51
|
Pirzada RH, Ahmad B, Qayyum N, Choi S. Modeling structure-activity relationships with machine learning to identify GSK3-targeted small molecules as potential COVID-19 therapeutics. Front Endocrinol (Lausanne) 2023; 14:1084327. [PMID: 36950681 PMCID: PMC10025526 DOI: 10.3389/fendo.2023.1084327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Coronaviruses induce severe upper respiratory tract infections, which can spread to the lungs. The nucleocapsid protein (N protein) plays an important role in genome replication, transcription, and virion assembly in SARS-CoV-2, the virus causing COVID-19, and in other coronaviruses. Glycogen synthase kinase 3 (GSK3) activation phosphorylates the viral N protein. To combat COVID-19 and future coronavirus outbreaks, interference with the dependence of N protein on GSK3 may be a viable strategy. Toward this end, this study aimed to construct robust machine learning models to identify GSK3 inhibitors from Food and Drug Administration-approved and investigational drug libraries using the quantitative structure-activity relationship approach. A non-redundant dataset consisting of 495 and 3070 compounds for GSK3α and GSK3β, respectively, was acquired from the ChEMBL database. Twelve sets of molecular descriptors were used to define these inhibitors, and machine learning algorithms were selected using the LazyPredict package. Histogram-based gradient boosting and light gradient boosting machine algorithms were used to develop predictive models that were evaluated based on the root mean square error and R-squared value. Finally, the top two drugs (selinexor and ruboxistaurin) were selected for molecular dynamics simulation based on the highest predicted activity (negative log of the half-maximal inhibitory concentration, pIC50 value) to further investigate the structural stability of the protein-ligand complexes. This artificial intelligence-based virtual high-throughput screening approach is an effective strategy for accelerating drug discovery and finding novel pharmacological targets while reducing the cost and time.
Collapse
Affiliation(s)
- Rameez Hassan Pirzada
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza, Suwon, Republic of Korea
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Naila Qayyum
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza, Suwon, Republic of Korea
- *Correspondence: Sangdun Choi,
| |
Collapse
|
52
|
Zhou L, Wang J, Hou H, Li J, Li J, Liang J, Li J, Niu X, Hou R, Zhang K. Autophagy Inhibits Inflammation via Down-Regulation of p38 MAPK/mTOR Signaling Cascade in Endothelial Cells. Clin Cosmet Investig Dermatol 2023; 16:659-669. [PMID: 36942318 PMCID: PMC10024493 DOI: 10.2147/ccid.s405068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Objective Autophagy, an intracellular process of self-digestion, has been shown to modulate inflammatory responses. In the present study, we determined the effects of autophagy on inflammatory response induced by M5 cytokines. Methods Human umbilical vein endothelial cells (HUVECs) were treated with M5 cytokines to induce inflammation. Expression levels of mRNA for inflammatory cytokines and BIRC2 were compared in HUVECs with vs without induction of autophagy with rapamycin (RAPA) by PCR, while cell apoptosis was assessed by flow cytometry and caspase-3 activity assay kit. Expression levels of LC3, p62, p-p38 MAPK (Thr180/Tyr182), p-mTOR (Ser2445) and p-ULK1 (Ser555) proteins were measured by Western blotting. The nitric oxide (NO) content, NO synthase (NOS) activity and cell angiogenesis were also evaluated. Results Induction of autophagy with RAPA decreased expression levels of IL6, IL8 and CCL20, in addition to reduction in inflammation-induced apoptosis in HUVECs. Moreover, RAPA increased LC3II, while decreasing p62 expression. Likewise, expression levels of p-p38 MAPK and p-mTOR proteins were markedly decreased by the treatment with RAPA. Finally, RAPA treatment increased the NO content and the NOS activity, and inhibited angiogenesis. Conclusion Induced autophagy can improve the function of endothelial cells in psoriasis, suggesting approaches to induce autophagy can be used to ameliorate psoriasis.
Collapse
Affiliation(s)
- Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- Correspondence: Kaiming Zhang, Taiyuan Central Hospital, Taiyuan, People’s Republic of China, Tel/Fax +86-351-5656080, Email ;
| |
Collapse
|
53
|
Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022; 12:metabo12111149. [DOI: 10.3390/metabo12111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.
Collapse
|
54
|
Fahie KMM, Papanicolaou KN, Zachara NE. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022; 11:3509. [PMID: 36359905 PMCID: PMC9654274 DOI: 10.3390/cells11213509] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked βN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.
Collapse
Affiliation(s)
- Kamau M. M. Fahie
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyriakos N. Papanicolaou
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
55
|
Molecular Mechanism and Regulation of Autophagy and Its Potential Role in Epilepsy. Cells 2022; 11:cells11172621. [PMID: 36078029 PMCID: PMC9455075 DOI: 10.3390/cells11172621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an evolutionally conserved degradation mechanism for maintaining cell homeostasis whereby cytoplasmic components are wrapped in autophagosomes and subsequently delivered to lysosomes for degradation. This process requires the concerted actions of multiple autophagy-related proteins and accessory regulators. In neurons, autophagy is dynamically regulated in different compartments including soma, axons, and dendrites. It determines the turnover of selected materials in a spatiotemporal control manner, which facilitates the formation of specialized neuronal functions. It is not surprising, therefore, that dysfunctional autophagy occurs in epilepsy, mainly caused by an imbalance between excitation and inhibition in the brain. In recent years, much attention has been focused on how autophagy may cause the development of epilepsy. In this article, we overview the historical landmarks and distinct types of autophagy, recent progress in the core machinery and regulation of autophagy, and biological roles of autophagy in homeostatic maintenance of neuronal structures and functions, with a particular focus on synaptic plasticity. We also discuss the relevance of autophagy mechanisms to the pathophysiology of epileptogenesis.
Collapse
|
56
|
McCormick JJ, Côté MD, King KE, McManus MK, Goulet N, Dokladny K, Moseley PL, Kenny GP. The autophagic response to exercise in peripheral blood mononuclear cells from young men is intensity-dependent and is altered by exposure to environmental heat. Am J Physiol Regul Integr Comp Physiol 2022; 323:R467-R482. [PMID: 35993558 DOI: 10.1152/ajpregu.00110.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autophagy is essential to maintaining cellular homeostasis in all eukaryotic cells and to tolerance of acute stressors such as starvation, heat, and recovery following exercise. Limited information exists regarding the exercise intensity-dependent autophagic response in humans, and it is unknown how environmental heat stress may modulate this response. Therefore, we evaluated autophagy and accompanying pathways of cellular stress (the heat shock response [HSR], apoptosis, and acute inflammation) in peripheral blood mononuclear cells (PBMCs) from 10 young men (mean [SD]; 22 [2] years) before, immediately after and up to 6h post-exercise recovery from 30 minutes of low-, moderate-, and high-intensity semi-recumbent cycling (40, 55 and 70% of maximal oxygen consumption (VO2max), respectively)in a temperate environment (25°C) and at 70% of VO2max in a hot environment (40°C). Changes in protein content were analyzed via Western blot. Each increase in exercise intensity was associated with elevations in mean body temperature. LC3-II increased following moderate-intensity exercise, with further increases following high-intensity exercise (p < 0.05). However, an increase in beclin-2 and ULK1, with a decrease in p62 was only observed after high-intensity exercise, which was paralleled by elevated TNF-α and cleaved-caspase-3, with the HSR peaking at 6h after exercise (p < 0.05). When exercise was performed in the heat, greater LC3-II and cleaved-caspase-3 accumulation was observed, however beclin-2 declined in recovery (p < 0.05). Therefore, our findings indicate that autophagy in PBMCs during exercise may be associated with greater heat strain exhibited during increasing exercise intensities, which is modulated by exposure to heat.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Melissa D Côté
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Morgan K McManus
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Pope L Moseley
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,College of Health Solutions, Arizona State University, Phoenix, Arizona, United States
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
57
|
Shi Y, Yan S, Shao GC, Wang J, Jian YP, Liu B, Yuan Y, Qin K, Nai S, Huang X, Wang Y, Chen Z, Chen X, Dong MQ, Geng Y, Xu ZX, Li J. O-GlcNAcylation stabilizes the autophagy-initiating kinase ULK1 by inhibiting chaperone-mediated autophagy upon HPV infection. J Biol Chem 2022; 298:102341. [PMID: 35931119 PMCID: PMC9436821 DOI: 10.1016/j.jbc.2022.102341] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/02/2023] Open
Abstract
Human papillomaviruses (HPVs) cause a subset of head and neck squamous cell carcinomas (HNSCCs). Previously, we demonstrated that HPV16 oncogene E6 or E6/E7 transduction increases the abundance of O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT), but OGT substrates affected by this increase are unclear. Here, we focus on the effects of O-GlcNAcylation on HPV-positive HNSCCs. We found that upon HPV infection, Unc-51-like kinase 1 (ULK1), an autophagy-initiating kinase, is hyper-O-GlcNAcylated, stabilized, and linked with autophagy elevation. Through mass spectrometry, we identified that ULK1 is O-GlcNAcylated at Ser409, which is distinct from the previously reported Thr635/Thr754 sites. It has been demonstrated that PKCα mediates phosphorylation of ULK1 at Ser423, which attenuates its stability by shunting ULK1 to the chaperone-mediated autophagy (CMA) pathway. Using biochemical assays, we demonstrate that ULK1 Ser409Ser410 O-GlcNAcylation antagonizes its phosphorylation at Ser423. Moreover, mutations of Ser409A and its neighboring site Ser410A (2A) render ULK1 less stable by promoting interaction with the CMA chaperone HSC70 (heat shock cognate 70 kDa protein). Furthermore, ULK1-2A mutants attenuate the association of ULK1 with STX17, which is vital for the fusion between autophagosomes and lysosomes. Analysis of The Cancer Genome Atlas (TCGA) database reveals that ULK1 is upregulated in HPV-positive HNSCCs, and its level positively correlates with HNSCC patient survival. Overall, our work demonstrates that O-GlcNAcylation of ULK1 is altered in response to environmental changes. O-GlcNAcylation of ULK1 at Ser409 and perhaps Ser410 stabilizes ULK1, which might underlie the molecular mechanism of HPV-positive HNSCC patient survival.
Collapse
Affiliation(s)
- Yingxin Shi
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing 100048, China
| | - Sheng Yan
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing 100048, China
| | - Guang-Can Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jinglong Wang
- Qingdao University Medical College Affiliated Hospital, Qingdao, Shandong 266000, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Bo Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ke Qin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Shanshan Nai
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenghui Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yiqun Geng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing 100048, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
58
|
Function and regulation of ULK1: From physiology to pathology. Gene 2022; 840:146772. [PMID: 35905845 DOI: 10.1016/j.gene.2022.146772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
Abstract
The expression of ULK1, a core protein of autophagy, is closely related to autophagic activity. Numerous studies have shown that pathological abnormal expression of ULK1 is associated with various human diseases such as neurological disorders, infections, cardiovascular diseases, liver diseases and cancers. In addition, new advances in the regulation of ULK1 have been identified. Furthermore, targeting ULK1 as a therapeutic strategy for diseases is gaining attention as new corresponding activators or inhibitors are being developed. In this review, we describe the structure and regulation of ULK1 as well as the current targeted activators and inhibitors. Moreover, we highlight the pathological disorders of ULK1 expression and its critical role in human diseases.
Collapse
|
59
|
Vitto VAM, Bianchin S, Zolondick AA, Pellielo G, Rimessi A, Chianese D, Yang H, Carbone M, Pinton P, Giorgi C, Patergnani S. Molecular Mechanisms of Autophagy in Cancer Development, Progression, and Therapy. Biomedicines 2022; 10:1596. [PMID: 35884904 PMCID: PMC9313210 DOI: 10.3390/biomedicines10071596] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an evolutionarily conserved and tightly regulated process that plays an important role in maintaining cellular homeostasis. It involves regulation of various genes that function to degrade unnecessary or dysfunctional cellular components, and to recycle metabolic substrates. Autophagy is modulated by many factors, such as nutritional status, energy level, hypoxic conditions, endoplasmic reticulum stress, hormonal stimulation and drugs, and these factors can regulate autophagy both upstream and downstream of the pathway. In cancer, autophagy acts as a double-edged sword depending on the tissue type and stage of tumorigenesis. On the one hand, autophagy promotes tumor progression in advanced stages by stimulating tumor growth. On the other hand, autophagy inhibits tumor development in the early stages by enhancing its tumor suppressor activity. Moreover, autophagy drives resistance to anticancer therapy, even though in some tumor types, its activation induces lethal effects on cancer cells. In this review, we summarize the biological mechanisms of autophagy and its dual role in cancer. In addition, we report the current understanding of autophagy in some cancer types with markedly high incidence and/or lethality, and the existing therapeutic strategies targeting autophagy for the treatment of cancer.
Collapse
Affiliation(s)
- Veronica Angela Maria Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Silvia Bianchin
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Alicia Ann Zolondick
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI 96816, USA; (A.A.Z.); (H.Y.); (M.C.)
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Manoa, Honolulu, HI 96816, USA
| | - Giulia Pellielo
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Diego Chianese
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Haining Yang
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI 96816, USA; (A.A.Z.); (H.Y.); (M.C.)
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI 96816, USA; (A.A.Z.); (H.Y.); (M.C.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| |
Collapse
|
60
|
Zhang Y, Gao LX, Wang W, Zhang T, Dong FY, Ding WP. M 6 A Demethylase FTO Regulates Cisplatin Resistance of Gastric Cancer by Modulating Autophagy Activation via ULK1. Cancer Sci 2022; 113:3085-3096. [PMID: 35730319 PMCID: PMC9459343 DOI: 10.1111/cas.15469] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Drug resistance is an important factor for treatment failure of gastric cancer. N6‐methyladenosine (m6A) is the predominant mRNA internal modification in eukaryotes. The roles of m6A modification in drug resistance of gastric cancer remains unclear. In the present study, the m6A methylated RNA level was significantly decreased while the expression of m6A demethylase fat mass and obesity‐associated protein (FTO) was obviously elevated in cisplatin‐resistant (SGC‐7901/DDP) gastric cancer cells. Knockdown of FTO reversed cisplatin resistance of SGC‐7901/DDP cells both in vitro and in vivo, which was attributed to the inhibition of Unc‐51‐like kinase 1 (ULK1)‐mediated autophagy. Mechanistically, ULK1 expression was regulated in an FTO‐m6A‐dependent and YTHDF2‐mediated manner. Collectively, our findings indicate that the FTO/ULK1 axis exerts crucial roles in cisplatin resistance of gastric cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Gastroenterology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Ling-Xi Gao
- Department of Gastroenterology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Wen Wang
- Department of Gastroenterology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Teng Zhang
- Department of Gastroenterology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Fang-Yi Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ping Ding
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Radiotherapy, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| |
Collapse
|
61
|
Bhattacharya S, Yin J, Yang C, Wang Y, Sims M, Pfeffer LM, Chaum E. STAT3 suppresses the AMPKα/ULK1-dependent induction of autophagy in glioblastoma cells. J Cell Mol Med 2022; 26:3873-3890. [PMID: 35670018 PMCID: PMC9279602 DOI: 10.1111/jcmm.17421] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 reportedly plays a role in autophagy of some cells, its role in cancer cell autophagy remains unclear. In this study, we found Serine-727 and Tyrosine-705 phosphorylation of STAT3 was constitutive in GBM cell lines. Tyrosine phosphorylation of STAT3 in GBM cells suppresses autophagy, whereas knockout (KO) of STAT3 increases ULK1 gene expression, increases TSC2-AMPKα-ULK1 signalling, and increases lysosomal Cathepsin D processing, leading to the stimulation of autophagy. Rescue of STAT3-KO cells by the enforced expression of wild-type (WT) STAT3 reverses these pathways and inhibits autophagy. Conversely, expression of Y705F- and S727A-STAT3 phosphorylation deficient mutants in STAT3-KO cells did not suppress autophagy. Inhibition of ULK1 activity (by treatment with MRT68921) or its expression (by siRNA knockdown) in STAT3-KO cells inhibits autophagy and sensitizes cells to apoptosis. Taken together, our findings suggest that serine and tyrosine phosphorylation of STAT3 play critical roles in STAT3-dependent autophagy in GBM, and thus are potential targets to treat GBM.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chuanhe Yang
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Michelle Sims
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Edward Chaum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
62
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
63
|
Truzzi F, Whittaker A, D’Amen E, Tibaldi C, Abate A, Valerii MC, Spisni E, Dinelli G. Wheat Germ Spermidine and Clove Eugenol in Combination Stimulate Autophagy In Vitro Showing Potential in Supporting the Immune System against Viral Infections. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113425. [PMID: 35684363 PMCID: PMC9182079 DOI: 10.3390/molecules27113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022]
Abstract
Impaired autophagy, responsible for increased inflammation, constitutes a risk factor for the more severe COVID-19 outcomes. Spermidine (SPD) is a known autophagy modulator and supplementation for COVID-19 risk groups (including the elderly) is recommended. However, information on the modulatory effects of eugenol (EUG) is scarce. Therefore, the effects of SPD and EUG, both singularly and in combination, on autophagy were investigated using different cell lines (HBEpiC, SHSY5Y, HUVEC, Caco-2, L929 and U937). SPD (0.3 mM), EUG (0.2 mM) and 0.3 mM SPD + 0.2 mM EUG, significantly increased autophagy using the hallmark measure of LC3-II protein accumulation in the cell lines without cytotoxic effects. Using Caco-2 cells as a model, several crucial autophagy proteins were upregulated at all stages of autophagic flux in response to the treatments. This effect was verified by the activation/differentiation and migration of U937 monocytes in a three-dimensional reconstituted intestinal model (Caco-2, L929 and U937 cells). Comparable benefits of SPD, EUG and SPD + EUG in inducing autophagy were shown by the protection of Caco-2 and L929 cells against lipopolysaccharide-induced inflammation. SPD + EUG is an innovative dual therapy capable of stimulating autophagy and reducing inflammation in vitro and could show promise for COVID-19 risk groups.
Collapse
Affiliation(s)
- Francesca Truzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
- Correspondence: ; Tel.: +39-051-2096674
| | - Anne Whittaker
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
| | - Eros D’Amen
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
| | - Camilla Tibaldi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
| | - Antonella Abate
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (M.C.V.); (E.S.)
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (M.C.V.); (E.S.)
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
| |
Collapse
|
64
|
Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ 2022; 29:961-971. [PMID: 35396345 PMCID: PMC9090748 DOI: 10.1038/s41418-022-00996-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour suppressor TP53 is a master regulator of several cellular processes that collectively suppress tumorigenesis. The TP53 gene is mutated in ~50% of human cancers and these defects usually confer poor responses to therapy. The TP53 protein functions as a homo-tetrameric transcription factor, directly regulating the expression of ~500 target genes, some of them involved in cell death, cell cycling, cell senescence, DNA repair and metabolism. Originally, it was thought that the induction of apoptotic cell death was the principal mechanism by which TP53 prevents the development of tumours. However, gene targeted mice lacking the critical effectors of TP53-induced apoptosis (PUMA and NOXA) do not spontaneously develop tumours. Indeed, even mice lacking the critical mediators for TP53-induced apoptosis, G1/S cell cycle arrest and cell senescence, namely PUMA, NOXA and p21, do not spontaneously develop tumours. This suggests that TP53 must activate additional cellular responses to mediate tumour suppression. In this review, we will discuss the processes by which TP53 regulates cell death, cell cycling/cell senescence, DNA damage repair and metabolic adaptation, and place this in context of current understanding of TP53-mediated tumour suppression.
Collapse
Affiliation(s)
- Annabella F Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
65
|
β-Arrestin2 Is Critically Involved in the Differential Regulation of Phosphosignaling Pathways by Thyrotropin-Releasing Hormone and Taltirelin. Cells 2022; 11:cells11091473. [PMID: 35563779 PMCID: PMC9103620 DOI: 10.3390/cells11091473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
In recent years, thyrotropin-releasing hormone (TRH) and its analogs, including taltirelin (TAL), have demonstrated a range of effects on the central nervous system that represent potential therapeutic agents for the treatment of various neurological disorders, including neurodegenerative diseases. However, the molecular mechanisms of their actions remain poorly understood. In this study, we investigated phosphosignaling dynamics in pituitary GH1 cells affected by TRH and TAL and the putative role of β-arrestin2 in mediating these effects. Our results revealed widespread alterations in many phosphosignaling pathways involving signal transduction via small GTPases, MAP kinases, Ser/Thr- and Tyr-protein kinases, Wnt/β-catenin, and members of the Hippo pathway. The differential TRH- or TAL-induced phosphorylation of numerous proteins suggests that these ligands exhibit some degree of biased agonism at the TRH receptor. The different phosphorylation patterns induced by TRH or TAL in β-arrestin2-deficient cells suggest that the β-arrestin2 scaffold is a key factor determining phosphorylation events after TRH receptor activation. Our results suggest that compounds that modulate kinase and phosphatase activity can be considered as additional adjuvants to enhance the potential therapeutic value of TRH or TAL.
Collapse
|
66
|
Ramalingam M, Jeong HS, Hwang J, Cho HH, Kim BC, Kim E, Jang S. Autophagy Signaling by Neural-Induced Human Adipose Tissue-Derived Stem Cell-Conditioned Medium during Rotenone-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2022; 23:4193. [PMID: 35457010 PMCID: PMC9031864 DOI: 10.3390/ijms23084193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
Rotenone (ROT) inhibits mitochondrial complex I, leading to reactive oxygen species formation, which causes neurodegeneration and alpha-synuclein (α-syn) aggregation and, consequently, Parkinson's disease. We previously found that a neurogenic differentiated human adipose tissue-derived stem cell-conditioned medium (NI-hADSC-CM) was protective against ROT-induced toxicity in SH-SY5Y cells. In the present study, ROT significantly decreased the phospho (p)-mTORC1/total (t)-mTOR, p-mTORC2/t-mTOR, and p-/t-ULK1 ratios and the ATG13 level by increasing the DEPTOR level and p-/t-AMPK ratio. Moreover, ROT increased the p-/t-Akt ratio and glycogen synthase kinase-3β (GSK3β) activity by decreasing the p-/t-ERK1/2 ratios and beclin-1 level. ROT also promoted the lipidation of LC3B-I to LC3B-II by inducing autophagosome formation in Triton X-100-soluble and -insoluble cell lysate fractions. Additionally, the levels of ATG3, 5, 7, and 12 were decreased, along with those of lysosomal LAMP1, LAMP2, and TFEB, leading to lysosomal dysfunction. However, NI-hADSC-CM treatment increased the p-mTORC1, p-mTORC2, p-ULK1, p-Akt, p-ERK1/2, ATG13, and beclin-1 levels and decreased the p-AMPK level and GSK3β activity in response to ROT-induced toxicity. Additionally, NI-hADSC-CM restored the LC3B-I level, increased the p62 level, and normalized the ATG and lysosomal protein amounts to control levels. Autophagy array revealed that the secreted proteins in NI-hADSC-CM could be crucial in the neuroprotection. Taken together, our results showed that the neuroprotective effects of NI-hADSC-CM on the autophagy signaling pathways could alleviate the aggregation of α-syn in Parkinson's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Korea;
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Korea;
| | - Eungpil Kim
- Jeonnam Biopharmaceutical Research Center, Hwasun 58141, Korea;
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea; (H.-S.J.); (J.H.)
| |
Collapse
|
67
|
Discovery of a signaling feedback circuit that defines interferon responses in myeloproliferative neoplasms. Nat Commun 2022; 13:1750. [PMID: 35365653 PMCID: PMC8975834 DOI: 10.1038/s41467-022-29381-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are key initiators and effectors of the immune response against malignant cells and also directly inhibit tumor growth. IFNα is highly effective in the treatment of myeloproliferative neoplasms (MPNs), but the mechanisms of action are unclear and it remains unknown why some patients respond to IFNα and others do not. Here, we identify and characterize a pathway involving PKCδ-dependent phosphorylation of ULK1 on serine residues 341 and 495, required for subsequent activation of p38 MAPK. We show that this pathway is essential for IFN-suppressive effects on primary malignant erythroid precursors from MPN patients, and that increased levels of ULK1 and p38 MAPK correlate with clinical response to IFNα therapy in these patients. We also demonstrate that IFNα treatment induces cleavage/activation of the ULK1-interacting ROCK1/2 proteins in vitro and in vivo, triggering a negative feedback loop that suppresses IFN responses. Overexpression of ROCK1/2 is seen in MPN patients and their genetic or pharmacological inhibition enhances IFN-anti-neoplastic responses in malignant erythroid precursors from MPN patients. These findings suggest the clinical potential of pharmacological inhibition of ROCK1/2 in combination with IFN-therapy for the treatment of MPNs. Interferon alpha (IFNalpha) therapy is showing promising results to treat myeloproliferative neoplasms (MPNs). Here, the authors show that IFNalpha response requires ULK1 phosphorylation to induce p38-MAPK signalling but it is counteracted by ROCK1-2 activation suggesting combination therapy of IFNalpha-ROCK1-2 inhibition may improve MPNs treatment.
Collapse
|
68
|
Zavadskiy S, Sologova S, Moldogazieva N. Oxidative distress in aging and age-related diseases: Spatiotemporal dysregulation of protein oxidation and degradation. Biochimie 2022; 195:114-134. [PMID: 34890732 DOI: 10.1016/j.biochi.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/31/2022]
Abstract
The concept of oxidative distress had arisen from the assessment of cellular response to high concentrations of reactive species that result from an imbalance between oxidants and antioxidants and cause biomolecular damage. The intracellular distribution and flux of reactive species dramatically change in time and space contributing to the remodeling of the redox landscape and sensitivity of protein residues to oxidants. Here, we hypothesize that compromised spatiotemporal control of generation, conversions, and removal of reactive species underlies protein damage and dysfunction of protein degradation machineries. This leads to the accumulation of oxidatively damaged proteins resulted in an age-dependent decline in the organismal adaptability to oxidative stress. We highlight recent data obtained with the use of various cell cultures, animal models, and patients on irreversible and non-repairable oxidation of key redox-sensitive residues. Multiple reaction products include peptidyl hydroperoxides, alcohols, carbonyls, and carbamoyl moieties as well as Tyr-Tyr, Trp-Tyr, Trp-Trp, Tyr-Cys, His-Lys, His-Arg, and Tyr-Lys cross-links. These lead to protein fragmentation, misfolding, covalent cross-linking, oligomerization, aggregation, and ultimately, causing impaired protein function and turnover. 20S proteasome and autophagy-lysosome pathways are two major types of machinery for the degradation and elimination of oxidatively damaged proteins. Spatiotemporal dysregulation of these pathways under oxidative distress conditions is implicated in aging and age-related disorders such as neurodegenerative and cardiovascular diseases and diabetes. Future investigations in this field allow the discovery of new drugs to target components of dysregulated cell signaling and protein degradation machinery to combat aging and age-related chronic diseases.
Collapse
Affiliation(s)
- Sergey Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Sechenov University, 119991, Moscow, Russia
| | - Susanna Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Sechenov University, 119991, Moscow, Russia
| | - Nurbubu Moldogazieva
- Laboratory of Bioinformatics, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Sechenov University, 119991, Moscow, Russia.
| |
Collapse
|
69
|
Alterations in Proteostasis System Components in Peripheral Blood Mononuclear Cells in Parkinson Disease: Focusing on the HSP70 and p62 Levels. Biomolecules 2022; 12:biom12040493. [PMID: 35454081 PMCID: PMC9030208 DOI: 10.3390/biom12040493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson disease (PD) is attributed to a proteostasis disorder mediated by α-synuclein accumulating in a specific brain region. PD manifestation is often related to extraneuronal alterations, some of which could be used as diagnostic or prognostic PD biomarkers. In this work, we studied the shifts in the expression of proteostasis-associated chaperones of the HSP70 family and autophagy-dependent p62 protein values in the peripheral blood mononuclear cells (PBMC) of mild to moderate PD patients. Although we did not detect any changes in the intracellular HSP70 protein pool in PD patients compared to non-PD controls, an increase in the transcriptional activity of the stress-associated HSPA1A/B and HSPA6 genes was observed in these cells. Basal p62 content was found to be increased in PD patients’ PBMC, similarly to the p62 level in substantia nigra neural cells in PD. Moreover, the spontaneous apoptosis level was increased among PBMC and positively correlated with the p62 intracellular level in the PD group. A combined HSPA6- and p62-based analysis among 26 PD patients and 36 age-matched non-PD controls pointed out the diagnostic significance of these markers, with intermediate sensitivity and high specificity of this combination when observing patients diagnosed with PD.
Collapse
|
70
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
71
|
Huang Y, Zhang K, Zhang L, Qiu J, Fu L, Yin T, Wang J, Qin R, Zhang J, Dong X, Wang G. Dosage of Dual-Protein Nutrition Differentially Impacts the Formation of Atherosclerosis in ApoE-/- Mice. Nutrients 2022; 14:nu14040855. [PMID: 35215505 PMCID: PMC8879330 DOI: 10.3390/nu14040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Atherosclerosis (AS) is recognized as the original cause of most cardiovascular and cerebrovascular diseases. The dual-protein (DP) nutrition that consists of soy protein and whey protein is reported to be associated with a reduction in AS; however, the relationship between DP and AS remains ambiguous. Therefore, this study aimed to verify the effect of DP on AS and explore the optimal DP intake to improve AS. ApoE−/− mice were administrated with low- (LDP), middle- (MDP), and high-dose (HDP) DP. The MDP group exhibited significant improvements in AS. In terms of lipid metabolism, the levels of plasma total triglyceride and LDL-C and the mRNA expression levels of Cyp7a1 and PCSK9 were markedly tuned in the MDP group. In addition, the MDP treatment group had a substantially lower inflammatory response and better intestinal barrier function than LDP and HDP groups. The species richness demonstrated by the Chao1 index was distinctly increased in the MDP group, and the relative abundance of intestinal-permeability-protective microbes Blautia and Akkermansia was significantly elevated. In summary, an adequate intake of DP was able to counteract atherosclerosis development in ApoE−/− mice, and this study provides a scientific theoretical basis for the application of DP in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Yingchun Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402493, China; (L.Z.); (L.F.)
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
| | - Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing 402493, China; (L.Z.); (L.F.)
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100086, China;
- Correspondence: (J.W.); (X.D.); (G.W.)
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430079, China;
| | - Jingjie Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100086, China;
| | - Xianwen Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
- Chongqing Academy of Animal Sciences, Chongqing 402493, China; (L.Z.); (L.F.)
- Correspondence: (J.W.); (X.D.); (G.W.)
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
- Correspondence: (J.W.); (X.D.); (G.W.)
| |
Collapse
|
72
|
Ducharme JB, McKenna ZJ, Deyhle MR. Exercise mitigates the Toll of muscle atrophy: A narrative review of the effects of exercise on Toll-like receptor-4 in leukocytes and skeletal muscle. Am J Physiol Cell Physiol 2022; 322:C581-C589. [PMID: 35171696 DOI: 10.1152/ajpcell.00005.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conditions characterized by muscle wasting such as cachexia and sarcopenia are devastating at the individual level, and they place a profound burden on public health. Evidence suggests that inflammation is likely a mechanistic contributor to the pathogenesis of these conditions. One specific molecule, lipopolysaccharide, has gained attention due to its role in initiating inflammation. Toll-like receptor-4 is the primary receptor for lipopolysaccharide and has been shown to be implicit in the downstream proinflammatory response associated with lipopolysaccharide. Importantly, Toll-like receptor-4 is expressed on various cell types throughout the human body such as leukocytes and skeletal muscle fibers and may have site-specific effects that contribute to muscle wasting conditions based on the location in which activation occurs. Accordingly, reducing proinflammatory signaling at these locations may be an effective strategy at mitigating muscle wasting. Regular exercise training is believed to elicit anti-inflammatory adaptations, but the mechanisms by which this occurs are yet to be fully understood. Understanding the mechanisms by which Toll-like receptor-4 activation contributes to muscle wasting and how exercise affects this, may allow for the development of a non-pharmacological therapeutic intervention. Therefore, in this review, we summarize the current understanding of the lipopolysaccharide/Toll-like receptor-4 axis in leukocytes and skeletal muscle fibers on the pathogenesis of muscle wasting conditions and we critically examine the current evidence regarding the effects of exercise on this axis.
Collapse
Affiliation(s)
- Jeremy B Ducharme
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Zachary J McKenna
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Deyhle
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
73
|
Pan HY, Valapala M. Regulation of Autophagy by the Glycogen Synthase Kinase-3 (GSK-3) Signaling Pathway. Int J Mol Sci 2022; 23:1709. [PMID: 35163631 PMCID: PMC8836041 DOI: 10.3390/ijms23031709] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a vital cellular mechanism that benefits cellular maintenance and survival during cell stress. It can eliminate damaged or long-lived organelles and improperly folded proteins to maintain cellular homeostasis, development, and differentiation. Impaired autophagy is associated with several diseases such as cancer, neurodegenerative diseases, and age-related macular degeneration (AMD). Several signaling pathways are associated with the regulation of the autophagy pathway. The glycogen synthase kinase-3 signaling pathway was reported to regulate the autophagy pathway. In this review, we will discuss the mechanisms by which the GSK-3 signaling pathway regulates autophagy. Autophagy and lysosomal function are regulated by transcription factor EB (TFEB). GSK-3 was shown to be involved in the regulation of TFEB nuclear expression in an mTORC1-dependent manner. In addition to mTORC1, GSK-3β also regulates TFEB via the protein kinase C (PKC) and the eukaryotic translation initiation factor 4A-3 (eIF4A3) signaling pathways. In addition to TFEB, we will also discuss the mechanisms by which the GSK-3 signaling pathway regulates autophagy by modulating other signaling molecules and autophagy inducers including, mTORC1, AKT and ULK1. In summary, this review provides a comprehensive understanding of the role of the GSK-3 signaling pathway in the regulation of autophagy.
Collapse
Affiliation(s)
| | - Mallika Valapala
- School of Optometry, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
74
|
Sumbly V, Landry I. Unraveling the Role of STK11/LKB1 in Non-small Cell Lung Cancer. Cureus 2022; 14:e21078. [PMID: 35165542 PMCID: PMC8826623 DOI: 10.7759/cureus.21078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
There are two major groups of lung cancer: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLCs can be further separated into three different categories: lung adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Pulmonary adenocarcinomas represent nearly half of all lung cancer cases and are known to be caused by smoking, certain occupational exposures, and specific genetic mutations. Scientists have noticed that most NSCLCs are driven by defects in the following genes: EGFR, BRAF, ALK, MET, and HER. Abnormalities in the STK11/LKB1 gene have also been shown to induce lung adenocarcinoma. LKB1-deficient cancer cells contain an overactive AMPK “energy sensor,” which inhibits cellular death and promotes glucose, lipid, and protein synthesis via the mTOR protein complex. Studies have also discovered that the loss of STK11/LKB1 favors oncogenesis by creating an immunosuppressive environment for tumors to grow and accelerate events such as angiogenesis, epithelial-mesenchymal transition (EMT), and cell polarity destabilization. STK11/LKB1-mutant lung cancers are currently treated with radiotherapy with or without chemotherapy. Recent clinical trials studying the effects of glutaminase inhibitors, mTOR inhibitors, and anti-PD-L1 therapy in lung cancer patients have yielded promising results. This narrative review provides an overview of the STK11/LKB1 gene and its role in cancer development. Additionally, a summary of the LKB1/APMK/mTOR is provided.
Collapse
Affiliation(s)
- Vikram Sumbly
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City Health and Hospitals/Queens, Jamaica, USA
| | - Ian Landry
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City Health and Hospitals/Queens, Jamaica, USA
| |
Collapse
|
75
|
Abstract
The nature and the intensity of innate immune response to virus infection determine the course of pathogenesis in the host. Among the many pathogen-associated molecular pattern recognition receptors, STING, an endoplasmic reticulum (ER)-associated protein, plays a pivotal role in triggering responses to microbial or cellular cytoplasmic DNA. Herpes simplex virus 1 (HSV-1), a common human pathogen, activates STING signaling, and the resultant induction of type I interferon causes inhibition of virus replication. In this context, we have observed that phosphorylation of Tyr245 of STING by epidermal growth factor receptor kinase is necessary for interferon induction. Here, we report that phosphorylation of Tyr240 by the tyrosine kinase Syk is essential for all signaling activities of STING. Our analysis showed that upon ligand-binding, STING dimerizes and interacts with membrane-bound EGFR, which autophosphorylates and provides the platform for the recruitment of cytoplasmic Syk to the signaling complex and its activation. Activated Syk phosphorylates Tyr240 of STING, followed by phosphorylation of Tyr245 by epidermal growth factor receptor (EGFR). Pharmacological or genetic ablation of Syk activity resulted in an arrest of STING in the ER compartment and a complete block of gene induction. Consequently, in the absence of Syk, HSV-1 could not induce interferon, and it replicated more robustly. IMPORTANCE The innate immune response to virus infection leads to interferon production and inhibition of viral replication. STING, an ER-bound protein, mediates such a response to cytoplasmic cellular or microbial DNA. HSV-1, a DNA virus, activates STING, and it replicates more efficiently in the absence of STING signaling. We demonstrate that phosphorylation of Tyr240 of STING by the protein tyrosine kinase Syk is essential for STING-mediated gene induction. To signal, ligand-activated STING recruits two kinases, Syk and EGFR, which phosphorylate Tyr240 and Tyr245, respectively. The dependence of STING signaling on Syk has broad significance, because STING plays a major role in many microbial, mitochondrial, and autoimmune diseases as well as in cancer development and therapy.
Collapse
|
76
|
Kim TW, Lee HG. Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells. Int J Mol Sci 2021; 22:ijms222413455. [PMID: 34948250 PMCID: PMC8706813 DOI: 10.3390/ijms222413455] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Hypoxia is a major obstacle to gastric cancer (GC) therapy and leads to chemoresistance as GC cells are frequently exposed to the hypoxia environment. Apigenin, a flavonoid found in traditional medicine, fruits, and vegetables and an HDAC inhibitor, is a powerful anti-cancer agent against various cancer cell lines. However, detailed mechanisms involved in the treatment of GC using APG are not fully understood. In this study, we investigated the biological activity of and molecular mechanisms involved in APG-mediated treatment of GC under hypoxia. APG promoted autophagic cell death by increasing ATG5, LC3-II, and phosphorylation of AMPK and ULK1 and down-regulating p-mTOR and p62 in GC. Furthermore, our results show that APG induces autophagic cell death via the activation of the PERK signaling, indicating an endoplasmic reticulum (ER) stress response. The inhibition of ER stress suppressed APG-induced autophagy and conferred prolonged cell survival, indicating autophagic cell death. We further show that APG induces ER stress- and autophagy-related cell death through the inhibition of HIF-1α and Ezh2 under normoxia and hypoxia. Taken together, our findings indicate that APG activates autophagic cell death by inhibiting HIF-1α and Ezh2 under hypoxia conditions in GC cells.
Collapse
Affiliation(s)
- Tae Woo Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (T.W.K.); (H.G.L.); Tel.: +82-2-961-0329 (T.W.K.); +82-42-860-4182 (H.G.L.); Fax: +82-2-961-1165 (T.W.K.); +82-42-860-4593 (H.G.L.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (T.W.K.); (H.G.L.); Tel.: +82-2-961-0329 (T.W.K.); +82-42-860-4182 (H.G.L.); Fax: +82-2-961-1165 (T.W.K.); +82-42-860-4593 (H.G.L.)
| |
Collapse
|
77
|
Zhang K, Huang Q, Deng S, Yang Y, Li J, Wang S. Mechanisms of TLR4-Mediated Autophagy and Nitroxidative Stress. Front Cell Infect Microbiol 2021; 11:766590. [PMID: 34746034 PMCID: PMC8570305 DOI: 10.3389/fcimb.2021.766590] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pathogenic infections have badly affected public health and the development of the breeding industry. Billions of dollars are spent every year fighting against these pathogens. The immune cells of a host produce reactive oxygen species and reactive nitrogen species which promote the clearance of these microbes. In addition, autophagy, which is considered an effective method to promote the destruction of pathogens, is involved in pathological processes. As research continues, the interplay between autophagy and nitroxidative stress has become apparent. Autophagy is always intertwined with nitroxidative stress. Autophagy regulates nitroxidative stress to maintain homeostasis within an appropriate range. Intracellular oxidation, in turn, is a strong inducer of autophagy. Toll-like receptor 4 (TLR4) is a pattern recognition receptor mainly involved in the regulation of inflammation during infectious diseases. Several studies have suggested that TLR4 is also a key regulator of autophagy and nitroxidative stress. In this review, we describe the role of TLR4 in autophagy and oxidation, and focus on its function in influencing autophagy-nitroxidative stress interactions.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yecheng Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Guangdong Provincial Research Center of Gene Editing Engineering Technology, Foshan University, Foshan, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
78
|
Geier C, Perl A. Therapeutic mTOR blockade in systemic autoimmunity: Implications for antiviral immunity and extension of lifespan. Autoimmun Rev 2021; 20:102984. [PMID: 34718162 PMCID: PMC8550885 DOI: 10.1016/j.autrev.2021.102984] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway integrates metabolic cues into cell fate decisions. A particularly fateful event during the adaptive immune response is the engagement of a T cell receptor by its cognate antigen presented by an antigen-presenting cell (APC). Here, the induction of adequate T cell activation and lineage specification is critical to mount protective immunity; at the same time, inadequate activation, which could lead to autoimmunity, must be avoided. mTOR forms highly conserved protein complexes 1 and 2 that shape lineage specification by integrating signals originating from TCR engagement, co-stimulatory or co-inhibitory receptors and cytokines and availability of nutrients. If one considers autoimmunity as the result of aberrant lineage specification in response to such signals, the importance of this pathway becomes evident; this provides the conceptual basis for mTOR inhibition in the treatment of systemic autoimmunity, such as systemic lupus erythematosus (SLE). Clinical trials in SLE patients have provided preliminary evidence that mTOR blockade by sirolimus (rapamycin) can reverse pro-inflammatory lineage skewing, including the expansion of Th17 and double-negative T cells and plasma cells and the contraction of regulatory T cells. Moreover, sirolimus has shown promising efficacy in the treatment of refractory idiopathic multicentric Castleman disease, newly characterized by systemic autoimmunity due to mTOR overactivation. Alternatively, mTOR blockade enhances responsiveness to vaccination and reduces infections by influenza virus in healthy elderly subjects. Such seemingly contradictory findings highlight the importance to further evaluate the clinical effects of mTOR manipulation, including its potential role in treatment of COVID-19 infection. mTOR blockade may extend healthy lifespan by abrogating inflammation induced by viral infections and autoimmunity. This review provides a mechanistic assessment of mTOR pathway activation in lineage specification within the adaptive and innate immune systems and its role in health and autoimmunity. We then discuss some of the recent experimental and clinical discoveries implicating mTOR in viral pathogensis and aging.
Collapse
Affiliation(s)
- Christian Geier
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York, Syracuse, NY, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York, Syracuse, NY, USA; Department of Microbiology and Immunology, College of Medicine, State University of New York, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York, Syracuse, NY, USA.
| |
Collapse
|
79
|
Raudenska M, Balvan J, Masarik M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol Cancer 2021; 20:140. [PMID: 34706732 PMCID: PMC8549397 DOI: 10.1186/s12943-021-01423-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is best known for its role in organelle and protein turnover, cell quality control, and metabolism. The autophagic machinery has, however, also adapted to enable protein trafficking and unconventional secretory pathways so that organelles (such as autophagosomes and multivesicular bodies) delivering cargo to lysosomes for degradation can change their mission from fusion with lysosomes to fusion with the plasma membrane, followed by secretion of the cargo from the cell. Some factors with key signalling functions do not enter the conventional secretory pathway but can be secreted in an autophagy-mediated manner.Positive clinical results of some autophagy inhibitors are encouraging. Nevertheless, it is becoming clear that autophagy inhibition, even within the same cancer type, can affect cancer progression differently. Even next-generation inhibitors of autophagy can have significant non-specific effects, such as impacts on endosome-related secretory pathways and secretion of extracellular vesicles (EVs). Many studies suggest that cancer cells release higher amounts of EVs compared to non-malignant cells, which makes the effect of autophagy inhibitors on EVs secretion highly important and attractive for anticancer therapy. In this review article, we discuss how different inhibitors of autophagy may influence the secretion of EVs and summarize the non-specific effects of autophagy inhibitors with a focus on endosome-related secretory pathways. Modulation of autophagy significantly impacts not only the quantity of EVs but also their content, which can have a deep impact on the resulting pro-tumourigenic or anticancer effect of autophagy inhibitors used in the antineoplastic treatment of solid cancers.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, CZ-166 28, Prague, Czech Republic.
| |
Collapse
|
80
|
Tian X, Teng J, Chen J. New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy 2021; 17:2680-2688. [PMID: 32924745 PMCID: PMC8525925 DOI: 10.1080/15548627.2020.1823124] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Macroautophagy/autophagy refers to the engulfment of cellular contents selected for lysosomal degradation. The final step in autophagy is the fusion of autophagosome with the lysosome, which is mediated by SNARE proteins. Of the SNAREs, autophagosome-localized Q-SNAREs, such as STX17 and SNAP29, and lysosome-localized R-SNAREs, such as VAMP8 or VAMP7, have been reported to be involved. Recent studies also reveal participation of the R-SNARE, YKT6, in autophagosome-lysosome fusion. These SNAREs, with the help of other regulatory factors, act coordinately to spatiotemporally control the fusion process. Besides regulating autophagosome-lysosome fusion, some SNAREs, such as STX17, also function in other autophagic processes, including autophagosome formation and mitophagy. A better understanding of the functions of SNAREs will shed light on the molecular mechanisms of autophagosome-lysosome fusion as well as on the mechanisms by which autophagy is globally regulated.Abbreviations: ATG: autophagy related; DNM1L: dynamin 1 like; ER: endoplasmic reticulum; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; IRGM: immunity related GTPase M; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PLEKHM1: pleckstrin homology and RUN domain containing M1; PRKN: PRKN RBR E3 ubiquitin protein ligase; RAB2A: RAB2A, member RAS oncogene family; RAB33B: RAB33B, member RAS oncogene family; RAB7A: RAB7A, member RAS oncogene family; RB1CC1: RB1 inducible coiled-coil 1; RTN3: reticulon 3; RUBCNL: rubicon like autophagy enhancer; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SNAP29: synaptosomal associated protein 29; STX17: syntaxin 17; ULK1: unc-51 like autophagy activating kinase 1; VAMP7: vesicle associated membrane protein 7; VAMP8: vesicle associated membrane protein 8; YKT6: YKT6 v-SNARE homolog.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| |
Collapse
|
81
|
Johnson JL, Ramadass M, Rahman F, Meneses-Salas E, Zgajnar NR, Carvalho Gontijo R, Zhang J, Kiosses WB, Zhu YP, Hedrick CC, Perego M, Gunton JE, Pestonjamasp K, Napolitano G, Catz SD. The atypical small GTPase GEM/Kir is a negative regulator of the NADPH oxidase and NETs production through macroautophagy. J Leukoc Biol 2021; 110:629-649. [PMID: 34085299 DOI: 10.1002/jlb.2hi0421-123r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite the important function of neutrophils in the eradication of infections and induction of inflammation, the molecular mechanisms regulating the activation and termination of the neutrophil immune response is not well understood. Here, the function of the small GTPase from the RGK family, Gem, is characterized as a negative regulator of the NADPH oxidase through autophagy regulation. Gem knockout (Gem KO) neutrophils show increased NADPH oxidase activation and increased production of extracellular and intracellular reactive oxygen species (ROS). Enhanced ROS production in Gem KO neutrophils was associated with increased NADPH oxidase complex-assembly as determined by quantitative super-resolution microscopy, but normal exocytosis of gelatinase and azurophilic granules. Gem-deficiency was associated with increased basal autophagosomes and autolysosome numbers but decreased autophagic flux under phorbol ester-induced conditions. Neutrophil stimulation triggered the localization of the NADPH oxidase subunits p22phox and p47phox at LC3-positive structures suggesting that the assembled NADPH oxidase complex is recruited to autophagosomes, which was significantly increased in Gem KO neutrophils. Prevention of new autophagosome formation by treatment with SAR405 increased ROS production while induction of autophagy by Torin-1 decreased ROS production in Gem KO neutrophils, and also in wild-type neutrophils, suggesting that macroautophagy contributes to the termination of NADPH oxidase activity. Autophagy inhibition decreased NETs formation independently of enhanced ROS production. NETs production, which was significantly increased in Gem-deficient neutrophils, was decreased by inhibition of both autophagy and calmodulin, a known GEM interactor. Intracellular ROS production was increased in Gem KO neutrophils challenged with live Gram-negative bacteria Pseudomonas aeruginosa or Salmonella Typhimurium, but phagocytosis was not affected in Gem-deficient cells. In vivo analysis in a model of Salmonella Typhimurium infection indicates that Gem-deficiency provides a genetic advantage manifested as a moderate increased in survival to infections. Altogether, the data suggest that Gem-deficiency leads to the enhancement of the neutrophil innate immune response by increasing NADPH oxidase assembly and NETs production and that macroautophagy differentially regulates ROS and NETs in neutrophils.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Mahalakshmi Ramadass
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Farhana Rahman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Elsa Meneses-Salas
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Nadia R Zgajnar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - William B Kiosses
- Center for Diabetes, Obesity, and Endocrinology (CDOE), The Westmead Institute for Medical Research (WIMR), The University of Sydney, Sydney, NSW, Australia
| | - Yanfang Peipei Zhu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Marta Perego
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jenny E Gunton
- Center for Diabetes, Obesity, and Endocrinology (CDOE), The Westmead Institute for Medical Research (WIMR), The University of Sydney, Sydney, NSW, Australia
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
82
|
Tan YL, Nga ME, Ho HK. In vivo demonstration of a novel non-invasive model for inducing localized hypothermia to ameliorate hepatotoxicity. Sci Rep 2021; 11:18620. [PMID: 34545127 PMCID: PMC8452685 DOI: 10.1038/s41598-021-98078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Moderate hypothermia (32 °C) has been previously shown to ameliorate drug-induced liver injuries in vitro. However, there are concerns regarding its clinical relevance as it remains a challenge to perform selective liver cooling in a non-invasive manner. To reconcile this dilemma, we propose the use of pulsed cooling for regional hypothermic conditioning in liver. This involves intermittent cooling applied in pulses of 15 min each, with a one-hour recovery interval between pulses. Cooling is achieved by applying ice packs to the cutaneous region overlying the liver. Through an in vivo C57BL/6NTac mouse study, we demonstrated the feasibility of attaining localized hypothermia close to the liver while maintaining core body temperature. This has successfully ameliorated acetaminophen-induced liver injury based on the liver function tests, liver histology and total weight change. Collectively, we provide a proof of concept for pulsed external localized cooling as being clinically actionable to perform induced selective hypothermia.
Collapse
Affiliation(s)
- Yeong Lan Tan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, National University of Singapore, Singapore, 119077, Singapore
| | - Min En Nga
- Department of Pathology, National University Hospital, Singapore, 119074, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
83
|
Crosstalk between Autophagy and Inflammatory Processes in Cancer. Life (Basel) 2021; 11:life11090903. [PMID: 34575052 PMCID: PMC8466094 DOI: 10.3390/life11090903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammation is an adaptive response to tissue injury, which is a critical process in order to restore tissue functionality and homeostasis. The association between inflammation and cancer has been a topic of interest for many years, not only inflammatory cells themselves but also the chemokines and cytokines they produce, which affect cancer development. Autophagy is an intracellular self-degradative process providing elimination of damaged or dysfunctional organelles under stressful conditions such as nutrient deficiency, hypoxia, or chemotherapy. Interestingly, the signaling pathways that are involved in cancer-associated inflammation may regulate autophagy as well. These are (1) the toll-like receptor (TLR) signaling cascade, (2) the reactive oxygen species (ROS) signaling pathway, (3) the inflammatory cytokine signaling pathway, and (4) the IκB kinase (IKK)/Nuclear factor-κB (NF-κB) signaling axis. Moreover, the studies on the context-specific functions of autophagy during inflammatory responses in cancer will be discussed here. On that basis, we focus on autophagy inhibitors and activators regulating inflammatory process in cancer as useful candidates for enhancing anticancer effects. This review summarizes how the autophagic process regulates these key inflammatory processes and vice versa in various cancers.
Collapse
|
84
|
Zuo S, Wang B, Liu J, Kong D, Cui H, Jia Y, Wang C, Xu X, Chen G, Wang Y, Yang L, Zhang K, Ai D, Du J, Shen Y, Yu Y. ER-anchored CRTH2 antagonizes collagen biosynthesis and organ fibrosis via binding LARP6. EMBO J 2021; 40:e107403. [PMID: 34223653 PMCID: PMC8365266 DOI: 10.15252/embj.2020107403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.
Collapse
Affiliation(s)
- Shengkai Zuo
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Bei Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Deping Kong
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hui Cui
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| | - Yaonan Jia
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chenyao Wang
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Xin Xu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Guilin Chen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yuanyang Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Linlin Yang
- Department of PharmacologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Kai Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ding Ai
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Yujun Shen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ying Yu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
85
|
Ren Y, Cui Q, Zhang J, Liu W, Xu M, Lv Y, Wu Z, Zhang Y, Wu R. Milk Fat Globule-EGF Factor 8 Alleviates Pancreatic Fibrosis by Inhibiting ER Stress-Induced Chaperone-Mediated Autophagy in Mice. Front Pharmacol 2021; 12:707259. [PMID: 34421598 PMCID: PMC8375434 DOI: 10.3389/fphar.2021.707259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Pancreatic fibrosis is an important pathophysiological feature of chronic pancreatitis (CP). Our recent study has shown that milk fat globule-EGF factor 8 (MFG-E8) is beneficial in acute pancreatitis. However, its role in CP remained unknown. To study this, CP was induced in male adult Mfge8-knockout (Mfge8-KO) mice and wild type (WT) mice by six intraperitoneal injections of cerulein (50 μg/kg/body weight) twice a week for 10 weeks. The results showed that knockout of mfge8 gene aggravated pancreatic fibrosis after repeated cerulein injection. In WT mice, pancreatic levels of MFG-E8 were reduced after induction of CP and administration of recombinant MFG-E8 alleviated cerulein-induced pancreatic fibrosis. The protective effect of MFG-E8 in CP was associated with reduced autophagy and oxidative stress. In human pancreatic stellate cells (PSCs), MFG-E8 inhibited TGF-β1-induced ER stress and autophagy. MFG-E8 downregulated the expression of lysosomal associated membrane protein 2A (LAMP2A), a key factor in ER stress-induced chaperone-mediated autophagy (CMA). QX77, an activator of CMA, eliminated the effects of MFG-E8 on TGF-β1-induced PSC activation. In conclusion, MFG-E8 appears to mitigate pancreatic fibrosis via inhibiting ER stress-induced chaperone-mediated autophagy. Recombinant MFG-E8 may be developed as a novel treatment for pancreatic fibrosis in CP.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qing Cui
- Department of Cardiology, Xi’an Central Hospital, Xi’an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuanyuan Zhang
- Department of Department of Pediatrics, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
86
|
Mercer TJ, Ohashi Y, Boeing S, Jefferies HBJ, De Tito S, Flynn H, Tremel S, Zhang W, Wirth M, Frith D, Snijders AP, Williams RL, Tooze SA. Phosphoproteomic identification of ULK substrates reveals VPS15-dependent ULK/VPS34 interplay in the regulation of autophagy. EMBO J 2021; 40:e105985. [PMID: 34121209 PMCID: PMC8280838 DOI: 10.15252/embj.2020105985] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a process through which intracellular cargoes are catabolised inside lysosomes. It involves the formation of autophagosomes initiated by the serine/threonine kinase ULK and class III PI3 kinase VPS34 complexes. Here, unbiased phosphoproteomics screens in mouse embryonic fibroblasts deleted for Ulk1/2 reveal that ULK loss significantly alters the phosphoproteome, with novel high confidence substrates identified including VPS34 complex member VPS15 and AMPK complex subunit PRKAG2. We identify six ULK-dependent phosphorylation sites on VPS15, mutation of which reduces autophagosome formation in cells and VPS34 activity in vitro. Mutation of serine 861, the major VPS15 phosphosite, decreases both autophagy initiation and autophagic flux. Analysis of VPS15 knockout cells reveals two novel ULK-dependent phenotypes downstream of VPS15 removal that can be partially recapitulated by chronic VPS34 inhibition, starvation-independent accumulation of ULK substrates and kinase activity-regulated recruitment of autophagy proteins to ubiquitin-positive structures.
Collapse
Affiliation(s)
| | | | - Stefan Boeing
- Bioinformatics and BiostatisticsThe Francis Crick InstituteLondonUK
| | | | - Stefano De Tito
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
- Institute of Experimental Endocrinology and Oncology (IEOS)National Research CouncilNaplesItaly
| | - Helen Flynn
- Institute of Experimental Endocrinology and Oncology (IEOS)National Research CouncilNaplesItaly
| | | | - Wenxin Zhang
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - Martina Wirth
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - David Frith
- ProteomicsThe Francis Crick InstituteLondonUK
| | | | | | - Sharon A Tooze
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| |
Collapse
|
87
|
SREBP-1c impairs ULK1 sulfhydration-mediated autophagic flux to promote hepatic steatosis in high-fat-diet-fed mice. Mol Cell 2021; 81:3820-3832.e7. [PMID: 34233158 DOI: 10.1016/j.molcel.2021.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/21/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
A metabolic imbalance between lipid synthesis and degradation can lead to hepatic lipid accumulation, a characteristic of patients with non-alcoholic fatty liver disease (NAFLD). Here, we report that high-fat-diet-induced sterol regulatory element-binding protein (SREBP)-1c, a key transcription factor that regulates lipid biosynthesis, impairs autophagic lipid catabolism via altered H2S signaling. SREBP-1c reduced cystathionine gamma-lyase (CSE) via miR-216a, which in turn decreased hepatic H2S levels and sulfhydration-dependent activation of Unc-51-like autophagy-activating kinase 1 (ULK1). Furthermore, Cys951Ser mutation of ULK1 decreased autolysosome formation and promoted hepatic lipid accumulation in mice, suggesting that the loss of ULK1 sulfhydration was directly associated with the pathogenesis of NAFLD. Moreover, silencing of CSE in SREBP-1c knockout mice increased liver triglycerides, confirming the connection between CSE, autophagy, and SREBP-1c. Overall, our results uncover a 2-fold mechanism for SREBP-1c-driven hepatic lipid accumulation through reciprocal activation and inhibition of hepatic lipid biosynthesis and degradation, respectively.
Collapse
|
88
|
Liu YP, Yuan XY, Li XY, Wang Y, Sun ZB, Deng WH, Lei YD, Huang L, Jiang TY, Zhang ZH. Hydrogen sulfide alleviates apoptosis and autophagy induced by beryllium sulfate in 16HBE cells. J Appl Toxicol 2021; 42:230-243. [PMID: 34091916 DOI: 10.1002/jat.4205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Beryllium and its compounds are systemic toxicants that are widely applied in many industries. Hydrogen sulfide has been found to protect cells. The present study aimed to determine the protective mechanisms involved in hydrogen sulfide treatment of 16HBE cells following beryllium sulfate-induced injury. 16HBE cells were treated with beryllium sulfate doses ranging between 0 and 300 μM BeSO4 . Additionally, 16HBE cells were subjected to pretreatment with either a 300 μM dose of sodium hydrosulfide (a hydrogen sulfide donor) or 10 mM DL-propargylglycine (a cystathionine-γ-lyase inhibitor) for 6 hr before then being treated with 150 μM beryllium sulfate for 48 hr. This study illustrates that beryllium sulfate induces a reduction in cell viability, increases lactate dehydrogenase (LDH) release, and increases cellular apoptosis and autophagy in 16HBE cells. Interestingly, pretreating 16HBE cells with sodium hydrosulfide significantly reduced the beryllium sulfate-induced apoptosis and autophagy. Moreover, it increased the mitochondrial membrane potential and alleviated the G2/M-phase cell cycle arrest. However, pretreatment with 10 mM DL-propargylglycine promoted the opposite effects. PI3K/Akt/mTOR and Nrf2/ARE signaling pathways are also activated following pretreatment with sodium hydrosulfide. These results indicate the protection provided by hydrogen sulfide in 16HBE cells against beryllium sulfate-induced injury is associated with the inhibition of apoptosis and autophagy through the activation of the PI3K/Akt/mTOR and Nrf2/ARE signaling pathways. Therefore, hydrogen sulfide has the potential to be a promising candidate in the treatment against beryllium disease.
Collapse
Affiliation(s)
- Yan-Ping Liu
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| | - Xiao-Yan Yuan
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| | - Xun-Ya Li
- School of public health, University of South China, Hengyang, China
| | - Ye Wang
- School of public health, University of South China, Hengyang, China
| | - Zhan-Bing Sun
- School of public health, University of South China, Hengyang, China
| | - Wei-Hua Deng
- School of public health, University of South China, Hengyang, China
| | - Yuan-di Lei
- School of public health, University of South China, Hengyang, China
| | - Lian Huang
- School of public health, University of South China, Hengyang, China
| | - Tian-Yi Jiang
- School of public health, University of South China, Hengyang, China
| | - Zhao-Hui Zhang
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| |
Collapse
|
89
|
Barz S, Kriegenburg F, Sánchez-Martín P, Kraft C. Small but mighty: Atg8s and Rabs in membrane dynamics during autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119064. [PMID: 34048862 PMCID: PMC8261831 DOI: 10.1016/j.bbamcr.2021.119064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Autophagy is a degradative pathway during which autophagosomes are formed that enwrap cytosolic material destined for turnover within the lytic compartment. Autophagosome biogenesis requires controlled lipid and membrane rearrangements to allow the formation of an autophagosomal seed and its subsequent elongation into a fully closed and fusion-competent double membrane vesicle. Different membrane remodeling events are required, which are orchestrated by the distinct autophagy machinery. An important player among these autophagy proteins is the small lipid-modifier Atg8. Atg8 proteins facilitate various aspects of autophagosome formation and serve as a binding platform for autophagy factors. Also Rab GTPases have been implicated in autophagosome biogenesis. As Atg8 proteins interact with several Rab GTPase regulators, they provide a possible link between autophagy progression and Rab GTPase activity. Here, we review central aspects in membrane dynamics during autophagosome biogenesis with a focus on Atg8 proteins and selected Rab GTPases.
Collapse
Affiliation(s)
- Saskia Barz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
90
|
Wu J, Liu S, Chen X, Xu H, Tang Y. Machine learning identifies two autophagy-related genes as markers of recurrence in colorectal cancer. J Int Med Res 2021; 48:300060520958808. [PMID: 33076720 PMCID: PMC7780659 DOI: 10.1177/0300060520958808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is the most common cancer worldwide. Patient outcomes following recurrence of CRC are very poor. Therefore, identifying the risk of CRC recurrence at an early stage would improve patient care. Accumulating evidence shows that autophagy plays an active role in tumorigenesis, recurrence, and metastasis. METHODS We used machine learning algorithms and two regression models, univariable Cox proportion and least absolute shrinkage and selection operator (LASSO), to identify 26 autophagy-related genes (ARGs) related to CRC recurrence. RESULTS By functional annotation, these ARGs were shown to be enriched in necroptosis and apoptosis pathways. Protein-protein interactions identified SQSTM1, CASP8, HSP80AB1, FADD, and MAPK9 as core genes in CRC autophagy. Of 26 ARGs, BAX and PARP1 were regarded as having the most significant predictive ability of CRC recurrence, with prediction accuracy of 71.1%. CONCLUSION These results shed light on prediction of CRC recurrence by ARGs. Stratification of patients into recurrence risk groups by testing ARGs would be a valuable tool for early detection of CRC recurrence.
Collapse
Affiliation(s)
- Jianping Wu
- Hunan University of Science and Engineering, Yongzhou, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiaoming Chen
- Hunan University of Science and Engineering, Yongzhou, China
| | - Hongfei Xu
- Hunan University of Science and Engineering, Yongzhou, China
| | - Yaoping Tang
- Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
91
|
Pathomechanisms of ALS8: altered autophagy and defective RNA binding protein (RBP) homeostasis due to the VAPB P56S mutation. Cell Death Dis 2021; 12:466. [PMID: 33972508 PMCID: PMC8110809 DOI: 10.1038/s41419-021-03710-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023]
Abstract
Mutations in RNA binding proteins (RBPs) and in genes regulating autophagy are frequent causes of familial amyotrophic lateral sclerosis (fALS). The P56S mutation in vesicle-associated membrane protein-associated protein B (VAPB) leads to fALS (ALS8) and spinal muscular atrophy (SMA). While VAPB is primarily involved in the unfolded protein response (UPR), vesicular trafficking and in initial steps of the autophagy pathway, the effect of mutant P56S-VAPB on autophagy regulation in connection with RBP homeostasis has not been explored yet. Examining the muscle biopsy of our index ALS8 patient of European origin revealed globular accumulations of VAPB aggregates co-localised with autophagy markers LC3 and p62 in partially atrophic and atrophic muscle fibres. In line with this skin fibroblasts obtained from the same patient showed accumulation of P56S-VAPB aggregates together with LC3 and p62. Detailed investigations of autophagic flux in cell culture models revealed that P56S-VAPB alters both initial and late steps of the autophagy pathway. Accordingly, electron microscopy complemented with live cell imaging highlighted the impaired fusion of accumulated autophagosomes with lysosomes in cells expressing P56S-VAPB. Consistent with these observations, neuropathological studies of brain and spinal cord of P56S-VAPB transgenic mice revealed signs of neurodegeneration associated with altered protein quality control and defective autophagy. Autophagy and RBP homeostasis are interdependent, as demonstrated by the cytoplasmic mis-localisation of several RBPs including pTDP-43, FUS, Matrin 3 which often sequestered with P56S-VAPB aggregates both in cell culture and in the muscle biopsy of the ALS8 patient. Further confirming the notion that aggregation of the RBPs proceeds through the stress granule (SG) pathway, we found persistent G3BP- and TIAR1-positive SGs in P56S-VAPB expressing cells as well as in the ALS8 patient muscle biopsy. We conclude that P56S-VAPB-ALS8 involves a cohesive pathomechanism of aberrant RBP homeostasis together with dysfunctional autophagy.
Collapse
|
92
|
Licheva M, Raman B, Kraft C, Reggiori F. Phosphoregulation of the autophagy machinery by kinases and phosphatases. Autophagy 2021; 18:104-123. [PMID: 33970777 PMCID: PMC8865292 DOI: 10.1080/15548627.2021.1909407] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells use post-translational modifications to diversify and dynamically coordinate the function and properties of protein networks within various cellular processes. For example, the process of autophagy strongly depends on the balanced action of kinases and phosphatases. Highly conserved from the budding yeast Saccharomyces cerevisiae to humans, autophagy is a tightly regulated self-degradation process that is crucial for survival, stress adaptation, maintenance of cellular and organismal homeostasis, and cell differentiation and development. Many studies have emphasized the importance of kinases and phosphatases in the regulation of autophagy and identified many of the core autophagy proteins as their direct targets. In this review, we summarize the current knowledge on kinases and phosphatases acting on the core autophagy machinery and discuss the relevance of phosphoregulation for the overall process of autophagy.
Collapse
Affiliation(s)
- Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Babu Raman
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| |
Collapse
|
93
|
Liao Z, Li S, Lu S, Liu H, Li G, Ma L, Luo R, Ke W, Wang B, Xiang Q, Song Y, Feng X, Zhang Y, Wu X, Hua W, Yang C. Metformin facilitates mesenchymal stem cell-derived extracellular nanovesicles release and optimizes therapeutic efficacy in intervertebral disc degeneration. Biomaterials 2021; 274:120850. [PMID: 33984637 DOI: 10.1016/j.biomaterials.2021.120850] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are extracellular nanovesicles that deliver diverse cargoes to the cell and participate in cell communication. Mesenchymal stem cell (MSCs)-derived EVs are considered a therapeutic approach in musculoskeletal degenerative diseases, including intervertebral disc degeneration. However, limited production yield and unstable quality have impeded the clinical application of EVs. In the present study, it is indicated that metformin promotes EVs release and alters the protein profile of EVs. Metformin enhances EVs production via an autophagy-related pathway, concomitantly with the phosphorylation of synaptosome-associated protein 29. More than quantity, quality of MSCs-derived EVs is influenced by metformin treatment. Proteomics analysis reveals that metformin increases the protein content of EVs involved in cell growth. It is shown that EVs derived from metformin-treated MSCs ameliorate intervertebral disc cells senescence in vitro and in vivo. Collectively, these findings demonstrate the great promise of metformin in EVs-based intervertebral disc regeneration.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
94
|
Cao Y, Li R, Shen M, Li C, Zou Y, Jiang Q, Liu S, Lu C, Li H, Liu H, Cai Y. DDRGK1, a crucial player of ufmylation system, is indispensable for autophagic degradation by regulating lysosomal function. Cell Death Dis 2021; 12:416. [PMID: 33879777 PMCID: PMC8058061 DOI: 10.1038/s41419-021-03694-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023]
Abstract
DDRGK domain-containing protein 1 (DDRGK1) is an important component of the newly discovered ufmylation system and its absence has been reported to induce extensive endoplasmic reticulum (ER) stress. Recently, emerging evidence indicates that the ufmylation system is correlated with autophagy, although the exact mechanism remains largely unknown. To explore the regulation mechanism of DDRGK1 on autophagy, in this study, we established an immortalized mouse embryonic fibroblast (MEF) cell lines harvested from the DDRGK1F/F:ROSA26-CreERT2 mice, in which DDRGK1 depletion can be induced by 4-hydroxytamoxifen (4-OHT) treatment. Here, we show that DDRGK1 deficiency in MEFs has a dual effect on autophagy, which leads to a significant accumulation of autophagosomes. On one hand, it promotes autophagy induction by impairing mTOR signaling; on the other hand, it blocks autophagy degradation by inhibiting autophagosome-lysosome fusion. This dual effect of DDRGK1 depletion on autophagy ultimately aggravates apoptosis in MEFs. Further studies reveal that DDRGK1 loss is correlated with suppressed lysosomal function, including impaired Cathepsin D (CTSD) expression, aberrant lysosomal pH, and v-ATPase accumulation, which might be a potential trigger for impairment in autophagy process. Hence, this study confirms a crucial role of DDRGK1 as an autophagy regulator by controlling lysosomal function. It may provide a theoretical basis for the treatment strategies of various physiological diseases caused by DDRGK1 deficiency.
Collapse
Affiliation(s)
- Yan Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chengyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Zou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qiang Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuo Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chunwan Lu
- School of life sciences, Tianjin University, 300072, Tianjin, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Yafei Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
95
|
Li D, Vogel P, Li-Harms X, Wang B, Kundu M. ATG14 and RB1CC1 play essential roles in maintaining muscle homeostasis. Autophagy 2021; 17:2576-2585. [PMID: 33794726 DOI: 10.1080/15548627.2021.1911549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Defects in macroautophagy/autophagy are implicated in the pathogenesis of neuromuscular and heart diseases. To precisely define the roles of autophagy-related genes in skeletal and cardiac muscles, we generated muscle-specific rb1cc1- and atg14-conditional knockout (cKO) mice by using Ckm/Ckmm2-Cre and compared their phenotypes to those of ulk1 ulk2-conditional double-knockout (cDKO) mice. atg14-cKO mice developed hypertrophic cardiomyopathy, which was associated with abnormal accumulation of autophagic cargoes in the heart and early mortality. Skeletal muscles of both atg14-cKO and rb1cc1-cKO mice showed features of autophagic vacuolar myopathy with ubiquitin+ SQSTM1+ deposits, but only those of rb1cc1-cKO mice showed TARDBP/TDP-43+ pathology and other features of the inclusion body myopathy-like disease we previously described in ulk1 ulk2-cDKO mice. Herein, we highlight tissue-specific differences between skeletal and cardiac muscles in their reliance on core autophagy proteins and unique roles for ULK1-ULK2 and RB1CC1 among these proteins in the development of TARDBP+ pathology.ABBREVIATIONS:AVM: autophagic vacuolar myopathy; cDKO: conditional double knockout; cKO: conditional knockout; H&E: hematoxylin and eosin; IBM: inclusion body myopathy; mtDNA: mitochondrial DNA; PFA: paraformaldehyde; RNP: ribonucleoprotein; TBST: Tris-buffered saline with 0.2% Triton X-100.
Collapse
Affiliation(s)
- Dongfang Li
- Departments of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Departments of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiujie Li-Harms
- Departments of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bo Wang
- Departments of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, Fujian Province, China
| | - Mondira Kundu
- Departments of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
96
|
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) poses a growing challenge in terms of its prevention and treatment. The 'multiple hits' hypothesis of multiple insults, such as dietary fat intake, de novo lipogenesis, insulin resistance, oxidative stress, mitochondrial dysfunction, gut dysbiosis and hepatic inflammation, can provide a more accurate explanation of the pathogenesis of NAFLD. Betaine plays important roles in regulating the genes associated with NAFLD through anti-inflammatory effects, increased free fatty oxidation, anti-lipogenic effects and improved insulin resistance and mitochondrial function; however, the mechanism of betaine remains elusive.
Collapse
|
97
|
Pathak P, Blech-Hermoni Y, Subedi K, Mpamugo J, Obeng-Nyarko C, Ohman R, Molloy I, Kates M, Hale J, Stauffer S, Sharan SK, Mankodi A. Myopathy associated LDB3 mutation causes Z-disc disassembly and protein aggregation through PKCα and TSC2-mTOR downregulation. Commun Biol 2021; 4:355. [PMID: 33742095 PMCID: PMC7979776 DOI: 10.1038/s42003-021-01864-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Mechanical stress induced by contractions constantly threatens the integrity of muscle Z-disc, a crucial force-bearing structure in striated muscle. The PDZ-LIM proteins have been proposed to function as adaptors in transducing mechanical signals to preserve the Z-disc structure, however the underlying mechanisms remain poorly understood. Here, we show that LDB3, a well-characterized striated muscle PDZ-LIM protein, modulates mechanical stress signaling through interactions with the mechanosensing domain in filamin C, its chaperone HSPA8, and PKCα in the Z-disc of skeletal muscle. Studies of Ldb3Ala165Val/+ mice indicate that the myopathy-associated LDB3 p.Ala165Val mutation triggers early aggregation of filamin C and its chaperones at muscle Z-disc before aggregation of the mutant protein. The mutation causes protein aggregation and eventually Z-disc myofibrillar disruption by impairing PKCα and TSC2-mTOR, two important signaling pathways regulating protein stability and disposal of damaged cytoskeletal components at a major mechanosensor hub in the Z-disc of skeletal muscle.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Autophagy
- Disease Models, Animal
- Down-Regulation
- Filamins/metabolism
- HSC70 Heat-Shock Proteins/metabolism
- LIM Domain Proteins/genetics
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle Contraction
- Muscle Strength
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myopathies, Structural, Congenital/enzymology
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myopathies, Structural, Congenital/physiopathology
- Point Mutation
- Protein Aggregates
- Protein Aggregation, Pathological
- Protein Kinase C-alpha/genetics
- Protein Kinase C-alpha/metabolism
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tuberous Sclerosis Complex 2 Protein/genetics
- Tuberous Sclerosis Complex 2 Protein/metabolism
- Mice
Collapse
Affiliation(s)
- Pankaj Pathak
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yotam Blech-Hermoni
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kalpana Subedi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jessica Mpamugo
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Charissa Obeng-Nyarko
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Rachel Ohman
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ilda Molloy
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Malcolm Kates
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jessica Hale
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ami Mankodi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
98
|
Antioxidant Compound, Oxyresveratrol, Inhibits APP Production through the AMPK/ULK1/mTOR-Mediated Autophagy Pathway in Mouse Cortical Astrocytes. Antioxidants (Basel) 2021; 10:antiox10030408. [PMID: 33800526 PMCID: PMC7998742 DOI: 10.3390/antiox10030408] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Oxyresveratrol (OxyR), a well-known polyphenolic phytoalexin, possesses a wide range of pharmacological and biological properties, comprising antioxidant, anti-inflammatory, free radical scavenging, anti-cancer, and neuroprotective activities. Autophagy is a cellular self-degradation system that removes aggregated or misfolded intracellular components via the autophagosome-lysosomal pathway. Astrocyte accumulation is one of the earliest neuropathological changes in Alzheimer’s disease (AD), and amyloid precursor protein (APP) is the hallmark of AD. OxyR could affect APP modulation via the autophagy pathway. Here, we have reported that OxyR promotes autophagy signaling and attenuates APP production in primary cortical astrocytes based on immunofluorescence and immunoblotting assay results. Co-treatment with the late-stage autophagy inhibitor chloroquine (CQ) and OxyR caused significantly higher microtubule-associated protein light chain 3 (LC3)-II protein levels and LC3 puncta counts, demonstrating that OxyR stimulated autophagic flux. We also found that OxyR significantly reduced the levels of the autophagy substrate p62/SQSTM1, and p62 levels were significantly augmented by co-treatment with OxyR and CQ, because of the impaired deficiency of p62 in autolysosome. Likewise, pretreatment with the autophagy inhibitor, 3-methyladenine (3-MA), resulted in significantly fewer OxyR-induced LC3 puncta and lower LC3-II expression, suggesting that OxyR-mediated autophagy was dependent on the class III PI3-kinase pathway. In contrast, OxyR caused significantly lower LC3-II protein expression when pretreated with compound C, an AMP-activated protein kinase (AMPK) inhibitor, indicating that AMPK signaling regulated the OxyR-induced autophagic pathway. Additionally, co-treatment with OxyR with rapamycin intended to inhibit the mammalian target of rapamycin (mTOR) caused significantly lower levels of phospho-S6 ribosomal protein (pS6) and higher LC3-II expression, implying that OxyR-mediated autophagy was dependent on the mTOR pathway. Conversely, OxyR treatment significantly upregulated unc-51-like autophagy activating kinase 1 (ULK1) expression, and ULK1 small interfering RNAs (siRNA) caused significantly lower OxyR-induced LC3 puncta counts and LC3-II expression, indicating that ULK1 was essential for initiating OxyR-induced autophagy. However, we found that OxyR treatment astrocytes significantly increased the expression of lysosome-associated membrane protein 1 (LAMP1). Finally, we established a stress-induced APP production model using corticosterone (CORT) in cortical astrocytes, which produced significantly more APP than the equivalent using dexamethasone (DEX). In our experiment we found that CORT-induced APP production was significantly attenuated by OxyR through the autophagy pathway. Therefore, our study reveals that OxyR regulates AMPK/ULK1/mTOR-dependent autophagy induction and APP reduction in mouse cortical astrocytes.
Collapse
|
99
|
Yan W, Fan J, Zhang X, Song H, Wan R, Wang W, Yin Y. Decreased neuronal synaptosome associated protein 29 contributes to poststroke cognitive impairment by disrupting presynaptic maintenance. Am J Cancer Res 2021; 11:4616-4636. [PMID: 33754017 PMCID: PMC7978312 DOI: 10.7150/thno.54210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Poststroke cognitive impairments are common in stroke survivors, and pose a high risk of incident dementia. However, the cause of these cognitive impairments is obscure and required an investigation. Methods: Oxygen-glucose deprivation (OGD) model and middle cerebral artery occlusion (MCAO) model were used to imitate in vitro or in vivo acute cerebral ischemia, respectively. The differentially expressed synaptosome associated protein 29 (SNAP29)-interacting proteins upon ischemia and reperfusion were analyzed with bioinformatics analysis and the results indicated that the changes of SNAP29 after acute ischemia were mainly involved in the synaptic functions. The outcomes of SNAP29 reduction were assessed with SNAP29 knockdown, which mimicked the distribution of SNAP29 along neuronal processes after acute ischemia. Using the whole-cell patch clamp recording method and transmission electron microscope, the pre-synaptic function and readily releasable pool (RRP) were observed after SNAP29 knock down. Using photogenetic manipulations and behavioral tests, the neuronal projection and cognitive functions of mice with SNAP29 knock down in hippocampus CA1 region were evaluated. Results: It was found that SNAP29 protein levels decreased in both in vitro and in vivo ischemic models. Further, the SNAP29 reduction wasn't associated with impaired autophagy flux and neuronal survival. When SNAP29 was knocked down in primary cortical neurons, the frequency of AMPARs-mediated mEPSCs, but not the amplitude, significantly decreased. Meanwhile, the mice with SNAP29 knockdown at CA1 region of hippocampus developed an impairment in hippocampus-mPFC (middle prefrontal cortex) circuit and behavioral dysfunctions. Moreover, the size of RRP at presynaptic sites was diminished. Conclusion: Since SNAP29 protein levels didn't significantly influence the neuronal survival and its decrease was sufficient to disturb the neural circuit via a presynaptic manner, the SNAP29-associated strategies may be an efficient target against poststroke synaptic dysfunction and cognitive deficits.
Collapse
|
100
|
Lifelong Ulk1-Mediated Autophagy Deficiency in Muscle Induces Mitochondrial Dysfunction and Contractile Weakness. Int J Mol Sci 2021; 22:ijms22041937. [PMID: 33669246 PMCID: PMC7919824 DOI: 10.3390/ijms22041937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
The accumulation of damaged mitochondria due to insufficient autophagy has been implicated in the pathophysiology of skeletal muscle aging. Ulk1 is an autophagy-related kinase that initiates autophagosome assembly and may also play a role in autophagosome degradation (i.e., autophagy flux), but the contribution of Ulk1 to healthy muscle aging is unclear. Therefore, the purpose of this study was to investigate the role of Ulk1-mediated autophagy in skeletal muscle aging. At age 22 months (80% survival rate), muscle contractile and metabolic function were assessed using electrophysiology in muscle-specific Ulk1 knockout mice (MKO) and their littermate controls (LM). Specific peak-isometric torque of the ankle dorsiflexors (normalized by tibialis anterior muscle cross-sectional area) and specific force of the fast-twitch extensor digitorum longus muscles was reduced in MKO mice compared to LM mice (p < 0.03). Permeabilized muscle fibers from MKO mice had greater mitochondrial content, yet lower mitochondrial oxygen consumption and greater reactive oxygen species production compared to fibers from LM mice (p ≤ 0.04). Alterations in neuromuscular junction innervation patterns as well as changes to autophagosome assembly and flux were explored as possible contributors to the pathological features in Ulk1 deficiency. Of primary interest, we found that Ulk1 phosphorylation (activation) to total Ulk1 protein content was reduced in older muscles compared to young muscles from both human and mouse, which may contribute to decreased autophagy flux and an accumulation of dysfunctional mitochondria. Results from this study support the role of Ulk1-mediated autophagy in aging skeletal muscle, reflecting Ulk1′s dual role in maintaining mitochondrial integrity through autophagosome assembly and degradation.
Collapse
|