' domain bound to activated platelets. A double mutant of the b' domain had decreased binding, confirming the essential role of the b' domain. Addition of mutations in the a and a' domains further decreased binding, suggesting that these domains contribute to the interaction of PDI with platelets. The ability of the b' domain to interact directly with αIIb β3 was demonstrated with surface plasmon resonance, with contributions from the a and a' domains. The abb'x PDI fragment that binds to platelets but lacks the critical C-terminal active site inhibited platelet aggregation and in vivo thrombosis. Moreover, site mutations in the a, b' and a' domains that resulted in partial binding to platelets partially recovered aggregation of PDI-null platelets. PDI mutants that did not bind showed no recovery. Conclusion PDI functionally interacts with αIIb β3 on platelets through the substrate-binding b' domain, with the a and a' domains contributing to efficient binding.
Collapse
Affiliation(s)
- Lu Wang
- Sol Sherry Thrombosis Research Center, Division of Hematology, Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140
| | - Junsong Zhou
- Sol Sherry Thrombosis Research Center, Division of Hematology, Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140
- The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chih-chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - David W. Essex
- Sol Sherry Thrombosis Research Center, Division of Hematology, Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
72
|
Chiu J, Hogg PJ. Allosteric disulfides: Sophisticated molecular structures enabling flexible protein regulation. J Biol Chem 2019; 294:2949-2960. [PMID: 30635401 DOI: 10.1074/jbc.rev118.005604] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein disulfide bonds link pairs of cysteine residues in polypeptide chains. Many of these bonds serve a purely structural or energetic role, but a growing subset of cleavable disulfide bonds has been shown to control the function of the mature protein in which they reside. These allosteric disulfides and the factors that cleave these bonds are being identified across biological systems and life forms and have been shown to control hemostasis, the immune response, and viral infection in mammals. The discovery of these functional disulfides and a rationale for their facile nature has been aided by the emergence of a conformational signature for allosteric bonds. This post-translational modification mostly occurs extracellularly, making these chemical events prime drug targets. Indeed, a membrane-impermeable inhibitor of one of the cleaving factors is currently being trialed as an antithrombotic agent in cancer patients. Allosteric disulfides are firmly established as a sophisticated means by which a protein's shape and function can be altered; however, the full scope of this biological regulation will not be realized without new tools and techniques to study this regulation and innovative ways of targeting it.
Collapse
Affiliation(s)
- Joyce Chiu
- From the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Philip J Hogg
- From the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
73
|
Abstract
Endoplasmic reticulum protein 5 (ERp5) is a member of the thiol isomerase family of enzymes, whose prototype member is protein disulphide isomerase (PDI). Thiol isomerases catalyze reduction/oxidation (redox) reactions which lead to the cleavage, formation, or isomerization of disulphide bonds in protein substrates. Thiol isomerase reactions on protein disulphides are important for the correct folding of proteins in the endoplasmic reticulum and for the regulation of various protein functions in the extracellular space. Apart from the disulphide reactions, thiol isomerases assist protein folding by chaperone activity.The disulphide redox activity of ERp5 can be measured with functional assays involving artificial or natural substrates containing disulphide bonds. Herein we describe step-by-step assays of ERp5 reductase, isomerization, and de-nitrosylation activity. Disulphide reductase assays include insulin or di-eosin-GSSG as substrates whereas the isomerization assay includes RNase as substrate. The reduction of natural substrates, i.e., integrin αIIbβ3, can be detected using maleimide labels of free thiols and Western blotting. The biotin switch assay is used to measure the de-nitrosylation of S-nitrosylated substrates. These assays can measure the activity of purified ERp5 protein but can also be applied for the measurement of thiol isomerase activity in cellular samples.
Collapse
Affiliation(s)
- Alexander Dupuy
- Haematology Research Group, Heart Research Institute, Newtown, NSW, Australia
- Cardiovascular Division, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Freda Passam
- Haematology Research Group, Heart Research Institute, Newtown, NSW, Australia.
- Cardiovascular Division, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
74
|
Abstract
The redox potential of a protein disulphide bond is one of the most important factors for determining the role of a disulphide bond. Disulphide bonds can have a stabilizing role for the structure of a protein or they can play a functional role which can regulate protein bioactivity. Determining the redox potential of disulphides can help distinguish the functional from the structural disulphide bonds. In this chapter, two methods for determining the redox potential of a protein disulphide bond are described. The first method uses maleimide-biotin labeling of free cysteine thiols and western blot densitometry to determine the fraction of reduced disulphide bond under various redox-buffering conditions. The second method uses differential cysteine labeling and tandem mass spectrometry to determine the redox potential.
Collapse
Affiliation(s)
- Kristina M Cook
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
75
|
Bekendam RH, Iyu D, Passam F, Stopa JD, De Ceunynck K, Muse O, Bendapudi PK, Garnier CL, Gopal S, Crescence L, Chiu J, Furie B, Panicot-Dubois L, Hogg PJ, Dubois C, Flaumenhaft R. Protein disulfide isomerase regulation by nitric oxide maintains vascular quiescence and controls thrombus formation. J Thromb Haemost 2018; 16:2322-2335. [PMID: 30207066 PMCID: PMC6374154 DOI: 10.1111/jth.14291] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Essentials Nitric oxide synthesis controls protein disulfide isomerase (PDI) function. Nitric oxide (NO) modulation of PDI controls endothelial thrombogenicity. S-nitrosylated PDI inhibits platelet function and thrombosis. Nitric oxide maintains vascular quiescence in part through inhibition of PDI. SUMMARY: Background Protein disulfide isomerase (PDI) plays an essential role in thrombus formation, and PDI inhibition is being evaluated clinically as a novel anticoagulant strategy. However, little is known about the regulation of PDI in the vasculature. Thiols within the catalytic motif of PDI are essential for its role in thrombosis. These same thiols bind nitric oxide (NO), which is a potent regulator of vessel function. To determine whether regulation of PDI represents a mechanism by which NO controls vascular quiescence, we evaluated the effect of NO on PDI function in endothelial cells and platelets, and thrombus formation in vivo. Aim To assess the effect of S-nitrosylation on the regulation of PDI and other thiol isomerases in the vasculature. Methods and results The role of endogenous NO in PDI activity was evaluated by incubating endothelium with an NO scavenger, which resulted in exposure of free thiols, increased thiol isomerase activity, and enhanced thrombin generation on the cell membrane. Conversely, exposure of endothelium to NO+ carriers or elevation of endogenous NO levels by induction of NO synthesis resulted in S-nitrosylation of PDI and decreased surface thiol reductase activity. S-nitrosylation of platelet PDI inhibited its reductase activity, and S-nitrosylated PDI interfered with platelet aggregation, α-granule release, and thrombin generation on platelets. S-nitrosylated PDI also blocked laser-induced thrombus formation when infused into mice. S-nitrosylated ERp5 and ERp57 were found to have similar inhibitory activity. Conclusions These studies identify NO as a critical regulator of vascular PDI, and show that regulation of PDI function is an important mechanism by which NO maintains vascular quiescence.
Collapse
Affiliation(s)
- Roelof H. Bekendam
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - David Iyu
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
- Departamento de Fisiología. Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Murcia, Spain
| | - Freda Passam
- St George Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Jack D. Stopa
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Karen De Ceunynck
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Oluwatoyosi Muse
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Pavan K. Bendapudi
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Céline L. Garnier
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Srila Gopal
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Lydie Crescence
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
| | - Joyce Chiu
- The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney New South Wales, Australia
| | - Bruce Furie
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Laurence Panicot-Dubois
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
| | - Philip J. Hogg
- The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney New South Wales, Australia
| | - Christophe Dubois
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
| | - Robert Flaumenhaft
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| |
Collapse
|
76
|
Stopa JD, Zwicker JI. The intersection of protein disulfide isomerase and cancer associated thrombosis. Thromb Res 2018; 164 Suppl 1:S130-S135. [PMID: 29703471 DOI: 10.1016/j.thromres.2018.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 01/08/2023]
Abstract
The mechanisms underlying the hypercoagulability of cancer are complex and include the upregulation coagulation factors or procoagulant proteins, shedding of microparticles, and direct activation of vascular cells. Protein disulfide isomerase (PDI) is a thiol isomerase secreted from activated platelets and endothelial cells and plays a critical role in both platelet aggregation and fibrin generation. A number of potential intravascular targets of PDI have been identified including cell surface receptors (e.g. β-integrins and glycoprotein Ib), receptor ligands (e.g. fibrinogen and von Willebrand factor), serine proteases (e.g. cathepsin G and kallekrein-14), and coagulation factors (e.g. factor XI and factor V). Recent clinical studies demonstrated that a small molecule inhibitor of PDI, isoquercetin, decreases platelet-dependent thrombin generation and PDI activity in plasma following oral administration. This review explores the mechanistic overlap between the molecular drivers of cancer associated thrombosis and the potential roles PDI plays in mediating thrombosis. These molecular insights provide rationale for clinical trials targeting PDI to prevent thrombosis in cancer patients.
Collapse
Affiliation(s)
- Jack D Stopa
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jeffrey I Zwicker
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
77
|
Inhibitors of the protein disulfide isomerase family for the treatment of multiple myeloma. Leukemia 2018; 33:1011-1022. [PMID: 30315229 DOI: 10.1038/s41375-018-0263-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 11/08/2022]
Abstract
Multiple Myeloma (MM) is highly sensitive to disruptions in cellular protein homeostasis. Proteasome inhibitors (PIs) are initially effective in the treatment of MM, although cures are not achievable and the emergence of resistance limits the durability of responses. New therapies are needed for refractory patients, and those that combat resistance to standard of care agents would be particularly valuable. Screening of multiple chemical libraries for PI re-sensitizing compounds identified E61 as a potent enhancer of multiple PIs and MM specific activity. Using a tandem approach of click chemistry and peptide mass fingerprinting, we identified multiple protein disulfide isomerase (PDI) family members as the primary molecular targets of E61. PDIs mediate oxidative protein folding, and E61 treatment induced robust ER and oxidative stress responses as well as the accumulation of ubiquitinylated proteins. A chemical optimization program led to a new structural class of indene (exemplified by lead E64FC26), which are highly potent pan-style inhibitors of PDIs. In mice with MM, E64FC26 improved survival and enhanced the activity of bortezomib without any adverse effects. This work demonstrates the potential of E64FC26 as an early drug candidate and the strategy of targeting multiple PDI isoforms for the treatment of refractory MM and beyond.
Collapse
|
78
|
Nitazoxanide inhibits paramyxovirus replication by targeting the Fusion protein folding: role of glycoprotein-specific thiol oxidoreductase ERp57. Sci Rep 2018; 8:10425. [PMID: 29992955 PMCID: PMC6041319 DOI: 10.1038/s41598-018-28172-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/18/2018] [Indexed: 01/22/2023] Open
Abstract
Paramyxoviridae, a large family of enveloped viruses harboring a nonsegmented negative-sense RNA genome, include important human pathogens as measles, mumps, respiratory syncytial virus (RSV), parainfluenza viruses, and henipaviruses, which cause some of the deadliest emerging zoonoses. There is no effective antiviral chemotherapy for most of these pathogens. Paramyxoviruses evolved a sophisticated membrane-fusion machine consisting of receptor-binding proteins and the fusion F-protein, critical for virus infectivity. Herein we identify the antiprotozoal/antimicrobial nitazoxanide as a potential anti-paramyxovirus drug targeting the F-protein. We show that nitazoxanide and its circulating-metabolite tizoxanide act at post-entry level by provoking Sendai virus and RSV F-protein aggregate formation, halting F-trafficking to the host plasma membrane. F-protein folding depends on ER-resident glycoprotein-specific thiol-oxidoreductase ERp57 for correct disulfide-bond architecture. We found that tizoxanide behaves as an ERp57 non-competitive inhibitor; the putative drug binding-site was located at the ERp57-b/b′ non-catalytic domains interface. ERp57-silencing mimicked thiazolide-induced F-protein alterations, suggesting an important role of this foldase in thiazolides anti-paramyxovirus activity. Nitazoxanide is used in the clinic as a safe and effective antiprotozoal/antimicrobial drug; its antiviral activity was shown in patients infected with hepatitis-C virus, rotavirus and influenza viruses. Our results now suggest that nitazoxanide may be effective also against paramyxovirus infection.
Collapse
|
79
|
Passam F, Chiu J, Ju L, Pijning A, Jahan Z, Mor-Cohen R, Yeheskel A, Kolšek K, Thärichen L, Aponte-Santamaría C, Gräter F, Hogg PJ. Mechano-redox control of integrin de-adhesion. eLife 2018; 7:e34843. [PMID: 29932420 PMCID: PMC6054529 DOI: 10.7554/elife.34843] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
How proteins harness mechanical force to control function is a significant biological question. Here we describe a human cell surface receptor that couples ligand binding and force to trigger a chemical event which controls the adhesive properties of the receptor. Our studies of the secreted platelet oxidoreductase, ERp5, have revealed that it mediates release of fibrinogen from activated platelet αIIbβ3 integrin. Protein chemical studies show that ligand binding to extended αIIbβ3 integrin renders the βI-domain Cys177-Cys184 disulfide bond cleavable by ERp5. Fluid shear and force spectroscopy assays indicate that disulfide cleavage is enhanced by mechanical force. Cell adhesion assays and molecular dynamics simulations demonstrate that cleavage of the disulfide induces long-range allosteric effects within the βI-domain, mainly affecting the metal-binding sites, that results in release of fibrinogen. This coupling of ligand binding, force and redox events to control cell adhesion may be employed to regulate other protein-protein interactions.
Collapse
Affiliation(s)
| | - Joyce Chiu
- The Centenary InstituteNewtownAustralia
- National Health and Medical Research Council Clinical Trials CentreUniversity of SydneySydneyAustralia
| | - Lining Ju
- Heart Research Institute and Charles Perkins CentreUniversity of SydneySydneyAustralia
| | | | | | - Ronit Mor-Cohen
- The Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Adva Yeheskel
- The Bioinformatics Unit, George S. Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| | - Katra Kolšek
- Heidelberg Institute of Theoretical StudiesHeidelbergGermany
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityHeidelbergGermany
| | - Lena Thärichen
- Heidelberg Institute of Theoretical StudiesHeidelbergGermany
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityHeidelbergGermany
| | - Camilo Aponte-Santamaría
- Heidelberg Institute of Theoretical StudiesHeidelbergGermany
- Max Planck Tandem Group in Computational BiophysicsUniversity of Los AndesBogotáColombia
| | - Frauke Gräter
- Heidelberg Institute of Theoretical StudiesHeidelbergGermany
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityHeidelbergGermany
| | - Philip J Hogg
- The Centenary InstituteNewtownAustralia
- National Health and Medical Research Council Clinical Trials CentreUniversity of SydneySydneyAustralia
| |
Collapse
|
80
|
Miao YT, Deng Y, Jia HK, Liu YD, Hou ML. Proteomic analysis of watery saliva secreted by white-backed planthopper, Sogatella furcifera. PLoS One 2018; 13:e0193831. [PMID: 29727440 PMCID: PMC5935387 DOI: 10.1371/journal.pone.0193831] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/20/2018] [Indexed: 12/03/2022] Open
Abstract
The white-backed planthopper, Sogatella furcifera, is a phloem sap feeder that secretes watery and gelling saliva during feeding. In this study, we identified the major proteins in watery saliva of S. furcifera by shotgun LC-MS/MS analysis combined with transcriptomic analysis. A total of 161 proteins were identified, which were divided into 8 function categories, including enzymes, transporter, calcium ion binding protein, salivary sheath protein, cytoskeleton protein, DNA-, RNA-, and protein-binding or regulating proteins, other non-enzyme proteins and unknown proteins. Gene expression pattern of 11 secretory proteins were analyzed by real time quantitative-PCR. We detected the mucin-like protein, which had a unique expression level in salivary gland, most likely to be a candidate effector involved in regulation of plant defense. This study identified the watery saliva component of S. furcifera and it provided a list of proteins which may play a role in interaction between S. furcifera and rice.
Collapse
Affiliation(s)
- Yu-Tong Miao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| | - Yao Deng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| | - Hao-Kang Jia
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| | - Yu-Di Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
- * E-mail:
| | - Mao-Lin Hou
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| |
Collapse
|
81
|
Zuo H, Chen L, Kong M, Yang Y, Lü P, Qiu L, Wang Q, Ma S, Chen K. The toxic effect of sodium fluoride on Spodoptera frugiperda 9 cells and differential protein analysis following NaF treatment of cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:313-323. [PMID: 29414353 DOI: 10.1016/j.envpol.2018.01.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Accumulation of excess fluoride has a destructive effect on the environment, endangering human health, affecting organism growth and development, and leading to damage to the biological chain, thereby affecting ecological environment balance. In recent years, numerous studies focused on the molecular mechanisms associated with fluoride toxicity; however, fluoride-toxicity mechanisms in insect cells remain unclear. This study explored the toxic impact of sodium fluoride (NaF) on Spodoptera frugiperda 9 (Sf9) insect cells. High concentrations of NaF (10-4 M, 10-3 M and 10-2 M) resulted in cell enlargement, cell membrane blurring and breakage, and release of cellular contents. Dose-response curves indicated that NaF-specific inhibition rates on Sf9-cell activity increased along with increases in NaF concentration, with a half-inhibitory concentration (IC50) for NaF of 5.919 × 10-3 M at 72 h. Compared with controls, the percentages of early and late apoptotic and necrotic cells clearly increased based on observed increases in NaF concentrations. Two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to detect differentially expressed proteins in Sf9 cells treated with IC50 NaF, identifying 17 proteins, seven of which were upregulated and 10 downregulated. These results demonstrated that Sf9 cells showed signs of NaF-mediated toxicity through alterations in cell morphology, apoptosis rates, and protein expression.
Collapse
Affiliation(s)
- Huan Zuo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
82
|
Grosche J, Meißner J, Eble JA. More than a syllable in fib-ROS-is: The role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol Aspects Med 2018; 63:30-46. [PMID: 29596842 DOI: 10.1016/j.mam.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
Fibrosis is characterized by excess deposition of extracellular matrix (ECM). However, the ECM changes during fibrosis not only quantitatively but also qualitatively. Thus, the composition is altered as the expression of various ECM proteins changes. Moreover, also posttranslational modifications, secretion, deposition and crosslinkage as well as the proteolytic degradation of ECM components run differently during fibrosis. As several of these processes involve redox reactions and some of them are even redox-regulated, reactive oxygen species (ROS) influence fibrotic diseases. Redox regulation of the ECM has not been studied intensively, although evidences exist that the alteration of the ECM, including the redox-relevant processes of its formation and degradation, may be of key importance not only as a cause but also as a consequence of fibrotic diseases. Myofibroblasts, which have differentiated from fibroblasts during fibrosis, produce most of the ECM components and in return obtain important environmental cues of the ECM, including their redox-dependent fibrotic alterations. Thus, myofibroblast differentiation and fibrotic changes of the ECM are interdependent processes and linked with each other via cell-matrix contacts, which are mediated by integrins and other cell adhesion molecules. These cell-matrix contacts are also regulated by redox processes and by ROS. However, most of the redox-catalyzing enzymes are localized within cells. Little is known about redox-regulating enzymes, especially the ones that control the formation and cleavage of redox-sensitive disulfide bridges within the extracellular space. They are also important players in the redox-regulative crosstalk between ECM and cells during fibrosis.
Collapse
Affiliation(s)
- Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
83
|
Abstract
INTRODUCTION The protein disulfide isomerase (PDI) family of thiol isomerases are intracellular enzymes known to catalyze the oxidation, reduction and isomerization of disulfide bonds during protein synthesis in the endoplasmic reticulum. PDI and related members of the thiol isomerase family are known to localize extracellularly where they possess various functions. Among these, the role of PDI in the initiation of thrombus formation is best characterized. PDI is secreted within seconds from activated platelets and endothelial cells at the site of vascular injury and accumulates in the developing platelet-fibrin thrombus. Inhibition of PDI by antibodies or small molecule inhibitors blocks thrombus formation. Efforts are underway to identify extracellular substrates of PDI that participate in the network pathways linking thiol isomerases to thrombus formation. ERp57, ERp5 and ERp72 also play a role in initiation of thrombus formation but their specific extracellular substrates are unknown. Areas covered: The following review gives an overview of biochemistry of vascular thiol isomerases followed by a detailed description of their role in thrombosis and its clinical implications. Expert commentary: The thiol isomerase system, by controlling the initiation of thrombus formation, provides the regulatory switch by which the normal vasculature is protected under physiologic conditions from thrombi generation.
Collapse
Affiliation(s)
- Anish Sharda
- a Division of Hemostasis and Thrombosis , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA USA
| | - Bruce Furie
- a Division of Hemostasis and Thrombosis , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA USA
| |
Collapse
|
84
|
Caba C, Ali Khan H, Auld J, Ushioda R, Araki K, Nagata K, Mutus B. Conserved Residues Lys 57 and Lys 401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation. Front Mol Biosci 2018. [PMID: 29541639 PMCID: PMC5835755 DOI: 10.3389/fmolb.2018.00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.
Collapse
Affiliation(s)
- Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Hyder Ali Khan
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Janeen Auld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Ryo Ushioda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kazuhiro Nagata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Bulent Mutus
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
85
|
Holbrook L, Sandhar GK, Sasikumar P, Schenk MP, Stainer AR, Sahli KA, Flora GD, Bicknell AB, Gibbins JM. A humanized monoclonal antibody that inhibits platelet-surface ERp72 reveals a role for ERp72 in thrombosis. J Thromb Haemost 2018; 16:367-377. [PMID: 29052936 PMCID: PMC5838528 DOI: 10.1111/jth.13878] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 11/26/2022]
Abstract
Essentials ERp72 is a thiol isomerase enzyme. ERp72 levels increase at the platelet surface during platelet activation. We generated a humanized monoclonal antibody which blocks ERp72 enzyme activity (anti-ERp72). Anti-ERp72 inhibits platelet functional responses and thrombosis. SUMMARY Background Within the endoplasmic reticulum, thiol isomerase enzymes modulate the formation and rearrangement of disulfide bonds in newly folded proteins entering the secretory pathway to ensure correct protein folding. In addition to their intracellular importance, thiol isomerases have been recently identified to be present on the surface of a number of cell types where they are important for cell function. Several thiol isomerases are known to be present on the resting platelet surface, including PDI, ERp5 and ERp57, and levels are increased following platelet activation. Inhibition of the catalytic activity of these enzymes results in diminished platelet function and thrombosis. Aim We previously determined that ERp72 is present at the resting platelet surface and levels increase upon platelet activation; however, its functional role on the cell surface was unclear. We aimed to investigate the role of ERp72 in platelet function and its role in thrombosis. Methods Using HuCAL technology, fully humanized Fc-null anti-ERp72 antibodies were generated. Eleven antibodies were screened for their ability to inhibit ERp72 activity and the most potent inhibitory antibody (anti-ERp72) selected for further testing in platelet functional assays. Results and conclusions Anti-ERp72 inhibited platelet aggregation, granule secretion, calcium mobilisation and integrin activation, revealing an important role for extracellular ERp72 in the regulation of platelet activation. Consistent with this, infusion of anti-ERp72 into mice protected against thrombosis.
Collapse
Affiliation(s)
- L.‐M. Holbrook
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - G. K. Sandhar
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - P. Sasikumar
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - M. P. Schenk
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - A. R. Stainer
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - K. A. Sahli
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - G. D. Flora
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - A. B. Bicknell
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - J. M. Gibbins
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| |
Collapse
|
86
|
Butera D, Passam F, Ju L, Cook KM, Woon H, Aponte-Santamaría C, Gardiner E, Davis AK, Murphy DA, Bronowska A, Luken BM, Baldauf C, Jackson S, Andrews R, Gräter F, Hogg PJ. Autoregulation of von Willebrand factor function by a disulfide bond switch. SCIENCE ADVANCES 2018; 4:eaaq1477. [PMID: 29507883 PMCID: PMC5834005 DOI: 10.1126/sciadv.aaq1477] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/30/2018] [Indexed: 05/29/2023]
Abstract
Force-dependent binding of platelet glycoprotein Ib (GPIb) receptors to plasma von Willebrand factor (VWF) plays a key role in hemostasis and thrombosis. Previous studies have suggested that VWF activation requires force-induced exposure of the GPIb binding site in the A1 domain that is autoinhibited by the neighboring A2 domain. However, the biochemical basis of this "mechanopresentation" remains elusive. From a combination of protein chemical, biophysical, and functional studies, we find that the autoinhibition is controlled by the redox state of an unusual disulfide bond near the carboxyl terminus of the A2 domain that links adjacent cysteine residues to form an eight-membered ring. Only when the bond is cleaved does the A2 domain bind to the A1 domain and block platelet GPIb binding. Molecular dynamics simulations indicate that cleavage of the disulfide bond modifies the structure and molecular stresses of the A2 domain in a long-range allosteric manner, which provides a structural explanation for redox control of the autoinhibition. Significantly, the A2 disulfide bond is cleaved in ~75% of VWF subunits in healthy human donor plasma but in just ~25% of plasma VWF subunits from heart failure patients who have received extracorporeal membrane oxygenation support. This suggests that the majority of plasma VWF binding sites for platelet GPIb are autoinhibited in healthy donors but are mostly available in heart failure patients. These findings demonstrate that a disulfide bond switch regulates mechanopresentation of VWF.
Collapse
Affiliation(s)
- Diego Butera
- The Centenary Institute, Newtown, New South Wales, Australia
| | - Freda Passam
- St George Clinical School, Kogarah, New South Wales, Australia
| | - Lining Ju
- Heart Research Institute and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | | | - Heng Woon
- The Centenary Institute, Newtown, New South Wales, Australia
| | - Camilo Aponte-Santamaría
- Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Elizabeth Gardiner
- Department of Cancer Biology and Therapeutics, John Curtin School of Medicine, Australian National University, Canberra, Australia
| | - Amanda K. Davis
- Haematology Unit, Alfred Hospital, Melbourne, Victoria, Australia
| | - Deirdre A. Murphy
- Intensive Care Unit, Alfred Hospital, Melbourne, Victoria, Australia
| | - Agnieszka Bronowska
- Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg, Germany
| | - Brenda M. Luken
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Carsten Baldauf
- Fritz Haber Institute, Faradayweg 4-6, Berlin-Dahlem, Germany
| | - Shaun Jackson
- Heart Research Institute and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Robert Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg, Germany
| | - Philip J. Hogg
- The Centenary Institute, Newtown, New South Wales, Australia
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
87
|
Pijning AE, Chiu J, Yeo RX, Wong JWH, Hogg PJ. Identification of allosteric disulfides from labile bonds in X-ray structures. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171058. [PMID: 29515832 PMCID: PMC5830721 DOI: 10.1098/rsos.171058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/03/2018] [Indexed: 05/08/2023]
Abstract
Protein disulfide bonds link pairs of cysteine sulfur atoms and are either structural or functional motifs. The allosteric disulfides control the function of the protein in which they reside when cleaved or formed. Here, we identify potential allosteric disulfides in all Protein Data Bank X-ray structures from bonds that are present in some molecules of a protein crystal but absent in others, or present in some structures of a protein but absent in others. We reasoned that the labile nature of these disulfides signifies a propensity for cleavage and so possible allosteric regulation of the protein in which the bond resides. A total of 511 labile disulfide bonds were identified. The labile disulfides are more stressed than the average bond, being characterized by high average torsional strain and stretching of the sulfur-sulfur bond and neighbouring bond angles. This pre-stress likely underpins their susceptibility to cleavage. The coagulation, complement and oxygen-sensing hypoxia inducible factor-1 pathways, which are known or have been suggested to be regulated by allosteric disulfides, are enriched in proteins containing labile disulfides. The identification of labile disulfide bonds will facilitate the study of this post-translational modification.
Collapse
Affiliation(s)
- Aster E. Pijning
- The Centenary Institute, Camperdown, New South Wales 2050, Australia
| | - Joyce Chiu
- The Centenary Institute, Camperdown, New South Wales 2050, Australia
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Reichelle X. Yeo
- The Centenary Institute, Camperdown, New South Wales 2050, Australia
| | - Jason W. H. Wong
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Philip J. Hogg
- The Centenary Institute, Camperdown, New South Wales 2050, Australia
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW The present review will provide an overview of several recent advances in the field of vascular thiol isomerase function. RECENT FINDINGS The initial observation that protein disulfide isomerase (PDI) functions in thrombus formation occurred approximately a decade ago. At the time, there was little understanding regarding how PDI or other vascular thiol isomerases contribute to thrombosis. Although this problem is far from solved, the past few years have seen substantial progress in several areas that will be reviewed in this article. The relationship between PDI structure and its function has been investigated and applied to identify domains of PDI that are critical for thrombus formation. The mechanisms that direct thiol isomerase storage and release from platelets and endothelium have been studied. New techniques including kinetic-based trapping have identified substrates that vascular thiol isomerases modify during thrombus formation. Novel inhibitors of thiol isomerases have been developed that are useful both as tools to interrogate PDI function and as potential therapeutics. Human studies have been conducted to measure circulating PDI in disease states and evaluate the effect of oral administration of a PDI inhibitor on ex-vivo thrombin generation. SUMMARY Current findings indicate that thiol isomerase-mediated disulfide bond modification in receptors and plasma proteins is an important layer of control of thrombosis and vascular function more generally.
Collapse
|
89
|
'Something in the way she moves': The functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1383-1394. [PMID: 28844745 PMCID: PMC5654723 DOI: 10.1016/j.bbapap.2017.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 08/10/2017] [Indexed: 01/15/2023]
Abstract
Protein disulfide isomerase (PDI) has diverse functions in the endoplasmic reticulum as catalyst of redox transfer, disulfide isomerization and oxidative protein folding, as molecular chaperone and in multi-subunit complexes. It interacts with an extraordinarily wide range of substrate and partner proteins, but there is only limited structural information on these interactions. Extensive evidence on the flexibility of PDI in solution is not matched by any detailed picture of the scope of its motion. A new rapid method for simulating the motion of large proteins provides detailed molecular trajectories for PDI demonstrating extensive changes in the relative orientation of its four domains, great variation in the distances between key sites and internal motion within the core ligand-binding domain. The review shows that these simulations are consistent with experimental evidence and provide insight into the functional capabilities conferred by the extensive flexible motion of PDI.
Collapse
|
90
|
Araujo TLS, Fernandes CG, Laurindo FRM. Golgi-independent routes support protein disulfide isomerase externalization in vascular smooth muscle cells. Redox Biol 2017; 12:1004-1010. [PMID: 28501017 PMCID: PMC5430572 DOI: 10.1016/j.redox.2017.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 01/10/2023] Open
Abstract
Extracellular pools of intracellular molecular chaperones are increasingly evident. The peri/epicellular(pec) pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1(PDI) is involved in thrombosis and vascular remodeling, while PDI externalization routes remain elusive. In endothelial cells, vesicular-type PDI secretion involves classical and unconventional pathways, while in platelets PDI exocytosis involves actin cytoskeleton. However, little is known about pecPDI in vascular smooth muscle cells(VSMC). Here, we showed that VSMC display a robust cell-surface(cs) PDI pool, which binds to cs independently of electrostatic forces. However, contrarily to other cells, soluble secreted PDI pool was undetectable in VSMC. Calcium ionophore A23187 and TNFα enhanced VSMC csPDI. Furthermore, VSMC PDI externalization occurred via Golgi-bypass unconventional route, which was independent of cytoskeleton or lysosomes. Secreted PDI was absent in ex vivo wild-type mice aortas but markedly enhanced in PDI-overexpressing mice. Such characterization of VSMC pecPDI reinforces cell-type and context specific routes of PDI externalization.
Collapse
MESH Headings
- Animals
- Calcimycin/pharmacology
- Cells, Cultured
- Golgi Apparatus/drug effects
- Golgi Apparatus/enzymology
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Protein Disulfide-Isomerases/metabolism
- Rabbits
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Thaís L S Araujo
- From the Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Postal code: 05403-000, São Paulo, Brazil
| | - Carolina G Fernandes
- From the Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Postal code: 05403-000, São Paulo, Brazil
| | - Francisco R M Laurindo
- From the Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Postal code: 05403-000, São Paulo, Brazil.
| |
Collapse
|
91
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
92
|
Read SA, O'Connor KS, Suppiah V, Ahlenstiel CLE, Obeid S, Cook KM, Cunningham A, Douglas MW, Hogg PJ, Booth D, George J, Ahlenstiel G. Zinc is a potent and specific inhibitor of IFN-λ3 signalling. Nat Commun 2017; 8:15245. [PMID: 28513591 PMCID: PMC5442324 DOI: 10.1038/ncomms15245] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/12/2017] [Indexed: 12/24/2022] Open
Abstract
Lambda interferons (IFNL, IFN-λ) are pro-inflammatory cytokines important in acute and chronic viral infection. Single-nucleotide polymorphisms rs12979860 and rs8099917 within the IFNL gene locus predict hepatitis C virus (HCV) clearance, as well as inflammation and fibrosis progression in viral and non-viral liver disease. The underlying mechanism, however, is not defined. Here we show that the rs12979860 CC genotype correlates with increased hepatic metallothionein expression through increased systemic zinc levels. Zinc interferes with IFN-λ3 binding to IFNL receptor 1 (IFNLR1), resulting in decreased antiviral activity and increased viral replication (HCV, influenza) in vitro. HCV patients with high zinc levels have low hepatocyte antiviral and inflammatory gene expression and high viral loads, confirming the inhibitory role of zinc in vivo. We provide the first evidence that zinc can act as a potent and specific inhibitor of IFN-λ3 signalling and highlight its potential as a target of therapeutic intervention for IFN-λ3-mediated chronic disease.
Collapse
Affiliation(s)
- Scott A. Read
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Kate S. O'Connor
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Vijay Suppiah
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Chantelle L. E. Ahlenstiel
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Stephanie Obeid
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Kristina M. Cook
- The Centenary Institute, Camperdown, New South Wales 2050, Australia
| | - Anthony Cunningham
- Centre of Virus Research, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Mark W. Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Philip J. Hogg
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David Booth
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| |
Collapse
|
93
|
Wang L, Essex DW. A new antithrombotic strategy: inhibition of the C-terminal active site of protein disulfide isomerase. J Thromb Haemost 2017; 15:770-773. [PMID: 28109037 PMCID: PMC5546002 DOI: 10.1111/jth.13634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/28/2023]
Affiliation(s)
- L Wang
- Sol Sherry Thrombosis Research Center, Division of Hematology, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Department of Medicine, Soochow University, Suzhou, China
| | - D W Essex
- Sol Sherry Thrombosis Research Center, Division of Hematology, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
94
|
Sousa HR, Gaspar RS, Sena EML, da Silva SA, Fontelles JL, AraUjo TLS, Mastrogiovanni M, Fries DM, Azevedo-Santos APS, Laurindo FRM, Trostchansky A, Paes AM. Novel antiplatelet role for a protein disulfide isomerase-targeted peptide: evidence of covalent binding to the C-terminal CGHC redox motif. J Thromb Haemost 2017; 15:774-784. [PMID: 28109047 DOI: 10.1111/jth.13633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 11/30/2022]
Abstract
Essentials Inhibitors of protein disulfide isomerase (PDI) have been considered a new antithrombotic class. CxxC is a PDI-targeted peptide that has been previously shown to inhibit its reductase activity. CxxC binds to surface PDI and inhibits ADP- and thrombin-evoked platelet activation and aggregation. CxxC binds to Cys400 on CGHC redox motif of PDI a' domain, a site for PDI prothrombotic activity. SUMMARY Background Protein disulfide isomerase (PDI) plays a major role in platelet aggregation, and its inhibitors have emerged as novel antithrombotic drugs. In previous work, we designed a peptide based on a PDI redox motif (CGHC) that inhibited both PDI reductase activity and PDI-modulated superoxide generation by neutrophil Nox2. Thus, we hypothesized that this peptide would also inhibit platelet aggregation by association with surface PDI. Methods Three peptides were used: CxxC, containing the PDI redox motif; Scr, presenting a scrambled sequence of the same residues and AxxA, with cysteines replaced by alanine. These peptides were tested under platelet aggregation and flow cytometry protocols to identify their possible antiplatelet activity. We labeled membrane free thiol and electrospray ionization liquid chromatography tandem mass spectrometry to test for an interaction. Results CxxC decreased platelet aggregation in a dose-dependent manner, being more potent at lower agonist concentrations, whereas neither AxxA nor Scr peptides exerted any effect. CxxC decreased aIIbb3 activation, but had no effect on the other markers. CxxC also decreased cell surface PDI pulldown without interfering with the total thiol protein content. Finally, we detected the addition of one CxxC molecule to reduced PDI through binding to Cys400 through mass spectrometry. Interestingly, CxxC did not react with oxidized PDI. Discussion CxxC has consistently shown its antiplatelet effects, both in PRP and washed platelets, corroborated by decreased aIIbb3 activation. The probable mechanism of action is through a mixed dissulphide bond with Cys400 of PDI, which has been shown to be essential for PDI's actions. Conclusion In summary, our data support antiplatelet activity for CxxC through binding to Cys400 in the PDI a0 domain, which can be further exploited as a model for sitedriven antithrombotic agent development.
Collapse
Affiliation(s)
- H R Sousa
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - R S Gaspar
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - E M L Sena
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - S A da Silva
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - J L Fontelles
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - T L S AraUjo
- Laboratory of Vascular Biology, Heart Institute, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - M Mastrogiovanni
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - D M Fries
- Laboratory of Vascular Biology, Heart Institute, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - A P S Azevedo-Santos
- Laboratory of Immunophysiology, Department of Pathology, Federal University of Maranhão, São Luís, MA, Brazil
| | - F R M Laurindo
- Laboratory of Vascular Biology, Heart Institute, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - A Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - A M Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
95
|
Stopa JD, Neuberg D, Puligandla M, Furie B, Flaumenhaft R, Zwicker JI. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation. JCI Insight 2017; 2:e89373. [PMID: 28097231 DOI: 10.1172/jci.insight.89373] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND: Protein disulfide isomerase (PDI) is required for thrombus formation. We previously demonstrated that glycosylated quercetin flavonoids such as isoquercetin inhibit PDI activity and thrombus formation in animal models, but whether extracellular PDI represents a viable anticoagulant target in humans and how its inhibition affects blood coagulation remain unknown. METHODS: We evaluated effects of oral administration of isoquercetin on platelet-dependent thrombin generation in healthy subjects and patients with persistently elevated anti-phospholipid antibodies. RESULTS: Following oral administration of 1,000 mg isoquercetin to healthy adults, the measured peak plasma quercetin concentration (9.2 μM) exceeded its IC50 for inhibition of PDI by isoquercetin in vitro (2.5 ± 0.4 μM). Platelet-dependent thrombin generation decreased by 51% in the healthy volunteers compared with baseline (P = 0.0004) and by 64% in the anti-phospholipid antibody cohort (P = 0.015) following isoquercetin ingestion. To understand how PDI affects thrombin generation, we evaluated substrates of PDI identified using an unbiased mechanistic-based substrate trapping approach. These studies identified platelet factor V as a PDI substrate. Isoquercetin blocked both platelet factor Va and thrombin generation with an IC50 of ~5 μM. Inhibition of PDI by isoquercetin ingestion resulted in a 53% decrease in the generation of platelet factor Va (P = 0.001). Isoquercetin-mediated inhibition was reversed with addition of exogenous factor Va. CONCLUSION: These studies show that oral administration of isoquercetin inhibits PDI activity in plasma and diminishes platelet-dependent thrombin generation predominantly by blocking the generation of platelet factor Va. These pharmacodynamic and mechanistic observations represent an important step in the development of a novel class of antithrombotic agents targeting PDI. TRIAL REGISTRATION: Clinicaltrials.gov (NCT01722669) FUNDING: National Heart, Lung, and Blood Institute (U54 HL112302) and Quercegen Pharma.
Collapse
Affiliation(s)
- Jack D Stopa
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Maneka Puligandla
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Bruce Furie
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Jeffrey I Zwicker
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School
| |
Collapse
|
96
|
Abstract
Thiol isomerases are multifunctional enzymes that influence protein structure via their oxidoreductase, isomerase, and chaperone activities. These enzymes localize at high concentrations in the endoplasmic reticulum of all eukaryotic cells where they serve an essential function in folding nascent proteins. However, thiol isomerases can escape endoplasmic retention and be secreted and localized on plasma membranes. Several thiol isomerases including protein disulfide isomerase, ERp57, and ERp5 are secreted by and localize to the membranes of platelets and endothelial cells. These vascular thiol isomerases are released following vessel injury and participate in thrombus formation. Although most of the activities of vascular thiol isomerases that contribute to thrombus formation are yet to be defined at the molecular level, allosteric disulfide bonds that are modified by thiol isomerases have been described in substrates such as αIIbβ3, αvβ3, GPIbα, tissue factor, and thrombospondin. Vascular thiol isomerases also act as redox sensors. They respond to the local redox environment and influence S-nitrosylation of surface proteins on platelets and endothelial cells. Despite our rudimentary understanding of the mechanisms by which thiol isomerases control vascular function, the clinical utility of targeting them in thrombotic disorders is already being explored in clinical trials.
Collapse
|