51
|
Stowers RS. Advances in Extracellular Matrix-Mimetic Hydrogels to Guide Stem Cell Fate. Cells Tissues Organs 2021; 211:703-720. [PMID: 34082418 DOI: 10.1159/000514851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 01/25/2023] Open
Abstract
In the fields of regenerative medicine and tissue engineering, stem cells offer vast potential for treating or replacing diseased and damaged tissue. Much progress has been made in understanding stem cell biology, yielding protocols for directing stem cell differentiation toward the cell type of interest for a specific application. One particularly interesting and powerful signaling cue is the extracellular matrix (ECM) surrounding stem cells, a network of biopolymers that, along with cells, makes up what we define as a tissue. The composition, structure, biochemical features, and mechanical properties of the ECM are varied in different tissues and developmental stages, and serve to instruct stem cells toward a specific lineage. By understanding and recapitulating some of these ECM signaling cues through engineered ECM-mimicking hydrogels, stem cell fate can be directed in vitro. In this review, we will summarize recent advances in material systems to guide stem cell fate, highlighting innovative methods to capture ECM functionalities and how these material systems can be used to provide basic insight into stem cell biology or make progress toward therapeutic objectives.
Collapse
Affiliation(s)
- Ryan S Stowers
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
52
|
Xie YH, Tang CQ, Huang ZZ, Zhou SC, Yang YW, Yin Z, Heng BC, Chen WS, Chen X, Shen WL. ECM remodeling in stem cell culture: a potential target for regulating stem cell function. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:542-554. [PMID: 34082581 DOI: 10.1089/ten.teb.2021.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stem cells (SCs) hold great potential for regenerative medicine, tissue engineering and cell therapy. The clinical applications of SCs require both high quality and quantity of transplantable cells. However, during conventional in vitro expansion, SCs tend to lose properties that make them amenable for cell therapies. Extracellular matrix (ECM) serves an essential regulatory part in the growth, differentiation and homeostasis of all cells in vivo. when signals transmitted to cells, they do not respond passively. Many cell types can remodel pericellular matrix to meet their specific needs. This reciprocal cell-ECM interaction is crucial for the conservation of cell and tissue functions and homeostasis. In vitro ECM remodeling also plays a key role in regulating the lineage fate of SCs. A deeper understanding of in vitro ECM remodeling may provide new perspectives for the maintenance of SC function. In this review, we critically examined three ways that cells can be used to influence the pericellular matrix: (i) exerting tensile force on the ECM, (ii) secreting a variety of ECM proteins, and (iii) degrading the surrounding matrix, and its impact on SC lineage fate. Finally, we describe the deficiencies of current studies and what needs to be done next to further understand the role of ECM remodeling in ex vivo SC cultures.
Collapse
Affiliation(s)
- Yuan-Hao Xie
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Chen-Qi Tang
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Zi-Zhan Huang
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Si-Cheng Zhou
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, Zhejiang, China;
| | - Yu-Wei Yang
- Zhejiang University School of Medicine, 26441, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Hangzhou, Zhejiang, China;
| | - Zi Yin
- Zhejiang University School of Medicine, 26441, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Hangzhou, Zhejiang, China;
| | - Boon Chin Heng
- Peking University School of Stomatology, 159460, Beijing, Beijing, China;
| | - Wei-Shan Chen
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Xiao Chen
- Zhejiang University School of Medicine, 26441, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Hangzhou, Zhejiang, China;
| | - Wei-Liang Shen
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| |
Collapse
|
53
|
Norman MDA, Ferreira SA, Jowett GM, Bozec L, Gentleman E. Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy. Nat Protoc 2021; 16:2418-2449. [PMID: 33854255 PMCID: PMC7615740 DOI: 10.1038/s41596-021-00495-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023]
Abstract
Growing interest in exploring mechanically mediated biological phenomena has resulted in cell culture substrates and 3D matrices with variable stiffnesses becoming standard tools in biology labs. However, correlating stiffness with biological outcomes and comparing results between research groups is hampered by variability in the methods used to determine Young's (elastic) modulus, E, and by the inaccessibility of relevant mechanical engineering protocols to most biology labs. Here, we describe a protocol for measuring E of soft 2D surfaces and 3D hydrogels using atomic force microscopy (AFM) force spectroscopy. We provide instructions for preparing hydrogels with and without encapsulated live cells, and provide a method for mounting samples within the AFM. We also provide details on how to calibrate the instrument, and give step-by-step instructions for collecting force-displacement curves in both manual and automatic modes (stiffness mapping). We then provide details on how to apply either the Hertz or the Oliver-Pharr model to calculate E, and give additional instructions to aid the user in plotting data distributions and carrying out statistical analyses. We also provide instructions for inferring differential matrix remodeling activity in hydrogels containing encapsulated single cells or organoids. Our protocol is suitable for probing a range of synthetic and naturally derived polymeric hydrogels such as polyethylene glycol, polyacrylamide, hyaluronic acid, collagen, or Matrigel. Although sample preparation timings will vary, a user with introductory training to AFM will be able to use this protocol to characterize the mechanical properties of two to six soft surfaces or 3D hydrogels in a single day.
Collapse
Affiliation(s)
- Michael D. A. Norman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| | - Silvia A. Ferreira
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| | - Geraldine M. Jowett
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
- London Centre for Nanotechnology, London WC1H 0AH, UK
| |
Collapse
|
54
|
Elowsson Rendin L, Löfdahl A, Kadefors M, Söderlund Z, Tykesson E, Rolandsson Enes S, Wigén J, Westergren-Thorsson G. Harnessing the ECM Microenvironment to Ameliorate Mesenchymal Stromal Cell-Based Therapy in Chronic Lung Diseases. Front Pharmacol 2021; 12:645558. [PMID: 34040521 PMCID: PMC8142268 DOI: 10.3389/fphar.2021.645558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
It is known that the cell environment such as biomechanical properties and extracellular matrix (ECM) composition dictate cell behaviour including migration, proliferation, and differentiation. Important constituents of the microenvironment, including ECM molecules such as proteoglycans and glycosaminoglycans (GAGs), determine events in both embryogenesis and repair of the adult lung. Mesenchymal stromal/stem cells (MSC) have been shown to have immunomodulatory properties and may be potent actors regulating tissue remodelling and regenerative cell responses upon lung injury. Using MSC in cell-based therapy holds promise for treatment of chronic lung diseases such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, so far clinical trials with MSCs in COPD have not had a significant impact on disease amelioration nor on IPF, where low cell survival rate and pulmonary retention time are major hurdles to overcome. Research shows that the microenvironment has a profound impact on transplanted MSCs. In our studies on acellular lung tissue slices (lung scaffolds) from IPF patients versus healthy individuals, we see a profound effect on cellular activity, where healthy cells cultured in diseased lung scaffolds adapt and produce proteins further promoting a diseased environment, whereas cells on healthy scaffolds sustain a healthy proteomic profile. Therefore, modulating the environmental context for cell-based therapy may be a potent way to improve treatment using MSCs. In this review, we will describe the importance of the microenvironment for cell-based therapy in chronic lung diseases, how MSC-ECM interactions can affect therapeutic output and describe current progress in the field of cell-based therapy.
Collapse
Affiliation(s)
- Linda Elowsson Rendin
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Sordi MB, Cruz A, Fredel MC, Magini R, Sharpe PT. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112055. [PMID: 33947549 DOI: 10.1016/j.msec.2021.112055] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Bone tissue requires a range of complex mechanisms to allow the restoration of its structure and function. Bone healing is a signaling cascade process, involving cells secreting cytokines, growth factors, and pro-inflammatory factors in the defect site that will, subsequently, recruit surrounding stem cells to migrate, proliferate, and differentiate into bone-forming cells. Bioactive functional scaffolds could be applied to improve the bone healing processes where the organism is not able to fully regenerate the lost tissue. However, to be optimal, such scaffolds should act as osteoconductors - supporting bone-forming cells, providing nutrients, and sustaining the arrival of new blood vessels, and act as osteoinducers - slowly releasing signaling molecules that stimulate mesenchymal stem cells to differentiate and deposit mineralized bone matrix. Different compositions and shapes of scaffolds, cutting-edge technologies, application of signaling molecules to promote cell differentiation, and high-quality biomaterials are reaching favorable outcomes towards osteoblastic differentiation of stem cells in in vitro and in vivo researches for bone regeneration. Hydrogel-based biomaterials are being pointed as promising for bone tissue regeneration; however, despite all the research and high-impact scientific publications, there are still several challenges that prevent the use of hydrogel-based scaffolds for bone regeneration being feasible for their clinical application. Hence, the objective of this review is to consolidate and report, based on the current scientific literature, the approaches for bone tissue regeneration using bioactive hydrogel-based scaffolds, cell-based therapies, and three-dimensional bioprinting to define the key challenges preventing their use in clinical applications.
Collapse
Affiliation(s)
- Mariane B Sordi
- Research Center on Dental Implants, Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil; Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, SE1 9RT, UK.
| | - Ariadne Cruz
- Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil.
| | - Márcio C Fredel
- Ceramic and Composite Materials Research Group, Department of Mechanical Engineering, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil.
| | - Ricardo Magini
- Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, SE1 9RT, UK.
| |
Collapse
|
56
|
Khalilgharibi N, Mao Y. To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and disease. Open Biol 2021; 11:200360. [PMID: 33593159 PMCID: PMC8061686 DOI: 10.1098/rsob.200360] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The basement membrane (BM) is a special type of extracellular matrix that lines the basal side of epithelial and endothelial tissues. Functionally, the BM is important for providing physical and biochemical cues to the overlying cells, sculpting the tissue into its correct size and shape. In this review, we focus on recent studies that have unveiled the complex mechanical properties of the BM. We discuss how these properties can change during development, homeostasis and disease via different molecular mechanisms, and the subsequent impact on tissue form and function in a variety of organisms. We also explore how better characterization of BM mechanics can contribute to disease diagnosis and treatment, as well as development of better in silico and in vitro models that not only impact the fields of tissue engineering and regenerative medicine, but can also reduce the use of animals in research.
Collapse
Affiliation(s)
- Nargess Khalilgharibi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
57
|
Jowett GM, Norman MDA, Yu TTL, Rosell Arévalo P, Hoogland D, Lust ST, Read E, Hamrud E, Walters NJ, Niazi U, Chung MWH, Marciano D, Omer OS, Zabinski T, Danovi D, Lord GM, Hilborn J, Evans ND, Dreiss CA, Bozec L, Oommen OP, Lorenz CD, da Silva RMP, Neves JF, Gentleman E. ILC1 drive intestinal epithelial and matrix remodelling. NATURE MATERIALS 2021; 20:250-259. [PMID: 32895507 PMCID: PMC7611574 DOI: 10.1038/s41563-020-0783-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/23/2020] [Indexed: 05/02/2023]
Abstract
Organoids can shed light on the dynamic interplay between complex tissues and rare cell types within a controlled microenvironment. Here, we develop gut organoid cocultures with type-1 innate lymphoid cells (ILC1) to dissect the impact of their accumulation in inflamed intestines. We demonstrate that murine and human ILC1 secrete transforming growth factor β1, driving expansion of CD44v6+ epithelial crypts. ILC1 additionally express MMP9 and drive gene signatures indicative of extracellular matrix remodelling. We therefore encapsulated human epithelial-mesenchymal intestinal organoids in MMP-sensitive, synthetic hydrogels designed to form efficient networks at low polymer concentrations. Harnessing this defined system, we demonstrate that ILC1 drive matrix softening and stiffening, which we suggest occurs through balanced matrix degradation and deposition. Our platform enabled us to elucidate previously undescribed interactions between ILC1 and their microenvironment, which suggest that they may exacerbate fibrosis and tumour growth when enriched in inflamed patient tissues.
Collapse
Affiliation(s)
- Geraldine M Jowett
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- Centre for Host Microbiome Interactions, King's College London, London, UK
- Wellcome Trust Cell Therapies and Regenerative Medicine PhD Programme, London, UK
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| | - Michael D A Norman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Tracy T L Yu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | | | | | - Suzette T Lust
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Emily Read
- Centre for Host Microbiome Interactions, King's College London, London, UK
- Wellcome Trust Cell Therapies and Regenerative Medicine PhD Programme, London, UK
| | - Eva Hamrud
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- Wellcome Trust Cell Therapies and Regenerative Medicine PhD Programme, London, UK
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| | - Nick J Walters
- BioMediTech, Tampere University Tampere Finland, Helsinki, Finland
- Natural Resources Institute Finland, Helsinki, Finland
| | - Umar Niazi
- Guy's and St Thomas' National Health Service Foundation Trust and King's College London National Institute for Health Research Biomedical Research Centre Translational Bioinformatics Platform, Guy's Hospital, London, UK
| | - Matthew Wai Heng Chung
- Centre for Host Microbiome Interactions, King's College London, London, UK
- Wellcome Trust Cell Therapies and Regenerative Medicine PhD Programme, London, UK
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| | - Daniele Marciano
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Omer S Omer
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Gastroenterology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Tomasz Zabinski
- Centre for Host Microbiome Interactions, King's College London, London, UK
| | - Davide Danovi
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| | - Graham M Lord
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jöns Hilborn
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicholas D Evans
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Ricardo M P da Silva
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- i3S-Instituto de Investigação e Inovação em Saúde-and INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Joana F Neves
- Centre for Host Microbiome Interactions, King's College London, London, UK.
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
| |
Collapse
|
58
|
Alisafaei F, Chen X, Leahy T, Janmey PA, Shenoy VB. Long-range mechanical signaling in biological systems. SOFT MATTER 2021; 17:241-253. [PMID: 33136113 PMCID: PMC8385661 DOI: 10.1039/d0sm01442g] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cells can respond to signals generated by other cells that are remarkably far away. Studies from at least the 1920's showed that cells move toward each other when the distance between them is on the order of a millimeter, which is many times the cell diameter. Chemical signals generated by molecules diffusing from the cell surface would move too slowly and dissipate too fast to account for these effects, suggesting that they might be physical rather than biochemical. The non-linear elastic responses of sparsely connected networks of stiff or semiflexible filament such as those that form the extracellular matrix (ECM) and the cytoskeleton have unusual properties that suggest multiple mechanisms for long-range signaling in biological tissues. These include not only direct force transmission, but also highly non-uniform local deformations, and force-generated changes in fiber alignment and density. Defining how fibrous networks respond to cell-generated forces can help design new methods to characterize abnormal tissues and can guide development of improved biomimetic materials.
Collapse
Affiliation(s)
- Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Leahy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA and McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA 19104, USA and Departments of Physiology, and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
59
|
Lutzweiler G, Barthes J, Charles AL, Ball V, Louis B, Geny B, Vrana NE. Improving the colonization and functions of Wharton's Jelly-derived mesenchymal stem cells by a synergetic combination of porous polyurethane scaffold with an albumin-derived hydrogel. ACTA ACUST UNITED AC 2020; 16:015005. [PMID: 33300500 DOI: 10.1088/1748-605x/abaf05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of neo-tissues assisted by artificial scaffolds is continually progressing, but the reproduction of the extracellular environment surrounding cells is quite complex. While synthetic scaffolds can support cell growth, they lack biochemical cues that can prompt cell proliferation or differentiation. In this study, Wharton's Jelly-derived mesenchymal stem cells are seeded on a polyurethane (PU) scaffold combined with a hydrogel based on bovine serum albumin (BSA). BSA hydrogel is obtained through thermal treatment. While such treatment leads to partial unfolding of the protein, we show that the extent of denaturation is small enough to maintain its bioactivity, such as protein binding. Therefore, BSA provides a suitable playground for cells inside the scaffold, allowing higher spreading, proliferation and matrix secretions. Furthermore, the poor mechanical properties of the hydrogel are compensated for by the porous PU scaffold, whose architecture is well controlled. We show that even though PU by itself can allow cell adhesion and protein secretion, cell proliferation is 3.5 times higher in the PU + BSA scaffolds as compared to pure PU after 21 d, along with the non-collagenous protein secretions (389 versus 134 μmmg -1). Conversely, the secretion of sulphated glycosaminoglycans is 12.3-fold higher in the scaffold made solely of PU. Thereby, we propose a simple approach to generating a hybrid material composed of a combination of PU and BSA hydrogel as a promising scaffold for tissue regeneration.
Collapse
Affiliation(s)
- G Lutzweiler
- Institut National de la Santé et de la Recherche Medicale, UMR_S 1121, 11 rue Humann, 67085, Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
60
|
Fraser D, Nguyen T, Benoit DSW. Matrix Control of Periodontal Ligament Cell Activity Via Synthetic Hydrogel Scaffolds. Tissue Eng Part A 2020; 27:733-747. [PMID: 33107404 DOI: 10.1089/ten.tea.2020.0278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rebuilding the tooth-supporting tissues (periodontium) destroyed by periodontitis remains a clinical challenge. Periodontal ligament cells (PDLCs), multipotent cells within the periodontal ligament (PDL), differentiate and form new PDL and mineralized tissues (cementum and bone) during native tissue repair in response to specific extracellular matrix (ECM) cues. Thus, harnessing ECM cues to control PDLC activity ex vivo, and ultimately, to design a PDLC delivery vehicle for tissue regeneration is an important goal. In this study, poly(ethylene glycol) hydrogels were used as a synthetic PDL ECM to interrogate the roles of cell-matrix interactions and cell-mediated matrix remodeling in controlling PDLC activity. Results showed that PDLCs within matrix metalloproteinase (MMP)-degradable hydrogels expressed key PDL matrix genes and showed a six to eightfold increase in alkaline phosphatase (ALP) activity compared with PDLCs in nondegradable hydrogel controls. The increase in ALP activity, commonly considered an early marker of cementogenic/osteogenic differentiation, occurred independent of the presentation of the cell-binding ligand RGD or soluble media cues and remained elevated when inhibiting PDLC-matrix binding and intracellular tension. ALP activity was further increased in softer hydrogels regardless of degradability and was accompanied by an increase in PDLC volume. However, scaffolds that fostered PDLC ALP activity did not necessarily promote hydrogel ECM mineralization. Rather, matrix mineralization was greatest in stiffer, MMP-degradable hydrogels and required the presence of soluble media cues. These divergent outcomes illustrate the complexity of the PDLC response to ECM cues and the limitations of current scaffold materials. Nevertheless, key biomaterial design principles for controlling PDLC activity were identified for incorporation into scaffolds for periodontal tissue regeneration. Impact statement Engineered scaffolds are an attractive approach for delivering periodontal ligament cells (PDLCs) to rebuild the tooth-supporting tissues. Replicating key extracellular matrix (ECM) cues within tissue engineered scaffolds may maximize PDLC potential. However, the identity of important ECM cues and how they can be harnessed to control PDLC activity is still unknown. In this study, matrix degradability, cell-matrix binding, and stiffness were varied using synthetic poly(ethylene glycol) hydrogels for three-dimensional PDLC culture. PDLCs exhibited dramatic and divergent responses to these cues, supporting further investigation of ECM-replicating scaffolds for control of PDLC behavior and periodontal tissue regeneration.
Collapse
Affiliation(s)
- David Fraser
- Translational Biomedical Science, University of Rochester, Rochester, New York, USA.,Eastman Institute for Oral Health, University of Rochester, Rochester, New York, USA
| | - Tram Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA.,Department of Chemical Engineering, University of Rochester, Rochester, New York, USA.,Materials Science Program, University of Rochester, Rochester, New York, USA.,Center for Oral Biology, University of Rochester, Rochester, New York, USA.,Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| |
Collapse
|
61
|
Jagiełło A, Lim M, Botvinick E. Dermal fibroblasts and triple-negative mammary epithelial cancer cells differentially stiffen their local matrix. APL Bioeng 2020; 4:046105. [PMID: 33305163 PMCID: PMC7719046 DOI: 10.1063/5.0021030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
The bulk measurement of extracellular matrix (ECM) stiffness is commonly used in mechanobiology. However, past studies by our group show that peri-cellular stiffness is quite heterogeneous and divergent from the bulk. We use optical tweezers active microrheology (AMR) to quantify how two phenotypically distinct migratory cell lines establish dissimilar patterns of peri-cellular stiffness. Dermal fibroblasts (DFs) and triple-negative human breast cancer cells MDA-MB-231 (MDAs) were embedded within type 1 collagen (T1C) hydrogels polymerized at two concentrations: 1.0 mg/ml and 1.5 mg/ml. We found DFs increase the local stiffness of 1.0 mg/ml T1C hydrogels but, surprisingly, do not alter the stiffness of 1.5 mg/ml T1C hydrogels. In contrast, MDAs predominantly do not stiffen T1C hydrogels as compared to cell-free controls. The results suggest that MDAs adapt to the bulk ECM stiffness, while DFs regulate local stiffness to levels they intrinsically prefer. In other experiments, cells were treated with transforming growth factor-β1 (TGF-β1), glucose, or ROCK inhibitor Y27632, which have known effects on DFs and MDAs related to migration, proliferation, and contractility. The results show that TGF-β1 alters stiffness anisotropy, while glucose increases stiffness magnitude around DFs but not MDAs and Y27632 treatment inhibits cell-mediated stiffening. Both cell lines exhibit an elongated morphology and local stiffness anisotropy, where the stiffer axis depends on the cell line, T1C concentration, and treatment. In summary, our findings demonstrate that AMR reveals otherwise masked mechanical properties such as spatial gradients and anisotropy, which are known to affect cell behavior at the macro-scale. The same properties manifest with similar magnitude around single cells.
Collapse
Affiliation(s)
- Alicja Jagiełło
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA
| | - Micah Lim
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
62
|
Ma J, Huang C. Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:498-518. [PMID: 32272868 DOI: 10.1089/ten.teb.2020.0021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three-dimensional (3D) hydrogel systems integrating different types of stem cells and scaffolding biomaterials have an important application in tissue engineering. The biomimetic hydrogels that pattern cell suspensions within 3D configurations of biomaterial networks allow for the transport of bioactive factors and mimic the stem cell niche in vivo, thereby supporting the proliferation and differentiation of stem cells. The composition of a 3D hydrogel system determines the physical and chemical characteristics that regulate stem cell function through a biological mechanism. Here, we discuss the natural and synthetic hydrogel compositions that have been employed in 3D scaffolding, focusing on their characteristics, fabrication, biocompatibility, and regulatory effects on stem cell proliferation and differentiation. We also discuss the regulatory mechanisms of cell-matrix interaction and cell-cell interaction in stem cell activities in various types of 3D hydrogel systems. Understanding hydrogel compositions and their cellular mechanisms can yield insights into how scaffolding biomaterials and stem cells interact and can lead to the development of novel hydrogel systems of stem cells in tissue engineering and stem cell-based regenerative medicine. Impact statement Three-dimensional hydrogel system of stem cell mimicking the stemcell niche holds significant promise in tissue engineering and regenerative medicine. Exactly how hydrogel composition regulates stem cell fate is not well understood. This review focuses on the composition of hydrogel, and how the hydrogel composition and its properties regulate the stem cell adhesion, growth, and differentiation. We propose that cell-matrix interaction and cell-cell interaction are important regulatory mechanisms in stem cell activities. Our review provides key insights into how the hydrogel composition regulates the stem cell fate, untangling the engineering of three-dimensional hydrogel systems for stem cells.
Collapse
Affiliation(s)
- Jianrui Ma
- Center for Neurobiology, Shantou University Medical College, Shantou, China
| | - Chengyang Huang
- Center for Neurobiology, Shantou University Medical College, Shantou, China
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
63
|
Lei R, Kumar S. Getting the big picture of cell-matrix interactions: High-throughput biomaterial platforms and systems-level measurements. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2020; 24:100871. [PMID: 33244294 PMCID: PMC7685248 DOI: 10.1016/j.cossms.2020.100871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Living cells interact with the extracellular matrix (ECM) in a complex and reciprocal manner. Much has been learned over the past few decades about cell-ECM interactions from targeted studies in which a specific matrix parameter (e.g. stiffness, adhesivity) has been varied across a few discrete values, or in which the level or activity of a protein is controlled in an isolated fashion. As the field moves forward, there is growing interest in addressing cell-matrix interactions from a systems perspective, which has spurred a new generation of matrix platforms capable of interrogating multiple ECM inputs in a combinatorial and parallelized fashion. Efforts are also actively underway to integrate specialized, synthetic ECM platforms with global measures of cell behaviors, including at the transcriptomic, proteomic and epigenomic levels. Here we review recent advances in both areas. We describe how new combinatorial ECM technologies are revealing unexpected crosstalk and nonlinearity in the relationship between cell phenotype and matrix properties. Similarly, efforts to integrate "omics" measurements with synthetic ECM platforms are illuminating how ECM properties can control cell biology in surprising and functionally important ways. We expect that advances in both areas will deepen the field's understanding of cell-ECM interactions and offer valuable insight into the design of biomaterials for specific biomedical applications.
Collapse
Affiliation(s)
- Ruoxing Lei
- Department of Chemistry, University of California, Berkeley, CA, 94720
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720
| |
Collapse
|
64
|
Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. Biomaterials 2020; 268:120572. [PMID: 33285439 DOI: 10.1016/j.biomaterials.2020.120572] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/04/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Mechanobiology, translating mechanical signals into biological ones, greatly affects cellular behavior. Steering cellular behavior for cell-based regenerative medicine approaches requires a thorough understanding of the orchestrating molecular mechanisms, among which mechanotransducive ones are being more and more elucidated. Because of their wide use and highly mechanotransduction dependent differentiation, this review focuses on mesenchymal stromal cells (MSCs), while also briefly relating the discussed results to other cell types. While the mechanotransduction pathways are relatively well-studied in 2D, much remains unknown of the role and regulation of these pathways in 3D. Ultimately, cells need to be cultured in a 3D environment to create functional de novo tissue. In this review, we explore the literature on the roles of different material properties on cellular behavior and mechanobiology in 2D and 3D. For example, while stiffness plays a dominant role in 2D MSCs differentiation, it seems to be of subordinate importance in 3D MSCs differentiation, where matrix remodeling seems to be key. Also, the role and regulation of some of the main mechanotransduction players are discussed, focusing on MSCs. We have only just begun to fundamentally understand MSCs and other stem cells behavior in 3D and more fundamental research is required to advance biomaterials able to replicate the stem cell niche and control cell activity. This better understanding will contribute to smarter tissue engineering scaffold design and the advancement of regenerative medicine.
Collapse
|
65
|
Loebel C, Kwon MY, Wang C, Han L, Mauck RL, Burdick JA. Metabolic Labeling to Probe the Spatiotemporal Accumulation of Matrix at the Chondrocyte-Hydrogel Interface. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909802. [PMID: 34211359 PMCID: PMC8240476 DOI: 10.1002/adfm.201909802] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 06/13/2023]
Abstract
Hydrogels are engineered with biochemical and biophysical signals to recreate aspects of the native microenvironment and to control cellular functions such as differentiation and matrix deposition. This deposited matrix accumulates within the pericellular space and likely affects the interactions between encapsulated cells and the engineered hydrogel; however, there has been little work to study the spatiotemporal evolution of matrix at this interface. To address this, metabolic labeling is employed to visualize the temporal and spatial positioning of nascent proteins and proteoglycans deposited by chondrocytes. Within covalently crosslinked hyaluronic acid hydrogels, chondrocytes deposit nascent proteins and proteoglycans in the pericellular space within 1 d after encapsulation. The accumulation of this matrix, as measured by an increase in matrix thickness during culture, depends on the initial hydrogel crosslink density with decreased thicknesses for more crosslinked hydrogels. Encapsulated fluorescent beads are used to monitor the hydrogel location and indicate that the emerging nascent matrix physically displaces the hydrogel from the cell membrane with extended culture. These findings suggest that secreted matrix increasingly masks the presentation of engineered hydrogel cues and may have implications for the design of hydrogels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Claudia Loebel
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Mi Y Kwon
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems Drexel University 3141 Chestnut Street, Bossone 718, Philadelphia, PA 19104, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 718, Philadelphia, PA 19104, USA
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| |
Collapse
|
66
|
Guo Y, Du S, Quan S, Jiang F, Yang C, Li J. Effects of biophysical cues of 3D hydrogels on mesenchymal stem cells differentiation. J Cell Physiol 2020; 236:2268-2275. [PMID: 32885847 DOI: 10.1002/jcp.30042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023]
Abstract
For stem cell research, three-dimensional (3D) hydrogels are increasingly recognized as more physiological systems than two-dimensional culture plates due to bidirectional and 3D interaction of stem cells and surrounding matrix. Among various stem cells, mesenchymal stem cells (MSCs) are one of the most widely applied from bench to bedside. In 3D hydrogels, MSCs are allowed to actively remodel the surrounding matrix through proteolytic degradation and cell-exerted force, which highly resembles in vivo situation. Notably, factors affecting hydrogel modifiability including matrix viscoelasticity and matrix degradability have been found to regulate adhesion, morphology, and fate decision of MSCs. In addition, MSCs within 3D hydrogels have been found to employ multiple mechanotransduction mechanisms including not only the classic integrin-actomyosin cytoskeleton system but also ion channels, microtubule cytoskeleton, and self-secreted proteinaceous matrix. This review summarizes the effects of biophysical cues on MSCs differentiation in 3D hydrogels and underlying mechanobiology in a hope to update our readers' understanding of stem cell biology and guide tissue engineering.
Collapse
Affiliation(s)
- Yutong Guo
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| | - Shufang Du
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| | - Shuqi Quan
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| | - Fulin Jiang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| | - Cai Yang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| | - Juan Li
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
67
|
Garcia-Abrego C, Zaunz S, Toprakhisar B, Subramani R, Deschaume O, Jooken S, Bajaj M, Ramon H, Verfaillie C, Bartic C, Patterson J. Towards Mimicking the Fetal Liver Niche: The Influence of Elasticity and Oxygen Tension on Hematopoietic Stem/Progenitor Cells Cultured in 3D Fibrin Hydrogels. Int J Mol Sci 2020; 21:ijms21176367. [PMID: 32887387 PMCID: PMC7504340 DOI: 10.3390/ijms21176367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem/progenitor cells (HSPCs) are responsible for the generation of blood cells throughout life. It is believed that, in addition to soluble cytokines and niche cells, biophysical cues like elasticity and oxygen tension are responsible for the orchestration of stem cell fate. Although several studies have examined the effects of bone marrow (BM) niche elasticity on HSPC behavior, no study has yet investigated the effects of the elasticity of other niche sites like the fetal liver (FL), where HSPCs expand more extensively. In this study, we evaluated the effect of matrix stiffness values similar to those of the FL on BM-derived HSPC expansion. We first characterized the elastic modulus of murine FL tissue at embryonic day E14.5. Fibrin hydrogels with similar stiffness values as the FL (soft hydrogels) were compared with stiffer fibrin hydrogels (hard hydrogels) and with suspension culture. We evaluated the expansion of total nucleated cells (TNCs), Lin−/cKit+ cells, HSPCs (Lin−/Sca+/cKit+ (LSK) cells), and hematopoietic stem cells (HSCs: LSK- Signaling Lymphocyte Activated Molecule (LSK-SLAM) cells) when cultured in 5% O2 (hypoxia) or in normoxia. After 10 days, there was a significant expansion of TNCs and LSK cells in all culture conditions at both levels of oxygen tension. LSK cells expanded more in suspension culture than in both fibrin hydrogels, whereas TNCs expanded more in suspension culture and in soft hydrogels than in hard hydrogels, particularly in normoxia. The number of LSK-SLAM cells was maintained in suspension culture and in the soft hydrogels but not in the hard hydrogels. Our results indicate that both suspension culture and fibrin hydrogels allow for the expansion of HSPCs and more differentiated progeny whereas stiff environments may compromise LSK-SLAM cell expansion. This suggests that further research using softer hydrogels with stiffness values closer to the FL niche is warranted.
Collapse
Affiliation(s)
- Christian Garcia-Abrego
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; (C.G.-A.); (B.T.)
- Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium; (O.D.); (S.J.); (C.B.)
| | - Samantha Zaunz
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (S.Z.); (M.B.); (C.V.)
| | - Burak Toprakhisar
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; (C.G.-A.); (B.T.)
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (S.Z.); (M.B.); (C.V.)
| | - Ramesh Subramani
- Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (R.S.); (H.R.)
- Department of Food Processing Technology and Management, PSGR Krishnammal College for Women, Coimbatore 641004, India
| | - Olivier Deschaume
- Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium; (O.D.); (S.J.); (C.B.)
| | - Stijn Jooken
- Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium; (O.D.); (S.J.); (C.B.)
| | - Manmohan Bajaj
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (S.Z.); (M.B.); (C.V.)
| | - Herman Ramon
- Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (R.S.); (H.R.)
| | | | - Carmen Bartic
- Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium; (O.D.); (S.J.); (C.B.)
| | - Jennifer Patterson
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; (C.G.-A.); (B.T.)
- IMDEA Materials Institute, 28906 Madrid, Spain
- Correspondence:
| |
Collapse
|
68
|
Zonderland J, Gomes DB, Pallada Y, Moldero IL, Camarero‐Espinosa S, Moroni L. Mechanosensitive regulation of stanniocalcin-1 by zyxin and actin-myosin in human mesenchymal stromal cells. Stem Cells 2020; 38:948-959. [PMID: 32379914 PMCID: PMC7497098 DOI: 10.1002/stem.3198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/29/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022]
Abstract
Stanniocalcin-1 (STC1) secreted by mesenchymal stromal cells (MSCs) has anti-inflammatory functions, reduces apoptosis, and aids in angiogenesis, both in vitro and in vivo. However, little is known about the molecular mechanisms of its regulation. Here, we show that STC1 secretion is increased only under specific cell-stress conditions. We find that this is due to a change in actin stress fibers and actin-myosin tension. Abolishment of stress fibers by blebbistatin and knockdown of the focal adhesion protein zyxin leads to an increase in STC1 secretion. To also study this connection in 3D, where few focal adhesions and actin stress fibers are present, STC1 expression was analyzed in 3D alginate hydrogels and 3D electrospun scaffolds. Indeed, STC1 secretion was increased in these low cellular tension 3D environments. Together, our data show that STC1 does not directly respond to cell stress, but that it is regulated through mechanotransduction. This research takes a step forward in the fundamental understanding of STC1 regulation and can have implications for cell-based regenerative medicine, where cell survival, anti-inflammatory factors, and angiogenesis are critical.
Collapse
Affiliation(s)
- Jip Zonderland
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - David B. Gomes
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Yves Pallada
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Ivan L. Moldero
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Sandra Camarero‐Espinosa
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
69
|
Holkar K, Vaidya A, Pethe P, Kale V, Ingavle G. Biomaterials and extracellular vesicles in cell-free therapy for bone repair and regeneration: Future line of treatment in regenerative medicine. MATERIALIA 2020; 12:100736. [DOI: 10.1016/j.mtla.2020.100736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
70
|
Kurenkova AD, Medvedeva EV, Newton PT, Chagin AS. Niches for Skeletal Stem Cells of Mesenchymal Origin. Front Cell Dev Biol 2020; 8:592. [PMID: 32754592 PMCID: PMC7366157 DOI: 10.3389/fcell.2020.00592] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
With very few exceptions, all adult tissues in mammals are maintained and can be renewed by stem cells that self-renew and generate the committed progeny required. These functions are regulated by a specific and in many ways unique microenvironment in stem cell niches. In most cases disruption of an adult stem cell niche leads to depletion of stem cells, followed by impairment of the ability of the tissue in question to maintain its functions. The presence of stem cells, often referred to as mesenchymal stem cells (MSCs) or multipotent bone marrow stromal cells (BMSCs), in the adult skeleton has long been realized. In recent years there has been exceptional progress in identifying and characterizing BMSCs in terms of their capacity to generate specific types of skeletal cells in vivo. Such BMSCs are often referred to as skeletal stem cells (SSCs) or skeletal stem and progenitor cells (SSPCs), with the latter term being used throughout this review. SSPCs have been detected in the bone marrow, periosteum, and growth plate and characterized in vivo on the basis of various genetic markers (i.e., Nestin, Leptin receptor, Gremlin1, Cathepsin-K, etc.). However, the niches in which these cells reside have received less attention. Here, we summarize the current scientific literature on stem cell niches for the SSPCs identified so far and discuss potential factors and environmental cues of importance in these niches in vivo. In this context we focus on (i) articular cartilage, (ii) growth plate cartilage, (iii) periosteum, (iv) the adult endosteal compartment, and (v) the developing endosteal compartment, in that order.
Collapse
Affiliation(s)
- Anastasiia D Kurenkova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ekaterina V Medvedeva
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Phillip T Newton
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
71
|
Su J, Chai Y, Ji Z, Xie Y, Yu B, Zhang X. Cellular senescence mediates the detrimental effect of prenatal dexamethasone exposure on postnatal long bone growth in mouse offspring. Stem Cell Res Ther 2020; 11:270. [PMID: 32631432 PMCID: PMC7336470 DOI: 10.1186/s13287-020-01790-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Prenatal dexamethasone exposure (PDE) induces low birth weight and retardation of fetal bone development which are associated with lower peak bone mass in adult offspring. Here we evaluated whether and how PDE affects postnatal long bone growth in mouse offspring. Methods Pregnant mice were injected subcutaneously with dexamethasone (1.2 mg/kg/day) every morning from gestational days (GD) 12–14. Femurs and tibias of 2-, 4-, 6-, and 12-week-old female offspring were harvested for histological, immunofluorescence, flow cytometric analysis, or microcomputed tomography (μCT) measurement. Results PDE leads to impaired bone remodeling as well as decreased bone mass in the long bone of female mouse offspring. During postnatal bone growth, significant decrease of CD45−CD29+CD105+Sca-1+ bone marrow mesenchymal stem cells (BMSCs) and CD45−Nestin+ cells, loss of type H vessels, and increment of cellular senescence were found in metaphysis of long bone in mouse offspring after PDE. We further show that eliminating the excessive senescent cells with dasatinib (5 mg/kg/day) and quercetin (50 mg/kg/day) during GD 12–14 rescues the above toxic effect of PDE on the postnatal long bone growth in female mouse offspring. Conclusion Cellular senescence mediates the toxic effect of PDE on postnatal long bone growth in mouse offspring, and inhibition of cellular senescence may be proposed for treating the retardation of bone growth caused by PDE.
Collapse
Affiliation(s)
- Jianwen Su
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu Chai
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiguo Ji
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongheng Xie
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
72
|
Lutzweiler G, Ndreu Halili A, Engin Vrana N. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics 2020; 12:E602. [PMID: 32610440 PMCID: PMC7407612 DOI: 10.3390/pharmaceutics12070602] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Porous scaffolds have been employed for decades in the biomedical field where researchers have been seeking to produce an environment which could approach one of the extracellular matrixes supporting cells in natural tissues. Such three-dimensional systems offer many degrees of freedom to modulate cell activity, ranging from the chemistry of the structure and the architectural properties such as the porosity, the pore, and interconnection size. All these features can be exploited synergistically to tailor the cell-material interactions, and further, the tissue growth within the voids of the scaffold. Herein, an overview of the materials employed to generate porous scaffolds as well as the various techniques that are used to process them is supplied. Furthermore, scaffold parameters which modulate cell behavior are identified under distinct aspects: the architecture of inert scaffolds (i.e., pore and interconnection size, porosity, mechanical properties, etc.) alone on cell functions followed by comparison with bioactive scaffolds to grasp the most relevant features driving tissue regeneration. Finally, in vivo outcomes are highlighted comparing the accordance between in vitro and in vivo results in order to tackle the future translational challenges in tissue repair and regeneration.
Collapse
Affiliation(s)
- Gaëtan Lutzweiler
- Institut National de la Santé et de la Recherche Medicale, UMR_S 1121, 11 rue Humann, 67085 Strasbourg CEDEX, France
| | - Albana Ndreu Halili
- Department of Information Technology, Aleksander Moisiu University, 2001 Durres, Albania;
| | | |
Collapse
|
73
|
|
74
|
Horton ER, Vallmajo‐Martin Q, Martin I, Snedeker JG, Ehrbar M, Blache U. Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2. Adv Healthc Mater 2020; 9:e1901669. [PMID: 32129003 DOI: 10.1002/adhm.201901669] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Indexed: 12/18/2022]
Abstract
In native tissues, the interaction between cells and the surrounding extracellular matrix (ECM) is reciprocal, as cells not only receive signals from the ECM but also actively remodel it through secretion of cell-derived ECM. However, very little is known about the reciprocal interaction between cells and their secreted ECM within synthetic biomaterials that mimic the ECM for use in engineering of tissues for regenerative medicine or as tissue models. Here, poly(ethylene glycol) (PEG) hydrogels with fully defined biomaterial properties are used to investigate the emerging role of cell-derived ECM on culture outcomes. It is shown that human mesenchymal stromal cells (MSCs) secrete ECM proteins into the pericellular space early after encapsulation and that, even in the absence of material-presented cell adhesion motifs, cell-derived fibronectin enables cell spreading. Then, it is investigated how different culture conditions influence MSC ECM expression in hydrogels. Most strikingly, it is found by RNA sequencing that the fibroblast growth factor 2 (FGF-2) changes ECM gene expression and, in particular, decreases the expression of structural ECM components including fibrillar collagens. In summary, this work shows that cell-derived ECM is a guiding cue in 3D hydrogels and that FGF-2 is a potentially important ECM regulator within bioengineered cell and tissue systems.
Collapse
Affiliation(s)
- Edward R. Horton
- Biotech Research and Innovation CentreUniversity of Copenhagen Copenhagen 2200 Denmark
| | - Queralt Vallmajo‐Martin
- Department of ObstetricsUniversity and University Hospital of Zürich Zürich 8091 Switzerland
- Institute of BioengineeringEcole Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland
| | - Ivan Martin
- Department of BiomedicineUniversity Hospital BaselUniversity of Basel Basel 4031 Switzerland
| | - Jess G. Snedeker
- Institute for BiomechanicsETH Zürich Zürich 8092 Switzerland
- Balgrist University HospitalUniversity of Zürich Zürich 8008 Switzerland
| | - Martin Ehrbar
- Department of ObstetricsUniversity and University Hospital of Zürich Zürich 8091 Switzerland
| | - Ulrich Blache
- Department of ObstetricsUniversity and University Hospital of Zürich Zürich 8091 Switzerland
- Institute for BiomechanicsETH Zürich Zürich 8092 Switzerland
| |
Collapse
|
75
|
Scott RA, Robinson KG, Kiick KL, Akins RE. Human Adventitial Fibroblast Phenotype Depends on the Progression of Changes in Substrate Stiffness. Adv Healthc Mater 2020; 9:e1901593. [PMID: 32105417 PMCID: PMC7274877 DOI: 10.1002/adhm.201901593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Adventitial fibroblasts (AFs) are major contributors to vascular remodeling and maladaptive cascades associated with arterial disease, where AFs both contribute to and respond to alterations in their surrounding matrix. The relationships between matrix modulus and human aortic AF (AoAF) function are investigated using poly(ethylene glycol)-based hydrogels designed with matrix metalloproteinase (MMP)-sensitive and integrin-binding peptides. Initial equilibrium shear storage moduli for the substrates examined are 0.33, 1.42, and 2.90 kPa; after 42 days of culture, all hydrogels exhibit similar storage moduli (0.3-0.7 kPa) regardless of initial modulus, with encapsulated AoAFs spreading and proliferating. In 10 and 7.5 wt% hydrogels, modulus decreases monotonically throughout culture; however, in 5 wt% hydrogels, modulus increases after an initial 7 days of culture, accompanied by an increase in myofibroblast transdifferentiation and expression of collagen I and III through day 28. Thereafter, significant reductions in both collagens occur, with increased MMP-9 and decreased tissue inhibitor of metalloproteinase-1/-2 production. Releasing cytoskeletal tension or inhibiting cellular protein secretion in 5 wt% hydrogels block the stiffening of the polymer matrix. Results indicate that encapsulated AoAFs initiate cell-mediated matrix remodeling and demonstrate the utility of dynamic 3D systems to elucidate the complex interactions between cell behavior and substrate properties.
Collapse
Affiliation(s)
- Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States
| | - Karyn G. Robinson
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States
| | - Robert E. Akins
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
| |
Collapse
|
76
|
Constanze B, Popper B, Aggarwal BB, Shakibaei M. Evidence that TNF-β suppresses osteoblast differentiation of mesenchymal stem cells and resveratrol reverses it through modulation of NF-κB, Sirt1 and Runx2. Cell Tissue Res 2020; 381:83-98. [PMID: 32140928 DOI: 10.1007/s00441-020-03188-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022]
Abstract
It has been established that inflammation plays an important role in bone formation and bone loss. Although a lot is known about the role of TNF-α in bone health, very little is understood about TNF-β, also called lymphotoxin. In this report, we examine the effect of TNF-β on osteogenic differentiation of mesenchymal stem cells (MSCs) and its modulation by resveratrol. Monolayer and high-density cultures of MSCs were treated with osteogenic induction medium with/without TNF-β, Sirt1 inhibitor nicotinamide (NAM), antisense oligonucleotides against Sirt1 (ASO) and/or Sirt1 stimulator resveratrol. We found that TNF-β inhibits, in a similar way to NAM or Sirt1-ASO, the early stage of osteogenic differentiation of MSCs and this was accompanied with downregulation of bone-specific matrix, β1-integrin, Runx2 and with upregulation of NF-κB phosphorylation and NF-κB-regulated gene products involved in the inflammatory, degradative processes and apoptosis. However, resveratrol reversed TNF-β- and NAM-suppressed MSCs osteogenesis by activation of Sirt1 and Runx2 that led to osteoblast differentiation. Furthermore, downregulation of Sirt1 by mRNA inhibited the effect of resveratrol, highlighting the important impact of this enzyme in the TNF-β signaling pathway. Finally, resveratrol was able to manifest its effect both by suppression of TNF-β-induced NF-κB and through direct activation of the Sirt1 and Runx2 pathway. Thus, through these studies, we present a mechanism by which a T cell-derived cytokine, TNF-β can affect bone formation through modulation of MSCs differentiation that involves NF-κB, Sirt1, Runx2 and resveratrol reversed TNF-β-promoted impairments in MSCs osteogenesis.
Collapse
Affiliation(s)
- Buhrmann Constanze
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany
| | - Bastian Popper
- Biomedical Center, Core facility animal models, Ludwig-Maximilian-University Munich, 82152, Martinsried, Germany.,Institute of Pathology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | | | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany.
| |
Collapse
|
77
|
Salzlechner C, Haghighi T, Huebscher I, Walther AR, Schell S, Gardner A, Undt G, da Silva RM, Dreiss CA, Fan K, Gentleman E. Adhesive Hydrogels for Maxillofacial Tissue Regeneration Using Minimally Invasive Procedures. Adv Healthc Mater 2020; 9:e1901134. [PMID: 31943865 PMCID: PMC7041972 DOI: 10.1002/adhm.201901134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/29/2019] [Indexed: 12/20/2022]
Abstract
Minimally invasive surgical procedures aiming to repair damaged maxillofacial tissues are hampered by its small, complex structures and difficult surgical access. Indeed, while arthroscopic procedures that deliver regenerative materials and/or cells are common in articulating joints such as the knee, there are currently no treatments that surgically place cells, regenerative factors or materials into maxillofacial tissues to foster bone, cartilage or muscle repair. Here, hyaluronic acid (HA)-based hydrogels are developed, which are suitable for use in minimally invasive procedures, that can adhere to the surrounding tissue, and deliver cells and potentially drugs. By modifying HA with both methacrylate (MA) and 3,4-dihydroxyphenylalanine (Dopa) groups using a completely aqueous synthesis route, it is shown that MA-HA-Dopa hydrogels can be applied under aqueous conditions, gel quickly using a standard surgical light, and adhere to tissue. Moreover, upon oxidation of the Dopa, human marrow stromal cells attach to hydrogels and survive when encapsulated within them. These observations show that when incorporated into HA-based hydrogels, Dopa moieties can foster cell and tissue interactions, ensuring surgical placement and potentially enabling delivery/recruitment of regenerative cells. The findings suggest that MA-HA-Dopa hydrogels may find use in minimally invasive procedures to foster maxillofacial tissue repair.
Collapse
Affiliation(s)
- Christoph Salzlechner
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 9RT, United Kingdom
| | - Tabasom Haghighi
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 9RT, United Kingdom
| | - Isabella Huebscher
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 9RT, United Kingdom
| | - Anders Runge Walther
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 9RT, United Kingdom
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Sophie Schell
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 9RT, United Kingdom
- Department of Conservative Dentistry, Centre of Dentistry, Oral Medicine and Maxillofacial Surgery, University Hospital Tübingen, Germany
| | - Alexander Gardner
- Department of Mucosal and Salivary Biology, Dental Institute, King's College London, London SE1 9RT, United Kingdom
| | - Gerhard Undt
- University Clinic of Dentistry, Department of Oral Surgery, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Ricardo M.P. da Silva
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 9RT, United Kingdom
- i3S - Instituto de Investigação e Inovação em Saúde and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal
| | - Cécile A. Dreiss
- Institute of Pharmaceutical Science, Franklin-Wilkins Building, King’s College London, London SE1 9NH, UK
| | - Kathleen Fan
- Department of Oral and Maxillofacial Surgery, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
78
|
Gal I, Edri R, Noor N, Rotenberg M, Namestnikov M, Cabilly I, Shapira A, Dvir T. Injectable Cardiac Cell Microdroplets for Tissue Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904806. [PMID: 32003928 PMCID: PMC7113023 DOI: 10.1002/smll.201904806] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/01/2020] [Indexed: 05/19/2023]
Abstract
One of the strategies for heart regeneration includes cell delivery to the defected heart. However, most of the injected cells do not form quick cell-cell or cell-matrix interactions, therefore, their ability to engraft at the desired site and improve heart function is poor. Here, the use of a microfluidic system is reported for generating personalized hydrogel-based cellular microdroplets for cardiac cell delivery. To evaluate the system's limitations, a mathematical model of oxygen diffusion and consumption within the droplet is developed. Following, the microfluidic system's parameters are optimized and cardiac cells from neonatal rats or induced pluripotent stem cells are encapsulated. The morphology and cardiac specific markers are assessed and cell function within the droplets is analyzed. Finally, the cellular droplets are injected to mouse gastrocnemius muscle to validate cell retention, survival, and maturation within the host tissue. These results demonstrate the potential of this approach to generate personalized cellular microtissues, which can be injected to distinct regions in the body for treating damaged tissues.
Collapse
Affiliation(s)
- Idan Gal
- The School for Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Reuven Edri
- The School for Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nadav Noor
- The School for Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Matan Rotenberg
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michael Namestnikov
- The School for Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Assaf Shapira
- The School for Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tal Dvir
- The School for Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
79
|
Ashworth JC, Thompson JL, James JR, Slater CE, Pijuan-Galitó S, Lis-Slimak K, Holley RJ, Meade KA, Thompson A, Arkill KP, Tassieri M, Wright AJ, Farnie G, Merry CLR. Peptide gels of fully-defined composition and mechanics for probing cell-cell and cell-matrix interactions in vitro. Matrix Biol 2020; 85-86:15-33. [PMID: 31295578 PMCID: PMC7610915 DOI: 10.1016/j.matbio.2019.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/28/2019] [Accepted: 06/24/2019] [Indexed: 01/14/2023]
Abstract
Current materials used for in vitro 3D cell culture are often limited by their poor similarity to human tissue, batch-to-batch variability and complexity of composition and manufacture. Here, we present a "blank slate" culture environment based on a self-assembling peptide gel free from matrix motifs. The gel can be customised by incorporating matrix components selected to match the target tissue, with independent control of mechanical properties. Therefore the matrix components are restricted to those specifically added, or those synthesised by encapsulated cells. The flexible 3D culture platform provides full control over biochemical and physical properties, allowing the impact of biochemical composition and tissue mechanics to be separately evaluated in vitro. Here, we demonstrate that the peptide gels support the growth of a range of cells including human induced pluripotent stem cells and human cancer cell lines. Furthermore, we present proof-of-concept that the peptide gels can be used to build disease-relevant models. Controlling the peptide gelator concentration allows peptide gel stiffness to be matched to normal breast (<1 kPa) or breast tumour tissue (>1 kPa), with higher stiffness favouring the viability of breast cancer cells over normal breast cells. In parallel, the peptide gels may be modified with matrix components relevant to human breast, such as collagen I and hyaluronan. The choice and concentration of these additions affect the size, shape and organisation of breast epithelial cell structures formed in co-culture with fibroblasts. This system therefore provides a means of unravelling the individual influences of matrix, mechanical properties and cell-cell interactions in cancer and other diseases.
Collapse
Affiliation(s)
- J C Ashworth
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK; Manchester Cancer Research Centre, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK.
| | - J L Thompson
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - J R James
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - C E Slater
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - S Pijuan-Galitó
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK; Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, UK
| | - K Lis-Slimak
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - R J Holley
- Stem Cell and Neurotherapies Group, University of Manchester, UK
| | - K A Meade
- Office of Business Relations, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - A Thompson
- Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - K P Arkill
- Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - M Tassieri
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, UK
| | - A J Wright
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, UK
| | - G Farnie
- Manchester Cancer Research Centre, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK; SGC, Botnar Research Centre, NDORMS, University of Oxford, UK.
| | - C L R Merry
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK.
| |
Collapse
|
80
|
Feng L, Hao Y, Zhu M, Zhai Y, Yang L, Liu Y, Cheng G. Incorporation of Laminarin-Based Hydrogel with Graphene Foam To Enhance the Toughness of Scaffold and Regulate the Stem Cell Behavior. ACS Biomater Sci Eng 2019; 5:5295-5304. [DOI: 10.1021/acsbiomaterials.9b00752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lin Feng
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Mo Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yuanxin Zhai
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Lingyan Yang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yang Liu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Guosheng Cheng
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| |
Collapse
|
81
|
Li G, Wang H, Zhu Z, Fan JB, Tian Y, Meng J, Wang S. Photo-Irresponsive Molecule-Amplified Cell Release on Photoresponsive Nanostructured Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29681-29688. [PMID: 31361461 DOI: 10.1021/acsami.9b11957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cell manipulation has raised extensive concern owing to its underlying applications in numerous biological situations such as cell-matrix interaction, tissue engineering, and cell-based diagnosis. Generally, light is considered as a superior candidate for manipulating cells (e.g., cell release) due to their high spatiotemporal precision and non-invasion. However, it remains a big challenge to release cells with high efficiency due to their potential limitation of the light-triggered wettability transition on photoresponsive surfaces. In this study, we report a photoresponsive spiropyran-coated nanostructured surface that enables highly efficient release of cancer cells, amplified by the introduction of a photo-irresponsive molecule. On one hand, structural recognition stems from topological interaction between nanofractal surfaces and the protrusions of cancer cells. On the other, molecular recognition can be amplified by a photo-irresponsive and hydrophilic molecule by reducing the steric hindrance of photoresponsive components and resisting nonspecific cell adhesion. Therefore, this study may afford a novel avenue for developing advanced smart materials for high-quality biological analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Guannan Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of the Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Hongyi Wang
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China
| | - Zhongpeng Zhu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of the Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jun-Bing Fan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of the Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of the Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
82
|
Loebel C, Mauck RL, Burdick JA. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. NATURE MATERIALS 2019; 18:883-891. [PMID: 30886401 PMCID: PMC6650309 DOI: 10.1038/s41563-019-0307-6] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/04/2019] [Indexed: 05/17/2023]
Abstract
Hydrogels serve as valuable tools for studying cell-extracellular matrix interactions in three-dimensional environments that recapitulate aspects of native extracellular matrix. However, the impact of early protein deposition on cell behaviour within hydrogels has largely been overlooked. Using a bio-orthogonal labelling technique, we visualized nascent proteins within a day of culture across a range of hydrogels. In two engineered hydrogels of interest in three-dimensional mechanobiology studies-proteolytically degradable covalently crosslinked hyaluronic acid and dynamic viscoelastic hyaluronic acid hydrogels-mesenchymal stromal cell spreading, YAP/TAZ nuclear translocation and osteogenic differentiation were observed with culture. However, inhibition of cellular adhesion to nascent proteins or reduction in nascent protein remodelling reduced mesenchymal stromal cell spreading and nuclear translocation of YAP/TAZ, resulting in a shift towards adipogenic differentiation. Our findings emphasize the role of nascent proteins in the cellular perception of engineered materials and have implications for in vitro cell signalling studies and application to tissue repair.
Collapse
Affiliation(s)
- Claudia Loebel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
83
|
Zhou C, Zhang D, Zou J, Li X, Zou S, Xie J. Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26448-26459. [PMID: 31251564 DOI: 10.1021/acsami.9b07147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
84
|
Lutzweiler G, Barthes J, Koenig G, Kerdjoudj H, Mayingi J, Boulmedais F, Schaaf P, Drenckhan W, Vrana NE. Modulation of Cellular Colonization of Porous Polyurethane Scaffolds via the Control of Pore Interconnection Size and Nanoscale Surface Modifications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19819-19829. [PMID: 31074959 DOI: 10.1021/acsami.9b04625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Full-scale cell penetration within porous scaffolds is required to obtain functional connective tissue components in tissue engineering applications. For this aim, we produced porous polyurethane structures with well-controlled pore and interconnection sizes. Although the influence of the pore size on cellular behavior is widely studied, we focused on the impact of the size of the interconnections on the colonization by NIH 3T3 fibroblasts and Wharton's jelly-derived mesenchymal stem cells (WJMSCs). To render the material hydrophilic and allow good material wettability, we treated the material either by plasma or by polydopamine (PDA) coating. We show that cells weakly adhere on these surfaces. Keeping the average pore diameter constant at 133 μm, we compare two structures, one with LARGE (52 μm) and one with SMALL (27 μm) interconnection diameters. DNA quantification and extracellular matrix (ECM) production reveal that larger interconnections is more suitable for cells to move across the scaffold and form a three-dimensional cellular network. We argue that LARGE interconnections favor cell communication between different pores, which then favors the production of the ECM. Moreover, PDA treatment shows a truly beneficial effect on fibroblast viability and on matrix production, whereas plasma treatment shows the same effect for WJMSCs. We, therefore, claim that both pore interconnection size and surface treatment play a significant role to improve the quality of integration of tissue engineering scaffolds.
Collapse
Affiliation(s)
- G Lutzweiler
- Institut National de la Santé et de la Recherche Medicale, UMR_S 1121 , 11 rue Humann , 67085 Strasbourg Cedex , France
- Faculté de Chirurgie Dentaire , Université de Strasbourg , 8 rue Sainte Elisabeth , 67000 Strasbourg , France
- Université de Strasbourg, CNRS, Institut Charles Sadron , 23 rue de Loess , 67034 Strasbourg , France
| | - J Barthes
- Protip Medical SAS , 8 Place de l'Hôpital , 67000 Strasbourg , France
| | - G Koenig
- Institut National de la Santé et de la Recherche Medicale, UMR_S 1121 , 11 rue Humann , 67085 Strasbourg Cedex , France
- Faculté de Chirurgie Dentaire , Université de Strasbourg , 8 rue Sainte Elisabeth , 67000 Strasbourg , France
| | - H Kerdjoudj
- EA 4691, Biomateŕiaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED4231), Université de Reims Champagne Ardenne , 51100 Reims , France
- UFR d'Odontologie, Université de Reims Champagne Ardenne , 51100 Reims , France
| | - J Mayingi
- Cetim Grand Est , 24a Rue d'Alsace , 67400 Illkirch-Graffenstaden , France
| | - F Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron , 23 rue de Loess , 67034 Strasbourg , France
| | - P Schaaf
- Institut National de la Santé et de la Recherche Medicale, UMR_S 1121 , 11 rue Humann , 67085 Strasbourg Cedex , France
- Faculté de Chirurgie Dentaire , Université de Strasbourg , 8 rue Sainte Elisabeth , 67000 Strasbourg , France
| | - W Drenckhan
- Université de Strasbourg, CNRS, Institut Charles Sadron , 23 rue de Loess , 67034 Strasbourg , France
| | - N E Vrana
- Protip Medical SAS , 8 Place de l'Hôpital , 67000 Strasbourg , France
| |
Collapse
|
85
|
Chen J, Hu H, Feng L, Zhu Q, Hancharou A, Liu B, Yan C, Xu Y, Guo R. Preparation and characterization of 3D porous conductive scaffolds with magnetic resonance enhancement in tissue engineering. Biomed Mater 2019; 14:045013. [DOI: 10.1088/1748-605x/ab1d9c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
86
|
Foyt DA, Taheem DK, Ferreira SA, Norman MDA, Petzold J, Jell G, Grigoriadis AE, Gentleman E. Hypoxia impacts human MSC response to substrate stiffness during chondrogenic differentiation. Acta Biomater 2019; 89:73-83. [PMID: 30844569 PMCID: PMC6481516 DOI: 10.1016/j.actbio.2019.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/31/2022]
Abstract
Tissue engineering strategies often aim to direct tissue formation by mimicking conditions progenitor cells experience within native tissues. For example, to create cartilage in vitro, researchers often aim to replicate the biochemical and mechanical milieu cells experience during cartilage formation in the developing limb bud. This includes stimulating progenitors with TGF-β1/3, culturing under hypoxic conditions, and regulating mechanosensory pathways using biomaterials that control substrate stiffness and/or cell shape. However, as progenitors differentiate down the chondrogenic lineage, the pathways that regulate their responses to mechanotransduction, hypoxia and TGF-β may not act independently, but rather also impact one another, influencing overall cell response. Here, to better understand hypoxia's influence on mechanoregulatory-mediated chondrogenesis, we cultured human marrow stromal/mesenchymal stem cells (hMSC) on soft (0.167 kPa) or stiff (49.6 kPa) polyacrylamide hydrogels in chondrogenic medium containing TGF-β3. We then compared cell morphology, phosphorylated myosin light chain 2 staining, and chondrogenic gene expression under normoxic and hypoxic conditions, in the presence and absence of pharmacological inhibition of cytoskeletal tension. We show that on soft compared to stiff substrates, hypoxia prompts hMSC to adopt more spread morphologies, assemble in compact mesenchymal condensation-like colonies, and upregulate NCAM expression, and that inhibition of cytoskeletal tension negates hypoxia-mediated upregulation of molecular markers of chondrogenesis, including COL2A1 and SOX9. Taken together, our findings support a role for hypoxia in regulating hMSC morphology, cytoskeletal tension and chondrogenesis, and that hypoxia's effects are modulated, at least in part, by mechanosensitive pathways. Our insights into how hypoxia impacts mechanoregulation of chondrogenesis in hMSC may improve strategies to develop tissue engineered cartilage. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies often aim to drive progenitor cell differentiation by replicating the local environment of the native tissue, including by regulating oxygen concentration and mechanical stiffness. However, the pathways that regulate cellular responses to mechanotransduction and hypoxia may not act independently, but rather also impact one another. Here, we show that on soft, but not stiff surfaces, hypoxia impacts human MSC (hMSC) morphology and colony formation, and inhibition of cytoskeletal tension negates the hypoxia-mediated upregulation of molecular markers of chondrogenesis. These observations suggest that hypoxia's effects during hMSC chondrogenesis are modulated, at least in part, by mechanosensitive pathways, and may impact strategies to develop scaffolds for cartilage tissue engineering, as hypoxia's chondrogenic effects may be enhanced on soft materials.
Collapse
Affiliation(s)
- Daniel A Foyt
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Dheraj K Taheem
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Silvia A Ferreira
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Michael D A Norman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Gavin Jell
- Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | | | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.
| |
Collapse
|
87
|
Klontzas ME, Reakasame S, Silva R, Morais JC, Vernardis S, MacFarlane RJ, Heliotis M, Tsiridis E, Panoskaltsis N, Boccaccini AR, Mantalaris A. Oxidized alginate hydrogels with the GHK peptide enhance cord blood mesenchymal stem cell osteogenesis: A paradigm for metabolomics-based evaluation of biomaterial design. Acta Biomater 2019; 88:224-240. [PMID: 30772514 DOI: 10.1016/j.actbio.2019.02.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Oxidized alginate hydrogels are appealing alternatives to natural alginate due to their favourable biodegradability profiles and capacity to self-crosslink with amine containing molecules facilitating functionalization with extracellular matrix cues, which enable modulation of stem cell fate, achieve highly viable 3-D cultures, and promote cell growth. Stem cell metabolism is at the core of cellular fate (proliferation, differentiation, death) and metabolomics provides global metabolic signatures representative of cellular status, being able to accurately identify the quality of stem cell differentiation. Herein, umbilical cord blood mesenchymal stem cells (UCB MSCs) were encapsulated in novel oxidized alginate hydrogels functionalized with the glycine-histidine-lysine (GHK) peptide and differentiated towards the osteoblastic lineage. The ADA-GHK hydrogels significantly improved osteogenic differentiation compared to gelatin-containing control hydrogels, as demonstrated by gene expression, alkaline phosphatase activity and bone extracellular matrix deposition. Metabolomics revealed the high degree of metabolic heterogeneity in the gelatin-containing control hydrogels, captured the enhanced osteogenic differentiation in the ADA-GHK hydrogels, confirmed the similar metabolism between differentiated cells and primary osteoblasts, and elucidated the metabolic mechanism responsible for the function of GHK. Our results suggest a novel paradigm for metabolomics-guided biomaterial design and robust stem cell bioprocessing. STATEMENT OF SIGNIFICANCE: Producing high quality engineered bone grafts is important for the treatment of critical sized bone defects. Robust and sensitive techniques are required for quality assessment of tissue-engineered constructs, which result to the selection of optimal biomaterials for bone graft development. Herein, we present a new use of metabolomics signatures in guiding the development of novel oxidised alginate-based hydrogels with umbilical cord blood mesenchymal stem cells and the glycine-histidine-lysine peptide, demonstrating that GHK induces stem cell osteogenic differentiation. Metabolomics signatures captured the enhanced osteogenesis in GHK hydrogels, confirmed the metabolic similarity between differentiated cells and primary osteoblasts, and elucidated the metabolic mechanism responsible for the function of GHK. In conclusion, our results suggest a new paradigm of metabolomics-driven design of biomaterials.
Collapse
|
88
|
Modulating Thiol pKa Promotes Disulfide Formation at Physiological pH: An Elegant Strategy To Design Disulfide Cross-Linked Hyaluronic Acid Hydrogels. Biomacromolecules 2019; 20:1412-1420. [DOI: 10.1021/acs.biomac.8b01830] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
89
|
Paidikondala M, Kadekar S, Varghese OP. Innovative Strategy for 3D Transfection of Primary Human Stem Cells with BMP-2 Expressing Plasmid DNA: A Clinically Translatable Strategy for Ex Vivo Gene Therapy. Int J Mol Sci 2018; 20:ijms20010056. [PMID: 30583610 PMCID: PMC6337215 DOI: 10.3390/ijms20010056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
Ex vivo gene therapy offers enormous potential for cell-based therapies, however, cumbersome in vitro cell culture conditions have limited its use in clinical practice. We have optimized an innovative strategy for the transient transfection of bone morphogenetic protein-2 (BMP-2) expressing plasmids in suspended human stem cells within 5-min that enables efficient loading of the transfected cells into a 3D hydrogel system. Such a short incubation time for lipid-based DNA nanoparticles (lipoplexes) reduces cytotoxicity and at the same time reduces the processing time for cells to be transplanted. The encapsulated human mesenchymal stromal/stem cells (hMSCs) transfected with BMP-2 plasmid demonstrated high expression of an osteogenic transcription factor, namely RUNX2, but not the chondrogenic factor (SOX9), within the first three days. This activation was also reflected in the 7-day and 21-day experiment, which clearly indicated the induction of osteogenesis but not chondrogenesis. We believe our transient transfection method demonstrated in primary MSCs can be adapted for other therapeutic genes for different cell-based therapeutic applications.
Collapse
Affiliation(s)
- Maruthibabu Paidikondala
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry⁻Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden.
| | - Sandeep Kadekar
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry⁻Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden.
| | - Oommen P Varghese
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry⁻Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden.
| |
Collapse
|
90
|
Papalazarou V, Salmeron-Sanchez M, Machesky LM. Tissue engineering the cancer microenvironment-challenges and opportunities. Biophys Rev 2018; 10:1695-1711. [PMID: 30406572 PMCID: PMC6297082 DOI: 10.1007/s12551-018-0466-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanosensing is increasingly recognised as important for tumour progression. Tumours become stiff and the forces that normally balance in the healthy organism break down and become imbalanced, leading to increases in migration, invasion and metastatic dissemination. Here, we review recent advances in our understanding of how extracellular matrix properties, such as stiffness, viscoelasticity and architecture control cell behaviour. In addition, we discuss how the tumour microenvironment can be modelled in vitro, capturing these mechanical aspects, to better understand and develop therapies against tumour spread. We argue that by gaining a better understanding of the microenvironment and the mechanical forces that govern tumour dynamics, we can make advances in combatting cancer dormancy, recurrence and metastasis.
Collapse
Affiliation(s)
- Vassilis Papalazarou
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- The Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|