51
|
Kornberg A, Botella T, Moon CS, Rao S, Gelbs J, Cheng L, Miller J, Bacarella AM, García-Vilas JA, Vargas J, Yu X, Krupska I, Bush E, Garcia-Carrasquillo R, Lebwohl B, Krishnareddy S, Lewis S, Green PH, Bhagat G, Yan KS, Han A. Gluten induces rapid reprogramming of natural memory αβ and γδ intraepithelial T cells to induce cytotoxicity in celiac disease. Sci Immunol 2023; 8:eadf4312. [PMID: 37450575 PMCID: PMC10481382 DOI: 10.1126/sciimmunol.adf4312] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/26/2023] [Indexed: 07/18/2023]
Abstract
Celiac disease (CD) is an autoimmune disease in which intestinal inflammation is induced by dietary gluten. The means through which gluten-specific CD4+ T cell activation culminates in intraepithelial T cell (T-IEL)-mediated intestinal damage remain unclear. Here, we performed multiplexed single-cell analysis of intestinal and gluten-induced peripheral blood T cells from patients in different CD states and healthy controls. Untreated, active, and potential CD were associated with an enrichment of activated intestinal T cell populations, including CD4+ follicular T helper (TFH) cells, regulatory T cells (Tregs), and natural CD8+ αβ and γδ T-IELs. Natural CD8+ αβ and γδ T-IELs expressing activating natural killer cell receptors (NKRs) exhibited a distinct TCR repertoire in CD and persisted in patients on a gluten-free diet without intestinal inflammation. Our data further show that NKR-expressing cytotoxic cells, which appear to mediate intestinal damage in CD, arise from a distinct NKR-expressing memory population of T-IELs. After gluten ingestion, both αβ and γδ T cell clones from this memory population of T-IELs circulated systemically along with gluten-specific CD4+ T cells and assumed a cytotoxic and activating NKR-expressing phenotype. Collectively, these findings suggest that cytotoxic T cells in CD are rapidly mobilized in parallel with gluten-specific CD4+ T cells after gluten ingestion.
Collapse
Affiliation(s)
- Adam Kornberg
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
| | - Theo Botella
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Christine S. Moon
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Samhita Rao
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
| | - Jared Gelbs
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Pediatrics, Columbia University; New York, NY
| | - Liang Cheng
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Jonathan Miller
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | | | - Javier A. García-Vilas
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
| | - Justin Vargas
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Xuechen Yu
- Celiac Disease Center, Columbia University; New York, NY
| | - Izabela Krupska
- Department of Systems Biology, Columbia University; New York, NY
| | - Erin Bush
- Department of Systems Biology, Columbia University; New York, NY
| | | | - Benjamin Lebwohl
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Suneeta Krishnareddy
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Suzanne Lewis
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Peter H.R. Green
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Govind Bhagat
- Celiac Disease Center, Columbia University; New York, NY
- Department of Pathology and Cell Biology, Columbia University; New York, NY
| | - Kelley S. Yan
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Arnold Han
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| |
Collapse
|
52
|
Abstract
Cytotoxic CD8+ T cells recognize and eliminate infected or cancerous cells. A subset of CD8+ memory T cells called tissue-resident memory T cells (TRM ) resides in peripheral tissues, monitors the periphery for pathogen invasion, and offers a rapid and potent first line of defense at potential sites of re-infection. TRM cells are found in almost all tissues and are transcriptionally and epigenetically distinct from circulating memory populations, which shows their ability to acclimate to the tissue environment to allow for long-term survival. Recent work and the broader availability of single-cell profiling have highlighted TRM heterogeneity among different tissues, as well as identified specialized subsets within individual tissues, that are time and infection dependent. TRM cell phenotypic and transcriptional heterogeneity has implications for understanding TRM function and longevity. This review aims to summarize and discuss the latest findings on CD8+ TRM heterogeneity using single-cell molecular profiling and explore the potential implications for immune protection and the design of immune therapies.
Collapse
Affiliation(s)
- Maximilian Heeg
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Ananda W Goldrath
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
53
|
Baxter AE, Huang H, Giles JR, Chen Z, Wu JE, Drury S, Dalton K, Park SL, Torres L, Simone BW, Klapholz M, Ngiow SF, Freilich E, Manne S, Alcalde V, Ekshyyan V, Berger SL, Shi J, Jordan MS, Wherry EJ. The SWI/SNF chromatin remodeling complexes BAF and PBAF differentially regulate epigenetic transitions in exhausted CD8 + T cells. Immunity 2023; 56:1320-1340.e10. [PMID: 37315535 DOI: 10.1016/j.immuni.2023.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
CD8+ T cell exhaustion (Tex) limits disease control during chronic viral infections and cancer. Here, we investigated the epigenetic factors mediating major chromatin-remodeling events in Tex-cell development. A protein-domain-focused in vivo CRISPR screen identified distinct functions for two versions of the SWI/SNF chromatin-remodeling complex in Tex-cell differentiation. Depletion of the canonical SWI/SNF form, BAF, impaired initial CD8+ T cell responses in acute and chronic infection. In contrast, disruption of PBAF enhanced Tex-cell proliferation and survival. Mechanistically, PBAF regulated the epigenetic and transcriptional transition from TCF-1+ progenitor Tex cells to more differentiated TCF-1- Tex subsets. Whereas PBAF acted to preserve Tex progenitor biology, BAF was required to generate effector-like Tex cells, suggesting that the balance of these factors coordinates Tex-cell subset differentiation. Targeting PBAF improved tumor control both alone and in combination with anti-PD-L1 immunotherapy. Thus, PBAF may present a therapeutic target in cancer immunotherapy.
Collapse
Affiliation(s)
- Amy E Baxter
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hua Huang
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer E Wu
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sydney Drury
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine Dalton
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Simone L Park
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leonel Torres
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brandon W Simone
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Max Klapholz
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth Freilich
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Victor Alcalde
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Viktoriya Ekshyyan
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Martha S Jordan
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - E John Wherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
54
|
Nguyen QP, Takehara KK, Deng TZ, O’Shea S, Heeg M, Omilusik KD, Milner JJ, Quon S, Pipkin ME, Choi J, Crotty S, Goldrath AW. Transcriptional programming of CD4 + T RM differentiation in viral infection balances effector- and memory-associated gene expression. Sci Immunol 2023; 8:eabq7486. [PMID: 37172104 PMCID: PMC10350289 DOI: 10.1126/sciimmunol.abq7486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/19/2023] [Indexed: 05/14/2023]
Abstract
After resolution of infection, T cells differentiate into long-lived memory cells that recirculate through secondary lymphoid organs or establish residence in tissues. In contrast to CD8+ tissue-resident memory T cells (TRM), the developmental origins and transcriptional regulation of CD4+ TRM remain largely undefined. Here, we investigated the phenotypic, functional, and transcriptional profiles of CD4+ TRM in the small intestine (SI) responding to acute viral infection, revealing a shared gene expression program and chromatin accessibility profile with circulating TH1 and the progressive acquisition of a mature TRM program. Single-cell RNA sequencing identified heterogeneity among established CD4+ TRM, which were predominantly located in the lamina propria, and revealed a population of cells that coexpressed both effector- and memory-associated genes, including the transcriptional regulators Blimp1, Id2, and Bcl6. TH1-associated Blimp1 and Id2 and TFH-associated Bcl6 were required for early TRM formation and development of a mature TRM population in the SI. These results demonstrate a developmental relationship between TH1 effector cells and the establishment of early TRM, as well as highlighted differences in CD4+ versus CD8+ TRM populations, providing insights into the mechanisms underlying the origins, differentiation, and persistence of CD4+ TRM in response to viral infection.
Collapse
Affiliation(s)
- Quynh P Nguyen
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kennidy K Takehara
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Tianda Z Deng
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Shannon O’Shea
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kyla D Omilusik
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - J Justin Milner
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | - Jinyong Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
55
|
Mutascio S, Mota T, Franchitti L, Sharma AA, Willemse A, Bergstresser SN, Wang H, Statzu M, Tharp GK, Weiler J, Sékaly RP, Bosinger SE, Paiardini M, Silvestri G, Jones RB, Kulpa DA. CD8 + T cells promote HIV latency by remodeling CD4 + T cell metabolism to enhance their survival, quiescence, and stemness. Immunity 2023; 56:1132-1147.e6. [PMID: 37030290 PMCID: PMC10880039 DOI: 10.1016/j.immuni.2023.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/16/2022] [Accepted: 03/15/2023] [Indexed: 04/10/2023]
Abstract
HIV infection persists during antiretroviral therapy (ART) due to a reservoir of latently infected cells that harbor replication-competent virus and evade immunity. Previous ex vivo studies suggested that CD8+ T cells from people with HIV may suppress HIV expression via non-cytolytic mechanisms, but the mechanisms responsible for this effect remain unclear. Here, we used a primary cell-based in vitro latency model and demonstrated that co-culture of autologous activated CD8+ T cells with HIV-infected memory CD4+ T cells promoted specific changes in metabolic and/or signaling pathways resulting in increased CD4+ T cell survival, quiescence, and stemness. Collectively, these pathways negatively regulated HIV expression and ultimately promoted the establishment of latency. As shown previously, we observed that macrophages, but not B cells, promoted latency in CD4+ T cells. The identification of CD8-specific mechanisms of pro-latency activity may favor the development of approaches to eliminate the viral reservoir in people with HIV.
Collapse
Affiliation(s)
- Simona Mutascio
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Talia Mota
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lavinia Franchitti
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ashish A Sharma
- Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Abigail Willemse
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | - Hong Wang
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Maura Statzu
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Gregory K Tharp
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jared Weiler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rafick-Pierre Sékaly
- Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Steven E Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deanna A Kulpa
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
56
|
Duong HG, Choi EJ, Hsu P, Chiang NR, Patel SA, Olvera JG, Liu YC, Lin YH, Yao P, Wong WH, Indralingam CS, Tsai MS, Boland BS, Wang W, Chang JT. Identification of CD8 + T-Cell-Immune Cell Communications in Ileal Crohn's Disease. Clin Transl Gastroenterol 2023; 14:e00576. [PMID: 36854061 PMCID: PMC10208704 DOI: 10.14309/ctg.0000000000000576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
INTRODUCTION Crohn's disease (CD) is a major subtype of inflammatory bowel disease (IBD), a spectrum of chronic intestinal disorders caused by dysregulated immune responses to gut microbiota. Although transcriptional and functional changes in a number of immune cell types have been implicated in the pathogenesis of IBD, the cellular interactions and signals that drive these changes have been less well-studied. METHODS We performed Cellular Indexing of Transcriptomes and Epitopes by sequencing on peripheral blood, colon, and ileal immune cells derived from healthy subjects and patients with CD. We applied a previously published computational approach, NicheNet, to predict immune cell types interacting with CD8 + T-cell subsets, revealing putative ligand-receptor pairs and key transcriptional changes downstream of these cell-cell communications. RESULTS As a number of recent studies have revealed a potential role for CD8 + T-cell subsets in the pathogenesis of IBD, we focused our analyses on identifying the interactions of CD8 + T-cell subsets with other immune cells in the intestinal tissue microenvironment. We identified ligands and signaling pathways that have implicated in IBD, such as interleukin-1β, supporting the validity of the approach, along with unexpected ligands, such as granzyme B, which may play previously unappreciated roles in IBD. DISCUSSION Overall, these findings suggest that future efforts focused on elucidating cell-cell communications among immune and nonimmune cell types may further our understanding of IBD pathogenesis.
Collapse
Affiliation(s)
- Han G. Duong
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Eunice J. Choi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA;
| | - Paul Hsu
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Natalie R. Chiang
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Shefali A. Patel
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Jocelyn G. Olvera
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Yi Chia Liu
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Yun Hsuan Lin
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Priscilla Yao
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - William H. Wong
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | | | - Matthew S. Tsai
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
- Department of Medicine, Jennifer Moreno Department of Veteran Affairs Medical Center, San Diego, California, USA
| | - Brigid S. Boland
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA;
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA.
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
- Department of Medicine, Jennifer Moreno Department of Veteran Affairs Medical Center, San Diego, California, USA
| |
Collapse
|
57
|
Getzler AJ, Frederick MA, Milner JJ, Venables T, Diao H, Toma C, Nagaraja SD, Albao DS, Bélanger S, Tsuda SM, Kim J, Crotty S, Goldrath AW, Pipkin ME. Mll1 pioneers histone H3K4me3 deposition and promotes formation of CD8 + T stem cell memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524461. [PMID: 37090503 PMCID: PMC10120707 DOI: 10.1101/2023.01.18.524461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
CD8 + T cells with stem cell-like properties (T SCM ) sustain adaptive immunity to intracellular pathogens and tumors. However, the developmental origins and chromatin regulatory factors (CRFs) that establish their differentiation are unclear. Using an RNA interference screen of all CRFs we discovered the histone methylase Mll1 was required during T cell receptor (TCR) stimulation for development of a T SCM precursor state and mature memory (T MEM ) cells, but not short-lived or transitory effector cell-like states, in response to viral infections and tumors. Mll1 was essential for widespread de novo deposition of histone H3 lysine 4 trimethylation (H3K4me3) upon TCR stimulation, which accounted for 70% of all activation-induced sites in mature T MEM cells. Mll1 promoted both H3K4me3 deposition and reduced TCR-induced Pol II pausing at genes whose single-cell transcriptional dynamics explained trajectories into nascent T SCM precursor states during viral infection. Our results suggest Mll1-dependent control of Pol II elongation and H3K4me3 establishes and maintains differentiation of CD8 + T SCM cell states.
Collapse
|
58
|
Vanni A, Carnasciali A, Mazzoni A, Russo E, Farahvachi P, Gloria LD, Ramazzotti M, Lamacchia G, Capone M, Salvati L, Calosi L, Bani D, Liotta F, Cosmi L, Amedei A, Ballerini C, Maggi L, Annunziato F. Musculin does not modulate the disease course of Experimental Autoimmune Encephalomyelitis and DSS colitis. Immunol Lett 2023; 255:21-31. [PMID: 36848960 DOI: 10.1016/j.imlet.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Previous evidences show that Musculin (Msc), a repressor member of basic helix-loop-helix transcription factors, is responsible in vitro for the low responsiveness of human Th17 cells to the growth factor IL-2, providing an explanation for Th17 cells rarity in inflammatory tissue. However, how and to what extent Musculin gene can regulate the immune response in vivo in an inflammatory context is still unknown. Here, exploiting two animal models of inflammatory diseases, the Experimental Autoimmune Encephalomyelitis (EAE) and the dextran sodium sulfate (DSS)-induced colitis, we evaluated the effect of Musculin gene knock-out on clinical course, performing also a deep immune phenotypical analysis on T cells compartment and an extended microbiota analysis in colitis-sick mice. We found that, at least during the early phase, Musculin gene has a very marginal role in modulating both the diseases. Indeed, the clinical course and the histological analysis showed no differences between wild type and Msc knock-out mice, whereas immune system appeared to give rise to a regulatory milieu in lymph nodes of EAE mice and in the spleen of DSS colitis-sick mice. Moreover, in the microbiota analysis, we found irrelevant differences between wild type and Musculin knock-out colitis-sick mice, with a similar bacterial strains' frequency and diversity after the DSS treatment. This work strengthened the idea of a negligible Msc gene involvement in these models.
Collapse
Affiliation(s)
- Anna Vanni
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Alberto Carnasciali
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Parham Farahvachi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Giulia Lamacchia
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Laura Calosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy.
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| |
Collapse
|
59
|
Chronic lymphocytic leukemia presence impairs antigen-specific CD8 + T-cell responses through epigenetic reprogramming towards short-lived effectors. Leukemia 2023; 37:606-616. [PMID: 36658390 PMCID: PMC9851097 DOI: 10.1038/s41375-023-01817-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
T-cell dysregulation in chronic lymphocytic leukemia (CLL) associates with low response rates to autologous T cell-based therapies. How CLL affects antigen-specific T-cell responses remains largely unknown. We investigated (epi)genetic and functional consequences of antigen-specific T-cell responses in presence of CLL in vitro and in an adoptive-transfer murine model. Already at steady-state, antigen-experienced patient-derived T cells were skewed towards short-lived effector cells (SLEC) at the expense of memory-precursor effector cells (MPEC). Stimulation of these T cells in vitro showed rapid induction of effector genes and suppression of key memory transcription factors only in presence of CLL cells, indicating epigenetic regulation. This was investigated in vivo by following antigen-specific responses of naïve OT-I CD8+ cells to mCMV-OVA in presence/absence of TCL1 B-cell leukemia. Presence of leukemia resulted in increased SLEC formation, with disturbed inflammatory cytokine production. Chromatin and transcriptome profiling revealed strong epigenetic modifications, leading to activation of an effector and silencing of a memory profile through presence of CLL cells. Secondary challenge in vivo confirmed dysfunctional memory responses by antigen-experienced OT-I cells generated in presence of CLL. Altogether, we show that presence of CLL induces a short-lived effector phenotype and impaired memory responses by epigenetic reprogramming during primary responses.
Collapse
|
60
|
Pyrimidine de novo synthesis inhibition selectively blocks effector but not memory T cell development. Nat Immunol 2023; 24:501-515. [PMID: 36797499 DOI: 10.1038/s41590-023-01436-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.
Collapse
|
61
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
62
|
Heidarian M, Griffith TS, Badovinac VP. Sepsis-induced changes in differentiation, maintenance, and function of memory CD8 T cell subsets. Front Immunol 2023; 14:1130009. [PMID: 36756117 PMCID: PMC9899844 DOI: 10.3389/fimmu.2023.1130009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Formation of long-lasting memory lymphocytes is one of the foundational characteristics of adaptive immunity and the basis of many vaccination strategies. Following the rapid expansion and contraction of effector CD8 T cells, the surviving antigen (Ag)-specific cells give rise to the memory CD8 T cells that persist for a long time and are phenotypically and functionally distinct from their naïve counterparts. Significant heterogeneity exists within the memory CD8 T cell pool, as different subsets display distinct tissue localization preferences, cytotoxic ability, and proliferative capacity, but all memory CD8 T cells are equipped to mount an enhanced immune response upon Ag re-encounter. Memory CD8 T cells demonstrate numerical stability under homeostatic conditions, but sepsis causes a significant decline in the number of memory CD8 T cells and diminishes their Ag-dependent and -independent functions. Sepsis also rewires the transcriptional profile of memory CD8 T cells, which profoundly impacts memory CD8 T cell differentiation and, ultimately, the protective capacity of memory CD8 T cells upon subsequent stimulation. This review delves into different aspects of memory CD8 T cell subsets as well as the immediate and long-term impact of sepsis on memory CD8 T cell biology.
Collapse
Affiliation(s)
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN, United States,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa, IA, United States,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa, IA, United States,*Correspondence: Vladimir P. Badovinac,
| |
Collapse
|
63
|
Kenney D, Harly C. Purification of Bone Marrow Precursors to T Cells and ILCs. Methods Mol Biol 2023; 2580:211-232. [PMID: 36374460 DOI: 10.1007/978-1-0716-2740-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T cells and innate lymphoid cells (ILCs) share expression of many key transcription factors during development and at mature stage, resulting in striking functional similarities between these lineages. Taking into account ILC contribution is thus necessary to appreciate T cell functions during immune responses. Furthermore, understanding ILC development and functions helps to understand T cells. Here we provide methods and protocols to isolate pure populations of multipotent precursors to T cells and innate lymphoid cells (ILCs) from adult mouse bone marrow, using flow cytometric sorting. These include precursors to all lymphocytes (viz., LMPPs and ALPs) and multipotent precursors to ILCs that have been recently refined (viz., specified EILPs, committed EILPs, and ILCPs).
Collapse
Affiliation(s)
- Devin Kenney
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Christelle Harly
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France.
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| |
Collapse
|
64
|
Oladipo OO, Adedeji BO, Adedokun SP, Gbadamosi JA, Salaudeen M. Regulation of effector and memory CD8 + T cell differentiation: a focus on orphan nuclear receptor NR4A family, transcription factor, and metabolism. Immunol Res 2022; 71:314-327. [PMID: 36571657 DOI: 10.1007/s12026-022-09353-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
CD8 + T cells undergo rapid expansion followed by contraction and the development of memory cells after their receptors are activated. The development of immunological memory following acute infection is a complex phenomenon that involves several molecular, transcriptional, and metabolic mechanisms. As memory cells confer long-term protection and respond to secondary stimulation with strong effector function, understanding the mechanisms that influence their development is of great importance. Orphan nuclear receptors, NR4As, are immediate early genes that function as transcription factors and bind with the NBRE region of chromatin. Interestingly, the NBRE region of activated CD8 + T cells is highly accessible at the same time the expression of NR4As is induced. This suggests a potential role of NR4As in the early events post T cell activation that determines cell fate decisions. In this review, we will discuss the influence of NR4As on the differentiation of CD8 + T cells during the immune response to acute infection and the development of immunological memory. We will also discuss the signals, transcription factors, and metabolic mechanisms that control cell fate decisions. HIGHLIGHTS: Memory CD8 + T cells are an essential subset that mediates long-term protection after pathogen encounters. Some specific environmental cues, transcriptional factors, and metabolic pathways regulate the differentiation of CD8 + T cells and the development of memory cells. Orphan nuclear receptor NR4As are early genes that act as transcription factors and are highly expressed post-T cell receptor activation. NR4As influence the effector function and differentiation of CD8 + T cells and also control the development of immunological memory following acute infection.
Collapse
Affiliation(s)
- Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Bernard O Adedeji
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Samson P Adedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Jibriil A Gbadamosi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Marzuq Salaudeen
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
65
|
Lv Y, Ricard L, Gaugler B, Huang H, Ye Y. Biology and clinical relevance of follicular cytotoxic T cells. Front Immunol 2022; 13:1036616. [PMID: 36591286 PMCID: PMC9794565 DOI: 10.3389/fimmu.2022.1036616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Follicular cytotoxic T (Tfc) cells are a newly identified subset of CD8+ T cells enriched in B cell follicles and their surroundings, which integrate multiple functions such as killing, memory, supporting and regulation. Tfc cells share similarities with follicular helper T (Tfh) cells, conventional cytotoxic CD8+ T (Tc cells)cells and follicular regulatory T (Tfr) cells, while they express distinct transcription factors, phenotype, and perform different functions. With the participation of cytokines and cell-cell interactions, Tfc cells modulate Tfh cells and B cells and play an essential role in regulating the humoral immunity. Furthermore, Tfc cells have been found to change in their frequencies and functions during the occurrence and progression of chronic infections, immune-mediated diseases and cancers. Strategies targeting Tfc cells are under investigations, bringing novel insights into control of these diseases. We summarize the characteristics of Tfc cells, and introduce the roles and potential targeting modalities of Tfc cells in different diseases.
Collapse
Affiliation(s)
- Yuqi Lv
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China
| | - Laure Ricard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| |
Collapse
|
66
|
Sigvardsson M, Kee BL, Zúñiga-Pflücker JC, Anderson MK. Editorial: Molecular switches of the immune system: The E-protein/Id axis in hematopoietic development and function. Front Immunol 2022; 13:1062734. [DOI: 10.3389/fimmu.2022.1062734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
67
|
Jiang P, Zhang Z, Hu Y, Liang Z, Han Y, Li X, Zeng X, Zhang H, Zhu M, Dong J, Huang H, Qian P. Single-cell ATAC-seq maps the comprehensive and dynamic chromatin accessibility landscape of CAR-T cell dysfunction. Leukemia 2022; 36:2656-2668. [PMID: 35962059 DOI: 10.1038/s41375-022-01676-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022]
Abstract
Chimeric antigen receptor T cells (CAR-T) therapy has achieved remarkable therapeutic success in treating a variety of hematopoietic malignancies. However, the high relapse rate and poor in vivo persistence, partially caused by CAR-T cell exhaustion, are still important barriers against CAR-T therapy. It remains largely elusive on the mechanisms of CAR-T exhaustion and how to attenuate exhaustion to achieve better therapeutic efficacy. In this study, we initially observed that CAR-T cells showed rapid differentiation and increased exhaustion after co-culture with tumor cells in vitro, and then performed single-cell ATAC-seq to depict the comprehensive and dynamic landscape of chromatin accessibility of CAR-T cells during tumor cell stimulation. Analyses of differential chromatin accessible regions and motif accessibility revealed that TFs were distinct in each cell type and reconstituted a coordinated regulatory network to drive CAR-T exhaustion. Furthermore, we performed scATAC-seq in patient-derived CAR-T cells and identified BATF and IRF4 as pivotal regulators in CAR-T cell exhaustion. Finally, knockdown of BATF or IRF4 enhanced the killing ability, inhibited exhaustion, and prolonged the persistence of CAR-T cells in vivo. Together, our study unraveled the epigenetic regulatory mechanisms of CAR-T exhaustion and provided new insights into CAR-T engineering to achieve better clinical treatment benefits.
Collapse
Affiliation(s)
- Penglei Jiang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Zhaoru Zhang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yongxian Hu
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.,Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Zuyu Liang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.,Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yingli Han
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Xia Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.,Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Xin Zeng
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Hao Zhang
- Department of Hematology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Meng Zhu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jian Dong
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China. .,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China. .,Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China. .,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
68
|
Zander R, Khatun A, Kasmani MY, Chen Y, Cui W. Delineating the transcriptional landscape and clonal diversity of virus-specific CD4 + T cells during chronic viral infection. eLife 2022; 11:e80079. [PMID: 36255051 PMCID: PMC9629829 DOI: 10.7554/elife.80079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Although recent evidence indicates that CD4+ T cells responding to chronic viral infection are functionally heterogenous, our understanding of the developmental relationships between these subsets, and a determination of how their transcriptional landscape compares to their acute infection counterparts remains unclear. Additionally, whether cell-intrinsic factors such as TCR usage influence CD4+ T cell fate commitment during persistent infection has not previously been studied. Herein, we perform single-cell RNA sequencing (scRNA-seq) combined with single-cell T cell receptor sequencing (scTCR-seq) on virus-specific CD4+ T cells isolated from mice infected with chronic lymphocytic choriomeningitis virus (LCMV) infection. We identify several transcriptionally distinct states among the Th1, Tfh, and memory-like T cell subsets that form at the peak of infection, including the presence of a previously unrecognized Slamf7+ subset with cytolytic features. We further show that the relative distribution of these populations differs substantially between acute and persistent LCMV infection. Moreover, while the progeny of most T cell clones displays membership within each of these transcriptionally unique populations, overall supporting a one cell-multiple fate model, a small fraction of clones display a biased cell fate decision, suggesting that TCR usage may impact CD4+ T cell development during chronic infection. Importantly, comparative analyses further reveal both subset-specific and core gene expression programs that are differentially regulated between CD4+ T cells responding to acute and chronic LCMV infection. Together, these data may serve as a useful framework and allow for a detailed interrogation into the clonal distribution and transcriptional circuits underlying CD4+ T cell differentiation during chronic viral infection.
Collapse
Affiliation(s)
- Ryan Zander
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
| | - Achia Khatun
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Yao Chen
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Weiguo Cui
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
69
|
Kaminskiy Y, Kuznetsova V, Kudriaeva A, Zmievskaya E, Bulatov E. Neglected, yet significant role of FOXP1 in T-cell quiescence, differentiation and exhaustion. Front Immunol 2022; 13:971045. [PMID: 36268015 PMCID: PMC9576946 DOI: 10.3389/fimmu.2022.971045] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/20/2022] [Indexed: 12/04/2022] Open
Abstract
FOXP1 is ubiquitously expressed in the human body and is implicated in both physiological and pathological processes including cancer. However, despite its importance the role of FOXP1 in T-cells has not been extensively studied. Although relatively few phenotypic and mechanistic details are available, FOXP1 role in T-cell quiescence and differentiation of CD4+ subsets has recently been established. FOXP1 prevents spontaneous T-cell activation, preserves memory potential, and regulates the development of follicular helper and regulatory T-cells. Moreover, there is growing evidence that FOXP1 also regulates T-cell exhaustion. Altogether this makes FOXP1 a crucial and highly undervalued regulator of T-cell homeostasis. In this review, we discuss the biology of FOXP1 with a focus on discoveries made in T-cells in recent years.
Collapse
Affiliation(s)
- Yaroslav Kaminskiy
- Department of Oncology and Pathology, Karolinska Institutet, SciLifeLab, Solna, Sweden
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, Moscow, Russia
| | - Varvara Kuznetsova
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, Moscow, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Emil Bulatov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- *Correspondence: Emil Bulatov,
| |
Collapse
|
70
|
Suarez-Ramirez JE, Cauley LS, Chandiran K. CTLs Get SMAD When Pathogens Tell Them Where to Go. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1025-1032. [PMID: 36130123 PMCID: PMC9512391 DOI: 10.4049/jimmunol.2200345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023]
Abstract
Vaccines protect against infections by eliciting both Ab and T cell responses. Because the immunity wanes as protective epitopes get modified by accruing mutations, developing strategies for immunization against new variants is a major priority for vaccine development. CTLs eliminate cells that support viral replication and provide protection against new variants by targeting epitopes from internal viral proteins. This form of protection has received limited attention during vaccine development, partly because reliable methods for directing pathogen-specific memory CD8 T cells to vulnerable tissues are currently unavailable. In this review we examine how recent studies expand our knowledge of mechanisms that contribute to the functional diversity of CTLs as they respond to infection. We discuss the role of TGF-β and the SMAD signaling cascade during genetic programming of pathogen-specific CTLs and the pathways that promote formation of a newly identified subset of terminally differentiated memory CD8 T cells that localize in the vasculature.
Collapse
|
71
|
Spath S, Roan F, Presnell SR, Höllbacher B, Ziegler SF. Profiling of Tregs across tissues reveals plasticity in ST2 expression and hierarchies in tissue-specific phenotypes. iScience 2022; 25:104998. [PMID: 36093048 PMCID: PMC9460833 DOI: 10.1016/j.isci.2022.104998] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Foxp3+ regulatory T cells (Tregs) are critical mediators of peripheral tolerance and immune homeostasis and exert tissue-specific functions. In many nonlymphoid tissues, Tregs show enriched expression of the IL-33 receptor ST2. Through comprehensive profiling of murine ST2+ and ST2- Tregs, we found that Treg transcriptomes and phenotypes formed a hierarchical relationship across tissues. Only a small core signature distinguished ST2+ Tregs from ST2- Tregs across all tissues, and differences in transcriptional profiles were predominantly tissue-specific. We also identified unique, highly proliferative, circulating ST2+ Tregs with high migratory potential. In adoptive transfers, both ST2+ and ST2- Tregs seeded various host tissues and demonstrated plasticity in ST2 expression. Furthermore, Tregs from donor lungs were differentially recovered from host nonlymphoid tissues in an IL-33-dependent manner. In summary, our work identified tissue residency rather than ST2 expression as a primary driver of tissue Treg identity and highlights the unique, tissue-specific adaption of ST2+ Tregs. Tissue of residency rather than ST2 expression is a primary driver of Treg identity A small core signature distinguishes ST2+ Tregs from ST2- Tregs across tissues Circulating ST2+ Tregs have diverse chemokine receptor profiles Plasticity of ST2 expression on transferred Tregs occurs in a tissue-specific manner
Collapse
Affiliation(s)
- Sabine Spath
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Florence Roan
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Scott R. Presnell
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Barbara Höllbacher
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
- Institute of Computational Biology (ICB), Helmholtz Zentrum Muenchen (HMGU), 85764 Munich, Neuherberg, Germany
- Department of Informatics, TUM, 85748 Munich, Garching, Germany
| | - Steven F. Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Corresponding author
| |
Collapse
|
72
|
Todorov H, Prieux M, Laubreton D, Bouvier M, Wang S, de Bernard S, Arpin C, Cannoodt R, Saelens W, Bonnaffoux A, Gandrillon O, Crauste F, Saeys Y, Marvel J. CD8 memory precursor cell generation is a continuous process. iScience 2022; 25:104927. [PMID: 36065187 PMCID: PMC9440290 DOI: 10.1016/j.isci.2022.104927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, we studied the generation of memory precursor cells following an acute infection by analyzing single-cell RNA-seq data that contained CD8 T cells collected during the postinfection expansion phase. We used different tools to reconstruct the developmental trajectory that CD8 T cells followed after activation. Cells that exhibited a memory precursor signature were identified and positioned on this trajectory. We found that these memory precursors are generated continuously with increasing numbers arising over time. Similarly, expression of genes associated with effector functions was also found to be raised in memory precursors at later time points. The ability of cells to enter quiescence and differentiate into memory cells was confirmed by BrdU pulse-chase experiment in vivo. Analysis of cell counts indicates that the vast majority of memory cells are generated at later time points from cells that have extensively divided. Trajectory inference tools reconstruct the timing of memory precursors generation The trajectory is defined by both cell cycle and effector functions encoding genes Memory precursors numbers in lymphoid organs increase with time after priming In vivo BrdU labeling validate the in silico data
Collapse
Affiliation(s)
- Helena Todorov
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - Margaux Prieux
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Superieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire de Biologie et de Modélisation de la cellule, Université de Lyon, ENS de Lyon, CNRS UMR 5239, INSERM U1210, Lyon, France
| | - Daphne Laubreton
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Superieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Matteo Bouvier
- Laboratoire de Biologie et de Modélisation de la cellule, Université de Lyon, ENS de Lyon, CNRS UMR 5239, INSERM U1210, Lyon, France
- Vidium, Lyon, France
| | - Shaoying Wang
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Superieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Christophe Arpin
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Superieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Robrecht Cannoodt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Data Intuitive, Lebbeke, Belgium
| | - Wouter Saelens
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | | | - Olivier Gandrillon
- Laboratoire de Biologie et de Modélisation de la cellule, Université de Lyon, ENS de Lyon, CNRS UMR 5239, INSERM U1210, Lyon, France
- Inria, Villeurbanne, France
| | - Fabien Crauste
- Laboratoire MAP5 (UMR CNRS 8145), Université de Paris, Paris, France
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - Jacqueline Marvel
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Superieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Corresponding author
| |
Collapse
|
73
|
Liu H, Wang X, Ding R, Jiao A, Zheng H, Zhang C, Feng Z, Su Y, Yang X, Lei L, Sun L, Zhang L, Sun C, Zhang B. The Transcription Factor Zfp335 Promotes Differentiation and Persistence of Memory CD8 +T Cells by Regulating TCF-1. THE JOURNAL OF IMMUNOLOGY 2022; 209:886-895. [DOI: 10.4049/jimmunol.2200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
|
74
|
Jiao A, Liu H, Ding R, Zheng H, Zhang C, Feng Z, Lei L, Wang X, Su Y, Yang X, Sun C, Zhang L, Bai L, Sun L, Zhang B. Med1 Controls Effector CD8+ T Cell Differentiation and Survival through C/EBPβ-Mediated Transcriptional Control of T-bet. THE JOURNAL OF IMMUNOLOGY 2022; 209:855-863. [DOI: 10.4049/jimmunol.2200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/25/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Effector CD8+ T cells are crucial players in adaptive immunity for effective protection against invading pathogens. The regulatory mechanisms underlying CD8+ T cell effector differentiation are incompletely understood. In this study, we defined a critical role of mediator complex subunit 1 (Med1) in controlling effector CD8+ T cell differentiation and survival during acute bacterial infection. Mice with Med1-deficient CD8+ T cells exhibited significantly impaired expansion with evidently reduced killer cell lectin-like receptor G1+ terminally differentiated and Ly6c+ effector cell populations. Moreover, Med1 deficiency led to enhanced cell apoptosis and expression of multiple inhibitory receptors (programmed cell death 1, T cell Ig and mucin domain–containing-3, and T cell immunoreceptor with Ig and ITIM domains). RNA-sequencing analysis revealed that T-bet– and Zeb2-mediated transcriptional programs were impaired in Med1-deficient CD8+ T cells. Overexpression of T-bet could rescue the differentiation and survival of Med1-deficient CD8+ effector T cells. Mechanistically, the transcription factor C/EBPβ promoted T-bet expression through interacting with Med1 in effector T cells. Collectively, our findings revealed a novel role of Med1 in regulating effector CD8+ T cell differentiation and survival in response to bacterial infection.
Collapse
Affiliation(s)
- Anjun Jiao
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haiyan Liu
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Renyi Ding
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Huiqiang Zheng
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Cangang Zhang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhao Feng
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Lei
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xin Wang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yanhong Su
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaofeng Yang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chenming Sun
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lianjun Zhang
- ¶Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- ‖Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China; and
| | - Liang Bai
- #Institute of Cardiovascular Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lina Sun
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Baojun Zhang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
75
|
Chandiran K, Suarez-Ramirez JE, Hu Y, Jellison ER, Ugur Z, Low JS, McDonald B, Kaech SM, Cauley LS. SMAD4 and TGFβ are architects of inverse genetic programs during fate-determination of antiviral CTLs. eLife 2022; 11:76457. [PMID: 35942952 PMCID: PMC9402230 DOI: 10.7554/elife.76457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Transforming growth factor β (TGFβ) is an important differentiation factor for cytotoxic T lymphocytes (CTLs) and alters the expression levels of several of homing receptors during infection. SMAD4 is part of the canonical signaling network used by members of the transforming growth factor family. For this study, genetically modified mice were used to determine how SMAD4 and TGFβ receptor II (TGFβRII) participate in transcriptional programming of pathogen-specific CTLs. We show that these molecules are essential components of opposing signaling mechanisms, and cooperatively regulate a collection of genes that determine whether specialized populations of pathogen-specific CTLs circulate around the body, or settle in peripheral tissues. TGFβ uses a canonical SMAD-dependent signaling pathway to downregulate Eomesodermin (EOMES), KLRG1, and CD62L, while CD103 is induced. Conversely, in vivo and in vitro data show that EOMES, KLRG1, CX3CR1, and CD62L are positively regulated via SMAD4, while CD103 and Hobit are downregulated. Intravascular staining also shows that signaling via SMAD4 promotes formation of long-lived terminally differentiated CTLs that localize in the vasculature. Our data show that inflammatory molecules play a key role in lineage determination of pathogen-specific CTLs, and use SMAD-dependent signaling to alter the expression levels of multiple homing receptors and transcription factors with known functions during memory formation.
Collapse
Affiliation(s)
- Karthik Chandiran
- Department of Immunology, University of Connecticut Health Center, Farmington, United States
| | - Jenny E Suarez-Ramirez
- Department of Immunology, University of Connecticut Health Center, Farmington, United States
| | - Yinghong Hu
- Department of Microbiology and Immunology, Emory University, Atlanta, United States
| | - Evan R Jellison
- Department of Immunology, University of Connecticut Health Center, Farmington, United States
| | - Zenep Ugur
- Department of Immunology, University of Connecticut Health Center, Farmington, United States
| | - Jun-Siong Low
- Department of Immunobiology, Yale University, Bellinzona, Switzerland
| | - Bryan McDonald
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, San Diego, United States
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, San Diego, United States
| | - Linda S Cauley
- Department of Immunology, University of Connecticut Health Center, Farmington, United States
| |
Collapse
|
76
|
Hwang SM, Im SH, Rudra D. Signaling networks controlling ID and E protein activity in T cell differentiation and function. Front Immunol 2022; 13:964581. [PMID: 35983065 PMCID: PMC9379924 DOI: 10.3389/fimmu.2022.964581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
E and inhibitor of DNA binding (ID) proteins are involved in various cellular developmental processes and effector activities in T cells. Recent findings indicate that E and ID proteins are not only responsible for regulating thymic T cell development but also modulate the differentiation, function, and fate of peripheral T cells in multiple immune compartments. Based on the well-established E and ID protein axis (E-ID axis), it has been recognized that ID proteins interfere with the dimerization of E proteins, thus restricting their transcriptional activities. Given this close molecular relationship, the extent of expression or stability of these two protein families can dynamically affect the expression of specific target genes involved in multiple aspects of T cell biology. Therefore, it is essential to understand the endogenous proteins or extrinsic signaling pathways that can influence the dynamics of the E-ID axis in a cell-specific and context-dependent manner. Here, we provide an overview of E and ID proteins and the functional outcomes of the E-ID axis in the activation and function of multiple peripheral T cell subsets, including effector and memory T cell populations. Further, we review the mechanisms by which endogenous proteins and signaling pathways alter the E-ID axis in various T cell subsets influencing T cell function and fate at steady-state and in pathological settings. A comprehensive understanding of the functions of E and ID proteins in T cell biology can be instrumental in T cell-specific targeting of the E-ID axis to develop novel therapeutic modalities in the context of autoimmunity and cancer.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Institute for Convergence Research and Education, Yonsei University, Seoul, South Korea
- ImmunoBiome Inc., Bio Open Innovation Center, Pohang, South Korea
| | - Dipayan Rudra
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
77
|
Yang W, Wei H, Benavides GA, Turbitt WJ, Buckley JA, Ouyang X, Zhou L, Zhang J, Harrington LE, Darley-Usmar VM, Qin H, Benveniste EN. Protein Kinase CK2 Controls CD8 + T Cell Effector and Memory Function during Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:896-906. [PMID: 35914835 PMCID: PMC9492634 DOI: 10.4049/jimmunol.2101080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/19/2022] [Indexed: 11/05/2022]
Abstract
Protein kinase CK2 is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α') and two regulatory subunits (CK2β). CK2 promotes cancer progression by activating the NF-κB, PI3K/AKT/mTOR, and JAK/STAT pathways, and also is critical for immune cell development and function. The potential involvement of CK2 in CD8+ T cell function has not been explored. We demonstrate that CK2 protein levels and kinase activity are enhanced upon mouse CD8+ T cell activation. CK2α deficiency results in impaired CD8+ T cell activation and proliferation upon TCR stimulation. Furthermore, CK2α is involved in CD8+ T cell metabolic reprogramming through regulating the AKT/mTOR pathway. Lastly, using a mouse Listeria monocytogenes infection model, we demonstrate that CK2α is required for CD8+ T cell expansion, maintenance, and effector function in both primary and memory immune responses. Collectively, our study implicates CK2α as an important regulator of mouse CD8+ T cell activation, metabolic reprogramming, and differentiation both in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Yang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hairong Wei
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - William J. Turbitt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jessica A. Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Laurie E. Harrington
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL; and
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Co-Corresponding Authors: Dr. Hongwei Qin, Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 907, Birmingham, AL 35294. Phone: +1-205-934-2573. , Dr. Etty (Tika) Benveniste, Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 510 20th Street South, 1203 Faculty Office Tower, Birmingham, AL 35294. Phone: +1-205-934-7667.
| |
Collapse
|
78
|
Babcock RL, Zhou Y, Patel B, Chrisikos TT, Kahn LM, Dyevoich AM, Medik YB, Watowich SS. Regulation and function of Id2 in plasmacytoid dendritic cells. Mol Immunol 2022; 148:6-17. [PMID: 35640521 PMCID: PMC11390127 DOI: 10.1016/j.molimm.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized type I interferon (IFN-I) producing cells that promote anti-viral immune responses and contribute to autoimmunity. Development of pDCs requires the transcriptional regulator E2-2 and is opposed by inhibitor of DNA binding 2 (Id2). Prior work indicates Id2 is induced in pDCs upon maturation and may affect pDC IFN-I production via suppression of E2-2, suggesting an important yet uncharacterized role in this lineage. We found TLR7 agonists stimulate Id2 mRNA and protein expression in pDCs. We further show that transcriptional activation of Id2 is dependent on the E2 ubiquitin-conjugating enzyme Ubc13, but independent of IFN-I signaling in response to TLR7 agonist stimulation. Nonetheless, conditional Id2 depletion in pDCs indicates Id2 is dispensable for TLR7 agonist-induced maturation and inhibition of E2-2 expression. Thus, we identify new mechanisms of Id2 regulation by Ubc13, which may be relevant for understanding Id2 gene regulation in other contexts, while ruling out major roles for Id2 in pDC responses to TLR7 agonists.
Collapse
Affiliation(s)
- Rachel L Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bhakti Patel
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taylor T Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Laura M Kahn
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Allison M Dyevoich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yusra B Medik
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
79
|
Shaw LA, Deng TZ, Omilusik KD, Takehara KK, Nguyen QP, Goldrath AW. Id3 expression identifies CD4 + memory Th1 cells. Proc Natl Acad Sci U S A 2022; 119:e2204254119. [PMID: 35858332 PMCID: PMC9303986 DOI: 10.1073/pnas.2204254119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 01/30/2023] Open
Abstract
Memory CD4+ T cells play a pivotal role in mediating long-term protective immunity, positioning them as an important target in vaccine development. However, multiple functionally distinct helper CD4+ T-cell subsets can arise in response to a single invading pathogen, complicating the identification of rare populations of memory precursor cells during the effector phase of infection and memory CD4+ T cells following pathogen clearance and the contraction phase of infection. Furthermore, current literature remains unclear regarding whether a single CD4+ memory T-cell lineage gives rise to secondary CD4+ T helper subsets or if there are unique memory precursor cells within each helper lineage. A majority of T follicular helper (Tfh) cells, which have established memory potential, express Id3, an inhibitor of E protein transcription factors, following acute viral infection. We show that expression of Id3 definitively identified a subset of cells within both the CD4+ Tfh and T helper 1 (Th1) lineages at memory time points that exhibited memory potential, with the capacity for significant re-expansion in response to secondary infection. Notably, we demonstrate that a subset of Th1 cells that survive into the memory phase were marked by Id3 expression and possessed the potential for enhanced expansion and generation of both Th1 and Tfh secondary effector cell populations in a secondary response to pathogen. Additionally, these cells exhibited enrichment of key molecules associated with memory potential when compared with Id3lo Th1 cells. Therefore, we propose that Id3 expression serves as an important marker to indicate multipotent potential in memory CD4+ T cells.
Collapse
Affiliation(s)
- Laura A. Shaw
- Department of Biological Sciences, University of California, La Jolla, CA 92093
| | - Tianda Z. Deng
- Department of Biological Sciences, University of California, La Jolla, CA 92093
| | - Kyla D. Omilusik
- Department of Biological Sciences, University of California, La Jolla, CA 92093
| | - Kennidy K. Takehara
- Department of Biological Sciences, University of California, La Jolla, CA 92093
| | - Quynh P. Nguyen
- Department of Biological Sciences, University of California, La Jolla, CA 92093
| | - Ananda W. Goldrath
- Department of Biological Sciences, University of California, La Jolla, CA 92093
| |
Collapse
|
80
|
Jakubison BL, Sarkar T, Gudmundsson KO, Singh S, Sun L, Morris HM, Klarmann KD, Keller JR. ID2 and HIF-1α collaborate to protect quiescent hematopoietic stem cells from activation, differentiation, and exhaustion. J Clin Invest 2022; 132:152599. [PMID: 35775482 PMCID: PMC9246389 DOI: 10.1172/jci152599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Defining mechanism(s) that maintain tissue stem quiescence is important for improving tissue regeneration, cell therapies, aging, and cancer. We report here that genetic ablation of Id2 in adult hematopoietic stem cells (HSCs) promotes increased HSC activation and differentiation, which results in HSC exhaustion and bone marrow failure over time. Id2Δ/Δ HSCs showed increased cycling, ROS production, mitochondrial activation, ATP production, and DNA damage compared with Id2+/+ HSCs, supporting the conclusion that Id2Δ/Δ HSCs are less quiescent. Mechanistically, HIF-1α expression was decreased in Id2Δ/Δ HSCs, and stabilization of HIF-1α in Id2Δ/Δ HSCs restored HSC quiescence and rescued HSC exhaustion. Inhibitor of DNA binding 2 (ID2) promoted HIF-1α expression by binding to the von Hippel-Lindau (VHL) protein and interfering with proteasomal degradation of HIF-1α. HIF-1α promoted Id2 expression and enforced a positive feedback loop between ID2 and HIF-1α to maintain HSC quiescence. Thus, sustained ID2 expression could protect HSCs during stress and improve HSC expansion for gene editing and cell therapies.
Collapse
Affiliation(s)
- Brad L Jakubison
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Kristbjorn O Gudmundsson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Lei Sun
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Holly M Morris
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Kimberly D Klarmann
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jonathan R Keller
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| |
Collapse
|
81
|
Singh S, Lee N, Pedroza DA, Bado IL, Hamor C, Zhang L, Aguirre S, Hu J, Shen Y, Xu Y, Gao Y, Zhao N, Chen SH, Wan YW, Liu Z, Chang JT, Hollern D, Perou CM, Zhang XH, Rosen JM. Chemotherapy Coupled to Macrophage Inhibition Induces T-cell and B-cell Infiltration and Durable Regression in Triple-Negative Breast Cancer. Cancer Res 2022; 82:2281-2297. [PMID: 35442423 PMCID: PMC9219596 DOI: 10.1158/0008-5472.can-21-3714] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Immunosuppressive elements within the tumor microenvironment, such as tumor-associated macrophages (TAM), can present a barrier to successful antitumor responses by cytolytic T cells. Here we employed preclinical syngeneic p53 null mouse models of triple-negative breast cancer (TNBC) to develop a treatment regimen that harnessed the immunostimulatory effects of low-dose cyclophosphamide coupled with the pharmacologic inhibition of TAMs using either a small-molecule CSF1R inhibitor or an anti-CSF1R antibody. This therapeutic combination was effective in treating several highly aggressive TNBC murine mammary tumor and lung metastasis models. Single-cell RNA sequencing characterized tumor-infiltrating lymphocytes including Th cells and antigen-presenting B cells that were highly enriched in responders to combination therapy. In one model that exhibited long-term posttreatment tumor regression, high-dimensional imaging techniques identified the close spatial localization of B220+/CD86+-activated B cells and CD4+ T cells in tertiary lymphoid structures that were present up to 6 weeks posttreatment. The transcriptional and metabolic heterogeneity of TAMs was also characterized in two closely related claudin-low/mesenchymal subtype tumor models with differential treatment responses. A murine TAM signature derived from the T12 model was highly conserved in human claudin-low breast cancers, and high expression of the TAM signature correlated with reduced overall survival in patients with breast cancer. This TAM signature may help identify human patients with claudin-low breast cancer that will benefit from the combination of cyclophosphamide and anti-CSF1R therapy. These studies illustrate the complexity of the tumor immune microenvironment and highlight different immune responses that result from rational immunotherapy combinations. SIGNIFICANCE Immunostimulatory chemotherapy combined with pharmacologic inhibition of TAMs results in durable treatment responses elicited by Th cells and B cells in claudin-low TNBC models.
Collapse
Affiliation(s)
- Swarnima Singh
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Nigel Lee
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX
| | - Diego A. Pedroza
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Igor L. Bado
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Clark Hamor
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Licheng Zhang
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute (HMRI), Houston, TX
| | - Sergio Aguirre
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Jingyuan Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX
| | - Yichao Shen
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Yitian Xu
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute (HMRI), Houston, TX
| | - Yang Gao
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Na Zhao
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Shu-Hsia Chen
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute (HMRI), Houston, TX
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jeffrey T. Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Daniel Hollern
- Salk Institute for Biological Studies, Salk Cancer Center, NOMIS Center for Immunobiology and Microbial Pathogenesis, La Jolla, CA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Xiang H.F. Zhang
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology and Dan. L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
82
|
Aubrey M, Warburg ZJ, Murre C. Helix-Loop-Helix Proteins in Adaptive Immune Development. Front Immunol 2022; 13:881656. [PMID: 35634342 PMCID: PMC9134016 DOI: 10.3389/fimmu.2022.881656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The E/ID protein axis is instrumental for defining the developmental progression and functions of hematopoietic cells. The E proteins are dimeric transcription factors that activate gene expression programs and coordinate changes in chromatin organization. Id proteins are antagonists of E protein activity. Relative levels of E/Id proteins are modulated throughout hematopoietic development to enable the progression of hematopoietic stem cells into multiple adaptive and innate immune lineages including natural killer cells, B cells and T cells. In early progenitors, the E proteins promote commitment to the T and B cell lineages by orchestrating lineage specific programs of gene expression and regulating VDJ recombination of antigen receptor loci. In mature B cells, the E/Id protein axis functions to promote class switch recombination and somatic hypermutation. E protein activity further regulates differentiation into distinct CD4+ and CD8+ T cells subsets and instructs mature T cell immune responses. In this review, we discuss how the E/Id proteins define the adaptive immune system lineages, focusing on their role in directing developmental gene programs.
Collapse
Affiliation(s)
| | | | - Cornelis Murre
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
83
|
Hidaka R, Miyazaki K, Miyazaki M. The E-Id Axis Instructs Adaptive Versus Innate Lineage Cell Fate Choice and Instructs Regulatory T Cell Differentiation. Front Immunol 2022; 13:890056. [PMID: 35603170 PMCID: PMC9120639 DOI: 10.3389/fimmu.2022.890056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive immune cells, such as T and B cells, evoke antigen-specific responses through the recognition of specific antigens. This antigen-specific recognition relies on the V(D)J recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells employ cell type-specific developmental pathways during their activation processes, and the regulation of these processes is strictly regulated by the transcription factor network. Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as negative regulators. It is well established that a majority of T and B cell developmental trajectories are regulated by the transcriptional balance between E and Id proteins (the E-Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment, whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg) cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage commitment and Treg cell differentiation.
Collapse
|
84
|
Rehm A, Wirges A, Hoser D, Fischer C, Herda S, Gerlach K, Sauer S, Willimsky G, Höpken UE. EBAG9 controls CD8+ T cell memory formation responding to tumor challenge in mice. JCI Insight 2022; 7:155534. [PMID: 35482418 PMCID: PMC9220939 DOI: 10.1172/jci.insight.155534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Insight into processes that determine CD8+ T cell memory formation has been obtained from infection models. These models are biased toward an inflammatory milieu and often use high-avidity CD8+ T cells in adoptive-transfer procedures. It is unclear whether these conditions mimic the differentiation processes of an endogenous repertoire that proceed upon noninflammatory conditions prevailing in premalignant tumor lesions. We examined the role of cytolytic capacity on CD8+ T cell fate decisions when primed by tumor cells or by minor histocompatibility antigen–mismatched leukocytes. CD8+ memory commitment was analyzed in Ebag9-deficient mice that exhibited enhanced tumor cell lysis. This property endowed Ebag9–/– mice with extended control of Tcl-1 oncogene–induced chronic lymphocytic leukemia progression. In Ebag9–/– mice, an expanded memory population was obtained for anti-HY and anti–SV-40 T antigen–specific T cells, despite unchanged effector frequencies in the primary response. By comparing the single-cell transcriptomes of CD8+ T cells responding to tumor cell vaccination, we found differential distribution of subpopulations between Ebag9+/+ and Ebag9–/– T cells. In Ebag9–/– cells, these larger clusters contained genes encoding transcription factors regulating memory cell differentiation and anti-apoptotic gene functions. Our findings link EBAG9-controlled cytolytic activity and the commitment to the CD8+ memory lineage.
Collapse
Affiliation(s)
- Armin Rehm
- Department of Translational Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Anthea Wirges
- Department of Translational Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dana Hoser
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelius Fischer
- Scientific Infrastructure Department, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Stefanie Herda
- Department of Translational Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Kerstin Gerlach
- Department of Translational Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Sascha Sauer
- Scientific Infrastructure Department, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uta E Höpken
- Department of Microenvironmental Regulation of Autoimmunity and Cancer, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
85
|
Li S, Zou D, Chen W, Cheng Y, Britz GW, Weng YL, Liu Z. Ablation of BATF Alleviates Transplant Rejection via Abrogating the Effector Differentiation and Memory Responses of CD8 + T Cells. Front Immunol 2022; 13:882721. [PMID: 35514970 PMCID: PMC9062028 DOI: 10.3389/fimmu.2022.882721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023] Open
Abstract
Allogeneic CD8+ T cells are prominently involved in allograft rejection, but how their effector differentiation and function are regulated at a transcriptional level is not fully understood. Herein, we identified the basic leucine zipper ATF-like transcription factor (BATF) as a key transcription factor that drives the effector program of allogeneic CD8+ T cells. We found that BATF is highly expressed in graft-infiltrating CD8+ T cells, and its ablation in CD8+ T cells significantly prolonged skin allograft survival in a fully MHC-mismatched transplantation model. To investigate how BATF dictates allogeneic CD8+ T cell response, BATF-/- and wild-type (WT) CD8+ T cells were mixed in a 1:1 ratio and adoptively transferred into B6.Rag1-/- mice 1 day prior to skin transplantation. Compared with WT CD8+ T cells at the peak of rejection response, BATF-/- CD8+ T cells displayed a dysfunctional phenotype, evident by their failure to differentiate into CD127-KLRG1+ terminal effectors, impaired proliferative capacity and production of pro-inflammatory cytokines/cytotoxic molecules, and diminished capacity to infiltrate allografts. In association with the failure of effector differentiation, BATF-/- CD8+ T cells largely retained TCF1 expression and expressed significantly low levels of T-bet, TOX, and Ki67. At the memory phase, BATF-deficient CD8+ T cells displayed impaired effector differentiation upon allogeneic antigen re-stimulation. Therefore, BATF is a critical transcriptional determinant that governs the terminal differentiation and memory responses of allogeneic CD8+ T cells in the transplantation setting. Targeting BATF in CD8+ T cells may be an attractive therapeutic approach to promote transplant acceptance.
Collapse
Affiliation(s)
- Shuang Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Institute of Clinical Pharmacology, Central South University, Changsha, China,Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Dawei Zou
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Yating Cheng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Gavin W. Britz
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Yi-Lan Weng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States,Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States,*Correspondence: Zhaoqian Liu, ;Yi-Lan Weng,
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Institute of Clinical Pharmacology, Central South University, Changsha, China,*Correspondence: Zhaoqian Liu, ;Yi-Lan Weng,
| |
Collapse
|
86
|
Parga-Vidal L, Taggenbrock RLRE, Beumer-Chuwonpad A, Aglmous H, Kragten NAM, Behr FM, Bovens AA, van Lier RAW, Stark R, van Gisbergen KPJM. Hobit and Blimp-1 regulate T RM abundance after LCMV infection by suppressing tissue exit pathways of T RM precursors. Eur J Immunol 2022; 52:1095-1111. [PMID: 35389518 PMCID: PMC9545210 DOI: 10.1002/eji.202149665] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/17/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2022]
Abstract
Tissue‐resident memory T cells (Trm) are retained in peripheral tissues after infection for enhanced protection against secondary encounter with the same pathogen. We have previously shown that the transcription factor Hobit and its homolog Blimp‐1 drive Trm development after viral infection, but how and when these transcription factors mediate Trm formation remains poorly understood. In particular, the major impact of Blimp‐1 in regulating several aspects of effector T‐cell differentiation impairs study of its specific role in Trm development. Here, we used the restricted expression of Hobit in the Trm lineage to develop mice with a conditional deletion of Blimp‐1 in Trm, allowing us to specifically investigate the role of both transcription factors in Trm differentiation. We found that Hobit and Blimp‐1 were required for the upregulation of CD69 and suppression of CCR7 and S1PR1 on virus‐specific Trm precursors after LCMV infection, underlining a role in their retention within tissues. The early impact of Hobit and Blimp‐1 favored Trm formation and prevented the development of circulating memory T cells. Thus, our findings highlight a role of Hobit and Blimp‐1 at the branching point of circulating and resident memory lineages by suppressing tissue egress of Trm precursors early during infection.
Collapse
Affiliation(s)
- Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Renske L R E Taggenbrock
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ammarina Beumer-Chuwonpad
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hajar Aglmous
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Astrid A Bovens
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rene A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
87
|
Jin Y, Hu P, Sun H, Yang C, Zhai J, Wang Y, Chu X, Sun Z, Wang J, Sun J, Wang J. Expression of Id3 represses exhaustion of anti-tumor CD8 T cells in liver cancer. Mol Immunol 2022; 144:117-126. [PMID: 35219016 DOI: 10.1016/j.molimm.2022.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/13/2021] [Accepted: 02/06/2022] [Indexed: 12/21/2022]
Abstract
Id3, an inhibitor of DNA binding protein, plays important roles in the function and homeostasis of effector and memory T cells. Recent evidence has shown that Id3 is also implicated in CD8 T cell exhaustion. However, whether and how Id3 might regulate effector function or exhaustion of CD8 T cells, especially in the tumor setting, is still unknown. Here, we first showed that Id3 expression was impaired in tumor-infiltrating CD8 T cells as liver cancer progressed, especially in PD-1 +Tim-3 + exhausted CD8 T cells. Enforced expression of Id3 in CD8 T cells resulted in repressed development of anti-tumor CTLs exhaustion, which offered better tumor control. And partially depletion of Id3 in CD8 T cells promoted the development of exhausted CD8 T cells. Furthermore, Id3hi CD8 T cells could respond to PD-1 blockade. Collectively, Id3 exerts protective functions in CD8 T cells for liver cancer.
Collapse
Affiliation(s)
- Yun Jin
- Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Pingping Hu
- Research Center of Digital Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Haihang Sun
- Linbing Biotechnology Center, Jinan, Shandong, China
| | - Chao Yang
- Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jianxin Zhai
- Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xinyun Chu
- Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhiwei Sun
- Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jia Wang
- Linbing Biotechnology Center, Jinan, Shandong, China
| | - Jie Sun
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Junfeng Wang
- Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; Research Center of Digital Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
88
|
Swainson LA, Sharma AA, Ghneim K, Ribeiro SP, Wilkinson P, Dunham RM, Albright RG, Wong S, Estes JD, Piatak M, Deeks SG, Hunt PW, Sekaly RP, McCune JM. IFN-α blockade during ART-treated SIV infection lowers tissue vDNA, rescues immune function, and improves overall health. JCI Insight 2022; 7:153046. [PMID: 35104248 PMCID: PMC8983135 DOI: 10.1172/jci.insight.153046] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Type I IFNs (TI-IFNs) drive immune effector functions during acute viral infections and regulate cell cycling and systemic metabolism. That said, chronic TI-IFN signaling in the context of HIV infection treated with antiretroviral therapy (ART) also facilitates viral persistence, in part by promoting immunosuppressive responses and CD8+ T cell exhaustion. To determine whether inhibition of IFN-α might provide benefit in the setting of chronic, ART-treated SIV infection of rhesus macaques, we administered an anti-IFN-α antibody followed by an analytical treatment interruption (ATI). IFN-α blockade was well-tolerated and associated with lower expression of TI-IFN-inducible genes (including those that are antiviral) and reduced tissue viral DNA (vDNA). The reduction in vDNA was further accompanied by higher innate proinflammatory plasma cytokines, expression of monocyte activation genes, IL-12-induced effector CD8+ T cell genes, increased heme/metabolic activity, and lower plasma TGF-β levels. Upon ATI, SIV-infected, ART-suppressed nonhuman primates treated with anti-IFN-α displayed lower levels of weight loss and improved erythroid function relative to untreated controls. Overall, these data demonstrated that IFN-α blockade during ART-treated SIV infection was safe and associated with the induction of immune/erythroid pathways that reduced viral persistence during ART while mitigating the weight loss and anemia that typically ensue after ART interruption.
Collapse
Affiliation(s)
- Louise A. Swainson
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ashish Arunkumar Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Khader Ghneim
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Susan Pereira Ribeiro
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Peter Wilkinson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Richard M. Dunham
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA.,ViiV Healthcare, Research Triangle, North Carolina, USA
| | - Rebecca G. Albright
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Samson Wong
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA.,Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Steven G. Deeks
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Joseph M. McCune
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA.,HIV Frontiers/Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
89
|
STAT3 Role in T-Cell Memory Formation. Int J Mol Sci 2022; 23:ijms23052878. [PMID: 35270020 PMCID: PMC8910982 DOI: 10.3390/ijms23052878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Along with the clinical success of immuno-oncology drugs and cellular therapies, T-cell biology has attracted considerable attention in the immunology community. Long-term immunity, traditionally analyzed in the context of infection, is increasingly studied in cancer. Many signaling pathways, transcription factors, and metabolic regulators have been shown to participate in the formation of memory T cells. There is increasing evidence that the signal transducer and activator of transcription-3 (STAT3) signaling pathway is crucial for the formation of long-term T-cell immunity capable of efficient recall responses. In this review, we summarize what is currently known about STAT3 role in the context of memory T-cell formation and antitumor immunity.
Collapse
|
90
|
Tcf1 preprograms the mobilization of glycolysis in central memory CD8 + T cells during recall responses. Nat Immunol 2022; 23:386-398. [PMID: 35190717 PMCID: PMC8904300 DOI: 10.1038/s41590-022-01131-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
Abstract
The mechanisms underlying the heightened protection mediated by central memory CD8+ T (TCM) cells remain unclear. Here we show that the transcription factor Tcf1 was required in resting TCM cells to generate secondary effector CD8+ T cells and to clear pathogens during recall responses. Recall stimulation of CD8+ TCM cells caused extensive reprogramming of the transcriptome and chromatin accessibility, leading to rapid induction of glycolytic enzymes, cell cycle regulators and transcriptional regulators, including Id3. This cluster of genes did not require Tcf1 in resting CD8+ TCM cells, but depended on Tcf1 for optimal induction and chromatin opening in recall-stimulated CD8+ TCM cells. Tcf1 bound extensively to these recall-induced gene loci in resting CD8+ TCM cells and mediated chromatin interactions that positioned these genes in architectural proximity with poised enhancers. Thus, Tcf1 preprogramed a transcriptional program that supported the bioenergetic and proliferative needs of CD8+ TCM cells in case of a secondary challenge.
Collapse
|
91
|
Lai N, Fu X, Hei G, Song W, Wei R, Zhu X, Guo Q, Zhang Z, Chu C, Xu K, Li X. The Role of Dendritic Cell Subsets in Recurrent Spontaneous Abortion and the Regulatory Effect of Baicalin on It. J Immunol Res 2022; 2022:9693064. [PMID: 35224114 PMCID: PMC8872676 DOI: 10.1155/2022/9693064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a relevant complication of pregnancy. Aberrant dendritic cell (DC) activities and differentiation have been identified to be involved in RSA, but the underlying mechanisms remain unclear. Baicalin from Radix Scutellariae possesses a wide range of pharmacological and biological activities. However, the effect of baicalin on DC function in RSA has not been investigated. Here, we analyzed the changes of peripheral and maternal-fetal interface DC subsets and function in patients and mice with RSA, respectively. Then, we further treated RSA mice with baicalin and analyzed the therapeutic effect and underlying mechanism. We found that DCs from the peripheral blood and decidua of RSA patients and the maternal-fetal of RSA mice were all polarized to conventional DCs, whose proportion was positively correlated with the mice embryo absorption rate. Moreover, DCs from RSA patients and mice showed increased expression of HLA-DR/MHC-II, CD80, and CD86 but decreased expression of CD274 and 33D1. Importantly, baicalin could alleviate embryo resorption of RSA mice by reversing conventional DCs to plasmacytoid DCs and functional molecule expression via inhibiting the STAT5-ID2 pathway. Our research further proved that DCs play an important role in the pathogenesis of RSA and baicalin might be used for treating RSA.
Collapse
Affiliation(s)
- Nannan Lai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoxiao Fu
- Laboratory of Molecular Immunology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Guozhen Hei
- Shandong Province Maternal and Child Health Care Hospital, Jinan 250013, China
| | - Weiwei Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Ran Wei
- Laboratory of Molecular Immunology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Xiaoxiao Zhu
- Laboratory of Molecular Immunology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Qiang Guo
- Laboratory of Molecular Immunology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhen Zhang
- Laboratory of Molecular Immunology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ke Xu
- Laboratory of Molecular Immunology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
92
|
Lipp JJ, Wang L, Yang H, Yao F, Harrer N, Müller S, Berezowska S, Dorn P, Marti TM, Schmid RA, Hegedüs B, Souabni A, Carotta S, Pearson MA, Sommergruber W, Kocher GJ, Hall SR. Functional and molecular characterization of PD1+ tumor-infiltrating lymphocytes from lung cancer patients. Oncoimmunology 2022; 11:2019466. [PMID: 35154905 PMCID: PMC8837234 DOI: 10.1080/2162402x.2021.2019466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antibody-mediated cancer immunotherapy targets inhibitory surface molecules, such as PD1, PD-L1, and CTLA-4, aiming to re-invigorate dysfunctional T cells. We purified and characterized tumor-infiltrating lymphocytes (TILs) and their patient-matched non-tumor counterparts from treatment-naïve NSCLC patient biopsies to evaluate the effect of PD1 expression on the functional and molecular profiles of tumor-resident T cells. We show that PD1+ CD8+ TILs have elevated expression of the transcriptional regulator ID3 and that the cytotoxic potential of CD8 T cells can be improved by knocking down ID3, defining it as a potential regulator of T cell effector function. PD1+ CD4+ memory TILs display transcriptional patterns consistent with both helper and regulator function, but can robustly facilitate B cell activation and expansion. Furthermore, we show that expanding ex vivo-prepared TILs in vitro broadly preserves their functionality with respect to tumor cell killing, B cell help, and TCR repertoire. Although purified PD1+ CD8+ TILs generally maintain an exhausted phenotype upon expansion in vitro, transcriptional analysis reveals a downregulation of markers of T-cell dysfunction, including the co-inhibitory molecules PD1 and CTLA-4 and transcription factors ID3, TOX and TOX2, while genes involved in cell cycle and DNA repair are upregulated. We find reduced expression of WNT signaling components to be a hallmark of PD1+ CD8+ exhausted T cells in vivo and in vitro and demonstrate that restoring WNT signaling, by pharmacological blockade of GSK3β, can improve effector function. These data unveil novel targets for tumor immunotherapy and have promising implications for the development of a personalized TIL-based cell therapy for lung cancer.
Collapse
Affiliation(s)
- Jesse J. Lipp
- Boehringer Ingelheim, Rcv GmbH & Co Kg, Vienna, Austria
| | - Limei Wang
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | | | - Stefan Müller
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Patrick Dorn
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
| | - Thomas M. Marti
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ralph A. Schmid
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Belazs Hegedüs
- Department of Thoracic Surgery, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | | | | | | | - Wolfgang Sommergruber
- Boehringer Ingelheim, Rcv GmbH & Co Kg, Vienna, Austria
- Department of Biotechnology, University of Applied Sciences, Vienna, Austria
| | - Greg J. Kocher
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
| | - Sean R.R. Hall
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
93
|
Tsuda S, Pipkin ME. Transcriptional Control of Cell Fate Determination in Antigen-Experienced CD8 T Cells. Cold Spring Harb Perspect Biol 2022; 14:a037945. [PMID: 34127445 PMCID: PMC8805646 DOI: 10.1101/cshperspect.a037945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Robust immunity to intracellular infections is mediated by antigen-specific naive CD8 T cells that become activated and differentiate into phenotypically and functionally diverse subsets of effector cells, some of which terminally differentiate and others that give rise to memory cells that provide long-lived protection. This developmental system is an outstanding model with which to elucidate how regulation of chromatin structure and transcriptional control establish gene expression programs that govern cell fate determination, insights from which are likely to be useful for informing the design of immunotherapeutic approaches to engineer durable immunity to infections and tumors. A unifying framework that describes how naive CD8 T cells develop into memory cells is still outstanding. We propose a model that incorporates a common early linear path followed by divergent paths that slowly lose capacity to interconvert and discuss classical and contemporary observations that support these notions, focusing on insights from transcriptional control and chromatin regulation.
Collapse
Affiliation(s)
- Shanel Tsuda
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
94
|
Abstract
The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single cell RNA-seq studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We here show that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a de-differentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1 infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell re-differentiation destabilized latent infection. Guided by these findings, data-mining of single cell RNA-seq data of latently HIV-1 infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. >20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g. HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1 infected cells differs from normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a de-differentiated T cell phenotype. Software-based data integration allowed for the identification of drug targets that would re-differentiate viral host cells and, in extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.
Collapse
|
95
|
Vitamin D deficiency after allogeneic hematopoietic cell transplantation promotes T-cell activation and is inversely associated with an EZH2-ID3 signature. Transplant Cell Ther 2022; 28:18.e1-18.e10. [PMID: 34597852 PMCID: PMC8792200 DOI: 10.1016/j.jtct.2021.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/10/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
Vitamin D promotes a shift from a proinflammatory to a more tolerogenic immune state in allogeneic hematopoietic cell transplant (HCT) recipients. The dominant mechanism responsible for this shift has not been elucidated. We took a multifaceted approach to evaluating the clinical and immunologic impact of low vitamin D levels in 53 HCT recipients. We used 28-plex flow cytometry for immunophenotyping, serum cytokine levels, T-cell cytokine production, and T-cell whole genome transcription. The median day-30 vitamin D level was 20 ng/mL, and deficiency was common in younger patients undergoing myeloablative transplantation. Low vitamin D levels were associated with a high CD8/Treg ratio, increased serum levels and T-cell production of proinflammatory cytokines, and a gene expression signature of unrestrained T-cell proliferation and epigenetic modulation through the PRC2/EZH2 complex. Immunophenotyping confirmed a strong association between high levels of vitamin D and an activated EZH2 signature, characterized by overexpression of ID3, which has a role in effector T-cell differentiation. Our findings demonstrate the critical role of vitamin D in modulating T-cell function in human GVHD and identify a previously undescribed interaction with EZH2 and ID3, which may impact effector differentiation and has implications to cell therapies and other forms of cancer immunotherapy. © 20XX American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Collapse
|
96
|
ILC Differentiation in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:25-39. [DOI: 10.1007/978-981-16-8387-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
97
|
Good CR, Aznar MA, Kuramitsu S, Samareh P, Agarwal S, Donahue G, Ishiyama K, Wellhausen N, Rennels AK, Ma Y, Tian L, Guedan S, Alexander KA, Zhang Z, Rommel PC, Singh N, Glastad KM, Richardson MW, Watanabe K, Tanyi JL, O'Hara MH, Ruella M, Lacey SF, Moon EK, Schuster SJ, Albelda SM, Lanier LL, Young RM, Berger SL, June CH. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 2021; 184:6081-6100.e26. [PMID: 34861191 DOI: 10.1016/j.cell.2021.11.016] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/13/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion. Our findings shed light on the plasticity of human CAR T cells and demonstrate that genetic downmodulation of ID3 and SOX4 expression can improve the efficacy of CAR T cell therapy in solid tumors by preventing or delaying CAR T cell dysfunction.
Collapse
Affiliation(s)
- Charly R Good
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Angela Aznar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Parisa Samareh
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sangya Agarwal
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California San Francisco and the Parker Institute for Cancer Immunotherapy at the University of California San Francisco, San Francisco, California 94143, USA
| | - Nils Wellhausen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Austin K Rennels
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yujie Ma
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lifeng Tian
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Guedan
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine A Alexander
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhen Zhang
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Philipp C Rommel
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathan Singh
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Max W Richardson
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keisuke Watanabe
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janos L Tanyi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark H O'Hara
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edmund K Moon
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco and the Parker Institute for Cancer Immunotherapy at the University of California San Francisco, San Francisco, California 94143, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
98
|
Meldgaard TS, Blengio F, Maffione D, Sammicheli C, Tavarini S, Nuti S, Kratzer R, Medini D, Siena E, Bertholet S. Single-Cell Analysis of Antigen-Specific CD8+ T-Cell Transcripts Reveals Profiles Specific to mRNA or Adjuvanted Protein Vaccines. Front Immunol 2021; 12:757151. [PMID: 34777370 PMCID: PMC8586650 DOI: 10.3389/fimmu.2021.757151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
CD8+ T cells play a key role in mediating protective immunity after immune challenges such as infection or vaccination. Several subsets of differentiated CD8+ T cells have been identified, however, a deeper understanding of the molecular mechanism that underlies T-cell differentiation is lacking. Conventional approaches to the study of immune responses are typically limited to the analysis of bulk groups of cells that mask the cells' heterogeneity (RNA-seq, microarray) and to the assessment of a relatively limited number of biomarkers that can be evaluated simultaneously at the population level (flow and mass cytometry). Single-cell analysis, on the other hand, represents a possible alternative that enables a deeper characterization of the underlying cellular heterogeneity. In this study, a murine model was used to characterize immunodominant hemagglutinin (HA533-541)-specific CD8+ T-cell responses to nucleic- and protein-based influenza vaccine candidates, using single-cell sorting followed by transcriptomic analysis. Investigation of single-cell gene expression profiles enabled the discovery of unique subsets of CD8+ T cells that co-expressed cytotoxic genes after vaccination. Moreover, this method enabled the characterization of antigen specific CD8+ T cells that were previously undetected. Single-cell transcriptome profiling has the potential to allow for qualitative discrimination of cells, which could lead to novel insights on biological pathways involved in cellular responses. This approach could be further validated and allow for more informed decision making in preclinical and clinical settings.
Collapse
Affiliation(s)
- Trine Sundebo Meldgaard
- Research & Development, GSK, Siena, Italy
- Biochemistry & Molecular Biology, University of Siena, Siena, Italy
| | - Fabiola Blengio
- Chemical & Biological Sciences, University of Torino, Torino, Italy
| | - Denise Maffione
- Chemical & Biological Sciences, University of Torino, Torino, Italy
| | | | | | - Sandra Nuti
- Research & Development, GSK, Siena, Italy
- Research & Development, GSK, Rockville, MD, United States
| | | | | | | | - Sylvie Bertholet
- Research & Development, GSK, Siena, Italy
- Research & Development, GSK, Rockville, MD, United States
| |
Collapse
|
99
|
Singh K, Hotchkiss KM, Patel KK, Wilkinson DS, Mohan AA, Cook SL, Sampson JH. Enhancing T Cell Chemotaxis and Infiltration in Glioblastoma. Cancers (Basel) 2021; 13:5367. [PMID: 34771532 PMCID: PMC8582389 DOI: 10.3390/cancers13215367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an immunologically 'cold' tumor, which are characterized by absent or minimal numbers of tumor-infiltrating lymphocytes (TILs). For those tumors that have been invaded by lymphocytes, they are profoundly exhausted and ineffective. While many immunotherapy approaches seek to reinvigorate immune cells at the tumor, this requires TILs to be present. Therefore, to unleash the full potential of immunotherapy in glioblastoma, the trafficking of lymphocytes to the tumor is highly desirable. However, the process of T cell recruitment into the central nervous system (CNS) is tightly regulated. Naïve T cells may undergo an initial licensing process to enter the migratory phenotype necessary to enter the CNS. T cells then must express appropriate integrins and selectin ligands to interact with transmembrane proteins at the blood-brain barrier (BBB). Finally, they must interact with antigen-presenting cells and undergo further licensing to enter the parenchyma. These T cells must then navigate the tumor microenvironment, which is rich in immunosuppressive factors. Altered tumoral metabolism also interferes with T cell motility. In this review, we will describe these processes and their mediators, along with potential therapeutic approaches to enhance trafficking. We also discuss safety considerations for such approaches as well as potential counteragents.
Collapse
Affiliation(s)
- Kirit Singh
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| | | | | | | | | | | | - John H. Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| |
Collapse
|
100
|
Ciecko AE, Schauder DM, Foda B, Petrova G, Kasmani MY, Burns R, Lin CW, Drobyski WR, Cui W, Chen YG. Self-Renewing Islet TCF1 + CD8 T Cells Undergo IL-27-Controlled Differentiation to Become TCF1 - Terminal Effectors during the Progression of Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2021; 207:1990-2004. [PMID: 34507949 DOI: 10.4049/jimmunol.2100362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022]
Abstract
In type 1 diabetes (T1D) autoreactive CD8 T cells infiltrate pancreatic islets and destroy insulin-producing β cells. Progression to T1D onset is a chronic process, which suggests that the effector activity of β-cell autoreactive CD8 T cells needs to be maintained throughout the course of disease development. The mechanism that sustains diabetogenic CD8 T cell effectors during the course of T1D progression has not been completely defined. Here we used single-cell RNA sequencing to gain further insight into the phenotypic complexity of islet-infiltrating CD8 T cells in NOD mice. We identified two functionally distinct subsets of activated CD8 T cells, CD44highTCF1+CXCR6- and CD44highTCF1-CXCR6+, in islets of prediabetic NOD mice. Compared with CD44highTCF1+CXCR6- CD8 T cells, the CD44highTCF1-CXCR6+ subset expressed higher levels of inhibitory and cytotoxic molecules and was more prone to apoptosis. Adoptive cell transfer experiments revealed that CD44highTCF1+CXCR6- CD8 T cells, through continuous generation of the CD44highTCF1-CXCR6+ subset, were more capable than the latter population to promote insulitis and the development of T1D. We further showed that direct IL-27 signaling in CD8 T cells promoted the generation of terminal effectors from the CD44highTCF1+CXCR6- population. These results indicate that islet CD44highTCF1+CXCR6- CD8 T cells are a progenitor-like subset with self-renewing capacity, and, under an IL-27-controlled mechanism, they differentiate into the CD44highTCF1-CXCR6+ terminal effector population. Our study provides new insight into the sustainability of the CD8 T cell response in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Ashley E Ciecko
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - David M Schauder
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Versiti Blood Research Institute, Milwaukee, WI
| | - Bardees Foda
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI.,Department of Molecular Genetics and Enzymology, National Research Center, Dokki, Egypt
| | - Galina Petrova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Versiti Blood Research Institute, Milwaukee, WI
| | | | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI; and
| | - William R Drobyski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Versiti Blood Research Institute, Milwaukee, WI
| | - Yi-Guang Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI; .,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|