51
|
Egri N, Calderón H, Martinez R, Vazquez M, Gómez-Caverzaschi V, Pascal M, Araújo O, Juan M, González-Navarro EA, Hernández-Rodríguez J. Cellular and humoral responses after second and third SARS-CoV-2 vaccinations in patients with autoimmune diseases treated with rituximab: specific T cell immunity remains longer and plays a protective role against SARS-CoV-2 reinfections. Front Immunol 2023; 14:1146841. [PMID: 37180097 PMCID: PMC10174323 DOI: 10.3389/fimmu.2023.1146841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Background Humoral and cellular immune responses are known to be crucial for patients to recover from COVID-19 and to protect them against SARS-CoV-2 reinfection once infected or vaccinated. Objectives This study aimed to investigate humoral and T cell responses to SARS-CoV-2 vaccination in patients with autoimmune diseases after the second and third vaccine doses while on rituximab and their potential protective role against reinfection. Methods Ten COVID-19-naïve patients were included. Three time points were used for monitoring cellular and humoral responses: pre-vaccine to exclude virus exposure (time point 1) and post-second and post-third vaccine (time points 2 and 3). Specific IgG antibodies were monitored by Luminex and T cells against SARS-CoV-2 spike-protein by ELISpot and CoVITEST. All episodes of symptomatic COVID-19 were recorded. Results Nine patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis and one with an undifferentiated autoimmune disease were included. Nine patients received mRNA vaccines. The last rituximab infusion was administered for a mean (SD) of 15 (10) weeks before the first vaccine and six patients were CD19-B cell-depleted. After a mean (SD) of 19 (10) and 16 (2) days from the second and third vaccine dose, IgG anti-SARS-CoV-2 antibodies were detected in six (60%) and eight (80%) patients, respectively. All patients developed specific T cell responses by ELISpot and CoVITEST in time points 2 and 3. Previous B cell depletion correlated with anti-SARS-CoV-2 IgG levels. Nine (90%) patients developed mild COVID-19 after a median of 7 months of the third dose. Conclusion Rituximab in patients with autoimmune diseases reduces humoral responses but does not avoid the development of T cell responses to SARS-CoV-2 vaccination, which remain present after a booster dose. A steady cellular immunity appears to be protective against subsequent reinfections.
Collapse
Affiliation(s)
- Natalia Egri
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Hugo Calderón
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Robert Martinez
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Mario Vazquez
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Verónica Gómez-Caverzaschi
- Clinical Unit of Autoinflammatory Diseases and Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET), Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Mariona Pascal
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Olga Araújo
- Clinical Unit of Autoinflammatory Diseases and Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET), Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Manel Juan
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Europa Azucena González-Navarro
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - José Hernández-Rodríguez
- Clinical Unit of Autoinflammatory Diseases and Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET), Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
- *Correspondence: José Hernández-Rodríguez,
| |
Collapse
|
52
|
Mioch D, Vanbrabant L, Reimerink J, Kuiper S, Lodder E, van den Bijllaardt W, Kluytmans J, Wissing MD, COco-study group #AugustijnHansaBartelsMaritavan JaarsveldCornelia H.M.bLeemansManonavan NieropPetercvan RietNataschaaRaaijmakersLiekeaReisigerElsaReuskenChantaldRietveldArieneeSalewiczSandraaRegional public health service (GGD) of West-Brabant, Breda, the NetherlandsRadboud University Medical Center, Department of Primary and Community Care, Nijmegen, The NetherlandsRegional public health service (GGD) of Brabant Zuid-Oost, Eindhoven, the NetherlandsCentre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the NetherlandsRegional public health service (GGD) of Hart voor Brabant, ‘s-Hertogenbosch, the Netherlands, Bartels M, van Jaarsveld CH, Leemans M, van Nierop P, van Riet N, Raaijmakers L, Reisiger E, Reusken C, Rietveld A, Salewicz S. SARS-CoV-2 antibodies persist up to 12 months after natural infection in healthy employees working in non-medical contact-intensive professions. Int J Infect Dis 2023; 126:155-163. [PMID: 36436751 PMCID: PMC9686051 DOI: 10.1016/j.ijid.2022.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate dynamics of antibody levels after exposure to SARS-CoV-2 for 12 months in Dutch non-vaccinated hairdressers and hospitality staff. METHODS In this prospective cohort study, blood samples were collected every 3 months for 1 year and analyzed using a qualitative total antibody enzyme-linked immunosorbent assay (ELISA) and a quantitative immunoglobulin (Ig)G antibody ELISA. Participants completed questionnaires, providing information on demographics, health, and work. Differences in antibody levels were evaluated using Mann-Whitney U and Wilcoxon signed-rank tests. Beta coefficients (β) and 95% confidence intervals (CIs) were calculated using linear regression. RESULTS Ninety-five of 497 participants (19.1%) had ≥1 seropositive measurement before their last visit using the qualitative ELISA. Only 2.1% (2/95) seroreverted during follow-up. Of 95 participants, 82 (86.3%) tested IgG seropositive in the quantitative ELISA too. IgG antibody levels significantly decreased in the first months (P <0.01) but remained detectable for up to 12 months in all participants. Older age (β, 10-years increment: 24.6, 95% CI: 5.7-43.5) and higher body mass index (β, 5kg/m² increment: 40.0, 95% CI: 2.9-77.2) were significantly associated with a higher peak of antibody levels. CONCLUSION In this cohort, SARS-CoV-2 antibodies persisted for up to 1 year after initial seropositivity, suggesting long-term natural immunity.
Collapse
Affiliation(s)
- Dymphie Mioch
- Regional Public Health Service (GGD) of West-Brabant, Breda, The Netherlands,Corresponding author: Public Health Service (GGD) of West-Brabant, Doornboslaan 225-227, 4816CZ, Breda, The Netherlands
| | - Leonard Vanbrabant
- Regional Public Health Service (GGD) of West-Brabant, Breda, The Netherlands
| | - Johan Reimerink
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Sandra Kuiper
- Regional Public Health Service (GGD) of West-Brabant, Breda, The Netherlands
| | - Esther Lodder
- Regional Public Health Service (GGD) of West-Brabant, Breda, The Netherlands
| | - Wouter van den Bijllaardt
- Microvida Laboratory for Medical Microbiology, Amphia Hospital, Breda, The Netherlands,Department of Infection Control, Amphia Hospital, Breda, The Netherlands
| | - Jan Kluytmans
- Department of Epidemiology, Julius Centre Research Program Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Michel D. Wissing
- Regional Public Health Service (GGD) of West-Brabant, Breda, The Netherlands
| | - COco-study group#AugustijnHansaBartelsMaritavan JaarsveldCornelia H.M.bLeemansManonavan NieropPetercvan RietNataschaaRaaijmakersLiekeaReisigerElsaReuskenChantaldRietveldArieneeSalewiczSandraaRegional public health service (GGD) of West-Brabant, Breda, the NetherlandsRadboud University Medical Center, Department of Primary and Community Care, Nijmegen, The NetherlandsRegional public health service (GGD) of Brabant Zuid-Oost, Eindhoven, the NetherlandsCentre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the NetherlandsRegional public health service (GGD) of Hart voor Brabant, ‘s-Hertogenbosch, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Li L, Cui J, Tang J, Shi J, Deng X, Zheng X, Fan Q, Liu Y, Yu H, Tang X, Hu F, Li F. High titers of neutralizing antibodies in the blood fail to eliminate SARS-CoV-2 viral RNA in the upper respiratory tract. J Med Virol 2023; 95:e28219. [PMID: 36229892 PMCID: PMC9874792 DOI: 10.1002/jmv.28219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Retest-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA, as a unique phenomenon among discharged individuals, has been demonstrated to be safe in the community. Still, the underlying mechanism of viral lingering is less investigated. In this study, first, we find that the frequency of viral RNA-positive retesting differs among variants. Higher ratios of viral RNA-positive retest were more frequently observed among Delta (61.41%, 514 of 837 cases) and Omicron (39.53%, 119 of 301 cases) infections than among ancestral viral infection (7.27%, 21 of 289 cases). Second, the tissues where viral RNA reoccurred were altered. Delta RNA reoccurred mainly in the upper respiratory tract (90%), but ancestral virus RNA reoccurred mainly in the gastrointestinal tract (71%). Third, vaccination did not reduce the frequency of viral RNA-positive retests, despite high concentrations of viral-specific antibodies in the blood. Finally, 37 of 55 (67.27%) Delta-infected patients receiving neutralizing antibody therapy become viral RNA retest positive when high concentrations of neutralizing antibodies still patrol in the blood. Altogether, our findings suggest that the presentence of high titers of neutralizing antibodies in the blood is incompetent in clearing residual viral RNA in the upper respiratory tract.
Collapse
Affiliation(s)
- Lu Li
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Jianping Cui
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Jingyan Tang
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Jingrong Shi
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Xilong Deng
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Xiaowen Zheng
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Qinghong Fan
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Ying Liu
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Haisheng Yu
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Xiaoping Tang
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangzhou LaboratoryBio‐IslandGuangzhouChina
| | - Fengyu Hu
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangzhou LaboratoryBio‐IslandGuangzhouChina
| | - Feng Li
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangzhou LaboratoryBio‐IslandGuangzhouChina
| |
Collapse
|
54
|
Taus E, Hofmann C, Ibarrondo FJ, Gong LS, Hausner MA, Fulcher JA, Krogstad P, Kitchen SG, Ferbas KG, Tobin NH, Rimoin AW, Aldrovandi GM, Yang OO. Persistent memory despite rapid contraction of circulating T Cell responses to SARS-CoV-2 mRNA vaccination. Front Immunol 2023; 14:1100594. [PMID: 36860850 PMCID: PMC9968837 DOI: 10.3389/fimmu.2023.1100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.
Collapse
Affiliation(s)
- Ellie Taus
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christian Hofmann
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - F Javier Ibarrondo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Laura S Gong
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Mary Ann Hausner
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Jennifer A Fulcher
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Paul Krogstad
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Scott G Kitchen
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Kathie G Ferbas
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Nicole H Tobin
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Anne W Rimoin
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States
| | - Grace M Aldrovandi
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Otto O Yang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
55
|
Pérez-Bernal M, Hernández C, Ibargollín R, Martínez M, Soria M, Delgado M, Valdivia O, Dorta D, Domínguez A, Pérez E, Cabrera Y. SARS-CoV-2 spike RBD-specific IgA and IgG antibodies in breast milk after vaccination with the protein subunit vaccine Abdala. INFECTIOUS MEDICINE 2022; 1:253-261. [PMID: 38013910 PMCID: PMC9671870 DOI: 10.1016/j.imj.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Background COVID-19 vaccines that trigger a strong secretory antibody response in breast milk may achieve effective passive protection of vulnerable newborns and breastfed infants of immunized mothers. The aim of this work was to investigate the presence of SARS-CoV-2 spike RBD-specific IgA and IgG antibodies in breast milk, 5 and 9 weeks after vaccination with 3 doses of the protein subunit vaccine Abdala, compared to those found in breast milk from COVID-19-recovered women, collected at least 40 days after the infection. Methods SARS-CoV-2 spike RBD-specific IgA and IgG antibodies were semi-quantified by indirect ELISA, using a homemade standard generated by pooling twenty breast milk samples with high absorbance values according to preliminary data. The validity of the standard curves was proved following the European Medicines Agency Guideline. Two breast milk samples from 2 unvaccinated women who had not been infected with COVID-19 were included as negative controls. Potentially neutralizing antibodies was assessed by a SARS-CoV-2 surrogate virus neutralization test. Results High levels of anti-RBD IgA antibodies were detected in breast milk samples 9 weeks after vaccination and anti-RBD IgG antibodies rise from the fifth to the ninth week. In the post-COVID-19 time that was evaluated, the IgG-type response was notably higher compared to both post-vaccination periods. Neutralizing antibody titers were similar in breast milk from vaccinated and COVID-19 recovered women. Conclusions This is the first report about the immune response in breast milk after the administration of a COVID-19 protein subunit vaccine, which could provide analogous protection to that conferred by SARS-CoV-2 infection. This implies a potential passive immunity that breastfed infants receive from their mothers vaccinated with Abdala.
Collapse
Affiliation(s)
- Maylin Pérez-Bernal
- Research & Development Department, Center for Genetic Engineering and Biotechnology, Circunvalante Norte, Olivos III, Sancti Spiritus, Cuba
| | - Carlos Hernández
- Research & Development Department, Center for Genetic Engineering and Biotechnology, Circunvalante Norte, Olivos III, Sancti Spiritus, Cuba
| | - Rafael Ibargollín
- Research & Development Department, Center for Genetic Engineering and Biotechnology, Circunvalante Norte, Olivos III, Sancti Spiritus, Cuba
| | - Midalis Martínez
- Neonatology Service, General Hospital "Camilo Cienfuegos", 128 Bartolome Maso, Sancti Spiritus, Cuba
| | - Migdiala Soria
- Neonatology Service, General Hospital "Camilo Cienfuegos", 128 Bartolome Maso, Sancti Spiritus, Cuba
| | - Magali Delgado
- Research & Development Department, Center for Genetic Engineering and Biotechnology, Circunvalante Norte, Olivos III, Sancti Spiritus, Cuba
| | - Onel Valdivia
- Research & Development Department, Center for Genetic Engineering and Biotechnology, Circunvalante Norte, Olivos III, Sancti Spiritus, Cuba
| | - Dayamí Dorta
- Production Department, Center for Genetic Engineering and Biotechnology, Circunvalante Norte, Olivos III, Sancti Spiritus, Cuba
| | - Andy Domínguez
- Production Department, Center for Genetic Engineering and Biotechnology, Circunvalante Norte, Olivos III, Sancti Spiritus, Cuba
| | - Enrique Pérez
- Research & Development Department, Center for Genetic Engineering and Biotechnology, Circunvalante Norte, Olivos III, Sancti Spiritus, Cuba
| | - Yeosvany Cabrera
- Research & Development Department, Center for Genetic Engineering and Biotechnology, Circunvalante Norte, Olivos III, Sancti Spiritus, Cuba
| |
Collapse
|
56
|
Jacobsen EM, Fabricius D, Class M, Topfstedt F, Lorenzetti R, Janowska I, Schmidt F, Staniek J, Zernickel M, Stamminger T, Dietz AN, Zellmer A, Hecht M, Rauch P, Blum C, Ludwig C, Jahrsdörfer B, Schrezenmeier H, Heeg M, Mayer B, Seidel A, Groß R, Münch J, Kirchhoff F, Bode SFN, Strauss G, Renk H, Elling R, Stich M, Voll RE, Tönshof B, Franz AR, Henneke P, Debatin KM, Rizzi M, Janda A. High antibody levels and reduced cellular response in children up to one year after SARS-CoV-2 infection. Nat Commun 2022; 13:7315. [PMID: 36437276 PMCID: PMC9701757 DOI: 10.1038/s41467-022-35055-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID-19 course and immunity differ in children and adults. We analyzed immune response dynamics in 28 families up to 12 months after mild or asymptomatic infection. Unlike adults, the initial response is plasmablast-driven in children. Four months after infection, children show an enhanced specific antibody response and lower but detectable spike 1 protein (S1)-specific B and T cell responses than their parents. While specific antibodies decline, neutralizing antibody activity and breadth increase in both groups. The frequencies of S1-specific B and T cell responses remain stable. However, in children, one year after infection, an increase in the S1-specific IgA class switch and the expression of CD27 on S1-specific B cells and T cell maturation are observed. These results, together with the enhanced neutralizing potential and breadth of the specific antibodies, suggest a progressive maturation of the S1-specific immune response. Hence, the immune response in children persists over 12 months but dynamically changes in quality, with progressive neutralizing, breadth, and memory maturation. This implies a benefit for booster vaccination in children to consolidate memory formation.
Collapse
Affiliation(s)
- Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Magdalena Class
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Fernando Topfstedt
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Schmidt
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Zernickel
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | | | - Andrea N Dietz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Manuel Hecht
- CANDOR Bioscience GmbH, Wangen im Allgäu, Germany
| | - Peter Rauch
- CANDOR Bioscience GmbH, Wangen im Allgäu, Germany
| | - Carmen Blum
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Carolin Ludwig
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benjamin Mayer
- Department of Statistics, University of Ulm, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Sebastian F N Bode
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Gudrun Strauss
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Hanna Renk
- University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Roland Elling
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Maximillian Stich
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burkhard Tönshof
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Axel R Franz
- University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna Medical University of Vienna, Vienna, Austria.
| | - Ales Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany.
| |
Collapse
|
57
|
Wolf C, Köppert S, Becza N, Kuerten S, Kirchenbaum GA, Lehmann PV. Antibody Levels Poorly Reflect on the Frequency of Memory B Cells Generated following SARS-CoV-2, Seasonal Influenza, or EBV Infection. Cells 2022; 11:cells11223662. [PMID: 36429090 PMCID: PMC9688940 DOI: 10.3390/cells11223662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The scope of immune monitoring is to define the existence, magnitude, and quality of immune mechanisms operational in a host. In clinical trials and praxis, the assessment of humoral immunity is commonly confined to measurements of serum antibody reactivity without accounting for the memory B cell potential. Relying on fundamentally different mechanisms, however, passive immunity conveyed by pre-existing antibodies needs to be distinguished from active B cell memory. Here, we tested whether, in healthy human individuals, the antibody titers to SARS-CoV-2, seasonal influenza, or Epstein-Barr virus antigens correlated with the frequency of recirculating memory B cells reactive with the respective antigens. Weak correlations were found. The data suggest that the assessment of humoral immunity by measurement of antibody levels does not reflect on memory B cell frequencies and thus an individual's potential to engage in an anamnestic antibody response against the same or an antigenically related virus. Direct monitoring of the antigen-reactive memory B cell compartment is both required and feasible towards that goal.
Collapse
Affiliation(s)
- Carla Wolf
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sebastian Köppert
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Noémi Becza
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Greg A. Kirchenbaum
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
| | - Paul V. Lehmann
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Correspondence: ; Tel.: +1-(216)-791-5084
| |
Collapse
|
58
|
Chistyakova GN, Malgina GB, Ustyuzhanin AV, Remizova II. Formation of anti-infectious and post-vaccination anti-SARS-CoV-2 humoral immunity in medical workers of the perinatal center. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022; 12:688-700. [DOI: 10.15789/2220-7619-foa-1856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
In the context of the global spread of the new coronavirus infection, studies aimed at investigating formation of anti-infectious and post-vaccination immunity are of special importance, which is necessary to prevent and reduce morbidity and mortality due to SARS-CoV-2 infection. Purpose: to assess anti-infectious immunity against SARS-CoV-2 in various forms of the disease and development of post-vaccination humoral reactions in medical workers of the perinatal center.
Materials and methods. A study of blood serum was carried out to assess SARS-CoV-2-specific IgM and IgG antibodies in 119 medical workers recovered after COVID-19, divided into groups based on the disease severity (mild, moderate and asymptomatic), as well as in 62 vaccinated employees, divided into groups according to age. Semi-quantitative measurement of virus-specific antibodies was carried out by ELISA with test systems SARS-CoV-2-IgG-ELISA-BEST and SARS-CoV-2-IgM-ELISA-BEST. Statistical processing of the research results was carried out using Microsoft Excel 2010 and Statistica 6. Quantitative characteristics were presented as median (ME), lower and upper quartiles (LQ1-UQ3); qualitative parameters as absolute value and relative number (%). Difference between groups was analyzed by using the 2 test (qualitative) and the MannWhitney U-test (quantitative).
Results. The results of the study showed that the majority of employees with a moderate-severe form of SARS-CoV-2 had a high level of IgG (PR a positivity rate of more than 9.0 arbitrary units) 9 months after the disease compared to those who suffered from mild or asymptomatic (83.3% versus 25.8% and 13.3%, p 0.017) infection. The duration of IgG circulation after former illness had no relation to its severity and patient age. The effectiveness of the primary vaccination Sputnik V and revaccination with Sputnik Light and KoviVak was 100% after inoculating the vaccine second component. The lowest level of antibodies after the first vaccination is recorded in persons over 60 years old (1.48 (1.123.25 versus PR = 8.48(5.7810.11) and 9.27 (5.8410.31) arbitrary units, p 0.017)), in comparison with young and middle-age subjects. The speed SARS-CoV-2 elimination of IgG at 6, 9 or more months after vaccination depends on relevant initial peak antibody concentration. Subjects who were initially vaccinated with the KoviVac vaccine, IgG was not detected 2 months after vaccination. The protective effect of Sputnik V, Sputnik Light, KoviVac after re-infection with SARS-CoV-2 averages 71.2%.
Conclusion. Thus, the results obtained on assessing anti-infectious and post-vaccination immunity against SARS-CoV-2 emphasize the need for further studies on a larger patient cohort, especially in those with asymptomatic infection as well as the elderly subjects.
Collapse
|
59
|
Troshina E, Yukina M, Nuralieva N, Vasilyev E, Rebrova O, Akhmatova R, Ikonnikova A, Savvateeva E, Gryadunov D, Melnichenko G, Mokrysheva N. Association of Alleles of Human Leukocyte Antigen Class II Genes and Severity of COVID-19 in Patients of the 'Red Zone' of the Endocrinology Research Center, Moscow, Russia. Diseases 2022; 10:diseases10040099. [PMID: 36412593 PMCID: PMC9680278 DOI: 10.3390/diseases10040099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to assess the correlations of clinical features of patients with moderate and severe courses of COVID-19, comorbidity (endocrine, autoimmune, cardiovascular, oncological, and pulmonary diseases), and alleles of the HLA class II system genes. One hundred COVID-19 patients hospitalized in the Endocrinology Research Centre, Moscow, Russia, were analyzed for age, gender, smoking, comorbidity, and invasive mechanical ventilation. Computer tomography was used to assess the severity of the disease. HLA-DRB1, HLA-DQA1, and HLA-DQB1 alleles were identified in samples from 100 patients and samples from 327 randomly selected individuals collected in the prepandemic period (control group). There was no association of gender, age, weight, body mass index, smoking, and comorbidity with the severity of COVID-19. Allele DQB1*06:02-8 was more common in patients (p < 0.00005), and DQB1*06:01 and DQB1*05:03 were more common in the control group (p < 0.00005, and p = 0.0011, respectively). DQB1*06:02-8 can probably be considered as predisposing to moderate and severe COVID-19, and DQB1*06:01 can be considered as protective. No association of these alleles with comorbidity was found. Our results suggest that carriers of predisposing alleles, with cardiovascular and non-autoimmune endocrine diseases, should take more stringent preventive measures, and if infected, a more aggressive COVID-19 treatment strategy should be used.
Collapse
Affiliation(s)
- Ekaterina Troshina
- Endocrinology Research Centre, Ministry of Health of the Russian Federation, 117036 Moscow, Russia
| | - Marina Yukina
- Endocrinology Research Centre, Ministry of Health of the Russian Federation, 117036 Moscow, Russia
- Correspondence:
| | - Nurana Nuralieva
- Endocrinology Research Centre, Ministry of Health of the Russian Federation, 117036 Moscow, Russia
| | - Evgeny Vasilyev
- Endocrinology Research Centre, Ministry of Health of the Russian Federation, 117036 Moscow, Russia
| | - Olga Rebrova
- Endocrinology Research Centre, Ministry of Health of the Russian Federation, 117036 Moscow, Russia
| | - Ravida Akhmatova
- Endocrinology Research Centre, Ministry of Health of the Russian Federation, 117036 Moscow, Russia
| | - Anna Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Savvateeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Galina Melnichenko
- Endocrinology Research Centre, Ministry of Health of the Russian Federation, 117036 Moscow, Russia
| | - Natalia Mokrysheva
- Endocrinology Research Centre, Ministry of Health of the Russian Federation, 117036 Moscow, Russia
| |
Collapse
|
60
|
Yu H, Liu H, Yang Y, Guan X. Development and Evaluation of a Rapid Neutralizing Antibody Assay for COVID-19 Vaccination. ACS OMEGA 2022; 7:36254-36262. [PMID: 36278077 PMCID: PMC9583339 DOI: 10.1021/acsomega.2c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 neutralizing antibodies have excellent application prospects in the prevention and treatment of COVID-19. This study established a competitive colloidal gold immunochromatography assay (GICA) to detect neutralizing antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 in postvaccination serum. The sensitivity, stability, and specificity of GICA were evaluated using neutralizing antibody solution reference material and positive serum. The consistency and correlation between GICA, pseudovirus neutralization (PN) assay, and ELISA were compared. Consistency analysis of serum neutralizing antibody and specific IgG antibody titers was conducted, and changes in neutralizing antibodies and specific IgG antibodies in serum after inoculation with the homologous booster inactivated vaccine and recombinant vaccine were noted. The sensitivity of the reagent was 20.66 IU/L, and the specificity was 100%. There was a strong consistency and correlation between GICA and PN (κ = 0.886, n = 165; r = 0.918, P < 0.001). The correlation coefficient of serum anti-RBD antibody and specific IgG antibody titers was 0.5253 (P < 0.001). The specific IgG antibody titers in serum after (W4) inoculation with homologous booster inactivated vaccine were 10.80 (S/CO).The anti-RBD antibody titers were 28.33. The anti-RBD omicron variant (B.1.1.529) antibody titers were 11.67. After inoculation with the recombinant vaccine, the specific IgG antibody titers in the serum of W4 were 10.68. The serum anti-RBD antibody titers of W4 were 103.30. The serum anti-RBD omicron variant (B.1.1.529) antibody titers of W4 were 56.67. Therefore, vaccination of the third dose of the homologous booster inactivated vaccine and recombinant vaccine can enhance the level of neutralizing antibodies against the omicron variant (B.1.1.529). This study demonstrates that a GICA kit for neutralizing antibodies against the RBD of SARS-CoV-2 can be used for COVID-19 vaccine evaluation. Changes in titers enable long-term monitoring of a population's immunity and guide interventions when their immunity declines.
Collapse
Affiliation(s)
- Heshan Yu
- Affiliated
Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, China
| | - Huan Liu
- Liaoning
University of Traditional Chinese Medicine, Shenyang 110847, Liaoning, China
| | - Yongju Yang
- Affiliated
Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, China
| | - Xuefeng Guan
- Liaoning
University of Traditional Chinese Medicine, Shenyang 110847, Liaoning, China
| |
Collapse
|
61
|
Gallais F, Renaud-Picard B, Solis M, Laugel E, Soulier E, Caillard S, Kessler R, Fafi-Kremer S. Torque teno virus DNA load as a predictive marker of antibody response to a three-dose regimen of COVID-19 mRNA-based vaccine in lung transplant recipients. J Heart Lung Transplant 2022; 41:1429-1439. [PMID: 35953352 PMCID: PMC9287579 DOI: 10.1016/j.healun.2022.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Previous studies have reported that lung transplant recipients (LTR) develop a poor response to two doses of COVID-19 vaccine, but data regarding the third dose are lacking. We investigated the antibody response after three doses of mRNA vaccine in LTR and its predictive factors. METHODS A total of 136 LTR, including 10 LTR previously infected and 126 COVID-19-naive LTR, were followed during and after three doses of mRNA vaccine. We retrospectively measured anti-receptor-binding domain (RBD) IgG response and neutralizing antibodies. In a posthoc analysis, we used a multivariate logistic regression model to assess the association between vaccine response and patient characteristics, including viral DNA load (VL) of the ubiquitous Torque teno virus (TTV) (optimal cut-off set by ROC curve analysis), which reflects the overall immunosuppression. RESULTS After 3 doses, 47/126 (37.3%) COVID-19-naive LTR had positive anti-RBD IgG (responders) and 14/126 (11.1%) had antibody titers above 264 Binding Antibody Units/mL. None neutralized the omicron variant versus 7 of the 10 previously infected LTR. Nonresponse was associated with TTV VL ≥6.2 log10 copies/mL before vaccination (Odds Ratio (OR) = 17.87, 95% confidence interval (CI95) = 3.02-105.72), mycophenolate treatment (OR = 4.73, CI95 = 1.46-15.34) and BNT162b2 (n = 34; vs mRNA-1273, n = 101) vaccine (OR = 6.72, CI95 = 1.75-25.92). In second dose non-responders, TTV VL ≥6.2 or <3.2 log10 copies/mL before the third dose was associated with low (0/19) and high (9/10) rates of seroconversion. CONCLUSION COVID-19-naive LTR respond poorly to three doses of mRNA vaccine, especially those with high TTV VL. Future studies could further evaluate this biomarker as a guide for vaccine strategies.
Collapse
Affiliation(s)
- Floriane Gallais
- Virology Laboratory, Strasbourg University Hospital, Strasbourg, France,Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Benjamin Renaud-Picard
- Department of Pneumology, Strasbourg Lung Transplant Program, Strasbourg University Hospital, Strasbourg, France
| | - Morgane Solis
- Virology Laboratory, Strasbourg University Hospital, Strasbourg, France,Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Elodie Laugel
- Virology Laboratory, Strasbourg University Hospital, Strasbourg, France,Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Eric Soulier
- Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Sophie Caillard
- Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France,Department of Nephrology and Transplantation, Strasbourg University Hospital, Strasbourg, France
| | - Romain Kessler
- Department of Pneumology, Strasbourg Lung Transplant Program, Strasbourg University Hospital, Strasbourg, France
| | - Samira Fafi-Kremer
- Virology Laboratory, Strasbourg University Hospital, Strasbourg, France,Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France,Reprint requests: Samira Fafi-Kremer, PharmD, PhD. Virology Laboratory and INSERM UMR_S 1109, LabEx TRANSPLANTEX, Strasbourg University Hospital, 3 rue Koeberlé, 67000 Strasbourg, France. Telephone: (+33) 3-69-55-14-38. Fax: (+33) 3-68-85-37-50
| |
Collapse
|
62
|
Bhuiyan TR, Al Banna H, Kaisar MH, Karmakar PC, Hakim A, Akter A, Ahmed T, Tauheed I, Islam S, Hasnat MA, Sumon MA, Rashed A, Ghosh S, Clemens JD, Banu S, Shirin T, Weiskopf D, Sette A, Chowdhury F, Qadri F. Correlation of antigen-specific immune response with disease severity among COVID-19 patients in Bangladesh. Front Immunol 2022; 13:929849. [PMID: 36248882 PMCID: PMC9554593 DOI: 10.3389/fimmu.2022.929849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a protean disease causing different degrees of clinical severity including fatality. In addition to humoral immunity, antigen-specific T cells may play a critical role in defining the protective immune response against SARS-CoV-2, the virus that causes this disease. As a part of a longitudinal cohort study in Bangladesh to investigate B and T cell-specific immune responses, we sought to evaluate the activation-induced marker (AIM) and the status of different immune cell subsets during a COVID-19 infection. We analyzed a total of 115 participants, which included participants with asymptomatic, mild, moderate, and severe clinical symptoms. We observed decreased mucosal-associated invariant T (MAIT) cell frequency on the initial days of the COVID-19 infection in symptomatic patients compared to asymptomatic patients. However, natural killer (NK) cells were found to be elevated in symptomatic patients just after the onset of the disease compared to both asymptomatic patients and healthy individuals. Moreover, we found a significant increase of AIM+ (both OX40+CD137+ and OX40+CD40L+) CD4+ T cells in moderate and severe COVID-19 patients in response to SARS-CoV-2 peptides (especially spike peptides) compared to pre-pandemic controls who are unexposed to SARS-CoV-2. Notably, we did not observe any significant difference in the CD8+ AIMs (CD137+CD69+), which indicates the exhaustion of CD8+ T cells during a COVID-19 infection. These findings suggest that patients who recovered from moderate and severe COVID-19 were able to mount a strong CD4+ T-cell response against shared viral determinants that ultimately induced T cells to mount further immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Hasan Al Banna
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - M. Hasanul Kaisar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Polash Chandra Karmakar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Al Hakim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Afroza Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Tasnuva Ahmed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Shaumik Islam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Mohammad Abul Hasnat
- Department of Cardiology, Department of Oncology, Kurmitola General Hospital, Dhaka, Bangladesh
| | - Mostafa Aziz Sumon
- Department of Cardiology, Department of Oncology, Kurmitola General Hospital, Dhaka, Bangladesh
| | - Asif Rashed
- Department of Microbiology, Department of Medicine, Mugda Medical College and Hospital, Dhaka, Bangladesh
| | - Shuvro Ghosh
- Department of Microbiology, Department of Medicine, Mugda Medical College and Hospital, Dhaka, Bangladesh
| | - John D. Clemens
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
- Department of Epidemiology, University of California Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, CA, United States
- International Vaccine Institute, Seoul, South Korea
| | - Sayera Banu
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
- *Correspondence: Firdausi Qadri,
| |
Collapse
|
63
|
Edelstein M, Wiegler Beiruti K, Ben-Amram H, Bar-Zeev N, Sussan C, Asulin H, Strauss D, Bathish Y, Zarka S, Abu Jabal K. Antibody-Mediated Immunogenicity Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Following Priming, Boosting, and Hybrid Immunity: Insights From 11 Months of Follow-up of a Healthcare Worker Cohort in Israel, December 2020-October 2021. Clin Infect Dis 2022; 75:e572-e578. [PMID: 35279028 PMCID: PMC8992305 DOI: 10.1093/cid/ciac212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We determined circulating anti-S severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) antibody titers in a vaccinated healthcare workers (HCWs) cohort from Northern Israel in the 11 months following primary vaccination according to age, ethnicity, and previous infection status. METHODS All consenting HCWs were invited to have their IgG levels measured before vaccination and at 6 subsequent timepoints using a quantitative S1/S2 IgG assay. All HCWs with suspected coronavirus disease 2019 (COVID-19) were polymerase chain reaction (PCR) tested. We described trends in circulating IgG geometric mean concentration (GMC) by age, ethnicity, timing of boosting, and previous infection status and compared strata using Kruskall-Wallis tests. RESULTS Among 985 vaccinated HCWs, IgG titers between 1 month post 2nd dose to pre-boosting gradually decreased in all age groups. Younger or previously infected individuals had higher initial post-vaccination IgG levels (P < .001 in both cases); differences substantially decreased or disappeared at 7-9 months, before boosting. The proportion of individuals infected prior to initiating vaccination and re-infected after dose 1 was comparable to the proportion of breakthrough infection post-dose 2 in those not previously infected (4.2 vs 4.7%). Pre-infection IgG levels in the 40 participants with breakthrough infection after dose 2 were similar to levels measured at the same timepoint in vaccinated HCWs who remained uninfected (P > .3). Post-dose3 IgG levels were more than 10-fold those 1 month post-dose 2. CONCLUSIONS Immunity waned in all age groups and previously infected individuals, reversed by boosting. IgG titers decrease and reinfections in individuals with hybrid immunity (infection + vaccination) suggests they may also require further doses. Our study also highlights the difficulty in determining protective IgG levels.
Collapse
Affiliation(s)
- Michael Edelstein
- Ziv Medical Centre, Safed, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | | | - Naor Bar-Zeev
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - David Strauss
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Younes Bathish
- Ziv Medical Centre, Safed, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Salman Zarka
- Ziv Medical Centre, Safed, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Kamal Abu Jabal
- Ziv Medical Centre, Safed, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
64
|
Menges D, Zens KD, Ballouz T, Caduff N, Llanas-Cornejo D, Aschmann HE, Domenghino A, Pellaton C, Perreau M, Fenwick C, Pantaleo G, Kahlert CR, Münz C, Puhan MA, Fehr JS. Heterogenous humoral and cellular immune responses with distinct trajectories post-SARS-CoV-2 infection in a population-based cohort. Nat Commun 2022; 13:4855. [PMID: 35982045 PMCID: PMC9386650 DOI: 10.1038/s41467-022-32573-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 08/06/2022] [Indexed: 12/14/2022] Open
Abstract
To better understand the development of SARS-CoV-2-specific immunity over time, a detailed evaluation of humoral and cellular responses is required. Here, we characterize anti-Spike (S) IgA and IgG in a representative population-based cohort of 431 SARS-CoV-2-infected individuals up to 217 days after diagnosis, demonstrating that 85% develop and maintain anti-S responses. In a subsample of 64 participants, we further assess anti-Nucleocapsid (N) IgG, neutralizing antibody activity, and T cell responses to Membrane (M), N, and S proteins. In contrast to S-specific antibody responses, anti-N IgG levels decline substantially over time and neutralizing activity toward Delta and Omicron variants is low to non-existent within just weeks of Wildtype SARS-CoV-2 infection. Virus-specific T cells are detectable in most participants, albeit more variable than antibody responses. Cluster analyses of the co-evolution of antibody and T cell responses within individuals identify five distinct trajectories characterized by specific immune patterns and clinical factors. These findings demonstrate the relevant heterogeneity in humoral and cellular immunity to SARS-CoV-2 while also identifying consistent patterns where antibody and T cell responses may work in a compensatory manner to provide protection. The persistence of the immune response to SARS-CoV-2 after recovery from infection is an indicator for subsequent protection against infection. Here the authors follow recovered patients and measure antibody and T cell responses and find that these two parts of the immune response may have different longevity.
Collapse
Affiliation(s)
- Dominik Menges
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich (UZH), Zurich, Switzerland
| | - Kyra D Zens
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich (UZH), Zurich, Switzerland.,Institute for Experimental Immunology, University of Zurich (UZH), Zurich, Switzerland
| | - Tala Ballouz
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich (UZH), Zurich, Switzerland
| | - Nicole Caduff
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich (UZH), Zurich, Switzerland.,Institute for Experimental Immunology, University of Zurich (UZH), Zurich, Switzerland
| | - Daniel Llanas-Cornejo
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich (UZH), Zurich, Switzerland
| | - Hélène E Aschmann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich (UZH), Zurich, Switzerland.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Anja Domenghino
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich (UZH), Zurich, Switzerland.,Department of Visceral and Transplantation Surgery, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| | - Céline Pellaton
- Service of Immunology and Allergy, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Christian Münz
- Institute for Experimental Immunology, University of Zurich (UZH), Zurich, Switzerland
| | - Milo A Puhan
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich (UZH), Zurich, Switzerland.
| | - Jan S Fehr
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
65
|
Arguni E, Dewi FST, Fachiroh J, Paramita DK, Lestari SK, Wiratama BS, Susilaningrum AR, Kharisma B, Meisyarah YH, Sari MP, Farahdilla ZA, Siswanto S, Sjaugi MF, Sasongko TH, Lazuardi L. Two-years antibody responses following SARS-CoV-2 infection in humans: A study protocol. PLoS One 2022; 17:e0272690. [PMID: 35972930 PMCID: PMC9380924 DOI: 10.1371/journal.pone.0272690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The long-term antibody response to the novel SARS-CoV-2 in infected patients and their residential neighborhood remains unknown in Indonesia. This information will provide insights into the antibody kinetics over a relatively long period as well as transmission risk factors in the community. We aim to prospectively observe and determine the kinetics of the anti-SARS-CoV-2 antibody for 2 years after infection in relation to disease severity and to determine the risk and protective factors of SARS CoV-2 infections in the community. A cohort of RT-PCR confirmed SARS-CoV-2 patients (case) will be prospectively followed for 2 years and will be compared to a control population. The control group comprises SARS-CoV-2 non-infected people who live within a one-kilometer radius from the corresponding case (location matching). This study will recruit at least 165 patients and 495 controls. Demographics, community variables, behavioral characteristics, and relevant clinical data will be collected. Serum samples taken at various time points will be tested for IgM anti-Spike protein of SARS-CoV-2 and IgG anti-Spike RBD of SARS-CoV-2 by using Chemiluminescent Microparticle Immunoassay (CMIA) method. The Kaplan-Meier method will be used to calculate cumulative seroconversion rates, and their association with disease severity will be estimated by logistic regression. The risk and protective factors associated with the SARS-CoV-2 infection will be determined using conditional (matched) logistic regression and presented as an odds ratio and 95% confidence interval.
Collapse
Affiliation(s)
- Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fatwa Sari Tetra Dewi
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Health Behavior, Environment, and Social Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jajah Fachiroh
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Kartikawati Paramita
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Septi Kurnia Lestari
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Bayu Satria Wiratama
- Department Biostatistics, Epidemiology and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Annisa Ryan Susilaningrum
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Bara Kharisma
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yogi Hasna Meisyarah
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Merlinda Permata Sari
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Zakiya Ammalia Farahdilla
- Health and Demographic Surveillance System Sleman, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Siswanto Siswanto
- Universitas Gadjah Mada Academic Hospital, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhammad Farhan Sjaugi
- Perdana University Graduate School of Medicine and Perdana University Center for Research Excellence, Kuala Lumpur, Malaysia
| | - Teguh Haryo Sasongko
- Department of Physiology, School of Medicine and Institute for Research, Development, and Innovation, International Medical University Kuala Lumpur, Malaysia
| | - Lutfan Lazuardi
- Department of Health Policy and Management, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
66
|
Alfonso-Dunn R, Lin J, Kirschner V, Lei J, Feuer G, Malin M, Liu J, Roche M, Sadiq SA. Strong T-cell activation in response to COVID-19 vaccination in multiple sclerosis patients receiving B-cell depleting therapies. Front Immunol 2022; 13:926318. [PMID: 35990701 PMCID: PMC9388928 DOI: 10.3389/fimmu.2022.926318] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Immunocompromised individuals, including multiple sclerosis (MS) patients on certain immunotherapy treatments, are considered susceptible to complications from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and specific vaccination regimens have been recommended for suitable protection. MS patients receiving anti-CD20 therapy (aCD20-MS) are considered especially vulnerable due to acquired B-cell depletion and impaired antibody production in response to virus infection and COVID-19 vaccination. Here, the humoral and cellular responses are analyzed in a group of aCD20-MS patients (n=43) compared to a healthy control cohort (n=34) during the first 6 months after a 2-dose cycle mRNA-based COVID-19 vaccination. Both IgG antibodies recognizing receptor binding domain (RBD) from CoV-2 spike protein and their blocking activity against RBD-hACE2 binding were significantly reduced in aCD20-MS patients, with a seroconversion rate of only 23.8%. Interestingly, even under conditions of severe B-cell depletion and failed seroconversion, a significantly higher polyfunctional IFNγ+ and IL-2+ T-cell response and strong T-cell proliferation capacity were detected compared to controls. Moreover, no difference in T-cell response was observed between forms of disease (relapsing remitting- vs progressive-MS), anti-CD20 therapy (Rituximab vs Ocrelizumab) and type of mRNA-based vaccine received (mRNA-1273 vs BNT162b2). These results suggest the generation of a partial adaptive immune response to COVID-19 vaccination in B-cell depleted MS individuals driven by a functionally competent T-cell arm. Investigation into the role of the cellular immune response is important to identifying the level of protection against SARS-CoV-2 in aCD20-MS patients and could have potential implications for future vaccine design and application.
Collapse
|
67
|
Lin Y, Zhu J, Liu Z, Li C, Guo Y, Wang Y, Chen K. Kinetics of severe acute respiratory syndrome coronavirus 2 infection antibody responses. Front Immunol 2022; 13:864278. [PMID: 35990623 PMCID: PMC9389018 DOI: 10.3389/fimmu.2022.864278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world, causing severe morbidity and mortality. Since the first reports of Coronavirus disease 2019 (COVID-19) in late 2019, research on the characteristics of specific humoral immunity against SARS-CoV-2 in patients with COVID-19 has made great progress. However, our knowledge of persistent humoral immunity to SARS-CoV-2 infection is limited. The existence of protective immunity after infection will affect future transmission and disease severity. Therefore, it is important to gather knowledge about the kinetics of antibody responses. In this review, we summarize the information obtained so far on the characteristics and kinetics of the SARS-CoV-2 infection of specific humoral immune response, especially in neutralizing antibodies and their relationship with disease severity. In addition, with the emergence of variants of concern, we summarize the neutralizing effect of specific humoral immunity on variants of concern after the initial SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Yajie Lin
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zongming Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yikai Guo
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ying Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Cancer Centre of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Ying Wang, ; Keda Chen,
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Ying Wang, ; Keda Chen,
| |
Collapse
|
68
|
Sui Y, Li J, Andersen H, Zhang R, Prabhu SK, Hoang T, Venzon D, Cook A, Brown R, Teow E, Velasco J, Pessaint L, Moore IN, Lagenaur L, Talton J, Breed MW, Kramer J, Bock KW, Minai M, Nagata BM, Choo-Wosoba H, Lewis MG, Wang LX, Berzofsky JA. An intranasally administrated SARS-CoV-2 beta variant subunit booster vaccine prevents beta variant replication in rhesus macaques. PNAS NEXUS 2022; 1:pgac091. [PMID: 35873792 PMCID: PMC9295201 DOI: 10.1093/pnasnexus/pgac091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jianping Li
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Roushu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Sunaina K Prabhu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Tanya Hoang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David Venzon
- Biostatistics and Data Management Section, Center of for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Laurel Lagenaur
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jim Talton
- Alchem Laboratories, Alachua, FL 32615, USA
| | - Matthew W Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Rockville, MD 20850, USA
| | - Josh Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Rockville, MD 20850, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Center of for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
69
|
Xu R, Zhao B, Lan L, Liu Y, Li Y, Jiang L, Dai S. A one-year follow-up study on dynamic changes of leukocyte subsets and virus-specific antibodies of patients with COVID-19 in Sichuan, China. Int J Med Sci 2022; 19:1122-1130. [PMID: 35919814 PMCID: PMC9339420 DOI: 10.7150/ijms.71286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022] Open
Abstract
Background: SARS-CoV-2 infection causes immune response and produces protective antibodies, and these changes may persist after patients discharged from hospital. Methods: This study conducted a one-year follow-up study on patients with COVID-19 to observe the dynamic changes of circulating leukocyte subsets and virus-specific antibodies. Results: A total of 66 patients with COVID-19 and 213 healthy patients with inactivated SARS-CoV-2 vaccination were included. The virus-specific total antibody, IgG and IgM antibody of patients after one year of recovery were higher than those of healthy vaccinated participants (94.13 vs 4.65, 2.67 vs 0.44, 0.09 vs 0.06, respectively) (P < 0.001). Neutrophil count (OR = 1.73, 95% CI: 1.10-2.70, P = 0.016) and neutrophil-to-lymphocyte ratio (OR = 1.59, 95% CI: 1.05-2.41, P = 0.030) at discharge were the influencing factors for the positivity of virus-specific IgG antibody in patients after one year of recovery. The counts of CD4+ and CD8+ T, B and NK cells increased with the time of recovery, and remained basically stable from 9 to 12 months after discharge. After 12 months, the positivity of IgG antibody was 85.3% and IgM was 11.8%, while the virus-specific antibody changed dynamically in patients within one year after discharge. Conclusions: The SARS-CoV-2 specific antibody of recovered patients showed dynamic fluctuation after discharge, while the leukocyte subsets gradually increased and basically stabilized after 9 months.
Collapse
Affiliation(s)
- Renjie Xu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bennan Zhao
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Lijuan Lan
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yaling Liu
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liangshuang Jiang
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Shuiping Dai
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
70
|
Ortega MM, da Silva LT, Candido ÉD, Zheng Y, Tiyo BT, Ferreira AEF, Corrêa-Silva S, Scagion GP, Leal FB, Chalup VN, Valério CA, Schmitz GJH, Ceneviva C, Corá AP, de Almeida A, Durigon EL, Oliveira DBL, Palmeira P, da Silva Duarte AJ, Carneiro-Sampaio M, Oshiro TM. Salivary, serological, and cellular immune response to the CoronaVac vaccine in health care workers with or without previous COVID-19. Sci Rep 2022; 12:10125. [PMID: 35710573 PMCID: PMC9202665 DOI: 10.1038/s41598-022-14283-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/03/2022] [Indexed: 12/28/2022] Open
Abstract
We investigated the anti-SARS-CoV-2 post-vaccine response through serum and salivary antibodies, serum antibody neutralizing activity and cellular immune response in samples from health care workers who were immunized with two doses of an inactivated virus-based vaccine (CoronaVac) who had or did not have COVID-19 previously. IgA and IgG antibodies directed at the spike protein were analysed in samples of saliva and/or serum by ELISA and/or chemiluminescence assays; the neutralizing activity of serum antibodies against reference strain B, Gamma and Delta SARS-CoV-2 variants were evaluated using a virus neutralization test and SARS-CoV-2 reactive interferon-gamma T-cell were analysed by flow cytometry. CoronaVac was able to induce serum and salivary IgG anti-spike antibodies and IFN-γ producing T cells in most individuals who had recovered from COVID-19 and/or were vaccinated. Virus neutralizing activity was observed against the ancestral strain, with a reduced response against the variants. Vaccinated individuals who had previous COVID-19 presented higher responses than vaccinated individuals for all variables analysed. Our study provides evidence that the CoronaVac vaccine was able to induce the production of specific serum and saliva antibodies, serum virus neutralizing activity and cellular immune response, which were increased in previously COVID-19-infected individuals compared to uninfected individuals.
Collapse
Affiliation(s)
- Marina Mazzilli Ortega
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, Predio 2, 3º andar, Cerqueira Cesar, São Paulo, SP, CEP: 05403-000, Brazil
| | - Laís Teodoro da Silva
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, Predio 2, 3º andar, Cerqueira Cesar, São Paulo, SP, CEP: 05403-000, Brazil.
| | - Érika Donizetti Candido
- Laboratorio de Virologia Clinica e Molecular do Instituto de Ciencias Biomedicas da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Yingying Zheng
- Departamento de Pediatria, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Bruna Tiaki Tiyo
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, Predio 2, 3º andar, Cerqueira Cesar, São Paulo, SP, CEP: 05403-000, Brazil
| | - Arthur Eduardo Fernandes Ferreira
- Laboratorio de Pediatria Clinica (LIM 36), Departamento de Pediatria, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Simone Corrêa-Silva
- Departamento de Pediatria, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Guilherme Pereira Scagion
- Laboratorio de Virologia Clinica e Molecular do Instituto de Ciencias Biomedicas da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fabyano Bruno Leal
- Laboratorio de Virologia Clinica e Molecular do Instituto de Ciencias Biomedicas da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vanessa Nascimento Chalup
- Laboratorio de Virologia Clinica e Molecular do Instituto de Ciencias Biomedicas da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Camila Araújo Valério
- Laboratorio de Virologia Clinica e Molecular do Instituto de Ciencias Biomedicas da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gabriela Justamante Händel Schmitz
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, Predio 2, 3º andar, Cerqueira Cesar, São Paulo, SP, CEP: 05403-000, Brazil
| | - Carina Ceneviva
- Divisao de Laboratorio Central, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Aline Pivetta Corá
- Divisao de Laboratorio Central, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Alexandre de Almeida
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, Predio 2, 3º andar, Cerqueira Cesar, São Paulo, SP, CEP: 05403-000, Brazil
| | - Edison Luiz Durigon
- Laboratorio de Virologia Clinica e Molecular do Instituto de Ciencias Biomedicas da Universidade de São Paulo, São Paulo, SP, Brazil
- Plataforma Científica Paster-USP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Danielle Bruna Leal Oliveira
- Laboratorio de Virologia Clinica e Molecular do Instituto de Ciencias Biomedicas da Universidade de São Paulo, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Patricia Palmeira
- Laboratorio de Pediatria Clinica (LIM 36), Departamento de Pediatria, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Alberto José da Silva Duarte
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, Predio 2, 3º andar, Cerqueira Cesar, São Paulo, SP, CEP: 05403-000, Brazil
- Divisao de Laboratorio Central, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Magda Carneiro-Sampaio
- Departamento de Pediatria, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Telma Miyuki Oshiro
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, Predio 2, 3º andar, Cerqueira Cesar, São Paulo, SP, CEP: 05403-000, Brazil.
| |
Collapse
|
71
|
Cords L, Knapp M, Woost R, Schulte S, Kummer S, Ackermann C, Beisel C, Peine S, Johansson AM, Kwok WWH, Günther T, Fischer N, Wittner M, Addo MM, Huber S, Schulze zur Wiesch J. High and Sustained Ex Vivo Frequency but Altered Phenotype of SARS-CoV-2-Specific CD4 + T-Cells in an Anti-CD20-Treated Patient with Prolonged COVID-19. Viruses 2022; 14:1265. [PMID: 35746736 PMCID: PMC9228841 DOI: 10.3390/v14061265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Here, we longitudinally assessed the ex vivo frequency and phenotype of SARS-CoV-2 membrane protein (aa145-164) epitope-specific CD4+ T-cells of an anti-CD20-treated patient with prolonged viral positivity in direct comparison to an immunocompetent patient through an MHC class II DRB1*11:01 Tetramer analysis. We detected a high and stable SARS-CoV-2 membrane-specific CD4+ T-cell response in both patients, with higher frequencies of virus-specific CD4+ T-cells in the B-cell-depleted patient. However, we found an altered virus-specific CD4+ T-cell memory phenotype in the B-cell-depleted patient that was skewed towards late differentiated memory T-cells, as well as reduced frequencies of SARS-CoV-2-specific CD4+ T-cells with CD45RA- CXCR5+ PD-1+ circulating T follicular helper cell (cTFH) phenotype. Furthermore, we observed a delayed contraction of CD127- virus-specific effector cells. The expression of the co-inhibitory receptors TIGIT and LAG-3 fluctuated on the virus-specific CD4+ T-cells of the patient, but were associated with the inflammation markers IL-6 and CRP. Our findings indicate that, despite B-cell depletion and a lack of B-cell-T-cell interaction, a robust virus-specific CD4+ T-cell response can be primed that helps to control the viral replication, but which is not sufficient to fully abrogate the infection.
Collapse
Affiliation(s)
- Leon Cords
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Maximilian Knapp
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Robin Woost
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Sophia Schulte
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Silke Kummer
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Christin Ackermann
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Claudia Beisel
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | | | - William Wai-Hung Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA; (A.M.J.); (W.W.-H.K.)
| | - Thomas Günther
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
| | - Nicole Fischer
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Melanie Wittner
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Marylyn Martina Addo
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Samuel Huber
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| |
Collapse
|
72
|
Soleimanian S, Alyasin S, Sepahi N, Ghahramani Z, Kanannejad Z, Yaghobi R, Karimi MH. An Update on Protective Effectiveness of Immune Responses After Recovery From COVID-19. Front Immunol 2022; 13:884879. [PMID: 35669767 PMCID: PMC9163347 DOI: 10.3389/fimmu.2022.884879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits variable immunity responses among hosts based on symptom severity. Whether immunity in recovered individuals is effective for avoiding reinfection is poorly understood. Determination of immune memory status against SARS-CoV-2 helps identify reinfection risk and vaccine efficacy. Hence, after recovery from COVID-19, evaluation of protective effectiveness and durable immunity of prior disease could be significant. Recent reports described the dynamics of SARS-CoV-2 -specific humoral and cellular responses for more than six months in convalescent SARS-CoV-2 individuals. Given the current evidence, NK cell subpopulations, especially the memory-like NK cell subset, indicate a significant role in determining COVID-19 severity. Still, the information on the long-term NK cell immunity conferred by SARS-CoV-2 infection is scant. The evidence from vaccine clinical trials and observational studies indicates that hybrid natural/vaccine immunity to SARS-CoV-2 seems to be notably potent protection. We suggested the combination of plasma therapy from recovered donors and vaccination could be effective. This focused review aims to update the current information regarding immune correlates of COVID-19 recovery to understand better the probability of reinfection in COVID-19 infected cases that may serve as guides for ongoing vaccine strategy improvement.
Collapse
Affiliation(s)
- Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghahramani
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Kanannejad
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
73
|
Kaewborisuth C, Wanitchang A, Koonpaew S, Srisutthisamphan K, Saenboonrueng J, Im-Erbsin R, Inthawong M, Sunyakumthorn P, Thaweerattanasinp T, Tanwattana N, Jantraphakorn Y, Reed MC, Lugo-Roman LA, Hunsawong T, Klungthong C, Jones AR, Fernandez S, Teeravechyan S, Lombardini ED, Jongkaewwattana A. Chimeric Virus-like Particle-Based COVID-19 Vaccine Confers Strong Protection against SARS-CoV-2 Viremia in K18-hACE2 Mice. Vaccines (Basel) 2022; 10:vaccines10050786. [PMID: 35632541 PMCID: PMC9143195 DOI: 10.3390/vaccines10050786] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Virus-like particles (VLPs) are highly immunogenic and versatile subunit vaccines composed of multimeric viral proteins that mimic the whole virus but lack genetic material. Due to the lack of infectivity, VLPs are being developed as safe and effective vaccines against various infectious diseases. In this study, we generated a chimeric VLP-based COVID-19 vaccine stably produced by HEK293T cells. The chimeric VLPs contain the influenza virus A matrix (M1) proteins and the SARS-CoV-2 Wuhan strain spike (S) proteins with a deletion of the polybasic furin cleavage motif and a replacement of the transmembrane and cytoplasmic tail with that of the influenza virus hemagglutinin (HA). These resulting chimeric S-M1 VLPs, displaying S and M1, were observed to be enveloped particles that are heterogeneous in shape and size. The intramuscular vaccination of BALB/c mice in a prime-boost regimen elicited high titers of S-specific IgG and neutralizing antibodies. After immunization and a challenge with SARS-CoV-2 in K18-hACE2 mice, the S-M1 VLP vaccination resulted in a drastic reduction in viremia, as well as a decreased viral load in the lungs and improved survival rates compared to the control mice. Balanced Th1 and Th2 responses of activated S-specific T-cells were observed. Moderate degrees of inflammation and viral RNA in the lungs and brains were observed in the vaccinated group; however, brain lesion scores were less than in the PBS control. Overall, we demonstrate the immunogenicity of a chimeric VLP-based COVID-19 vaccine which confers strong protection against SARS-CoV-2 viremia in mice.
Collapse
Affiliation(s)
- Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Asawin Wanitchang
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Surapong Koonpaew
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Janya Saenboonrueng
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Rawiwan Im-Erbsin
- Department of Veterinary Medicine, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (R.I.-E.); (M.I.); (P.S.); (M.C.R.); (L.A.L.-R.)
| | - Manutsanun Inthawong
- Department of Veterinary Medicine, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (R.I.-E.); (M.I.); (P.S.); (M.C.R.); (L.A.L.-R.)
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (R.I.-E.); (M.I.); (P.S.); (M.C.R.); (L.A.L.-R.)
| | - Theeradej Thaweerattanasinp
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Nathiphat Tanwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Yuparat Jantraphakorn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Matthew C. Reed
- Department of Veterinary Medicine, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (R.I.-E.); (M.I.); (P.S.); (M.C.R.); (L.A.L.-R.)
| | - Luis A. Lugo-Roman
- Department of Veterinary Medicine, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (R.I.-E.); (M.I.); (P.S.); (M.C.R.); (L.A.L.-R.)
| | - Taweewun Hunsawong
- Department of Virology, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (T.H.); (C.K.); (A.R.J.); (S.F.)
| | - Chonticha Klungthong
- Department of Virology, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (T.H.); (C.K.); (A.R.J.); (S.F.)
| | - Anthony R. Jones
- Department of Virology, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (T.H.); (C.K.); (A.R.J.); (S.F.)
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand; (T.H.); (C.K.); (A.R.J.); (S.F.)
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
| | - Eric D. Lombardini
- U.S. Army Medical Directorate-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand;
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (C.K.); (A.W.); (S.K.); (K.S.); (J.S.); (T.T.); (N.T.); (Y.J.); (S.T.)
- Correspondence:
| |
Collapse
|
74
|
Primorac D, Vrdoljak K, Brlek P, Pavelić E, Molnar V, Matišić V, Erceg Ivkošić I, Parčina M. Adaptive Immune Responses and Immunity to SARS-CoV-2. Front Immunol 2022; 13:848582. [PMID: 35603211 PMCID: PMC9114812 DOI: 10.3389/fimmu.2022.848582] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2022] Open
Abstract
Since the onset of the COVID-19 pandemic, the medical field has been forced to apply the basic knowledge of immunology with the most up-to-date SARS-CoV-2 findings and translate it to the population of the whole world in record time. Following the infection with the viral antigen, adaptive immune responses are activated mainly by viral particle encounters with the antigen-presenting cells or B cell receptors, which induce further biological interactions to defend the host against the virus. After the infection has been warded off, the immunological memory is developed. The SARS-CoV cellular immunity has been shown to persist even 17 years after the infection, despite the undetectable humoral component. Similar has been demonstrated for the SARS-CoV-2 T cell memory in a shorter period by assessing interferon-gamma levels when heparinized blood is stimulated with the virus-specific peptides. T cells also play an irreplaceable part in a humoral immune reaction as the backbone of a cellular immune response. They both provide the signals for B cell activation and the maturation, competence, and memory of the humoral response. B cell production of IgA was shown to be of significant influence in mediating mucosal immunity as the first part of the defense mechanism and in the development of nasal vaccines. Here, we interpret the recent SARS-CoV-2 available research, which encompasses the significance and the current understanding of adaptive immune activity, and compare it among naive, exposed, and vaccinated blood donors. Our recent data showed that those who recovered from COVID-19 and those who are vaccinated with EMA-approved vaccines had a long-lasting cellular immunity. Additionally, we analyze the humoral responses in immunocompromised patients and memory mediated by cellular immunity and the impact of clonality in the SARS-CoV-2 pandemic regarding breakthrough infections and variants of concern, both B.1.617.2 (Delta) and B.1.1.529 (Omicron) variants.
Collapse
Affiliation(s)
- Dragan Primorac
- St. Catherine Specialty Hospital, Zagreb, Croatia
- Medical School, University of Split, Split, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Medical School, University of Rijeka, Rijeka, Croatia
- Medical School REGIOMED, Coburg, Germany
- Eberly College of Science, The Pennsylvania State University, University Park, PA, United States
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT, United States
| | | | - Petar Brlek
- St. Catherine Specialty Hospital, Zagreb, Croatia
| | | | - Vilim Molnar
- St. Catherine Specialty Hospital, Zagreb, Croatia
| | - Vid Matišić
- St. Catherine Specialty Hospital, Zagreb, Croatia
| | - Ivana Erceg Ivkošić
- St. Catherine Specialty Hospital, Zagreb, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
75
|
Meyer B, Martinez-Murillo PA, Lemaitre B, Blanchard-Rohner G, Didierlaurent AM, Fontannaz P, Eugercios Manzanas C, Lambert PH, Loevy N, Kaiser L, Sartoretti J, Tougne C, Villard J, Huttner A, Siegrist CA, Eberhardt CS. Fitness of B-Cell Responses to SARS-CoV-2 WT and Variants Up to One Year After Mild COVID-19 – A Comprehensive Analysis. Front Immunol 2022; 13:841009. [PMID: 35585978 PMCID: PMC9108245 DOI: 10.3389/fimmu.2022.841009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo comprehensively evaluate SARS-CoV-2 specific B-cell and antibody responses up to one year after mild COVID-19.MethodsIn 31 mildly symptomatic COVID-19 participants SARS-CoV-2-specific plasmablasts and antigen-specific memory B cells were measured by ELISpot. Binding antibodies directed against the proteins spike (S), domain S1, and nucleocapsid (N) were estimated using rIFA, ELISA, and commercially available assays, and avidity measured using thiocyanate washout. Neutralizing antibodies against variants of concern were measured using a surrogate-neutralization test.ResultsPlasmablast responses were assessed in all participants who gave sequential samples during the first two weeks after infection; they preceded the rise in antibodies and correlated with antibody titers measured at one month. S1 and N protein-specific IgG memory B-cell responses remained stable during the first year, whereas S1-specific IgA memory B-cell responses declined after 6 months. Antibody titers waned over time, whilst potent affinity maturation was observed for anti-RBD antibodies. Neutralizing antibodies against wild-type (WT) and variants decayed during the first 6 months but titers significantly increased for Alpha, Gamma and Delta between 6 months and one year. Therefore, near-similar titers were observed for WT and Alpha after one year, and only slightly lower antibody levels for the Delta variant compared to WT. Anti-RBD antibody responses correlated with the neutralizing antibody titers at all time points, however the predicted titers were 3-fold lower at one year compared to one month.ConclusionIn mild COVID-19, stable levels of SARS-CoV-2 specific memory B cells and antibodies neutralizing current variants of concern are observed up to one year post infection. Care should be taken when predicting neutralizing titers using commercial assays that measure binding antibodies.
Collapse
Affiliation(s)
- Benjamin Meyer
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- *Correspondence: Christiane S. Eberhardt, ; Benjamin Meyer,
| | - Paola Andrea Martinez-Murillo
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Barbara Lemaitre
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Géraldine Blanchard-Rohner
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Arnaud M. Didierlaurent
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Paola Fontannaz
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Chloé Eugercios Manzanas
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Paul-Henri Lambert
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Natasha Loevy
- Pediatric Platform for Clinical Research, Department of Woman, Child and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Julie Sartoretti
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of General Pediatrics, Department of Woman, Child and Adolescent Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chantal Tougne
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jean Villard
- Immunology and Transplant Unit, Division of Nephology and Hypertension, Geneva University Hospital and Faculty, Geneva, Switzerland
| | - Angela Huttner
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Center for Clinical Research, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
| | - Christiane S. Eberhardt
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of General Pediatrics, Department of Woman, Child and Adolescent Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
- *Correspondence: Christiane S. Eberhardt, ; Benjamin Meyer,
| |
Collapse
|
76
|
Moritz D, Krifors A, Freyhult E, Månsson E. Seroprevalence and T-cell response in 32 children 10 months after COVID-19. Acta Paediatr 2022; 111:1042-1043. [PMID: 35150457 PMCID: PMC9111266 DOI: 10.1111/apa.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- David Moritz
- Department of Paediatrics Uppsala University Uppsala Sweden
| | - Anders Krifors
- Department of Infectious Diseases Västmanlands Hospital Västerås Sweden
- Centre of Clinical Research Region Västmanland Uppsala University Uppsala Sweden
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | | | - Emeli Månsson
- Department of Infectious Diseases Västmanlands Hospital Västerås Sweden
- Centre of Clinical Research Region Västmanland Uppsala University Uppsala Sweden
- School of Medical Sciences Örebro University Örebro Sweden
| |
Collapse
|
77
|
Vardhana S, Baldo L, Morice WG, Wherry EJ. Understanding T-cell responses to COVID-19 is essential for informing public health strategies. Sci Immunol 2022; 7:eabo1303. [PMID: 35324269 DOI: 10.1126/sciimmunol.abo1303] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Durable T-cell responses to SARS-CoV-2 antigens after infection or vaccination improve immune-mediated viral clearance. To date, population-based surveys of COVID-19 adaptive immunity have focused on testing for IgG antibodies that bind spike protein and/or neutralize the virus. Deployment of existing methods for measuring T-cell immunity could provide a more complete profile of immune status, informing public health policies and interventions.
Collapse
Affiliation(s)
- Santosha Vardhana
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lance Baldo
- Adaptive Biotechnologies, Seattle, Washington, USA
| | - William G Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - E John Wherry
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
78
|
Colwill K, Galipeau Y, Stuible M, Gervais C, Arnold C, Rathod B, Abe KT, Wang JH, Pasculescu A, Maltseva M, Rocheleau L, Pelchat M, Fazel‐Zarandi M, Iskilova M, Barrios‐Rodiles M, Bennett L, Yau K, Cholette F, Mesa C, Li AX, Paterson A, Hladunewich MA, Goodwin PJ, Wrana JL, Drews SJ, Mubareka S, McGeer AJ, Kim J, Langlois M, Gingras A, Durocher Y. A scalable serology solution for profiling humoral immune responses to SARS-CoV-2 infection and vaccination. Clin Transl Immunology 2022; 11:e1380. [PMID: 35356067 PMCID: PMC8942165 DOI: 10.1002/cti2.1380] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives Antibody testing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been instrumental in detecting previous exposures and analyzing vaccine-elicited immune responses. Here, we describe a scalable solution to detect and quantify SARS-CoV-2 antibodies, discriminate between natural infection- and vaccination-induced responses, and assess antibody-mediated inhibition of the spike-angiotensin converting enzyme 2 (ACE2) interaction. Methods We developed methods and reagents to detect SARS-CoV-2 antibodies by enzyme-linked immunosorbent assay (ELISA). The main assays focus on the parallel detection of immunoglobulin (Ig)Gs against the spike trimer, its receptor binding domain (RBD) and nucleocapsid (N). We automated a surrogate neutralisation (sn)ELISA that measures inhibition of ACE2-spike or -RBD interactions by antibodies. The assays were calibrated to a World Health Organization reference standard. Results Our single-point IgG-based ELISAs accurately distinguished non-infected and infected individuals. For seroprevalence assessment (in a non-vaccinated cohort), classifying a sample as positive if antibodies were detected for ≥ 2 of the 3 antigens provided the highest specificity. In vaccinated cohorts, increases in anti-spike and -RBD (but not -N) antibodies are observed. We present detailed protocols for serum/plasma or dried blood spots analysis performed manually and on automated platforms. The snELISA can be performed automatically at single points, increasing its scalability. Conclusions Measuring antibodies to three viral antigens and identify neutralising antibodies capable of disrupting spike-ACE2 interactions in high-throughput enables large-scale analyses of humoral immune responses to SARS-CoV-2 infection and vaccination. The reagents are available to enable scaling up of standardised serological assays, permitting inter-laboratory data comparison and aggregation.
Collapse
Affiliation(s)
- Karen Colwill
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology, and ImmunologyUniversity of OttawaOttawaONCanada
| | - Matthew Stuible
- Mammalian Cell Expression, Human Health Therapeutics Research CentreNational Research Council CanadaMontréalQCCanada
| | - Christian Gervais
- Mammalian Cell Expression, Human Health Therapeutics Research CentreNational Research Council CanadaMontréalQCCanada
| | - Corey Arnold
- Department of Biochemistry, Microbiology, and ImmunologyUniversity of OttawaOttawaONCanada
| | - Bhavisha Rathod
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
- Present address:
Treadwell TherapeuticsTorontoONCanada
| | - Kento T Abe
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Jenny H Wang
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
| | - Adrian Pasculescu
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
| | - Mariam Maltseva
- Department of Biochemistry, Microbiology, and ImmunologyUniversity of OttawaOttawaONCanada
| | - Lynda Rocheleau
- Department of Biochemistry, Microbiology, and ImmunologyUniversity of OttawaOttawaONCanada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology, and ImmunologyUniversity of OttawaOttawaONCanada
- The Centre for Infection, Immunity, and InflammationUniversity of OttawaOttawaONCanada
| | - Mahya Fazel‐Zarandi
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
| | - Mariam Iskilova
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
| | - Miriam Barrios‐Rodiles
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
| | - Linda Bennett
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
| | - Kevin Yau
- Division of NephrologyDepartment of MedicineSunnybrook Health Sciences CentreTorontoONCanada
| | - François Cholette
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegMBCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegMBCanada
| | - Christine Mesa
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegMBCanada
| | - Angel X Li
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
- Department of Microbiology, at Mount Sinai HospitalSinai HealthTorontoONCanada
| | - Aimee Paterson
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
- Department of Microbiology, at Mount Sinai HospitalSinai HealthTorontoONCanada
| | - Michelle A Hladunewich
- Division of NephrologyDepartment of MedicineSunnybrook Health Sciences CentreTorontoONCanada
| | - Pamela J Goodwin
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
| | - Jeffrey L Wrana
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Steven J Drews
- Microbiology, Donation Policy and StudiesCanadian Blood ServicesEdmontonABCanada
- Division of Diagnostic and Applied MicrobiologyDepartment of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonABCanada
| | - Samira Mubareka
- Division of MicrobiologyDepartment of Laboratory Medicine and Molecular DiagnosticsSunnybrook Health Sciences CentreTorontoONCanada
- Biological SciencesSunnybrook Research InstituteTorontoONCanada
- Division of Infectious DiseasesSunnybrook Health Sciences CentreTorontoONCanada
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoONCanada
| | - Allison J McGeer
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
- Department of Microbiology, at Mount Sinai HospitalSinai HealthTorontoONCanada
- Institute of Health Policy, Management and EvaluationUniversity of TorontoTorontoONCanada
| | - John Kim
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegMBCanada
| | - Marc‐André Langlois
- Department of Biochemistry, Microbiology, and ImmunologyUniversity of OttawaOttawaONCanada
- The Centre for Infection, Immunity, and InflammationUniversity of OttawaOttawaONCanada
| | - Anne‐Claude Gingras
- Lunenfeld‐Tanenbaum Research Institute at Mount Sinai HospitalSinai HealthTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research CentreNational Research Council CanadaMontréalQCCanada
| |
Collapse
|
79
|
Yan LN, Liu PP, Li XG, Zhou SJ, Li H, Wang ZY, Shen F, Lu BC, Long Y, Xiao X, Wang ZD, Li D, Han HJ, Yu H, Zhou SH, Lv WL, Yu XJ. Neutralizing Antibodies and Cellular Immune Responses Against SARS-CoV-2 Sustained One and a Half Years After Natural Infection. Front Microbiol 2022; 12:803031. [PMID: 35310397 PMCID: PMC8928406 DOI: 10.3389/fmicb.2021.803031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Background COVID-19 has caused more than 2.6 billion infections and several million deaths since its outbreak 2 years ago. We know very little about the long-term cellular immune responses and the kinetics of neutralizing antibodies (NAbs) to SARS-CoV-2 because it has emerged only recently in the human population. Methods We collected blood samples from individuals who were from the first wave of the COVID-19 epidemic in Wuhan between December 30, 2019, and February 24, 2020. We analyzed NAbs to SARS-CoV-2 using pseudoviruses and IgG antibodies to SARS-CoV-2 spike (S) and nucleocapsid (N) protein using enzyme-linked immunosorbent assay in patients’ sera and determined SARS-CoV-2-specific T-cell responses of patients with ELISpot assays. Results We found that 91.9% (57/62) and 88.9% (40/45) of COVID-19 patients had NAbs against SARS-CoV-2 in a year (10–11 months) and one and a half years (17–18 months), respectively, after the onset of illness, indicating that NAbs against SARS-CoV-2 waned slowly and possibly persisted over a long period time. Over 80% of patients had IgG antibodies to SARS-CoV-2 S and N protein one and a half years after illness onset. Most patients also had robust memory T-cell responses against SARS-CoV-2 one and a half years after the illness. Among the patients, 95.6% (43/45) had an IFN-γ-secreting T-cell response and 93.8% (15/16) had an IL-2-secreting T-cell response. The T-cell responses to SARS-CoV-2 were positively correlated with antibodies (including neutralizing antibodies and IgG antibodies to S and N protein) in COVID-19 patients. Eighty percent (4/5) of neutralizing antibody-negative patients also had SARS-CoV-2-specific T-cell response. After long-term infection, protective immunity was independent of disease severity, sex, and age. Conclusions We concluded that SARS-CoV-2 infection elicited a robust and persistent neutralizing antibody and memory T-cell response in COVID-19 patients, indicating that these sustained immune responses, among most SARS-CoV-2-infected people, may play a crucial role in protection against reinfection.
Collapse
Affiliation(s)
- Li-Na Yan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Pan-Pan Liu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Xu-Gui Li
- The Department of Clinical Laboratory Medicine, Hubei 672 Orthopaedics Hospital, Wuhan, China
| | - Shi-Jing Zhou
- The Department of Clinical Laboratory Medicine, Hubei 672 Orthopaedics Hospital, Wuhan, China
| | - Hao Li
- The First School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Yin Wang
- Department of Clinical Laboratory Medicine, Hubei University of Chinese Medicine Huangjiahu Hospital, Wuhan, China
| | - Feng Shen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Bi-Chao Lu
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Yu Long
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiao Xiao
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Zhen-Dong Wang
- School of Public Health, Xi'an Medical University, Xi'an, China
| | - Dan Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Hui-Ju Han
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Hao Yu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Shu-Han Zhou
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Wen-Liang Lv
- Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
80
|
Kang CK, Kim M, Hong J, Kim G, Lee S, Chang E, Choe PG, Kim NJ, Kim IS, Seo JY, Song D, Lee DS, Shin HM, Kim YW, Lee CH, Park WB, Kim HR, Oh MD. Distinct Immune Response at 1 Year Post-COVID-19 According to Disease Severity. Front Immunol 2022; 13:830433. [PMID: 35392102 PMCID: PMC8980227 DOI: 10.3389/fimmu.2022.830433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/23/2022] [Indexed: 01/10/2023] Open
Abstract
Background Despite the fact of ongoing worldwide vaccination programs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding longevity, breadth, and type of immune response to coronavirus disease-19 (COVID-19) is still important to optimize the vaccination strategy and estimate the risk of reinfection. Therefore, we performed thorough immunological assessments 1 year post-COVID-19 with different severity. Methods We analyzed peripheral blood mononuclear cells and plasma samples at 1 year post-COVID-19 in patients who experienced asymptomatic, mild, and severe illness to assess titers of various isotypes of antibodies (Abs) against SARS-CoV-2 antigens, phagocytic capability, and memory B- and T-cell responses. Findings A total of 24 patients (7, 9, and 8 asymptomatic, mild, and severe patients, respectively) and eight healthy volunteers were included in this study. We firstly showed that disease severity is correlated with parameters of immune responses at 1 year post-COVID-19 that play an important role in protecting against reinfection with SARS-CoV-2, namely, the phagocytic capacity of Abs and memory B-cell responses. Interpretation Various immune responses at 1 year post-COVID-19, particularly the phagocytic capacity and memory B-cell responses, were dependent on the severity of the prior COVID-19. Our data could provide a clue for a tailored vaccination strategy after natural infection according to the severity of COVID-19.
Collapse
Affiliation(s)
- Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Jisu Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Soojin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Ik Soo Kim
- Department of Microbiology, School of Medicine, Gachon University, Incheon, South Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Yong-Woo Kim
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Myoung-don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
81
|
Choe PG, Hong J, Park J, Chang E, Kang CK, Kim NJ, Lee CH, Park WB, Oh MD. Persistent Antibody Responses up to 18 Months after Mild SARS-CoV-2 Infection. J Infect Dis 2022; 226:1224-1230. [PMID: 35299253 PMCID: PMC8992248 DOI: 10.1093/infdis/jiac099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background Humoral immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may wane rapidly in persons recovered from mild coronavirus disease 2019 (COVID-19), but little is known about the longevity. Methods Serum samples were obtained 8, 12, and 18 months after infection from 20 patients with mild COVID-19. The binding activities of serum antibodies (IgA, IgG, and IgM) against SARS-CoV-2 antigens of the Wuhan-1 reference strain (wild-type) and the B.1.1.7, P.1, B.1.167.2, and B.1.1.529 variants were measured by enzyme-linked immunosorbent assays. Neutralizing antibody titers were measured using a cytopathic effect-based live virus neutralization assay. Results Serum IgA and IgG antibodies against spike or receptor-binding domain (RBD) protein of wild-type SARS-CoV-2 were detected for up to 18 months, and neutralizing antibodies persisted for 8 to 18 months after infection. However, any significant antibody responses against RBD proteins of SARS-CoV-2 variants were not observed, and median neutralizing antibody titers against the Delta variant at 8, 12, and 18 months were 8–11 fold lower than against wild-type viruses (P < .001). Conclusions Humoral immunity persisted for up to 18 months after SARS-CoV-2 infection in patients with mild COVID-19. Humoral immune activity against more recently circulating variants, however, was reduced in this population.
Collapse
Affiliation(s)
- Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jisu Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiyoung Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
82
|
Park U, Cho NH. Protective and pathogenic role of humoral responses in COVID-19. J Microbiol 2022; 60:268-275. [PMID: 35235178 PMCID: PMC8890013 DOI: 10.1007/s12275-022-2037-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022]
Abstract
Since the advent of SARS-CoV-2 in Dec. 2019, the global endeavor to identify the pathogenic mechanism of COVID-19 has been ongoing. Although humoral immunity including neutralizing activity play an important role in protection from the viral pathogen, dysregulated antibody responses may be associated with the pathogenic progression of COVID-19, especially in high-risk individuals. In addition, SARS-CoV-2 spike-specific antibodies acquired by prior infection or vaccination act as immune pressure, driving continuous population turnover by selecting for antibody-escaping mutations. Here, we review accumulating knowledge on the potential role of humoral immune responses in COVID-19, primarily focusing on their beneficial and pathogenic properties. Understanding the multifaceted regulatory mechanisms of humoral responses during SARS-CoV-2 infection can help us to develop more effective therapeutics, as well as protective measures against the ongoing pandemic.
Collapse
Affiliation(s)
- Uni Park
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
- Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| |
Collapse
|
83
|
Toh ZQ, Anderson J, Mazarakis N, Neeland M, Higgins RA, Rautenbacher K, Dohle K, Nguyen J, Overmars I, Donato C, Sarkar S, Clifford V, Daley A, Nicholson S, Mordant FL, Subbarao K, Burgner DP, Curtis N, Bines JE, McNab S, Steer AC, Mulholland K, Tosif S, Crawford NW, Pellicci DG, Do LAH, Licciardi PV. Comparison of Seroconversion in Children and Adults With Mild COVID-19. JAMA Netw Open 2022; 5:e221313. [PMID: 35262717 PMCID: PMC8908077 DOI: 10.1001/jamanetworkopen.2022.1313] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IMPORTANCE The immune response in children with SARS-CoV-2 infection is not well understood. OBJECTIVE To compare seroconversion in nonhospitalized children and adults with mild SARS-CoV-2 infection and identify factors that are associated with seroconversion. DESIGN, SETTING, AND PARTICIPANTS This household cohort study of SARS-CoV-2 infection collected weekly nasopharyngeal and throat swabs and blood samples during the acute (median, 7 days for children and 12 days for adults [IQR, 4-13] days) and convalescent (median, 41 [IQR, 31-49] days) periods after polymerase chain reaction (PCR) diagnosis for analysis. Participants were recruited at The Royal Children's Hospital, Melbourne, Australia, from May 10 to October 28, 2020. Participants included patients who had a SARS-CoV-2-positive nasopharyngeal or oropharyngeal swab specimen using PCR analysis. MAIN OUTCOMES AND MEASURES SARS-CoV-2 immunoglobulin G (IgG) and cellular (T cell and B cell) responses in children and adults. Seroconversion was defined by seropositivity in all 3 (an in-house enzyme-linked immunosorbent assay [ELISA] and 2 commercial assays: a SARS-CoV-2 S1/S2 IgG assay and a SARS-CoV-2 antibody ELISA) serological assays. RESULTS Among 108 participants with SARS-CoV-2-positive PCR findings, 57 were children (35 boys [61.4%]; median age, 4 [IQR, 2-10] years) and 51 were adults (28 women [54.9%]; median age, 37 [IQR, 34-45] years). Using the 3 established serological assays, a lower proportion of children had seroconversion to IgG compared with adults (20 of 54 [37.0%] vs 32 of 42 [76.2%]; P < .001). This result was not associated with viral load, which was similar in children and adults (mean [SD] cycle threshold [Ct] value, 28.58 [6.83] vs 24.14 [8.47]; P = .09). In addition, age and sex were not associated with seroconversion within children (median age, 4 [IQR, 2-14] years for both seropositive and seronegative groups; seroconversion by sex, 10 of 21 girls [47.6%] vs 10 of 33 boys [30.3%]) or adults (median ages, 37 years for seropositive and 40 years for seronegative adults [IQR, 34-39 years]; seroconversion by sex, 18 of 24 women [75.0%] vs 14 of 18 men [77.8%]) (P > .05 for all comparisons between seronegative and seropositive groups). Symptomatic adults had 3-fold higher SARS-CoV-2 IgG levels than asymptomatic adults (median, 227.5 [IQR, 133.7-521.6] vs 75.3 [IQR, 36.9-113.6] IU/mL), whereas no differences were observed in children regardless of symptoms. Moreover, differences in cellular immune responses were observed in adults compared with children with seroconversion. CONCLUSIONS AND RELEVANCE The findings of this cohort study suggest that among patients with mild COVID-19, children may be less likely to have seroconversion than adults despite similar viral loads. This finding has implications for future protection after SARS-CoV-2 infection in children and for interpretation of serosurveys that involve children. Further research to understand why seroconversion and development of symptoms are potentially less likely in children after SARS-CoV-2 infection and to compare vaccine responses may be of clinical and scientific importance.
Collapse
Affiliation(s)
- Zheng Quan Toh
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jeremy Anderson
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Nadia Mazarakis
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Melanie Neeland
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Rachel A. Higgins
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Karin Rautenbacher
- Laboratory Services, The Royal Children’s Hospital, Melbourne, Australia
| | - Kate Dohle
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Jill Nguyen
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Isabella Overmars
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Celeste Donato
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sohinee Sarkar
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Vanessa Clifford
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Andrew Daley
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Francesca L. Mordant
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- WHO (World Health Organization) Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Burgner
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Nigel Curtis
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Julie E. Bines
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Gastroenterology, The Royal Children’s Hospital, Melbourne, Australia
| | - Sarah McNab
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Andrew C. Steer
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Kim Mulholland
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shidan Tosif
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Nigel W. Crawford
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Daniel G. Pellicci
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lien Anh Ha Do
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Paul V. Licciardi
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
84
|
Kato H, Miyakawa K, Ohtake N, Yamaoka Y, Yajima S, Yamazaki E, Shimada T, Goto A, Nakajima H, Ryo A. Vaccine-induced humoral response against SARS-CoV-2 dramatically declined but cellular immunity possibly remained at 6 months post BNT162b2 vaccination. Vaccine 2022; 40:2652-2655. [PMID: 35370020 PMCID: PMC8960126 DOI: 10.1016/j.vaccine.2022.03.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
To evaluate vaccine-induced humoral and cell-mediated immunity at 6 months after completion of two doses of BNT162b2 vaccination, immunoglobulin G against SARS-CoV-2 spike protein (SP IgG), 50% neutralizing antibody (NT50), and spot-forming cell (SFC) counts were evaluated by interferon-γ releasing ELISpot assay of 98 healthy subjects (median age, 43 years). The geometric mean titers of SP IgG and NT50 decreased from 95.2 (95% confidence interval (CI) 79.8–113.4) to 5.7 (95% CI 4.9–6.7) and from 680.4 (588.0–787.2) to 130.4 (95% CI 104.2–163.1), respectively, at 3 weeks and 6 months after the vaccination. SP IgG titer was negatively correlated with age and alcohol consumption. Spot-forming cell counts at 6 months did not correlate with age, gender, and other parameters of the patients. SP IgG, NT50, and SFC titers were elevated in the breakthrough infected subjects. Although the levels of vaccine-induced antibodies dramatically declined at 6 months after vaccination, a certain degree of cellular immunity was observed irrespective of the age.
Collapse
Affiliation(s)
- Hideaki Kato
- Infection Prevention and Control Department, Yokohama City University Hospital, Yokohama, Japan; Department of Hematology and Clinical Immunology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Norihisa Ohtake
- Bioscience Division, Research and Development Department, Tosoh Corporation, Tokyo Research Center, Kanagawa, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Yutaro Yamaoka
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan; Life Science Laboratory, Technology and Development Division, Kanto Chemical Co, Inc., Isehara, Japan
| | - Satoshi Yajima
- Clinical Laboratory Department, Yokohama City University Hospital, Yokohama, Japan
| | - Etsuko Yamazaki
- Clinical Laboratory Department, Yokohama City University Hospital, Yokohama, Japan
| | - Tomoko Shimada
- Nursing Department, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Goto
- Department of Health Data Science, Yokohama City University Graduate School of Data Science, Yokohama, Japan
| | - Hideaki Nakajima
- Department of Hematology and Clinical Immunology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan.
| |
Collapse
|
85
|
Romero-Pinedo S, Quesada M, Horndler L, Álvarez-Fernández S, Olmo A, Abia D, Alarcón B, Delgado P. Vaccine Type-, Age- and Past Infection-Dependence of the Humoral Response to SARS-CoV-2 Spike S Protein. Front Immunol 2022; 13:809285. [PMID: 35296086 PMCID: PMC8918633 DOI: 10.3389/fimmu.2022.809285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
The emergence of COVID-19 has led to a worldwide challenge for the rapid development of vaccines. Several types of safe and effective vaccines have been available in a time frame never seen before. Now that several hundred million people have been vaccinated there is an opportunity to compare vaccines in terms of protection and immune response. Here, we have applied a highly sensitive multiplexed flow cytometry method to measure simultaneously IgM, IgG1 and IgA anti-spike protein antibodies generated in response to three vaccines: ChAdOx1 (Oxford-AstraZeneca), mRNA-1273 (Moderna), and BNT162b2 (Pfizer-BioNTech). We have found that mRNA vaccines (mRNA-1273 and BNT162b2) induce a stronger humoral response, both after the first and the second dose, than the adenovirus-based ChAdOx1 vaccine. We also found that, in the elderly, antibody titers negatively correlate with the age of the donor but, also, that antibody titers remain stable for at least 6 months after complete vaccination. Finally, we found that one dose of BNT162b2 is sufficient to induce the highest antibody titers in seropositive pre-vaccination donors. We hope these data will help to guide future decisions on vaccination strategies.
Collapse
Affiliation(s)
| | | | - Lydia Horndler
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - David Abia
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Pilar Delgado
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
86
|
Jochum S, Kirste I, Hortsch S, Grunert VP, Legault H, Eichenlaub U, Kashlan B, Pajon R. Clinical Utility of Elecsys Anti-SARS-CoV-2 S Assay in COVID-19 Vaccination: An Exploratory Analysis of the mRNA-1273 Phase 1 Trial. Front Immunol 2022; 12:798117. [PMID: 35126362 PMCID: PMC8807632 DOI: 10.3389/fimmu.2021.798117] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Background The ability to quantify an immune response after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential. This study assessed the clinical utility of the quantitative Roche Elecsys® Anti-SARS-CoV-2 S assay (ACOV2S) using samples from the 2019-nCoV vaccine (mRNA-1273) phase 1 trial (NCT04283461). Methods Samples from 30 healthy participants, aged 18-55 years, who received two injections with mRNA-1273 at a dose of 25 μg (n=15) or 100 μg (n=15), were collected at Days 1 (first vaccination), 15, 29 (second vaccination), 43 and 57. ACOV2S results (shown in U/mL - equivalent to BAU/mL per the first WHO international standard) were compared with results from ELISAs specific to antibodies against the Spike protein (S-2P) and the receptor binding domain (RBD) as well as neutralization tests including nanoluciferase (nLUC80), live-virus (PRNT80), and a pseudovirus neutralizing antibody assay (PsVNA50). Results RBD-specific antibodies were already detectable by ACOV2S at the first time point of assessment (d15 after first vaccination), with seroconversion before in all but two participants (25 μg dose group); all had seroconverted by Day 29. Across all post-baseline visits, geometric mean concentration of antibody levels was 3.27-7.48-fold higher in the 100 μg compared with the 25 μg dose group. ACOV2S measurements were highly correlated with those from RBD ELISA (Pearson's r=0.938; p<0.0001) and S-2P ELISA (r=0.918; p<0.0001). For both ELISAs, heterogeneous baseline results and smaller increases in antibody levels following the second vs first vaccination compared with ACOV2S were observed. ACOV2S showed absence of any baseline noise indicating high specificity detecting vaccine-induced antibody response. Moderate-strong correlations were observed between ACOV2S and neutralization tests (nLUC80 r=0.933; PsVNA50, r=0.771; PRNT80, r=0.672; all p ≤ 0.0001). Conclusion The Elecsys Anti-SARS-CoV-2 S assay (ACOV2S) can be regarded as a highly valuable method to assess and quantify the presence of RBD-directed antibodies against SARS-CoV-2 following vaccination and may indicate the presence of neutralizing antibodies. As a fully automated and standardized method, ACOV2S could qualify as the method of choice for consistent quantification of vaccine-induced humoral response.
Collapse
Affiliation(s)
- Simon Jochum
- Research and Development Immunoassays, Roche Diagnostics GmbH, Penzberg, Germany
| | - Imke Kirste
- Clinical Development & Medical Affairs, Roche Diagnostics Operations, Indianapolis, IN, United States
| | - Sayuri Hortsch
- Biostatistics and Data Science, Roche Diagnostics GmbH, Penzberg, Germany
| | - Veit Peter Grunert
- Biostatistics and Data Science, Roche Diagnostics GmbH, Penzberg, Germany
| | - Holly Legault
- Clinical Biomarkers, Moderna, Cambridge, MA, United States
| | - Udo Eichenlaub
- Clinical Development & Medical Affairs, Roche Diagnostics Operations, Indianapolis, IN, United States
| | - Basel Kashlan
- Lab Operations, PPD, part of Thermo Fisher Scientific, Highland Heights, KY, United States
| | - Rolando Pajon
- Clinical Biomarkers, Moderna, Cambridge, MA, United States
| |
Collapse
|
87
|
Hønge BL, Hindhede L, Kaspersen KA, Harritshøj LH, Mikkelsen S, Holm DK, Nilsson AC, Sækmose SG, Sørensen E, Aagaard B, Hjalgrim H, Jørgensen CS, Krause TG, Ullum H, Pedersen OBV, Ostrowski SR, Erikstrup C. Long-term detection of SARS-CoV-2 antibodies after infection and risk of re-infection. Int J Infect Dis 2022; 116:289-292. [PMID: 35077881 PMCID: PMC8783526 DOI: 10.1016/j.ijid.2022.01.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
Objectives To evaluate long-term sensitivity for detection of total antibodies against SARS-CoV-2 Methods From week 41, 2020, through week 26, 2021, all Danish blood donations were tested for SARS-CoV-2 antibodies with the Wantai assay. The results were linked with polymerase chain reaction (PCR) test results from the Danish Microbiological Database (MiBa). Results During the study period, 105,646 non-vaccinated Danish blood donors were tested for SARS-CoV-2 antibodies, and 3,806 (3.6%) had a positive PCR test before the blood donation. Among the donors with a positive PCR test, 94.2% subsequently also had a positive antibody test. The time between the positive PCR test and the antibody test was up to 15 months and there was no evidence of a decline in proportion with detectable antibodies over time. A negative serological result test was associated with a higher incidence of re-infection (Incidence Rate Ratio = 0.102 (95% confidence interval (CI): 0.039–0.262)). Conclusion Among healthy blood donors, 94.2% developed SARS-CoV-2 antibodies after infection, and a lack of detectable antibodies was associated with re-infection.
Collapse
|
88
|
Oshiro TM, da Silva LT, Ortega MM, Perazzio SF, Duarte AJDS, Carneiro-Sampaio M. Patient with agammaglobulinemia produces anti-SARS-CoV-2 reactive T-cells after CoronaVac vaccine. Clinics (Sao Paulo) 2022; 77:100007. [PMID: 35172269 PMCID: PMC8808697 DOI: 10.1016/j.clinsp.2022.100007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Telma Miyuki Oshiro
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM 56), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| | - Lais Teodoro da Silva
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM 56), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Marina Mazzilli Ortega
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM 56), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Sandro Felix Perazzio
- Division of Rheumatology, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Laboratório Central, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Alberto Jose da Silva Duarte
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM 56), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Laboratório Central, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Magda Carneiro-Sampaio
- Instituto da Criança e Adolescente (ICr), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
89
|
Guo J, Li L, Wu Q, Li H, Li Y, Hou X, Yang F, Qin Z. Detection and predictors of anti-SARS-CoV-2 antibody levels in COVID-19 patients at 8 months after symptom onset. Future Virol 2021; 0. [PMID: 34804188 PMCID: PMC8596336 DOI: 10.2217/fvl-2021-0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
Aim: To determine SARS-CoV-2 specific IgM and IgG levels of patients with COVID-19 at 8 months after symptom onset and to explore the predictors of antibody levels. Materials & methods: The magnetic chemiluminescence method was used to measure the antibody levels. Clinical data were collected and analyzed retrospectively. Results: A total of 54 patients were enrolled in this study, of whom 59.3% were IgM positive and 96.4% were IgG positive. The multiple linear regression analysis revealed that the duration of RNA shedding, C-reactive protein level and disease severity were independent predictors of IgG levels. Conclusion: COVID-19 patients retained long-term viral-specific protective immunity. Disease severity, C-reactive protein level and duration of RNA shedding were related to antibody levels 8 months after symptom onset. This study aimed to detect the levels of antibodies made by the body in response to COVID-19, 8 months after infection. We reviewed the characteristics of 54 patients with a history COVID-19 to find factors that may influence antibody levels. The results showed that 8 months after infection, almost all the patients had sufficient antibody levels to protect them from another episode of COVID-19 and that antibody levels were especially well maintained in those with a history of severe COVID-19.
Collapse
Affiliation(s)
- Jing Guo
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.,Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Li Li
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.,Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Qian Wu
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.,Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Hongwei Li
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.,Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Yajie Li
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.,Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Xinwei Hou
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.,Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Fangfei Yang
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.,Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Zhonghua Qin
- Department of Laboratory, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
90
|
Persistence of SARS-CoV-2-Specific Antibodies for 13 Months after Infection. Viruses 2021; 13:v13112313. [PMID: 34835119 PMCID: PMC8622371 DOI: 10.3390/v13112313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Dynamics of antibody responses were investigated after a SARS-CoV-2 outbreak in a private company during the first wave of the pandemic. METHODS Workers of a sewing company (Lithuania) with known SARS-CoV-2 RT-PCR result during the outbreak (April 2020) were invited to participate in the study. Virus-specific IgG and IgM were monitored 2, 6 and 13 months after the outbreak via rapid IgG/IgM serological test and SARS-CoV-2 S protein-specific IgG ELISA. RESULTS Six months after the outbreak, 95% (CI 86-99%) of 59 previously infected individuals had virus-specific antibodies irrespective of the severity of infection. One-third of seropositive individuals had virus-specific IgM along with IgG indicating that IgM may persist for 6 months. Serological testing 13 months after the outbreak included 47 recovered individuals that remained non-vaccinated despite a wide accessibility of COVID-19 vaccines. The seropositivity rate was 83% (CI 69-91%) excluding one case of confirmed asymptomatic reinfection in this group. Between months 6 and 13, IgG levels either declined or remained stable in 31 individual and increased in 7 individuals possibly indicating an exposure to SARS-CoV-2 during the second wave of the pandemic. CONCLUSIONS Detectable levels of SARS-CoV-2-specific antibodies persist up to 13 months after infection for the majority of the cases.
Collapse
|
91
|
Tiyo BT, Schmitz GJH, Ortega MM, da Silva LT, de Almeida A, Oshiro TM, Duarte AJDS. What Happens to the Immune System after Vaccination or Recovery from COVID-19? Life (Basel) 2021; 11:1152. [PMID: 34833028 PMCID: PMC8619084 DOI: 10.3390/life11111152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Due to its leading role in fighting infections, the human immune system has been the focus of many studies in the context of Coronavirus disease 2019 (COVID-19). In a worldwide effort, the scientific community has transitioned from reporting about the effects of the novel coronavirus on the human body in the early days of the pandemic to exploring the body's many immunopathological and immunoprotecting properties that have improved disease treatment and enabled the development of vaccines. The aim of this review is to explain what happens to the immune system after recovery from COVID-19 and/or vaccination against SARS-CoV-2, the virus that causes the disease. We detail the way in which the immune system responds to a SARS-CoV-2 infection, including innate and adaptive measures. Then, we describe the role of vaccination, the main types of COVID-19 vaccines and how they protect us. Further, we explain the reason why immunity after COVID-19 infection plus a vaccination appears to induce a stronger response compared with virus exposure alone. Additionally, this review reports some correlates of protection from SARS-CoV-2 infection. In conclusion, we reinforce that vaccination is safe and important in achieving herd immunity.
Collapse
|
92
|
Jochum S, Kirste I, Hortsch S, Grunert VP, Legault H, Eichenlaub U, Kashlan B, Pajon R. Clinical utility of Elecsys Anti-SARS-CoV-2 S assay in COVID-19 vaccination: An exploratory analysis of the mRNA-1273 phase 1 trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.10.04.21264521. [PMID: 34642699 PMCID: PMC8509092 DOI: 10.1101/2021.10.04.21264521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND The ability to quantify an immune response after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential. This study assessed the clinical utility of the quantitative Roche Elecsys® Anti-SARS-CoV-2 S assay (ACOV2S) using samples from the 2019-nCoV vaccine (mRNA-1273) phase 1 trial (NCT04283461). METHODS Samples from 30 healthy participants, aged 18-55 years, who received two injections with mRNA-1273 at a dose of 25 μg (n=15) or 100 μg (n=15), were collected at Days 1 (first vaccination), 15, 29 (second vaccination), 43 and 57. ACOV2S results (shown in U/mL - equivalent to BAU/mL per the first WHO international standard) were compared with results from ELISAs specific to antibodies against the Spike protein (S-2P) and the receptor binding domain (RBD) as well as neutralization tests including nanoluciferase (nLUC80), live-virus (PRNT80), and a pseudovirus neutralizing antibody assay (PsVNA50). RESULTS RBD-specific antibodies were already detectable by ACOV2S at the first time point of assessment (d15 after first vaccination), with seroconversion before in all but 2 participants (25 μg dose group); all had seroconverted by Day 29. Across all post-baseline visits, geometric mean concentration of antibody levels were 3.27-7.48-fold higher in the 100 μg compared with the 25 μg dose group. ACOV2S measurements were highly correlated with those from RBD ELISA (Pearson's r=0.938; p<0.0001) and S-2P ELISA (r=0.918; p<0.0001). For both ELISAs, heterogeneous baseline results and smaller increases in antibody levels following the second vs first vaccination compared with ACOV2S were observed. ACOV2S showed absence of any baseline noise indicating high specificity detecting vaccine-induced antibody response. Moderate-strong correlations were observed between ACOV2S and neutralization tests (nLUC80 r=0.933; PsVNA50, r=0.771; PRNT80, r=0.672; all p≤0.0001). CONCLUSION The Elecsys Anti-SARS-CoV-2 S assay (ACOV2S) can be regarded as a highly valuable method to assess and quantify the presence of RBD-directed antibodies against SARS-CoV-2 following vaccination, and may indicate the presence of neutralizing antibodies. As a fully automated and standardized method, ACOV2S could qualify as the method of choice for consistent quantification of vaccine-induced humoral response.
Collapse
Affiliation(s)
| | - Imke Kirste
- Roche Diagnostics Operations, Indianapolis, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
A flow cytometry-based proliferation assay for clinical evaluation of T-cell memory against SARS-CoV-2. J Immunol Methods 2021; 499:113159. [PMID: 34597619 PMCID: PMC8484816 DOI: 10.1016/j.jim.2021.113159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022]
Abstract
In general, the method of choice for evaluating immunity against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is detection of antibodies against the virus in patient sera. However, this is not feasible in patients who do not produce antibodies, either due to a primary immunodeficiency or secondary to treatment with immunosuppressive drugs. Assessment of the antiviral T cell response is an alternative to serological tests, but most T cell assays are labor-intensive and unsuitable for a clinical routine laboratory. We developed a flow cytometry-based assay for T cell proliferative responses against SARS-CoV-2, based on the detection of blast transformation of activated cells. The assay was validated on previously SARS-CoV-2 infected individuals and healthy seronegative blood donors, displaying 74% sensitivity and 96% specificity for previous infection with SARS-CoV-2. The usefulness of the assay was demonstrated in a patient with common variable immunodeficiency with a history of COVID-19. The described T-cell assay is a clinically relevant complement to serology in the evaluation of cellular immunity against SARS-CoV-2, which can be emulated by any routine lab with flow cytometric competence.
Collapse
|