51
|
Kurtz DM, Feeney WP. The Influence of Feed and Drinking Water on Terrestrial Animal Research and Study Replicability. ILAR J 2020; 60:175-196. [PMID: 32706372 PMCID: PMC7583730 DOI: 10.1093/ilar/ilaa012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/29/2022] Open
Abstract
For more than 50 years, the research community has made strides to better determine the nutrient requirements for many common laboratory animal species. This work has resulted in high-quality animal feeds that can optimize growth, maintenance, and reproduction in most species. We have a much better understanding of the role that individual nutrients play in physiological responses. Today, diet is often considered as an independent variable in experimental design, and specialized diet formulations for experimental purposes are widely used. In contrast, drinking water provided to laboratory animals has rarely been a consideration in experimental design except in studies of specific water-borne microbial or chemical contaminants. As we advance in the precision of scientific measurements, we are constantly discovering previously unrecognized sources of experimental variability. This is the nature of science. However, science is suffering from a lack of experimental reproducibility or replicability that undermines public trust. The issue of reproducibility/replicability is especially sensitive when laboratory animals are involved since we have the ethical responsibility to assure that laboratory animals are used wisely. One way to reduce problems with reproducibility/replicability is to have a strong understanding of potential sources of inherent variability in the system under study and to provide "…a clear, specific, and complete description of how the reported results were reached [1]." A primary intent of this review is to provide the reader with a high-level overview of some basic elements of laboratory animal nutrition, methods used in the manufacturing of feeds, sources of drinking water, and general methods of water purification. The goal is to provide background on contemporary issues regarding how diet and drinking water might serve as a source of extrinsic variability that can impact animal health, study design, and experimental outcomes and provide suggestions on how to mitigate these effects.
Collapse
Affiliation(s)
- David M Kurtz
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - William P Feeney
- Global Comparative and Translational Sciences, Integrated Biological Platform Sciences Department, GlaxoSmithKline, Collegeville, Pennsylvania
| |
Collapse
|
52
|
Beverages in Rheumatoid Arthritis: What to Prefer or to Avoid. Nutrients 2020; 12:nu12103155. [PMID: 33076469 PMCID: PMC7602656 DOI: 10.3390/nu12103155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The role of nutrition in the pathogenesis of rheumatic diseases, including rheumatoid arthritis (RA), has gained increasing attention in recent years. A growing number of studies have focussed on the diverse nutritional contents of beverages, and their possible role in the development and progression of RA. Main body: We aimed to summarise the current knowledge on the role of a range of beverages in the context of RA. Beverages have a key role within the mosaic of autoimmunity in RA and potential to alter the microbiome, leading to downstream effects on inflammatory pathways. The molecular contents of beverages, including coffee, tea, and wine, have similarly been found to interfere with immune signalling pathways, some beneficial for disease progression and others less so. Finally, we consider beverages in the context of wider dietary patterns, and how this growing body of evidence may be harnessed by the multidisciplinary team in patient management. Conclusions: While there is increasing work focussing on the role of beverages in RA, integration of discussions around diet and lifestyle in our management of patients remains sparse. Nutrition in RA remains a controversial topic, but future studies, especially on the role of beverages, are likely to shed further light on this in coming years.
Collapse
|
53
|
Bachmann MC, Bellalta S, Basoalto R, Gómez-Valenzuela F, Jalil Y, Lépez M, Matamoros A, von Bernhardi R. The Challenge by Multiple Environmental and Biological Factors Induce Inflammation in Aging: Their Role in the Promotion of Chronic Disease. Front Immunol 2020; 11:570083. [PMID: 33162985 PMCID: PMC7591463 DOI: 10.3389/fimmu.2020.570083] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The aging process is driven by multiple mechanisms that lead to changes in energy production, oxidative stress, homeostatic dysregulation and eventually to loss of functionality and increased disease susceptibility. Most aged individuals develop chronic low-grade inflammation, which is an important risk factor for morbidity, physical and cognitive impairment, frailty, and death. At any age, chronic inflammatory diseases are major causes of morbimortality, affecting up to 5-8% of the population of industrialized countries. Several environmental factors can play an important role for modifying the inflammatory state. Genetics accounts for only a small fraction of chronic-inflammatory diseases, whereas environmental factors appear to participate, either with a causative or a promotional role in 50% to 75% of patients. Several of those changes depend on epigenetic changes that will further modify the individual response to additional stimuli. The interaction between inflammation and the environment offers important insights on aging and health. These conditions, often depending on the individual's sex, appear to lead to decreased longevity and physical and cognitive decline. In addition to biological factors, the environment is also involved in the generation of psychological and social context leading to stress. Poor psychological environments and other sources of stress also result in increased inflammation. However, the mechanisms underlying the role of environmental and psychosocial factors and nutrition on the regulation of inflammation, and how the response elicited for those factors interact among them, are poorly understood. Whereas certain deleterious environmental factors result in the generation of oxidative stress driven by an increased production of reactive oxygen and nitrogen species, endoplasmic reticulum stress, and inflammation, other factors, including nutrition (polyunsaturated fatty acids) and behavioral factors (exercise) confer protection against inflammation, oxidative and endoplasmic reticulum stress, and thus ameliorate their deleterious effect. Here, we discuss processes and mechanisms of inflammation associated with environmental factors and behavior, their links to sex and gender, and their overall impact on aging.
Collapse
Affiliation(s)
| | - Sofía Bellalta
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roque Basoalto
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Yorschua Jalil
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Lépez
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anibal Matamoros
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Biological Sciences (ICB), Federal University of Pará, Belem, Brazil
| | - Rommy von Bernhardi
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
54
|
Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Antioxidants (Basel) 2020; 9:antiox9090865. [PMID: 32938017 PMCID: PMC7555619 DOI: 10.3390/antiox9090865] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetics has provided a new dimension to our understanding of nuclear factor erythroid 2–related factor 2/Kelch-like ECH-associated protein 1 (human NRF2/KEAP1 and murine Nrf2/Keap1) signaling. Unlike the genetic changes affecting DNA sequence, the reversible nature of epigenetic alterations provides an attractive avenue for cancer interception. Thus, targeting epigenetic mechanisms in the corresponding signaling networks represents an enticing strategy for therapeutic intervention with dietary phytochemicals acting at transcriptional, post-transcriptional, and post-translational levels. This regulation involves the interplay of histone modifications and DNA methylation states in the human NFE2L2/KEAP1 and murine Nfe2l2/Keap1 genes, acetylation of lysine residues in NRF2 and Nrf2, interaction with bromodomain and extraterminal domain (BET) acetyl “reader” proteins, and non-coding RNAs such as microRNA (miRNA) and long non-coding RNA (lncRNA). Phytochemicals documented to modulate NRF2 signaling act by reversing hypermethylated states in the CpG islands of NFE2L2 or Nfe2l2, via the inhibition of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), through the induction of ten-eleven translocation (TET) enzymes, or by inducing miRNA to target the 3′-UTR of the corresponding mRNA transcripts. To date, fewer than twenty phytochemicals have been reported as NRF2 epigenetic modifiers, including curcumin, sulforaphane, resveratrol, reserpine, and ursolic acid. This opens avenues for exploring additional dietary phytochemicals that regulate the human epigenome, and the potential for novel strategies to target NRF2 signaling with a view to beneficial interception of cancer and other chronic diseases.
Collapse
|
55
|
Ma J, Rebholz CM, Braun KV, Reynolds LM, Aslibekyan S, Xia R, Biligowda NG, Huan T, Liu C, Mendelson MM, Joehanes R, Hu EA, Vitolins MZ, Wood AC, Lohman K, Ochoa-Rosales C, van Meurs J, Uitterlinden A, Liu Y, Elhadad MA, Heier M, Waldenberger M, Peters A, Colicino E, Whitsel EA, Baldassari A, Gharib SA, Sotoodehnia N, Brody JA, Sitlani CM, Tanaka T, Hill WD, Corley J, Deary IJ, Zhang Y, Schöttker B, Brenner H, Walker ME, Ye S, Nguyen S, Pankow J, Demerath EW, Zheng Y, Hou L, Liang L, Lichtenstein AH, Hu FB, Fornage M, Voortman T, Levy D. Whole Blood DNA Methylation Signatures of Diet Are Associated With Cardiovascular Disease Risk Factors and All-Cause Mortality. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:e002766. [PMID: 32525743 PMCID: PMC7442697 DOI: 10.1161/circgen.119.002766] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND DNA methylation patterns associated with habitual diet have not been well studied. METHODS Diet quality was characterized using a Mediterranean-style diet score and the Alternative Healthy Eating Index score. We conducted ethnicity-specific and trans-ethnic epigenome-wide association analyses for diet quality and leukocyte-derived DNA methylation at over 400 000 CpGs (cytosine-guanine dinucleotides) in 5 population-based cohorts including 6662 European ancestry, 2702 African ancestry, and 360 Hispanic ancestry participants. For diet-associated CpGs identified in epigenome-wide analyses, we conducted Mendelian randomization (MR) analysis to examine their relations to cardiovascular disease risk factors and examined their longitudinal associations with all-cause mortality. RESULTS We identified 30 CpGs associated with either Mediterranean-style diet score or Alternative Healthy Eating Index, or both, in European ancestry participants. Among these CpGs, 12 CpGs were significantly associated with all-cause mortality (Bonferroni corrected P<1.6×10-3). Hypermethylation of cg18181703 (SOCS3) was associated with higher scores of both Mediterranean-style diet score and Alternative Healthy Eating Index and lower risk for all-cause mortality (P=5.7×10-15). Ten additional diet-associated CpGs were nominally associated with all-cause mortality (P<0.05). MR analysis revealed 8 putatively causal associations for 6 CpGs with 4 cardiovascular disease risk factors (body mass index, triglycerides, high-density lipoprotein cholesterol concentrations, and type 2 diabetes mellitus; Bonferroni corrected MR P<4.5×10-4). For example, hypermethylation of cg11250194 (FADS2) was associated with lower triglyceride concentrations (MR, P=1.5×10-14).and hypermethylation of cg02079413 (SNORA54; NAP1L4) was associated with body mass index (corrected MR, P=1×10-6). CONCLUSIONS Habitual diet quality was associated with differential peripheral leukocyte DNA methylation levels of 30 CpGs, most of which were also associated with multiple health outcomes, in European ancestry individuals. These findings demonstrate that integrative genomic analysis of dietary information may reveal molecular targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Jiantao Ma
- Nutrition Epidemiology & Data Science, Friedman School of Nutrition Science and Policy, Tufts Univ, Boston
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
| | - Casey M. Rebholz
- Dept of Epidemiology, Bloomberg School of Public Health, Johns Hopkins Univ, Baltimore, MD
| | - Kim V.E. Braun
- Dept of Epidemiology, Erasmus Univ Medical Ctr, Rotterdam, The Netherlands
| | - Lindsay M. Reynolds
- Dept of Epidemiology & Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | | | - Rui Xia
- Inst of Molecular Medicine, The Univ of Texas Health Science Ctr at Houston, Houston, TX
| | | | - Tianxiao Huan
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
| | - Chunyu Liu
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
- Dept of Biostatistics, Boston Univ, Boston, MA
| | - Michael M. Mendelson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
- Dept of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
| | - Emily A. Hu
- Dept of Epidemiology, Bloomberg School of Public Health, Johns Hopkins Univ, Baltimore, MD
| | - Mara Z. Vitolins
- Dept of Epidemiology & Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Alexis C. Wood
- USDA/ARS Children’s Nutrition Rsrch Ctr, Baylor College of Medicine, Houston, TX
| | - Kurt Lohman
- Dept of Biostatistics, Wake Forest School of Medicine, Winston-Salem, NC
| | - Carolina Ochoa-Rosales
- Dept of Epidemiology, Erasmus Univ Medical Ctr, Rotterdam, The Netherlands
- Centro de Vida Saludable de la Universidad de Concepción, Concepción, Chile
| | - Joyce van Meurs
- Dept of Internal Medicine, Erasmus Univ Medical Ctr, Rotterdam, The Netherlands
| | - Andre Uitterlinden
- Dept of Internal Medicine, Erasmus Univ Medical Ctr, Rotterdam, The Netherlands
| | - Yongmei Liu
- Dept of Epidemiology & Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Mohamed A. Elhadad
- Inst of Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- Rsrch Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- DZHK (German Centre for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
| | - Margit Heier
- Inst of Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- KORA Study Centre, Univ Hospital of Augsburg, Augsburg, Germany
| | - Melanie Waldenberger
- Inst of Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- Rsrch Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- DZHK (German Centre for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
| | - Annette Peters
- Inst of Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- Rsrch Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Ctr for Environmental Health, Neuherberg
- DZHK (German Centre for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
| | - Elena Colicino
- Dept of Environmental Health Sciences, Columbia Univ, New York City, NY
| | - Eric A. Whitsel
- Dept of Epidemiology, Gillings School of Global Public Health, Univ of North Carolina, Chapel Hill, NC
- Dept of Medicine, School of Medicine, Univ of North Carolina, Chapel Hill, NC
| | - Antoine Baldassari
- Dept of Epidemiology, Gillings School of Global Public Health, Univ of North Carolina, Chapel Hill, NC
| | - Sina A. Gharib
- The Cardiovascular Health Research Unit, Univ of Washington, Seattle, WA
| | - Nona Sotoodehnia
- The Cardiovascular Health Research Unit, Univ of Washington, Seattle, WA
| | - Jennifer A. Brody
- The Cardiovascular Health Research Unit, Univ of Washington, Seattle, WA
| | - Colleen M. Sitlani
- The Cardiovascular Health Research Unit, Univ of Washington, Seattle, WA
| | - Toshiko Tanaka
- Longitudinal Study Section, Nat Inst of Aging, NIH, Bethesda, MD
| | - W. David Hill
- Lothian Birth Cohorts, Univ of Edinburgh, Edinburgh, UK
- Dept of Psychology, Univ of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Univ of Edinburgh, Edinburgh, UK
- Dept of Psychology, Univ of Edinburgh, Edinburgh, UK
| | - Ian J. Deary
- Lothian Birth Cohorts, Univ of Edinburgh, Edinburgh, UK
- Dept of Psychology, Univ of Edinburgh, Edinburgh, UK
| | - Yan Zhang
- Division of Clinical Epidemiology & Aging Research, German Cancer Rsrch Ctr (DKFZ)
| | - Ben Schöttker
- Division of Clinical Epidemiology & Aging Research, German Cancer Rsrch Ctr (DKFZ)
- Network Aging Research (NAR), Univ of Heidelberg, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology & Aging Research, German Cancer Rsrch Ctr (DKFZ)
- Network Aging Research (NAR), Univ of Heidelberg, Heidelberg, Germany
| | - Maura E. Walker
- Section of Preventive Medicine & Epidemiology, Boston Univ School of Medicine, Boston, MA
| | - Shumao Ye
- Cardiovascular Nutrition Laboratory, USDA Human Nutrition Rsrch Ctr on Aging, Tufts Univ, Boston
| | - Steve Nguyen
- Division of Epidemiology & Community Health, School of Public Health, Univ of Minnesota, Minneapolis, MN
| | - Jim Pankow
- Division of Epidemiology & Community Health, School of Public Health, Univ of Minnesota, Minneapolis, MN
| | - Ellen W. Demerath
- Division of Epidemiology & Community Health, School of Public Health, Univ of Minnesota, Minneapolis, MN
| | - Yinan Zheng
- Ctr for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Ctr & Dept of Preventive Medicine, Northwestern Univ Feinberg School of Medicine, Chicago, IL
| | - Lifang Hou
- Ctr for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Ctr & Dept of Preventive Medicine, Northwestern Univ Feinberg School of Medicine, Chicago, IL
| | - Liming Liang
- Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Dept of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Alice H. Lichtenstein
- Cardiovascular Nutrition Laboratory, USDA Human Nutrition Rsrch Ctr on Aging, Tufts Univ, Boston
| | - Frank B. Hu
- Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Dept of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Myriam Fornage
- Inst of Molecular Medicine, The Univ of Texas Health Science Ctr at Houston, Houston, TX
| | - Trudy Voortman
- Dept of Epidemiology, Erasmus Univ Medical Ctr, Rotterdam, The Netherlands
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD & the Framingham Heart Study, Framingham, MA
| |
Collapse
|
56
|
Maugeri A, Barchitta M. How Dietary Factors Affect DNA Methylation: Lesson from Epidemiological Studies. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E374. [PMID: 32722411 PMCID: PMC7466216 DOI: 10.3390/medicina56080374] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Over the past decades, DNA methylation has been proposed as a molecular mechanism underlying the positive or negative effects of diet on human health. Despite the number of studies on this topic is rapidly increasing, the relationship between dietary factors, changes in DNA methylation and health outcomes remains unclear. In this review, we summarize the literature from observational studies (cross-sectional, retrospective, or prospective) which examined the association of dietary factors (nutrients, foods, and dietary patterns) with DNA methylation markers among diseased or healthy people during the lifetime. Next, we discuss the methodological pitfalls by examining strengths and limitations of published studies. Finally, we close with a discussion on future challenges of this field of research, raising the need for large-size prospective studies evaluating the association between diet and DNA methylation in health and diseases for appropriate public health strategies.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | |
Collapse
|
57
|
Association of Genetic and Environmental Factors with Non-Alcoholic Fatty Liver Disease in a Chinese Han Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145217. [PMID: 32698306 PMCID: PMC7399983 DOI: 10.3390/ijerph17145217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 01/31/2023]
Abstract
Lifestyle choices such as the intake of sweets, history of diseases, and genetic variants seem to play a role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). To explore which genetic and environmental factors are associated with NAFLD in a Chinese Han population, we conducted this study. We collected the medical reports, lifestyle details, and blood samples of individuals and used the polymerase chain reaction-ligase detection reaction method to genotype the single-nucleotide polymorphism (SNPs) from the 2113 eligible people. The GG genotype of the additive model of rs7493 in the PON2, the CC genotype of the additive and recessive models of rs7593130 in the ADCY3, together with dyslipidemia, regular intake of egg and sweets and hypertension, increased the risk of NAFLD (adjusted OR > 1, p < 0.05). The TT genotype of the additive and dominant models of rs11583680 in the PCSK9, together with the regular intake of vegetable, reduced the risk of NAFLD (adjusted OR < 1, p < 0.05). In addition, interactions between some variables were found. Eventually, we identified three SNPs and six environmental factors associated with NAFLD. These results provide the theoretical basis for gene and other risk factors screening to prevent NAFLD.
Collapse
|
58
|
Cirkovic A, Garovic V, Milin Lazovic J, Milicevic O, Savic M, Rajovic N, Aleksic N, Weissgerber T, Stefanovic A, Stanisavljevic D, Milic N. Systematic review supports the role of DNA methylation in the pathophysiology of preeclampsia: a call for analytical and methodological standardization. Biol Sex Differ 2020; 11:36. [PMID: 32631423 PMCID: PMC7336649 DOI: 10.1186/s13293-020-00313-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Studies have recently examined the role of epigenetic mechanisms in preeclampsia pathophysiology. One commonly examined epigenetic process is DNA methylation. This heritable epigenetic marker is involved in many important cellular functions. The aim of this study was to establish the association between DNA methylation and preeclampsia and to critically appraise the roles of major study characteristics that can significantly impact the association between DNA methylation and preeclampsia. MAIN BODY A systematic review was performed by searching PubMed, Web of Science, and EMBASE for original research articles published over time, until May 31, 2019 in English. Eligible studies compared DNA methylation levels in pregnant women with vs. without preeclampsia. Ninety articles were included. Epigenome-wide studies identified hundreds of differentially methylated places/regions in preeclamptic patients. Hypomethylation was the predominant finding in studies analyzing placental tissue (14/19), while hypermethylation was detected in three studies that analyzed maternal white blood cells (3/3). In candidate gene studies, methylation alterations for a number of genes were found to be associated with preeclampsia. A greater number of differentially methylated genes was found when analyzing more severe preeclampsia (70/82), compared to studies analyzing less severe preeclampsia vs. controls (13/27). A high degree of heterogeneity existed among the studies in terms of methodological study characteristics including design (study design, definition of preeclampsia, control group, sample size, confounders), implementation (biological sample, DNA methylation method, purification of DNA extraction, and validation of methylation), analysis (analytical method, batch effect, genotyping, and gene expression), and data presentation (methylation quantification measure, measure of variability, reporting). Based on the results of this review, we provide recommendations for study design and analytical approach for further studies. CONCLUSIONS The findings from this review support the role of DNA methylation in the pathophysiology of preeclampsia. Establishing field-wide methodological and analytical standards may increase value and reduce waste, allowing researchers to gain additional insights into the role of DNA methylation in the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- A Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - V Garovic
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - J Milin Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - O Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - M Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - T Weissgerber
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Charité - Universitätsmedizin Berlin, Berlin Institute of Health, QUEST Center, Berlin, Germany
| | - A Stefanovic
- Clinic for Gynecology and Obstetrics, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia. .,Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
59
|
Topart C, Werner E, Arimondo PB. Wandering along the epigenetic timeline. Clin Epigenetics 2020; 12:97. [PMID: 32616071 PMCID: PMC7330981 DOI: 10.1186/s13148-020-00893-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing life expectancy but also healthspan seems inaccessible as of yet but it may become a reality in the foreseeable future. To extend lifespan, it is essential to unveil molecular mechanisms involved in ageing. As for healthspan, a better understanding of the mechanisms involved in age-related pathologies is crucial. MAIN BODY We focus on the epigenetic side of ageing as ageing is traced by specific epigenetic patterns and can be measured by epigenetic clocks. We discuss to what extent exposure to environmental factor, such as alcohol use, unhealthy diet, tobacco and stress, promotes age-related conditions. We focused on inflammation, cancer and Alzheimer's disease. Finally, we discuss strategies to reverse time based on epigenetic reprogramming. CONCLUSIONS Reversibility of the epigenetic marks makes them promising targets for rejuvenation. For this purpose, a better understanding of the epigenetic mechanisms underlying ageing is essential. Epigenetic clocks were successfully designed to monitor these mechanisms and the influence of environmental factors. Further studies on age-related diseases should be conducted to determine their epigenetic signature, but also to pinpoint the defect in the epigenetic machinery and thereby identify potential therapeutic targets. As for rejuvenation, epigenetic reprogramming is still at an early stage.
Collapse
Affiliation(s)
- Clémence Topart
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Emilie Werner
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Paola B Arimondo
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR n°3523, 28 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
60
|
de Andrés MC, Meiss MS, Sánchez-Hidalgo M, González-Benjumea A, Fernández-Bolaños JG, Alarcón-de-la-Lastra C, Oreffo RO. Osteoarthritis treatment with a novel nutraceutical acetylated ligstroside aglycone, a chemically modified extra-virgin olive oil polyphenol. J Tissue Eng 2020; 11:2041731420922701. [PMID: 32523668 PMCID: PMC7257837 DOI: 10.1177/2041731420922701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
Recent studies have shown that dietary patterns confer protection from certain chronic diseases related to oxidative stress, the immune system and chronic low-grade inflammatory diseases. The aim of this study was to evaluate the anti-inflammatory potential and the capacity to attenuate cartilage degradation using extra-virgin olive oil–derived polyphenols for the treatment of osteoarthritis. Results show that both nutraceuticals ligstroside aglycone and acetylated ligstroside aglycone showed an anti-inflammatory profile. Acetylated ligstroside aglycone significantly reduced the expression of pro-inflammatory genes including NOS2 and MMP13 at both RNA and protein levels; decreased nitric oxide release; and, importantly, reduced proteoglycan loss in human osteoarthritis cartilage explants. Our study demonstrated that a new synthetic acetylated ligstroside aglycone derivative offers enhanced anti-inflammatory profile than the natural nutraceutical compound in osteoarthritis. These results substantiate the role of nutraceuticals in osteoarthritis with implications for therapeutic intervention and our understanding of osteoarthritis pathophysiology.
Collapse
Affiliation(s)
- María C de Andrés
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton, Southampton, UK.,Cartilage Epigenetics Group, Rheumatology Division, INIBIC-Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Mia S Meiss
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton, Southampton, UK
| | | | | | | | | | - Richard Oc Oreffo
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton, Southampton, UK
| |
Collapse
|
61
|
Sorrenti V, Fortinguerra S, Caudullo G, Buriani A. Deciphering the Role of Polyphenols in Sports Performance: From Nutritional Genomics to the Gut Microbiota toward Phytonutritional Epigenomics. Nutrients 2020; 12:nu12051265. [PMID: 32365576 PMCID: PMC7281972 DOI: 10.3390/nu12051265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
The individual response to nutrients and non-nutrient molecules can be largely affected by three important biological layers. The gut microbiome can alter the bioavailability of nutrients and other substances, the genome can influence molecule kinetics and dynamics, while the epigenome can modulate or amplify the properties of the genome. Today the use of omic techniques and bioinformatics, allow the construction of individual multilayer networks and thus the identification of personalized strategies that have recently been considered in all medical fields, including sports medicine. The composition of each athlete’s microbiome influences sports performance both directly by acting on energy metabolism and indirectly through the modulation of nutrient or non-nutrient molecule availability that ultimately affects the individual epigenome and the genome. Among non-nutrient molecules polyphenols can potentiate physical performances through different epigenetic mechanisms. Polyphenols interact with the gut microbiota, undergoing extensive metabolism to produce bioactive molecules, which act on transcription factors involved in mitochondrial biogenesis, antioxidant systems, glucose and lipid homeostasis, and DNA repair. This review focuses on polyphenols effects in sports performance considering the individual microbiota, epigenomic asset, and the genomic characteristics of athletes to understand how their supplementation could potentially help to modulate muscle inflammation and improve recovery.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
- Correspondence:
| | - Stefano Fortinguerra
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
| | - Giada Caudullo
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
| | - Alessandro Buriani
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
| |
Collapse
|
62
|
Mishra I, Sharma A, Prabhat A, Batra T, Malik I, Kumar V. Changes in DNA methylation and histone modification gene expression in response to daily food times in zebra finches: epigenetic implications. J Exp Biol 2020; 223:jeb.217422. [DOI: 10.1242/jeb.217422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
We hypothesized that daily food availability times served as an ‘epigenetic’ factor and affected the reproductive physiology in continuously reproducing species. This we tested by measurement of mRNA expression of genes coding for the enzymes involved in DNA methylation-demethylation (dnmts, tets) and histone modification (hat1, hdacs) in the hypothalamus, liver and gonads of male and female zebra finches that were paired held for a year under 12L:12D with access to the time-restricted food availability (TrF: 4-h in morning, TrF-M, or evening, TrF-E) with controls on food ad libitum (FAL). The overall hypothalamic and hepatic expression patterns of hat1 and hdac(s) were similar but those of dnmt(s) and tet(s) were different between males and females. Irrespective of TrF timings, both hat1 and hdac(s) mRNA levels were increased in the hypothalamus, but not in liver in which hat1 mRNA levels were increased in the TrF-M group. While hypothalamic tet(s) were higher in TrF-E males, the hepatic tet(s) were higher in TrF-M birds (tet1, only males). Gonadal expressions were further varied and showed sex differences. Histone modifying genes did not show TrF-effects, except the elevated testicular hdac3 levels. Similarly, testicular dnmt3b and tet2 mRNA levels were increased and decreased in TrF-M and TrF-E, respectively, whereas ovarian dnmt1 and tet2 levels were reduced in TrF-M and tet1 in the TrF-E. Present results suggest that an enforced daily feeding schedule in long term could serve as a conditioning environment that shapes at epigenetic levels, the overall hypothalamic regulation, liver and gonadal functions in diurnal vertebrates.
Collapse
Affiliation(s)
- Ila Mishra
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| | - Abhilash Prabhat
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| | - Twinkle Batra
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| | - Indu Malik
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| |
Collapse
|
63
|
Andrade FDO, Nguyen NM, Warri A, Hilakivi-Clarke L. Reversal of increased mammary tumorigenesis by valproic acid and hydralazine in offspring of dams fed high fat diet during pregnancy. Sci Rep 2019; 9:20271. [PMID: 31889127 PMCID: PMC6937280 DOI: 10.1038/s41598-019-56854-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Maternal or paternal high fat (HF) diet can modify the epigenome in germ cells and fetal somatic cells leading to an increased susceptibility among female offspring of multiple generations to develop breast cancer. We determined if combined treatment with broad spectrum DNA methyltransferase (DNMT) inhibitor hydralazine and histone deacetylase (HDAC) inhibitor valproic acid (VPA) will reverse this increased risk. C57BL/6 mouse dams were fed either a corn oil-based HF or control diet during pregnancy. Starting at age 7 weeks, female offspring were administered 3 doses of 7,12-dimethylbenz[a]anthracene (DMBA) to initiate mammary cancer. After last dose, offspring started receiving VPA/hydralazine administered via drinking water: no adverse health effects were detected. VPA/hydralazine reduced mammary tumor multiplicity and lengthened tumor latency in HF offspring when compared with non-treated HF offspring. The drug combination inhibited DNMT3a protein levels and increased expression of the tumor suppressor gene Cdkn2a/p16 in mammary tumors of HF offspring. In control mice not exposed to HF diet in utero, VPA/hydralazine increased mammary tumor incidence and burden, and elevated expression of the unfolded protein response and autophagy genes, including HIF-1α, NFkB, PERK, and SQSTM1/p62. Expression of these genes was already upregulated in HF offspring prior to VPA/hydralazine treatment. These findings suggest that breast cancer prevention strategies with HDAC/DNMT inhibitors need to be individually tailored.
Collapse
Affiliation(s)
| | - N M Nguyen
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - A Warri
- Department of Oncology, Georgetown University, Washington, DC, USA.,Institute of Biomedicine, University of Turku Medical Faculty, FI-20014, Turku, Finland
| | | |
Collapse
|
64
|
Afroz KF, Alviña K. Maternal elevated salt consumption and the development of autism spectrum disorder in the offspring. J Neuroinflammation 2019; 16:265. [PMID: 31837704 PMCID: PMC6911292 DOI: 10.1186/s12974-019-1666-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/27/2019] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition with no known etiology or cure. Several possible contributing factors, both genetic and environmental, are being actively investigated. Amongst these, maternal immune dysregulation has been identified as potentially involved in promoting ASD in the offspring. Indeed, ASD-like behaviors have been observed in studies using the maternal immune activation mouse model. Furthermore, recent studies have shed light on maternal dietary habits and their impact on the gut microbiome as factors possibly facilitating ASD. However, most of these studies have been limited to the effects of high fat and/or high sugar. More recent data, however, have shown that elevated salt consumption has a significant effect on the immune system and gut microbiome, often resulting in gut dysbiosis and induction of pro-inflammatory pathways. Specifically, high salt alters the gut microbiome and induces the differentiation of T helper-17 cells that produce pro-inflammatory cytokines such as interleukin-17 and interleukin-23. Moreover, elevated salt can also reduce the differentiation of regulatory T cells that help maintaining a balanced immune system. While in the innate immune system, high salt can cause over activation of M1 pro-inflammatory macrophages and downregulation of M2 regulatory macrophages. These changes to the immune system are alarming because excessive consumption of salt is a documented worldwide problem. Thus, in this review, we discuss recent findings on high salt intake, gut microbiome, and immune system dysregulation while proposing a hypothesis to link maternal overconsumption of salt and children’s ASD.
Collapse
Affiliation(s)
- Kazi Farhana Afroz
- Department of Biological Sciences, Texas Tech University, 2901 Main St. Room #05, Biology Building, Lubbock, TX, 79409, USA
| | - Karina Alviña
- Department of Biological Sciences, Texas Tech University, 2901 Main St. Room #05, Biology Building, Lubbock, TX, 79409, USA. .,Department of Neuroscience, University of Florida, 1149 Newell Drive, Room L1-100, Gainesville, FL, 32611, USA.
| |
Collapse
|
65
|
Bekdash RA. Neuroprotective Effects of Choline and Other Methyl Donors. Nutrients 2019; 11:nu11122995. [PMID: 31817768 PMCID: PMC6950346 DOI: 10.3390/nu11122995] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Recent evidence suggests that physical and mental health are influenced by an intricate interaction between genes and environment. Environmental factors have been shown to modulate neuronal gene expression and function by epigenetic mechanisms. Exposure to these factors including nutrients during sensitive periods of life could program brain development and have long-lasting effects on mental health. Studies have shown that early nutritional intervention that includes methyl-donors improves cognitive functions throughout life. Choline is a micronutrient and a methyl donor that is required for normal brain growth and development. It plays a pivotal role in maintaining structural and functional integrity of cellular membranes. It also regulates cholinergic signaling in the brain via the synthesis of acetylcholine. Via its metabolites, it participates in pathways that regulate methylation of genes related to memory and cognitive functions at different stages of development. Choline-related functions have been dysregulated in some neurodegenerative diseases suggesting choline role in influencing mental health across the lifespan.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
66
|
Mahmud I, Kabir M, Haque R, Garrett TJ. Decoding the Metabolome and Lipidome of Child Malnutrition by Mass Spectrometric Techniques: Present Status and Future Perspectives. Anal Chem 2019; 91:14784-14791. [PMID: 31682425 DOI: 10.1021/acs.analchem.9b03338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Child malnutrition (CM) is a global public health problem. It contributes to poor health in one in four children under five years worldwide and causes serious health problems in children, including stunted, wasted, and overweight growth. These serious public health issues lead to a higher chance of living in poverty in adulthood. Malnutrition is related with reduced economic productivity and increases the serious national and international burden. Currently, there is no meaningful therapeutic intervention of CM, and the use of different therapeutic foods has shown poor outcomes among supplemented malnourished children. The role of metabolites and lipids has been extensively recognized as early determinants of child health, but their contribution in CM and its pathobiology are poorly understood. This perspective provides a most recent update on these aspects. After briefly introducing the disciplines of metabolomics and lipidomics, we describe a mass spectrometry-based metabolic workflow for analysis of both metabolites and lipids and summarize several recent applications of metabolomics and lipidomics in CM. Finally, we discuss the future directions of the field toward the development of meaningful interventions for CM through metabolomics and lipidomics advances.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Pathology, Immunology, and Laboratory Medicine , University of Florida, College of Medicine , Gainesville , Florida 32608 , United States.,Southeast Center for Integrated Metabolomics (SECIM), Clinical and Translational Science Institute , University of Florida , Gainesville , Florida 32608 , United States
| | - Mamun Kabir
- Emerging Infections and Parasitology Laboratory, Infectious Disease Division , International Centre for Diarrheal Disease Research , Dhaka 1213 , Bangladesh
| | - Rashidul Haque
- Emerging Infections and Parasitology Laboratory, Infectious Disease Division , International Centre for Diarrheal Disease Research , Dhaka 1213 , Bangladesh
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine , University of Florida, College of Medicine , Gainesville , Florida 32608 , United States.,Southeast Center for Integrated Metabolomics (SECIM), Clinical and Translational Science Institute , University of Florida , Gainesville , Florida 32608 , United States
| |
Collapse
|
67
|
Gootjes DV, Koster MPH, Willemsen SP, Koning AHJ, Steegers EAP, Steegers-Theunissen RPM. The Impact of Neighbourhood Deprivation on Embryonic Growth Trajectories: Rotterdam Periconception Cohort. J Clin Med 2019; 8:jcm8111913. [PMID: 31717297 PMCID: PMC6912493 DOI: 10.3390/jcm8111913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
Background: Neighbourhood deprivation is a risk factor for impaired health and adverse pregnancy outcomes. We investigated whether living in a deprived neighbourhood is associated with embryonic growth. Methods: From the Predict cohort, we studied 566 women who underwent repeated first trimester ultrasound examinations. Crown rump length (CRL; n = 1707) and embryonic volume (EV; n = 1462) were measured using three-dimensional techniques. Neighbourhood deprivation was assessed using the neighbourhood status scores (NSS) of the Dutch Social Cultural Planning office. A high NSS represents a non-deprived neighbourhood. Associations between the NSS and embryonic growth were investigated using linear mixed models. Adjustment was performed for individual-level factors: maternal age, geographic origin, educational level, BMI, folic acid supplement use, fruit and vegetable intake, alcohol use and smoking habits. Results: The NSS was negatively associated with embryonic growth: a higher score (a less deprived neighbourhood) was associated with a smaller CRL and EV; adjusted β: −0.025 (95% CI −0.046, −0.003) and adjusted β: −0.015 (95% CI −0.026, −0.003). At 11 weeks of pregnancy, we observed a 0.55 cm3 smaller EV (7.65 cm3 vs. 7.10 cm3) and 1.08 mm smaller CRL (43.14 mm vs. 42.06 mm) in the highest compared to the lowest category. Conclusion: In deprived neighbourhoods, embryos are larger than in non-deprived neighbourhoods.
Collapse
Affiliation(s)
- Dionne V. Gootjes
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam 3015 GD, The Netherlands (M.P.H.K.); (S.P.W.); (E.A.P.S.)
| | - Maria P. H. Koster
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam 3015 GD, The Netherlands (M.P.H.K.); (S.P.W.); (E.A.P.S.)
| | - Sten P. Willemsen
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam 3015 GD, The Netherlands (M.P.H.K.); (S.P.W.); (E.A.P.S.)
- Department of Biostatistics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Anton H. J. Koning
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam 3015 GD, The Netherlands;
| | - Eric A. P. Steegers
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam 3015 GD, The Netherlands (M.P.H.K.); (S.P.W.); (E.A.P.S.)
| | - Régine P. M. Steegers-Theunissen
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam 3015 GD, The Netherlands (M.P.H.K.); (S.P.W.); (E.A.P.S.)
- Correspondence: ; Tel.: +31-010-703-8255
| |
Collapse
|
68
|
Harvey A, Caretti G, Moresi V, Renzini A, Adamo S. Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance. Stem Cell Reports 2019; 13:573-589. [PMID: 31597110 PMCID: PMC6830055 DOI: 10.1016/j.stemcr.2019.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
The environment surrounding stem cells has the ability to elicit profound, heritable epigenetic changes orchestrated by multiple epigenetic mechanisms, which can be modulated by the level of specific metabolites. In this review, we highlight the significance of metabolism in regulating stem cell homeostasis, cell state, and differentiation capacity, using metabolic regulation of embryonic and adult muscle stem cells as examples, and cast light on the interaction between cellular metabolism and epigenetics. These new regulatory networks, based on the dynamic interplay between metabolism and epigenetics in stem cell biology, are important, not only for understanding tissue homeostasis, but to determine in vitro culture conditions which accurately support normal cell physiology.
Collapse
Affiliation(s)
- Alexandra Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 2010, Australia
| | - Giuseppina Caretti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Viviana Moresi
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy.
| | - Alessandra Renzini
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy
| | - Sergio Adamo
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy
| |
Collapse
|
69
|
El Khoury D, Fayjaloun S, Nassar M, Sahakian J, Aad PY. Updates on the Effect of Mycotoxins on Male Reproductive Efficiency in Mammals. Toxins (Basel) 2019; 11:E515. [PMID: 31484408 PMCID: PMC6784030 DOI: 10.3390/toxins11090515] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mycotoxins are ubiquitous and unavoidable harmful fungal products with the ability to cause disease in both animals and humans, and are found in almost all types of foods, with a greater prevalence in hot humid environments. These mycotoxins vary greatly in structure and biochemical effects; therefore, by better understanding the toxicological and pathological aspects of mycotoxins, we can be better equipped to fight the diseases, as well as the biological and economic devastations, they induce. Multiple studies point to the association between a recent increase in male infertility and the increased occurrence of these mycotoxins in the environment. Furthermore, understanding how mycotoxins may induce an accumulation of epimutations during parental lifetimes can shed light on their implications with respect to fertility and reproductive efficiency. By acknowledging the diversity of mycotoxin molecular function and mode of action, this review aims to address the current limited knowledge on the effects of these chemicals on spermatogenesis and the various endocrine and epigenetics patterns associated with their disruptions.
Collapse
Affiliation(s)
- Diala El Khoury
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Salma Fayjaloun
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Marc Nassar
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Joseph Sahakian
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Pauline Y Aad
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon.
| |
Collapse
|
70
|
Dietary Patterns are Associated with Leukocyte LINE-1 Methylation in Women: A Cross-Sectional Study in Southern Italy. Nutrients 2019; 11:nu11081843. [PMID: 31395820 PMCID: PMC6722720 DOI: 10.3390/nu11081843] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Bioactive food compounds have different effects on global DNA methylation, an epigenetic mechanism associated with chromosomal stability and genome function. Since the diet is characterized by a mixture of foods, we aimed to identify dietary patterns in women, and to evaluate their association with long interspersed nuclear elements (LINE-1) methylation, a surrogate marker of global DNA methylation. We conducted an observational cross-sectional study of 349 women from Southern Italy, with no history of severe diseases. Dietary patterns were derived by food frequency questionnaire and principal component analysis. LINE-1 methylation of leukocyte DNA was assessed by pyrosequencing. We observed that intake of wholemeal bread, cereals, fish, fruit, raw and cooked vegetables, legumes, soup, potatoes, fries, rice, and pizza positively correlated with LINE-1 methylation levels. By contrast, vegetable oil negatively correlated with LINE-1 methylation levels. Next, we demonstrated that adherence to a prudent dietary pattern—characterized by high intake of potatoes, cooked and raw vegetables, legumes, soup and fish—was positively associated with LINE-1 methylation. In particular, women in the 3rd tertile exhibited higher LINE-1 methylation level than those in the 1st tertile (median = 66.7 %5mC; IQR = 4.67 %5mC vs. median = 63.1 %5mC; IQR = 12.3 %5mC; p < 0.001). Linear regression confirmed that women in the 3rd tertile had higher LINE-1 methylation than those in the 1st tertile (β = 0.022; SE = 0.003; p < 0.001), after adjusting for age, educational level, employment status, smoking status, use of folic acid supplement, total energy intake and body mass index. By contrast, no differences in LINE-1 methylation across tertiles of adherence to the Western dietary pattern were evident. Interestingly, women who exclusively adhered to the prudent dietary pattern had a higher average LINE-1 methylation level than those who exclusively or preferably adhered to the Western dietary pattern (β = 0.030; SE = 0.004; p < 0.001; β = 0.023; SE = 0.004; p < 0.001; respectively), or those with no preference for a specific dietary pattern (β = 0.013; SE = 0.004; p = 0.002). Our study suggested a remarkable link between diet and DNA methylation; however, further mechanistic studies should be encouraged to understand the causal relationship between dietary intake and DNA methylation.
Collapse
|
71
|
Said MA, van de Vegte YJ, Zafar MM, van der Ende MY, Raja GK, Verweij N, van der Harst P. Contributions of Interactions Between Lifestyle and Genetics on Coronary Artery Disease Risk. Curr Cardiol Rep 2019; 21:89. [PMID: 31352625 PMCID: PMC6661028 DOI: 10.1007/s11886-019-1177-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF THE REVIEW To summarize current knowledge on interactions between genetic variants and lifestyle factors (G×L) associated with the development of coronary artery disease (CAD) and prioritize future research. RECENT FINDINGS Genetic risk and combined lifestyle factors and behaviors have a log-additive effect on the risk of developing CAD. First, we describe genetic and lifestyle factors associated with CAD and then focus on G×L interactions. The majority of G×L interaction studies are small-scale candidate gene studies that lack replication and therefore provide spurious results. Only a few studies, of which most use genetic risk scores or genome-wide approaches to test interactions, are robust in number and analysis strategy. These studies provide evidence for the existence of G×L interactions in the development of CAD. Further G×L interactions studies are important as they contribute to our understanding of disease pathophysiology and possibly provide insights for improving interventions or personalized recommendations.
Collapse
Affiliation(s)
- M. Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Yordi J. van de Vegte
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Muhammad Mobeen Zafar
- PMAS University of Arid Agriculture Rawalpindi, University Institute of Biochemistry and Biotechnology, 46000 Murree Road, Rawalpindi, Pakistan
| | - M. Yldau van der Ende
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Ghazala Kaukab Raja
- PMAS University of Arid Agriculture Rawalpindi, University Institute of Biochemistry and Biotechnology, 46000 Murree Road, Rawalpindi, Pakistan
| | - N. Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Genomics plc, Oxford, OX1 1JD UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
72
|
Martínez-Cano J, Campos-Sánchez E, Cobaleda C. Epigenetic Priming in Immunodeficiencies. Front Cell Dev Biol 2019; 7:125. [PMID: 31355198 PMCID: PMC6635466 DOI: 10.3389/fcell.2019.00125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Immunodeficiencies (IDs) are disorders of the immune system that increase susceptibility to infections and cancer, and are therefore associated with elevated morbidity and mortality. IDs can be primary (not caused by other condition or exposure) or secondary due to the exposure to different agents (infections, chemicals, aging, etc.). Most primary immunodeficiencies (PIDs) are of genetic origin, caused by mutations affecting genes with key roles in the development or function of the cells of the immune system. A large percentage of PIDs are associated with a defective development and/or function of lymphocytes and, especially, B cells, the ones in charge of generating the different types of antibodies. B-cell development is a tightly regulated process in which many different factors participate. Among the regulators of B-cell differentiation, a correct epigenetic control of cellular identity is essential for normal cell function. With the advent of next-generation sequencing (NGS) techniques, more and more alterations in different types of epigenetic regulators are being described at the root of PIDs, both in humans and in animal models. At the same time, it is becoming increasingly clear that epigenetic alterations triggered by the exposure to environmental agents have a key role in the development of secondary immunodeficiencies (SIDs). Due to their largely reversible nature, epigenetic modifications are quickly becoming key therapeutic targets in other diseases where their contribution has been known for more time, like cancer. Here, we establish a parallelism between IDs and the nowadays accepted role of epigenetics in cancer initiation and progression, and propose that epigenetics forms a "third axis" (together with genetics and external agents) to be considered in the etiology of IDs, and linking PIDs and SIDs at the molecular level. We therefore postulate that IDs arise due to a variable contribution of (i) genetic, (ii) environmental, and (iii) epigenetic causes, which in fact form a continuum landscape of all possible combinations of these factors. Additionally, this implies the possibility of a fully epigenetically triggered mechanism for some IDs. This concept would have important prophylactic and translational implications, and would also imply a more blurred frontier between primary and secondary immunodeficiencies.
Collapse
Affiliation(s)
| | | | - César Cobaleda
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas –Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
73
|
Parrillo L, Spinelli R, Nicolò A, Longo M, Mirra P, Raciti GA, Miele C, Beguinot F. Nutritional Factors, DNA Methylation, and Risk of Type 2 Diabetes and Obesity: Perspectives and Challenges. Int J Mol Sci 2019; 20:ijms20122983. [PMID: 31248068 PMCID: PMC6627657 DOI: 10.3390/ijms20122983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
A healthy diet improves life expectancy and helps to prevent common chronic diseases such as type 2 diabetes (T2D) and obesity. The mechanisms driving these effects are not fully understood, but are likely to involve epigenetics. Epigenetic mechanisms control gene expression, maintaining the DNA sequence, and therefore the full genomic information inherited from our parents, unchanged. An interesting feature of epigenetic changes lies in their dynamic nature and reversibility. Accordingly, they are susceptible to correction through targeted interventions. Here we will review the evidence supporting a role for nutritional factors in mediating metabolic disease risk through DNA methylation changes. Special emphasis will be placed on the potential of using DNA methylation traits as biomarkers to predict risk of obesity and T2D as well as on their response to dietary and pharmacological (epi-drug) interventions.
Collapse
Affiliation(s)
- Luca Parrillo
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Rosa Spinelli
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Antonella Nicolò
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Michele Longo
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Paola Mirra
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Gregory Alexander Raciti
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Claudia Miele
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Francesco Beguinot
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| |
Collapse
|
74
|
One-Carbon Metabolism Links Nutrition Intake to Embryonic Development via Epigenetic Mechanisms. Stem Cells Int 2019; 2019:3894101. [PMID: 30956668 PMCID: PMC6431457 DOI: 10.1155/2019/3894101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/06/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Beyond energy production, nutrient metabolism plays a crucial role in stem cell lineage determination. Changes in metabolism based on nutrient availability and dietary habits impact stem cell identity. Evidence suggests a strong link between metabolism and epigenetic mechanisms occurring during embryonic development and later life of offspring. Metabolism regulates epigenetic mechanisms such as modifications of DNA, histones, and microRNAs. In turn, these epigenetic mechanisms regulate metabolic pathways to modify the metabolome. One-carbon metabolism (OCM) is a crucial metabolic process involving transfer of the methyl groups leading to regulation of multiple cellular activities. OCM cycles and its related micronutrients are ubiquitously present in stem cells and feed into the epigenetic mechanisms. In this review, we briefly introduce the OCM process and involved micronutrients and discuss OCM-associated epigenetic modifications, including DNA methylation, histone modification, and microRNAs. We further consider the underlying OCM-mediated link between nutrition and epigenetic modifications in embryonic development.
Collapse
|
75
|
Vlasova AN, Rajashekara G, Saif LJ. Interactions between human microbiome, diet, enteric viruses and immune system: Novel insights from gnotobiotic pig research. ACTA ACUST UNITED AC 2018; 28:95-103. [PMID: 33149747 PMCID: PMC7594741 DOI: 10.1016/j.ddmod.2019.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies over the past few decades demonstrated that gnotobiotic (Gn) pigs provide an unprecedented translational model to study human intestinal health and diseases. Due to the high degree of anatomical, physiological, metabolic, immunological, and developmental similarity, the domestic pig closely mimics the human intestinal microenvironment. Also, Gn piglets can be efficiently transplanted with human microbiota from infants, children and adults with resultant microbial profiles remarkably similar to the original human samples, a feat consistently not achievable in rodent models. Finally, Gn and human microbiota-associated (HMA) piglets are susceptible to human enteric viral pathogens (including human rotavirus, HRV) and can be fed authentic human diets, which further increases the translational potential of these models. In this review, we will focus on recent studies that evaluated the pathophysiology of protein malnutrition and the associated dysbiosis and immunological dysfunction in neonatal HMA piglets. Additionally, we will discuss studies of potential dietary interventions that moderate the effects of malnutrition and dysbiosis on antiviral immunity and HRV vaccines in HMA pigs. Such studies provide novel models and novel mechanistic insights critical for development of drug interventions.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|