51
|
Liu X, Liu Y, Liu J, Zhang H, Shan C, Guo Y, Gong X, Cui M, Li X, Tang M. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res 2024; 19:833-845. [PMID: 37843219 PMCID: PMC10664138 DOI: 10.4103/1673-5374.382223] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 10/17/2023] Open
Abstract
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mengmeng Cui
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
52
|
Chen Y, Zhu G, Yuan T, Ma R, Zhang X, Meng F, Yang A, Du T, Zhang J. Subthalamic nucleus deep brain stimulation alleviates oxidative stress via mitophagy in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:52. [PMID: 38448431 PMCID: PMC10917786 DOI: 10.1038/s41531-024-00668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) has the potential to delay Parkinson's disease (PD) progression. Whether oxidative stress participates in the neuroprotective effects of DBS and related signaling pathways remains unknown. To address this, we applied STN-DBS to mice and monkey models of PD and collected brain tissue to evaluate mitophagy, oxidative stress, and related pathway. To confirm findings in animal experiments, a cohort of PD patients was recruited and oxidative stress was evaluated in cerebrospinal fluid. When PD mice received STN stimulation, the mTOR pathway was suppressed, accompanied by elevated LC3 II expression, increased mitophagosomes, and a decrease in p62 expression. The increase in mitophagy and balance of mitochondrial fission/fusion dynamics in the substantia nigra caused a marked enhancement of the antioxidant enzymes superoxide dismutase and glutathione levels. Subsequently, fewer mitochondrial apoptogenic factors were released to the cytoplasm, which resulted in a suppression of caspase activation and reservation of dopaminergic neurons. While interfaced with an mTOR activator, oxidative stress was no longer regulated by STN-DBS, with no neuroprotective effect. Similar results to those found in the rodent experiments were obtained in monkeys treated with chronic STN stimulation. Moreover, antioxidant enzymes in PD patients were increased after the operation, however, there was no relation between changes in antioxidant enzymes and motor impairment. Collectively, our study found that STN-DBS was able to increase mitophagy via an mTOR-dependent pathway, and oxidative stress was suppressed due to removal of damaged mitochondria, which was attributed to the dopaminergic neuroprotection of STN-DBS in PD.
Collapse
Affiliation(s)
- Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China
| | - Fangang Meng
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
| | - Tingting Du
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China.
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China.
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China.
| |
Collapse
|
53
|
Iwaniak P, Owe-Larsson M, Urbańska EM. Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in Parkinson's Disease-A Narrative Review. Int J Mol Sci 2024; 25:2915. [PMID: 38474162 DOI: 10.3390/ijms25052915] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
In the era of a steadily increasing lifespan, neurodegenerative diseases among the elderly present a significant therapeutic and socio-economic challenge. A properly balanced diet and microbiome diversity have been receiving increasing attention as targets for therapeutic interventions in neurodegeneration. Microbiota may affect cognitive function, neuronal survival and death, and gut dysbiosis was identified in Parkinson's disease (PD). Tryptophan (Trp), an essential amino acid, is degraded by microbiota and hosts numerous compounds with immune- and neuromodulating properties. This broad narrative review presents data supporting the concept that microbiota, the Trp-kynurenine (KYN) pathway and aryl hydrocarbon receptors (AhRs) form a triad involved in PD. A disturbed gut-brain axis allows the bidirectional spread of pro-inflammatory molecules and α-synuclein, which may contribute to the development/progression of the disease. We suggest that the peripheral levels of kynurenines and AhR ligands are strongly linked to the Trp metabolism in the gut and should be studied together with the composition of the microbiota. Such an approach can clearly delineate the sub-populations of PD patients manifesting with a disturbed microbiota-Trp-KYN-brain triad, who would benefit from modifications in the Trp metabolism. Analyses of the microbiome, Trp-KYN pathway metabolites and AhR signaling may shed light on the mechanisms of intestinal distress and identify new targets for the diagnosis and treatment in early-stage PD. Therapeutic interventions based on the combination of a well-defined food regimen, Trp and probiotics seem of potential benefit and require further experimental and clinical research.
Collapse
Affiliation(s)
- Paulina Iwaniak
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa M Urbańska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
54
|
Chen BR, Wu T, Chen TH, Wang Y. Neuroimmune interactions and their roles in neurodegenerative diseases. FUNDAMENTAL RESEARCH 2024; 4:251-261. [PMID: 38933502 PMCID: PMC11197660 DOI: 10.1016/j.fmre.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 06/28/2024] Open
Abstract
The nervous system possesses bidirectional, sophisticated and delicate communications with the immune system. These neuroimmune interactions play a vitally important role in the initiation and development of many disorders, especially neurodegenerative diseases. Although scientific advancements have made tremendous progress in this field during the last few years, neuroimmune communications are still far from being elucidated. By organizing recent research, in this review, we discuss the local and intersystem neuroimmune interactions and their roles in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Unveiling these will help us gain a better understanding of the process of interplay inside the body and how the organism maintains homeostasis. It will also facilitate a view of the diseases from a holistic, pluralistic and interconnected perspective, thus providing a basis of developing novel and effective methods to diagnose, intervene and treat diseases.
Collapse
Affiliation(s)
- Bai-Rong Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Ting Wu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Ting-Hui Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
55
|
Qi H, Duan S, Xu Y, Zhang H. Frontiers and future perspectives of neuroimmunology. FUNDAMENTAL RESEARCH 2024; 4:206-217. [PMID: 38933499 PMCID: PMC11197808 DOI: 10.1016/j.fmre.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Neuroimmunology is an interdisciplinary branch of biomedical science that emerges from the intersection of studies on the nervous system and the immune system. The complex interplay between the two systems has long been recognized. Research efforts directed at the underlying functional interface and associated pathophysiology, however, have garnered attention only in recent decades. In this narrative review, we highlight significant advances in research on neuroimmune interplay and modulation. A particular focus is on early- and middle-career neuroimmunologists in China and their achievements in frontier areas of "neuroimmune interface", "neuro-endocrine-immune network and modulation", "neuroimmune interactions in diseases", "meningeal lymphatic and glymphatic systems in health and disease", and "tools and methodologies in neuroimmunology research". Key scientific questions and future directions for potential breakthroughs in neuroimmunology research are proposed.
Collapse
Affiliation(s)
- Hai Qi
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shumin Duan
- Faculty of Medicine and Pharmaceutical Sciences, Zhejiang University, Hangzhou 310014, China
| | - Yanying Xu
- Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Hongliang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| |
Collapse
|
56
|
Williams GP, Michaelis T, Lima-Junior JR, Frazier A, Tran NK, Phillips EJ, Mallal SA, Litvan I, Goldman JG, Alcalay RN, Sidney J, Sulzer D, Sette A, Lindestam Arlehamn CS. PINK1 is a target of T cell responses in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579465. [PMID: 38405939 PMCID: PMC10888789 DOI: 10.1101/2024.02.09.579465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Parkinson's disease (PD) is associated with autoimmune T cells that recognize the protein alpha-synuclein in a subset of individuals. Multiple neuroantigens are targets of autoinflammatory T cells in classical central nervous system autoimmune diseases such as multiple sclerosis (MS). Here, we explored whether additional autoantigenic targets of T cells in PD. We generated 15-mer peptide pools spanning several PD-related proteins implicated in PD pathology, including GBA, SOD1, PINK1, parkin, OGDH, and LRRK2. Cytokine production (IFNγ, IL-5, IL-10) against these proteins was measured using a fluorospot assay and PBMCs from patients with PD and age-matched healthy controls. This approach identified unique epitopes and their HLA restriction from the mitochondrial-associated protein PINK1, a regulator of mitochondrial stability, as an autoantigen targeted by T cells. The T cell reactivity was predominantly found in male patients with PD, which may contribute to the heterogeneity of PD. Identifying and characterizing PINK1 and other autoinflammatory targets may lead to antigen-specific diagnostics, progression markers, and/or novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Gregory P Williams
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tanner Michaelis
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - April Frazier
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ngan K Tran
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Irene Litvan
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Jennifer G Goldman
- JPG Enterprises LLC; prior: Shirley Ryan AbilityLab and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, NY, USA; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - John Sidney
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - David Sulzer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Departments of Psychiatry and Pharmacology, Columbia University; New York State Psychiatric Institute, NY, USA
| | - Alessandro Sette
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Medicine, University of California San Diego, CA
| | - Cecilia S Lindestam Arlehamn
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
57
|
Wang J, Zhang X, Chen H, Ren H, Zhou M, Zhao Y. Engineered stem cells by emerging biomedical stratagems. Sci Bull (Beijing) 2024; 69:248-279. [PMID: 38101962 DOI: 10.1016/j.scib.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Stem cell therapy holds immense potential as a viable treatment for a widespread range of intractable disorders. As the safety of stem cell transplantation having been demonstrated in numerous clinical trials, various kinds of stem cells are currently utilized in medical applications. Despite the achievements, the therapeutic benefits of stem cells for diseases are limited, and the data of clinical researches are unstable. To optimize tthe effectiveness of stem cells, engineering approaches have been developed to enhance their inherent abilities and impart them with new functionalities, paving the way for the next generation of stem cell therapies. This review offers a detailed analysis of engineered stem cells, including their clinical applications and potential for future development. We begin by briefly introducing the recent advances in the production of stem cells (induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs)). Furthermore, we present the latest developments of engineered strategies in stem cells, including engineered methods in molecular biology and biomaterial fields, and their application in biomedical research. Finally, we summarize the current obstacles and suggest future prospects for engineered stem cells in clinical translations and biomedical applications.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxuan Zhang
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hanxu Chen
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Haozhen Ren
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518038, China.
| |
Collapse
|
58
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
59
|
Yuan XY, Chen YS, Liu Z. Relationship among Parkinson's disease, constipation, microbes, and microbiological therapy. World J Gastroenterol 2024; 30:225-237. [PMID: 38314132 PMCID: PMC10835526 DOI: 10.3748/wjg.v30.i3.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
This comprehensive review elucidates the complex interplay between gut microbiota and constipation in Parkinson's disease (PD), a prevalent non-motor symptom contributing significantly to patients' morbidity. A marked alteration in the gut microbiota, predominantly an increase in the abundance of Proteobacteria and Bacteroidetes, is observed in PD-related constipation. Conventional treatments, although safe, have failed to effectively alleviate symptoms, thereby necessitating the development of novel therapeutic strategies. Microbiological interventions such as prebiotics, probiotics, and fecal microbiota transplantation (FMT) hold therapeutic potential. While prebiotics improve bowel movements, probiotics are effective in enhancing stool consistency and alleviating abdominal discomfort. FMT shows potential for significantly alleviating constipation symptoms by restoring gut microbiota balance in patients with PD. Despite promising developments, the causal relationship between changes in gut microbiota and PD-related constipation remains elusive, highlighting the need for further research in this expanding field.
Collapse
Affiliation(s)
- Xin-Yang Yuan
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Yu-Sen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Zhou Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| |
Collapse
|
60
|
Morris HR, Spillantini MG, Sue CM, Williams-Gray CH. The pathogenesis of Parkinson's disease. Lancet 2024; 403:293-304. [PMID: 38245249 DOI: 10.1016/s0140-6736(23)01478-2] [Citation(s) in RCA: 221] [Impact Index Per Article: 221.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 07/13/2023] [Indexed: 01/22/2024]
Abstract
Parkinson's disease is a progressive neurodegenerative condition associated with the deposition of aggregated α-synuclein. Insights into the pathogenesis of Parkinson's disease have been derived from genetics and molecular pathology. Biochemical studies, investigation of transplanted neurons in patients with Parkinson's disease, and cell and animal model studies suggest that abnormal aggregation of α-synuclein and spreading of pathology between the gut, brainstem, and higher brain regions probably underlie the development and progression of Parkinson's disease. At a cellular level, abnormal mitochondrial, lysosomal, and endosomal function can be identified in both monogenic and sporadic Parkinson's disease, suggesting multiple potential treatment approaches. Recent work has also highlighted maladaptive immune and inflammatory responses, possibly triggered in the gut, that accelerate the pathogenesis of Parkinson's disease. Although there are currently no disease-modifying treatments for Parkinson's disease, we now have a solid basis for the development of rational neuroprotective therapies that we hope will halt the progression of this disabling neurological condition.
Collapse
Affiliation(s)
- Huw R Morris
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK; University College London Movement Disorders Centre, University College London, London, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Carolyn M Sue
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, South Eastern Sydney Local Health District, Sydney, NSW, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA; Neuroscience Research Australia, Randwick, NSW, Australia.
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
61
|
Gustavsson EK, Follett J, Trinh J, Barodia SK, Real R, Liu Z, Grant-Peters M, Fox JD, Appel-Cresswell S, Stoessl AJ, Rajput A, Rajput AH, Auer R, Tilney R, Sturm M, Haack TB, Lesage S, Tesson C, Brice A, Vilariño-Güell C, Ryten M, Goldberg MS, West AB, Hu MT, Morris HR, Sharma M, Gan-Or Z, Samanci B, Lis P, Tocino T, Amouri R, Sassi SB, Hentati F, Global Parkinson’s Genetics Program (GP2), Tonelli F, Alessi DR, Farrer MJ. A pathogenic variant in RAB32 causes autosomal dominant Parkinson's disease and activates LRRK2 kinase. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24300927. [PMID: 38293014 PMCID: PMC10827257 DOI: 10.1101/2024.01.17.24300927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disorder. Mendelian forms have revealed multiple genes, with a notable emphasis on membrane trafficking; RAB GTPases play an important role in PD as a subset are both regulators and substrates of LRRK2 protein kinase. To explore the role of RAB GTPases in PD, we undertook a comprehensive examination of their genetic variability in familial PD. Methods Affected probands from 130 multi-incident PD families underwent whole-exome sequencing and genotyping, Potential pathogenic variants in 61 RAB GTPases were genotyped in relatives to assess disease segregation. These variants were also genotyped in a larger case-control series, totaling 3,078 individuals (2,734 with PD). The single most significant finding was subsequently validated within genetic data (6,043 with PD). Clinical and pathologic findings were summarized for gene-identified patients, and haplotypes were constructed. In parallel, wild-type and mutant RAB GTPase structural variation, protein interactions, and resultant enzyme activities were assessed. Findings We found RAB32 c.213C>G (Ser71Arg) to co-segregate with autosomal dominant parkinsonism in three multi-incident families. RAB32 Ser71Arg was also significantly associated with PD in case-control samples: genotyping and database searches identified thirteen more patients with the same variant that was absent in unaffected controls. Notably, RAB32 Ser71Arg heterozygotes share a common haplotype. At autopsy, one patient had sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In transfected cells the RAB32 Arg71 was twice as potent as Ser71 wild type to activate LRRK2 kinase. Interpretation Our study provides unequivocal evidence to implicate RAB32 Ser71Arg in PD. Functional analysis demonstrates LRRK2 kinase activation. We provide a mechanistic explanation to expand and unify the etiopathogenesis of monogenic PD. Funding National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J. Fox Foundation for Parkinson's Research, and the UK Medical Research Council.
Collapse
Affiliation(s)
- Emil K. Gustavsson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jordan Follett
- McKnight Brain Institute, Department of Neurology, University of Florida, Gainesville, Florida, USA
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck 23538, Germany
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sandeep K. Barodia
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Zhiyong Liu
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Melissa Grant-Peters
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jesse D. Fox
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | - A. Jon Stoessl
- Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Alex Rajput
- Movement Disorders Program, Division of Neurology, University of Saskatchewan and Saskatchewan Health Authority, Saskatoon, SK, Canada
| | - Ali H. Rajput
- Movement Disorders Program, Division of Neurology, University of Saskatchewan and Saskatchewan Health Authority, Saskatoon, SK, Canada
| | - Roland Auer
- Department of Pathology, University of Saskatchewan and Saskatchewan Health Authority, Saskatoon, SK, Canada
| | - Russel Tilney
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Marc Sturm
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Germany
| | - Tobias B. Haack
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Germany
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Christelle Tesson
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Centre d’Investigation Clinique Neurosciences, DMU Neuroscience, Paris, France
| | - Carles Vilariño-Güell
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew S. Goldberg
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew B. West
- Duke Center for Neurodegeneration and Neurotherapeutics, Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham 27710, North Carolina, USA
| | - Michele T. Hu
- Division of Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Germany
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Bedia Samanci
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pawel Lis
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | | | - Rim Amouri
- Service de Neurologie, Institut National de Neurologie, La Rabta, Tunis 1007, Tunisia
| | - Samia Ben Sassi
- Service de Neurologie, Institut National de Neurologie, La Rabta, Tunis 1007, Tunisia
| | - Faycel Hentati
- Service de Neurologie, Institut National de Neurologie, La Rabta, Tunis 1007, Tunisia
| | | | - Francesca Tonelli
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew J. Farrer
- McKnight Brain Institute, Department of Neurology, University of Florida, Gainesville, Florida, USA
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
62
|
König T, McBride HM. Mitochondrial-derived vesicles in metabolism, disease, and aging. Cell Metab 2024; 36:21-35. [PMID: 38171335 DOI: 10.1016/j.cmet.2023.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Mitochondria are central hubs of cellular metabolism and are tightly connected to signaling pathways. The dynamic plasticity of mitochondria to fuse, divide, and contact other organelles to flux metabolites is central to their function. To ensure bona fide functionality and signaling interconnectivity, diverse molecular mechanisms evolved. An ancient and long-overlooked mechanism is the generation of mitochondrial-derived vesicles (MDVs) that shuttle selected mitochondrial cargoes to target organelles. Just recently, we gained significant insight into the mechanisms and functions of MDV transport, ranging from their role in mitochondrial quality control to immune signaling, thus demonstrating unexpected and diverse physiological aspects of MDV transport. This review highlights the origin of MDVs, their biogenesis, and their cargo selection, with a specific focus on the contribution of MDV transport to signaling across cell and organ barriers. Additionally, the implications of MDVs in peroxisome biogenesis, neurodegeneration, metabolism, aging, and cancer are discussed.
Collapse
Affiliation(s)
- Tim König
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
63
|
Candeias E, Pereira-Santos AR, Empadinhas N, Cardoso SM, Esteves ARF. The Gut-Brain Axis in Alzheimer's and Parkinson's Diseases: The Catalytic Role of Mitochondria. J Alzheimers Dis 2024; 100:413-429. [PMID: 38875045 DOI: 10.3233/jad-240524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Accumulating evidence suggests that gut inflammation is implicated in neuroinflammation in Alzheimer's and Parkinson's diseases. Despite the numerous connections it remains unclear how the gut and the brain communicate and whether gut dysbiosis is the cause or consequence of these pathologies. Importantly, several reports highlight the importance of mitochondria in the gut-brain axis, as well as in mechanisms like gut epithelium self-renewal, differentiation, and homeostasis. Herein we comprehensively address the important role of mitochondria as a cellular hub in infection and inflammation and as a link between inflammation and neurodegeneration in the gut-brain axis. The role of mitochondria in gut homeostasis and as well the crosstalk between mitochondria and gut microbiota is discussed. Significantly, we also review studies highlighting how gut microbiota can ultimately affect the central nervous system. Overall, this review summarizes novel findings regarding this cross-talk where the mitochondria has a main role in the pathophysiology of both Alzheimer's and Parkinson's disease strengthen by cellular, animal and clinical studies.
Collapse
Affiliation(s)
- Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Fernandes Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
64
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
65
|
Mercado G, Kaeufer C, Richter F, Peelaerts W. Infections in the Etiology of Parkinson's Disease and Synucleinopathies: A Renewed Perspective, Mechanistic Insights, and Therapeutic Implications. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1301-1329. [PMID: 39331109 PMCID: PMC11492057 DOI: 10.3233/jpd-240195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Increasing evidence suggests a potential role for infectious pathogens in the etiology of synucleinopathies, a group of age-related neurodegenerative disorders including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies. In this review, we discuss the link between infections and synucleinopathies from a historical perspective, present emerging evidence that supports this link, and address current research challenges with a focus on neuroinflammation. Infectious pathogens can elicit a neuroinflammatory response and modulate genetic risk in PD and related synucleinopathies. The mechanisms of how infections might be linked with synucleinopathies as well as the overlap between the immune cellular pathways affected by virulent pathogens and disease-related genetic risk factors are discussed. Here, an important role for α-synuclein in the immune response against infections is emerging. Critical methodological and knowledge gaps are addressed, and we provide new future perspectives on how to address these gaps. Understanding how infections and neuroinflammation influence synucleinopathies will be essential for the development of early diagnostic tools and novel therapies.
Collapse
Affiliation(s)
- Gabriela Mercado
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Kaeufer
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wouter Peelaerts
- Laboratory for Virology and Gene Therapy, Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
66
|
Khoshnan A. Gut Microbiota as a Modifier of Huntington's Disease Pathogenesis. J Huntingtons Dis 2024; 13:133-147. [PMID: 38728199 PMCID: PMC11307070 DOI: 10.3233/jhd-240012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
Huntingtin (HTT) protein is expressed in most cell lineages, and the toxicity of mutant HTT in multiple organs may contribute to the neurological and psychiatric symptoms observed in Huntington's disease (HD). The proteostasis and neurotoxicity of mutant HTT are influenced by the intracellular milieu and responses to environmental signals. Recent research has highlighted a prominent role of gut microbiota in brain and immune system development, aging, and the progression of neurological disorders. Several studies suggest that mutant HTT might disrupt the homeostasis of gut microbiota (known as dysbiosis) and impact the pathogenesis of HD. Dysbiosis has been observed in HD patients, and in animal models of the disease it coincides with mutant HTT aggregation, abnormal behaviors, and reduced lifespan. This review article aims to highlight the potential toxicity of mutant HTT in organs and pathways within the microbiota-gut-immune-central nervous system (CNS) axis. Understanding the functions of Wild-Type (WT) HTT and the toxicity of mutant HTT in these organs and the associated networks may elucidate novel pathogenic pathways, identify biomarkers and peripheral therapeutic targets for HD.
Collapse
Affiliation(s)
- Ali Khoshnan
- Keck School of Medicine, Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
67
|
Lim SY, Klein C. Parkinson's Disease is Predominantly a Genetic Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:467-482. [PMID: 38552119 PMCID: PMC11091652 DOI: 10.3233/jpd-230376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/10/2024] [Indexed: 04/06/2024]
Abstract
The discovery of a pathogenic variant in the alpha-synuclein (SNCA) gene in the Contursi kindred in 1997 indisputably confirmed a genetic cause in a subset of Parkinson's disease (PD) patients. Currently, pathogenic variants in one of the seven established PD genes or the strongest known risk factor gene, GBA1, are identified in ∼15% of PD patients unselected for age at onset and family history. In this Debate article, we highlight multiple avenues of research that suggest an important - and in some cases even predominant - role for genetics in PD aetiology, including familial clustering, high rates of monogenic PD in selected populations, and complete penetrance with certain forms. At first sight, the steep increase in PD prevalence exceeding that of other neurodegenerative diseases may argue against a predominant genetic etiology. Notably, the principal genetic contribution in PD is conferred by pathogenic variants in LRRK2 and GBA1 and, in both cases, characterized by an overall late age of onset and age-related penetrance. In addition, polygenic risk plays a considerable role in PD. However, it is likely that, in the majority of PD patients, a complex interplay of aging, genetic, environmental, and epigenetic factors leads to disease development.
Collapse
Affiliation(s)
- Shen-Yang Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Division of Neurology, University of Malaya, Kuala Lumpur, Malaysia
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| |
Collapse
|
68
|
Koukoulis TF, Beauchamp LC, Kaparakis-Liaskos M, McQuade RM, Purnianto A, Finkelstein DI, Barnham KJ, Vella LJ. Do Bacterial Outer Membrane Vesicles Contribute to Chronic Inflammation in Parkinson's Disease? JOURNAL OF PARKINSON'S DISEASE 2024; 14:227-244. [PMID: 38427502 PMCID: PMC10977405 DOI: 10.3233/jpd-230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Parkinson's disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact. Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Tiana F. Koukoulis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Leah C. Beauchamp
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Ann Romney Center for Neurologic Diseases, Brighamand Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
| | - Rachel M. McQuade
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, Gut-Axis Injury and Repair Laboratory, Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE), Sunshine Hospital, St Albans, VIC, Australia
| | - Adityas Purnianto
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin J. Barnham
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Laura J. Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
69
|
Zhou M, Chen S, Chen Y, Wang C, Chen C. Causal associations between gut microbiota and regional cortical structure: a Mendelian randomization study. Front Neurosci 2023; 17:1296145. [PMID: 38196849 PMCID: PMC10774226 DOI: 10.3389/fnins.2023.1296145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Introduction Observational studies have reported associations between gut microbiota composition and central nervous system diseases. However, the potential causal relationships and underlying mechanisms remain unclear. Here, we applied Mendelian randomization (MR) to investigate the causal effects of gut microbiota on cortical surface area (SA) and thickness (TH) in the brain. Methods We used genome-wide association study summary statistics of gut microbiota abundance in 18,340 individuals from the MiBioGen Consortium to identify genetic instruments for 196 gut microbial taxa. We then analyzed data from 56,761 individuals from the ENIGMA Consortium to examine associations of genetically predicted gut microbiota with alterations in cortical SA and TH globally and across 34 functional brain regions. Inverse-variance weighted analysis was used as the primary MR method, with MR Egger regression, MR-PRESSO, Cochran's Q test, and leave-one-out analysis to assess heterogeneity and pleiotropy. Results At the functional region level, genetically predicted higher abundance of class Mollicutes was associated with greater SA of the medial orbitofrontal cortex (β = 8.39 mm2, 95% CI: 3.08-13.70 mm2, p = 0.002), as was higher abundance of phylum Tenericutes (β = 8.39 mm2, 95% CI: 3.08-13.70 mm2, p = 0.002). Additionally, higher abundance of phylum Tenericutes was associated with greater SA of the lateral orbitofrontal cortex (β = 10.51 mm2, 95% CI: 3.24-17.79 mm2, p = 0.0046). No evidence of heterogeneity or pleiotropy was detected. Conclusion Specific gut microbiota may causally influence cortical structure in brain regions involved in neuropsychiatric disorders. The findings provide evidence for a gut-brain axis influencing cortical development, particularly in the orbitofrontal cortex during adolescence.
Collapse
Affiliation(s)
- Maochao Zhou
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Song Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yan Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | | | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
70
|
Wang Y, Wang J, Cong J, Zhang H, Gong Z, Sun H, Wang L, Duan Z. Nanoplastics induce neuroexcitatory symptoms in zebrafish (Danio rerio) larvae through a manner contrary to Parkinsonian's way in proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166898. [PMID: 37683849 DOI: 10.1016/j.scitotenv.2023.166898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Although nanoplastics (NPs) can penetrate the blood-brain barrier and accumulate in the brain, the neurotoxicity of these particles and the mechanisms associated with their unique physio-chemical properties have yet to be sufficiently ascertained. In this study, we assessed the neuroexcitatory symptoms of zebrafish (Danio rerio) larvae treated with polystyrene (PS) NPs based on an examination of locomotory behaviour, dopamine levels, and acetylcholinesterase activity. We found that PS NPs caused oxidative stress and inhibited atoh1a expression in the cerebellum of Tg(atoh1a:dTomato) transgenic zebrafish larvae, thereby indicating damage to the central nervous system. In contrast to the Parkinson's disease (PD) like effects induced by most types of nanoparticles, such as graphene oxide, we established that PS NPs influenced the neuronal proteomic profiles of zebrafish larvae in a manner contrary to the molecular pathways characteristic of PD-like effects, which could be explained by the molecular dynamic simulation. Unlike graphene oxide nanoparticles that promote significant change in the internal structure of neuroproteins, the complex macromolecular polymers of PS NPs promoted the coalescence and increased expression of neuroproteins, thereby plausibly contributing to the neuroexcitatory symptoms observed in treated zebrafish larvae. Consequently, compared with traditional nanoparticles, we believe that the unique physio-chemical properties of NPs could be a potential factor contributing to their toxicity.
Collapse
Affiliation(s)
- Yudi Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jiaoyue Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Haihong Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hongwen Sun
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
71
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
72
|
Liang D, Liu H, Jin R, Feng R, Wang J, Qin C, Zhang R, Chen Y, Zhang J, Teng J, Tang B, Ding X, Wang X. Escherichia coli triggers α-synuclein pathology in the LRRK2 transgenic mouse model of PD. Gut Microbes 2023; 15:2276296. [PMID: 38010914 PMCID: PMC10730176 DOI: 10.1080/19490976.2023.2276296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
Alpha-synuclein (α-syn) pathology is the hallmark of Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) gene is a major-effect risk gene for sporadic PD (sPD). However, what environmental factors may trigger the formation of α-syn pathology in carriers of LRRK2 risk variants are still unknown. Here, we report that a markedly increased abundance of Escherichia coli (E. coli) in the intestinal microbiota was detected in LRRK2 risk variant(R1628P or G2385R) carriers with sPD compared with carriers without sPD. Animal experiments showed that E. coli administration triggered pathological α-syn accumulation in the colon and spread to the brain via the gut-brain axis in Lrrk2 R1628P mice, due to the co-occurrence of Lrrk2 variant-induced inhibition of α-syn autophagic degradation and increased phosphorylation of α-syn caused by curli in E. coli-derived extracellular vesicles. Fecal microbiota transplantation (FMT) effectively ameliorated motor deficits and α-syn pathology in Lrrk2 R1628P mice. Our findings elaborate on the mechanism that E. coli triggers α-syn pathology in Lrrk2 R1628P mice, and highlight a novel gene-environment interaction pattern in LRRK2 risk variants. Even more importantly, the findings reveal the interplay between the specific risk gene and the matched environmental factors triggers the initiation of α-syn pathology in sPD.
Collapse
Affiliation(s)
- Dongxiao Liang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Han Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Ruoqi Jin
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Renyi Feng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Jiuqi Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Chi Qin
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Rui Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Yongkang Chen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Jingwen Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Junfang Teng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Beisha Tang
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuebing Ding
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Xuejing Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
73
|
Cossu D, Hatano T, Hattori N. The Role of Immune Dysfunction in Parkinson's Disease Development. Int J Mol Sci 2023; 24:16766. [PMID: 38069088 PMCID: PMC10706591 DOI: 10.3390/ijms242316766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Recent research has unveiled intriguing insights suggesting that the body's immune system may be implicated in Parkinson's disease (PD) development. Studies have observed disparities in pro-inflammatory and anti-inflammatory markers between PD patients and healthy individuals. This finding underscores the potential influence of immune system dysfunction in the genesis of this condition. A dysfunctional immune system can serve as a primary catalyst for systemic inflammation in the body, which may contribute to the emergence of various brain disorders. The identification of several genes associated with PD, as well as their connection to neuroinflammation, raises the likelihood of disease susceptibility. Moreover, advancing age and mitochondrial dysfunction can weaken the immune system, potentially implicating them in the onset of the disease, particularly among older individuals. Compromised integrity of the blood-brain barrier could facilitate the immune system's access to brain tissue. This exposure may lead to encounters with native antigens or infections, potentially triggering an autoimmune response. Furthermore, there is mounting evidence supporting the notion that gut dysbiosis might represent an initial trigger for brain inflammation, ultimately promoting neurodegeneration. In this comprehensive review, we will delve into the numerous hypotheses surrounding the role of both innate and adaptive immunity in PD.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy
| | - Taku Hatano
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 3510918, Japan
| |
Collapse
|
74
|
Capelle CM, Ciré S, Hedin F, Hansen M, Pavelka L, Grzyb K, Kyriakis D, Hunewald O, Konstantinou M, Revets D, Tslaf V, Marques TM, Gomes CPC, Baron A, Domingues O, Gomez M, Zeng N, Betsou F, May P, Skupin A, Cosma A, Balling R, Krüger R, Ollert M, Hefeng FQ. Early-to-mid stage idiopathic Parkinson's disease shows enhanced cytotoxicity and differentiation in CD8 T-cells in females. Nat Commun 2023; 14:7461. [PMID: 37985656 PMCID: PMC10662447 DOI: 10.1038/s41467-023-43053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Neuroinflammation in the brain contributes to the pathogenesis of Parkinson's disease (PD), but the potential dysregulation of peripheral immunity has not been systematically investigated for idiopathic PD (iPD). Here we showed an elevated peripheral cytotoxic immune milieu, with more terminally-differentiated effector memory (TEMRA) CD8 T, CD8+ NKT cells and circulating cytotoxic molecules in fresh blood of patients with early-to-mid iPD, especially females, after analyzing > 700 innate and adaptive immune features. This profile, also reflected by fewer CD8+FOXP3+ T cells, was confirmed in another subcohort. Co-expression between cytotoxic molecules was selectively enhanced in CD8 TEMRA and effector memory (TEM) cells. Single-cell RNA-sequencing analysis demonstrated the accelerated differentiation within CD8 compartments, enhanced cytotoxic pathways in CD8 TEMRA and TEM cells, while CD8 central memory (TCM) and naïve cells were already more-active and transcriptionally-reprogrammed. Our work provides a comprehensive map of dysregulated peripheral immunity in iPD, proposing candidates for early diagnosis and treatments.
Collapse
Affiliation(s)
- Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Av. de Université, L-4365, Esch-sur-Alzette, Luxembourg
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8049, Zurich, Switzerland
| | - Séverine Ciré
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
- Eligo Bioscience, 111 Av. de France, 75013, Paris, France
| | - Fanny Hedin
- National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Maxime Hansen
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 4 Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Lukas Pavelka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 4 Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
| | - Dimitrios Kyriakis
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Maria Konstantinou
- National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Dominique Revets
- National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Vera Tslaf
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Av. de Université, L-4365, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Tainá M Marques
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Clarissa P C Gomes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Mario Gomez
- National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Av. de Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Fay Betsou
- Integrated Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (LIH), 1 Rue Louis Rech, L-3555, Dudelange, Luxembourg
- CRBIP, Institut Pasteur, Université Paris Cité, Paris, France
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Department of Physics and Material Science, University of Luxembourg, 162a Av. de la Faïencerie, L-1511, Luxembourg, Luxembourg
- Department of Neurosciences, University California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0662, USA
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Institute of Molecular Psychiatry, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 4 Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, Odense, 5000C, Denmark.
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.
- Data Integration and Analysis Unit, Luxembourg Institute of Health (LIH), L-1445, Strassen, Luxembourg.
| |
Collapse
|
75
|
Henrich MT, Oertel WH, Surmeier DJ, Geibl FF. Mitochondrial dysfunction in Parkinson's disease - a key disease hallmark with therapeutic potential. Mol Neurodegener 2023; 18:83. [PMID: 37951933 PMCID: PMC10640762 DOI: 10.1186/s13024-023-00676-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Mitochondrial dysfunction is strongly implicated in the etiology of idiopathic and genetic Parkinson's disease (PD). However, strategies aimed at ameliorating mitochondrial dysfunction, including antioxidants, antidiabetic drugs, and iron chelators, have failed in disease-modification clinical trials. In this review, we summarize the cellular determinants of mitochondrial dysfunction, including impairment of electron transport chain complex 1, increased oxidative stress, disturbed mitochondrial quality control mechanisms, and cellular bioenergetic deficiency. In addition, we outline mitochondrial pathways to neurodegeneration in the current context of PD pathogenesis, and review past and current treatment strategies in an attempt to better understand why translational efforts thus far have been unsuccessful.
Collapse
Affiliation(s)
- Martin T Henrich
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35039, Marburg, Germany
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Fanni F Geibl
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35039, Marburg, Germany.
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
76
|
Garretti F, Monahan C, Sloan N, Bergen J, Shahriar S, Kim SW, Sette A, Cutforth T, Kanter E, Agalliu D, Sulzer D. Interaction of an α-synuclein epitope with HLA-DRB1 ∗15:01 triggers enteric features in mice reminiscent of prodromal Parkinson's disease. Neuron 2023; 111:3397-3413.e5. [PMID: 37597517 PMCID: PMC11068096 DOI: 10.1016/j.neuron.2023.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
Enteric symptoms are hallmarks of prodromal Parkinson's disease (PD) that appear decades before the onset of motor symptoms and diagnosis. PD patients possess circulating T cells that recognize specific α-synuclein (α-syn)-derived epitopes. One epitope, α-syn32-46, binds with strong affinity to the HLA-DRB1∗15:01 allele implicated in autoimmune diseases. We report that α-syn32-46 immunization in a mouse expressing human HLA-DRB1∗15:01 triggers intestinal inflammation, leading to loss of enteric neurons, damaged enteric dopaminergic neurons, constipation, and weight loss. α-Syn32-46 immunization activates innate and adaptive immune gene signatures in the gut and induces changes in the CD4+ TH1/TH17 transcriptome that resemble tissue-resident memory (TRM) cells found in mucosal barriers during inflammation. Depletion of CD4+, but not CD8+, T cells partially rescues enteric neurodegeneration. Therefore, interaction of α-syn32-46 and HLA-DRB1∗15:0 is critical for gut inflammation and CD4+ T cell-mediated loss of enteric neurons in humanized mice, suggesting mechanisms that may underlie prodromal enteric PD.
Collapse
Affiliation(s)
- Francesca Garretti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA; Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Connor Monahan
- Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Nicholas Sloan
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jamie Bergen
- Department of Neuroscience, Columbia University, New York, NY, USA; Department of Computer Science, Columbia University, New York, NY, USA
| | - Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seon Woo Kim
- Weill Cornell Medicine - Qatar, Education City, Doha, Qatar
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, University of California in San Diego, San Diego, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tyler Cutforth
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ellen Kanter
- Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Dritan Agalliu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - David Sulzer
- Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
77
|
Anderson G. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:962-993. [PMID: 37970210 PMCID: PMC10645470 DOI: 10.37349/etat.2023.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 11/17/2023] Open
Abstract
A dysregulated circadian rhythm is significantly associated with cancer risk, as is aging. Both aging and circadian dysregulation show suppressed pineal melatonin, which is indicated in many studies to be linked to cancer risk and progression. Another independently investigated aspect of the circadian rhythm is the cortisol awakening response (CAR), which is linked to stress-associated hypothalamus-pituitary-adrenal (HPA) axis activation. CAR and HPA axis activity are primarily mediated via activation of the glucocorticoid receptor (GR), which drives patterned gene expression via binding to the promotors of glucocorticoid response element (GRE)-expressing genes. Recent data shows that the GR can be prevented from nuclear translocation by the B cell lymphoma-2 (Bcl-2)-associated athanogene 1 (BAG-1), which translocates the GR to mitochondria, where it can have diverse effects. Melatonin also suppresses GR nuclear translocation by maintaining the GR in a complex with heat shock protein 90 (Hsp90). Melatonin, directly and/or epigenetically, can upregulate BAG-1, suggesting that the dramatic 10-fold decrease in pineal melatonin from adolescence to the ninth decade of life will attenuate the capacity of night-time melatonin to modulate the effects of the early morning CAR. The interactions of pineal melatonin/BAG-1/Hsp90 with the CAR are proposed to underpin how aging and circadian dysregulation are associated with cancer risk. This may be mediated via differential effects of melatonin/BAG-1/Hsp90/GR in different cells of microenvironments across the body, from which tumors emerge. This provides a model of cancer pathogenesis that better integrates previously disparate bodies of data, including how immune cells are regulated by cancer cells in the tumor microenvironment, at least partly via the cancer cell regulation of the tryptophan-melatonin pathway. This has a number of future research and treatment implications.
Collapse
|
78
|
He S, Wang Q, Chen L, He YJ, Wang X, Qu S. miR-100a-5p-enriched exosomes derived from mesenchymal stem cells enhance the anti-oxidant effect in a Parkinson's disease model via regulation of Nox4/ROS/Nrf2 signaling. J Transl Med 2023; 21:747. [PMID: 37875930 PMCID: PMC10594913 DOI: 10.1186/s12967-023-04638-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND The pathogenesis of Parkinson's disease (PD) has not been fully elucidated, and there are no effective disease-modifying drugs for the treatment of PD. Mesenchymal stem cells have been used to treat several diseases, but are not readily available. METHODS Here, we used phenotypically uniform trophoblast stage-derived mesenchymal stem cells (T-MSCs) from embryonic stem cells, which are capable of stable production, and their exosomes (T-MSCs-Exo) to explore the molecular mechanisms involved in dopaminergic (DA) neuron protection in PD models using experimental assays (e.g., western blotting, immunofluorescence and immunohistochemistry staining). RESULTS We assessed the levels of DA neuron injury and oxidative stress in MPTP-induced PD mice and MPP+-induced MN9D cells after treating them with T-MSCs or T-MSCs-Exo. Furthermore, T-MSCs-Exo miRNA sequencing analysis revealed that miR-100-5p-enriched T-MSCs-Exo directly targeted the 3' UTR of NOX4, which could protect against the loss of DA neurons, maintain nigro-striatal system function, ameliorate motor deficits, and reduce oxidative stress via the Nox4-ROS-Nrf2 axis in PD models. CONCLUSIONS The study suggests that miR-100-5p-enriched T-MSCs-Exo may be a promising biological agent for the treatment of PD. Schematic summary of the mechanism underlying the neuroprotective actions of T-MSCs-Exo in PD. T-MSCs Exo may inhibit the expression level of the target gene NOX4 by delivering miR-100-5p, thereby reducing ROS production and alleviating oxidative stress via the Nox4-ROS-Nrf2 axis, thus improving DA neuron damage in PD.
Collapse
Affiliation(s)
- Songzhe He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiongqiong Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Liankuai Chen
- ImStem Biotechnology, Inc., 400 Farmington Avenue R1808, Farmington, CT, 06030, USA
- Zhuhai Hengqin ImStem Biotechnology Co., Ltd, Hengqin New District Huandao Donglu 1889 Building 3, Zhuhai, 519000, Guangdong, China
| | - Yusheng Jason He
- ImStem Biotechnology, Inc., 400 Farmington Avenue R1808, Farmington, CT, 06030, USA
- Zhuhai Hengqin ImStem Biotechnology Co., Ltd, Hengqin New District Huandao Donglu 1889 Building 3, Zhuhai, 519000, Guangdong, China
| | - Xiaofang Wang
- ImStem Biotechnology, Inc., 400 Farmington Avenue R1808, Farmington, CT, 06030, USA
- Zhuhai Hengqin ImStem Biotechnology Co., Ltd, Hengqin New District Huandao Donglu 1889 Building 3, Zhuhai, 519000, Guangdong, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, Guangdong, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
79
|
Hurley MJ, Menozzi E, Koletsi S, Bates R, Gegg ME, Chau KY, Blottière HM, Macnaughtan J, Schapira AHV. α-Synuclein expression in response to bacterial ligands and metabolites in gut enteroendocrine cells: an in vitro proof of concept study. Brain Commun 2023; 5:fcad285. [PMID: 37953845 PMCID: PMC10636561 DOI: 10.1093/braincomms/fcad285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/03/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Caudo-rostral migration of pathological forms of α-synuclein from the gut to the brain is proposed as an early feature in Parkinson's disease pathogenesis, but the underlying mechanisms remain unknown. Intestinal epithelial enteroendocrine cells sense and respond to numerous luminal signals, including bacterial factors, and transmit this information to the brain via the enteric nervous system and vagus nerve. There is evidence that gut bacteria composition and their metabolites change in Parkinson's disease patients, and these alterations can trigger α-synuclein pathology in animal models of the disorder. Here, we investigated the effect of toll-like receptor and free fatty acid receptor agonists on the intracellular level of α-synuclein and its release using mouse secretin tumour cell line 1 enteroendocrine cells. Secretin tumour cell line 1 enteroendocrine cells were treated for 24 or 48 h with toll-like receptor agonists (toll-like receptor 4 selective lipopolysaccharide; toll-like receptor 2 selective Pam3CysSerLys4) and the free fatty acid receptor 2/3 agonists butyrate, propionate and acetate. The effect of selective receptor antagonists on the agonists' effects after 24 hours was also investigated. The level of α-synuclein protein was measured in cell lysates and cell culture media by western blot and enzyme-linked immunosorbent assay. The level of α-synuclein and tumour necrosis factor messenger RNA was measured by quantitative reverse transcription real-time polymerase chain reaction. Stimulation of secretin tumour cell line 1 enteroendocrine cells for 24 and 48 hours with toll-like receptor and free fatty acid receptor agonists significantly increased the amount of intracellular α-synuclein and the release of α-synuclein from the cells into the culture medium. Both effects were significantly reduced by antagonists selective for each receptor. Toll-like receptor and free fatty acid receptor agonists also significantly increased tumour necrosis factor transcription, and this was effectively inhibited by corresponding antagonists. Elevated intracellular α-synuclein increases the likelihood of aggregation and conversion to toxic forms. Factors derived from bacteria induce α-synuclein accumulation in secretin tumour cell line 1 enteroendocrine cells. Here, we provide support for a mechanism by which exposure of enteroendocrine cells to specific bacterial factors found in Parkinson's disease gut dysbiosis might facilitate accumulation of α-synuclein pathology in the gut.
Collapse
Affiliation(s)
- Michael J Hurley
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sofia Koletsi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Rachel Bates
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew E Gegg
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Kai-Yin Chau
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Hervé M Blottière
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy en Josas, & Nantes Université, INRAE, UMR 1280 PhAN, Nantes 44093, France
| | - Jane Macnaughtan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
80
|
Cheng H, Wang J, Zhang Y, Tang Y, Zhu L, Tao Y, Lu W, Yang H, Zhu W, Tang X, Qiao X. The mechanism of LZ-8-mediated immune response in the mouse model of Parkinson's disease. J Neuroimmunol 2023; 383:578144. [PMID: 37696167 DOI: 10.1016/j.jneuroim.2023.578144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 09/13/2023]
Abstract
Parkinson's disease (PD) is associated with microscopic changes in the brain, particularly substantia nigra (SN). Ganoderma lucidum immunoregulatory protein (rLZ-8) is might confer protective effects against PD. We developed a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine model of PD and determined the effects of rLZ-8 on molecular and cellular components of SN and whole brain tissue. The levels of SOD, GSH-Px, p-JAK2 and p-STAT3 in the brain tissue and SN were downregulated, while IL-6, IL-1β, and TNF-α and MDA were upregulated. These effects were significantly reversed upon treatment rLZ-8. In summary, oxidative stress and inflammatory response in PD can be alleviated using rLZ-8.
Collapse
Affiliation(s)
- Hong Cheng
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China.
| | - Jingyu Wang
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China; Department of Clinical Laboratory, Affiliated Hospital of Yangzhou University, Jiangsu, Yangzhou, China
| | - Yahui Zhang
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Yingle Tang
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Lin Zhu
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Yan Tao
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Wen Lu
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Haifan Yang
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Weiyi Zhu
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Xin Tang
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Xinran Qiao
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| |
Collapse
|
81
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
82
|
Stolzer I, Scherer E, Süß P, Rothhammer V, Winner B, Neurath MF, Günther C. Impact of Microbiome-Brain Communication on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2023; 24:14925. [PMID: 37834373 PMCID: PMC10573483 DOI: 10.3390/ijms241914925] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The gut microbiome plays a pivotal role in maintaining human health, with numerous studies demonstrating that alterations in microbial compositions can significantly affect the development and progression of various immune-mediated diseases affecting both the digestive tract and the central nervous system (CNS). This complex interplay between the microbiota, the gut, and the CNS is referred to as the gut-brain axis. The role of the gut microbiota in the pathogenesis of neurodegenerative diseases has gained increasing attention in recent years, and evidence suggests that gut dysbiosis may contribute to disease development and progression. Clinical studies have shown alterations in the composition of the gut microbiota in multiple sclerosis patients, with a decrease in beneficial bacteria and an increase in pro-inflammatory bacteria. Furthermore, changes within the microbial community have been linked to the pathogenesis of Parkinson's disease and Alzheimer's disease. Microbiota-gut-brain communication can impact neurodegenerative diseases through various mechanisms, including the regulation of immune function, the production of microbial metabolites, as well as modulation of host-derived soluble factors. This review describes the current literature on the gut-brain axis and highlights novel communication systems that allow cross-talk between the gut microbiota and the host that might influence the pathogenesis of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eveline Scherer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
83
|
Lauritsen J, Romero-Ramos M. The systemic immune response in Parkinson's disease: focus on the peripheral immune component. Trends Neurosci 2023; 46:863-878. [PMID: 37598092 DOI: 10.1016/j.tins.2023.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
During Parkinson's disease (PD), both the central nervous system (CNS) and peripheral nervous system (PNS) are affected. In parallel, innate immune cells respond early to neuronal changes and alpha-synuclein (α-syn) pathology. Moreover, some of the affected neuronal groups innervate organs with a relevant role in immunity. Consequently, not only microglia, but also peripheral immune cells are altered, resulting in a systemic immune response. Innate and adaptive immune cells may participate in the neurodegenerative process by acting peripherally, infiltrating the brain, or releasing mediators that can protect or harm neurons. However, the sequence of the changes and the significance of each immune compartment in the disease remain to be clarified. In this review, we describe current understanding of the peripheral immune response in PD and discuss the road ahead.
Collapse
Affiliation(s)
- Johanne Lauritsen
- Department of Biomedicine, Health Faculty & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Health Faculty & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
84
|
Liu X, Yang M, Liu R, Zhou F, Zhu H, Wang X. The impact of Parkinson's disease-associated gut microbiota on the transcriptome in Drosophila. Microbiol Spectr 2023; 11:e0017623. [PMID: 37754772 PMCID: PMC10581176 DOI: 10.1128/spectrum.00176-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people, and many studies have confirmed that the disorder of gut microbiota is involved in the pathophysiological process of PD. However, the molecular mechanism of gut microbiota in regulating the pathogenesis of PD is still lacking. In this study, to investigate the impact of PD-associated gut microbiota on host transcriptome, we established various PD models with fecal microbiota transplantation (FMT) in the model organism Drosophila followed by integrative data analysis of microbiome and transcriptome. We first constructed rotenone-induced PD models in Drosophila followed by FMT in different groups. Microbial analysis by 16S rDNA sequencing showed that gut microbiota from PD Drosophila could affect bacterial structure of normal Drosophila, and gut microbiota from normal Drosophila could affect bacterial structure of PD Drosophila. Transcriptome analysis revealed that PD-associated gut microbiota influenced expression patterns of genes enriched in neuroactive ligand-receptor interaction, lysosome, and diverse metabolic pathways. Importantly, to verify our findings, we transplanted Drosophila with fecal samples from clinical PD patients. Compared to the control, Drosophila transplanted with fecal samples from PD patients had reduced microbiota Acetobacter and Lactobacillus, and differentially expressed genes enriched in diverse metabolic pathways. In summary, our results reveal the influence of PD-associated gut microbiota on host gene expression, and this study can help better understand the link between gut microbiota and PD pathogenesis through gut-brain axis. IMPORTANCE Gut microbiota plays important roles in regulating host gene expression and physiology through complex mechanisms. Recently, it has been suggested that disorder of gut microbiota is involved in the pathophysiological process of Parkinson's disease (PD). However, the molecular mechanism of gut microbiota in regulating the pathogenesis of PD is still lacking. In this study, to investigate the impact of PD-associated gut microbiota on host transcriptome, we established various PD models with fecal microbiota transplantation in the model organism Drosophila followed by integrative data analysis of microbiome and transcriptome. We also verified our findings by transplanting Drosophila with fecal samples from clinical PD patients. Our results demonstrated that PD-associated gut microbiota can induce differentially expressed genes enriched in diverse metabolic pathways. This study can help better understand the link between gut microbiota and PD pathogenesis through gut-brain axis.
Collapse
Affiliation(s)
- Xin Liu
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Meng Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Runzhou Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fan Zhou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haibing Zhu
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Psychiatry, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xiaoyun Wang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
85
|
Liu S, Men X, Guo Y, Cai W, Wu R, Gao R, Zhong W, Guo H, Ruan H, Chou S, Mai J, Ping S, Jiang C, Zhou H, Mou X, Zhao W, Lu Z. Gut microbes exacerbate systemic inflammation and behavior disorders in neurologic disease CADASIL. MICROBIOME 2023; 11:202. [PMID: 37684694 PMCID: PMC10486110 DOI: 10.1186/s40168-023-01638-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that carries mutations in NOTCH3. The clinical manifestations are influenced by genetic and environmental factors that may include gut microbiome. RESULTS We investigated the fecal metagenome, fecal metabolome, serum metabolome, neurotransmitters, and cytokines in a cohort of 24 CADASIL patients with 28 healthy household controls. The integrated-omics study showed CADASIL patients harbored an altered microbiota composition and functions. The abundance of bacterial coenzyme A, thiamin, and flavin-synthesizing pathways was depleted in patients. Neurotransmitter balance, represented by the glutamate/GABA (4-aminobutanoate) ratio, was disrupted in patients, which was consistent with the increased abundance of two major GABA-consuming bacteria, Megasphaera elsdenii and Eubacterium siraeum. Essential inflammatory cytokines were significantly elevated in patients, accompanied by an increased abundance of bacterial virulence gene homologs. The abundance of patient-enriched Fusobacterium varium positively correlated with the levels of IL-1β and IL-6. Random forest classification based on gut microbial species, serum cytokines, and neurotransmitters showed high predictivity for CADASIL with AUC = 0.89. Targeted culturomics and mechanisms study further showed that patient-derived F. varium infection caused systemic inflammation and behavior disorder in Notch3R170C/+ mice potentially via induction of caspase-8-dependent noncanonical inflammasome activation in macrophages. CONCLUSION These findings suggested the potential linkage among the brain-gut-microbe axis in CADASIL. Video Abstract.
Collapse
Affiliation(s)
- Sheng Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xuejiao Men
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Yang Guo
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Wei Cai
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Ruizhen Wu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Rongsui Gao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Weicong Zhong
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Huating Guo
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hengfang Ruan
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Shuli Chou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Junrui Mai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Suning Ping
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310012, Zhejiang, China
| | - Hongwei Zhou
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Wenjing Zhao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Zhengqi Lu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
86
|
Palacios N, Wilkinson J, Bjornevik K, Schwarzschild MA, McIver L, Ascherio A, Huttenhower C. Metagenomics of the Gut Microbiome in Parkinson's Disease: Prodromal Changes. Ann Neurol 2023; 94:486-501. [PMID: 37314861 PMCID: PMC10538421 DOI: 10.1002/ana.26719] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Prior studies on the gut microbiome in Parkinson's disease (PD) have yielded conflicting results, and few studies have focused on prodromal (premotor) PD or used shotgun metagenomic profiling to assess microbial functional potential. We conducted a nested case-control study within 2 large epidemiological cohorts to examine the role of the gut microbiome in PD. METHODS We profiled the fecal metagenomes of 420 participants in the Nurses' Health Study and the Health Professionals Follow-up Study with recent onset PD (N = 75), with features of prodromal PD (N = 101), controls with constipation (N = 113), and healthy controls (N = 131) to identify microbial taxonomic and functional features associated with PD and features suggestive of prodromal PD. Omnibus and feature-wise analyses identified bacterial species and pathways associated with prodromal and recently onset PD. RESULTS We observed depletion of several strict anaerobes associated with reduced inflammation among participants with PD or features of prodromal PD. A microbiome-based classifier had moderate accuracy (area under the curve [AUC] = 0.76 for species and 0.74 for pathways) to discriminate between recently onset PD cases and controls. These taxonomic shifts corresponded with functional shifts indicative of carbohydrate source preference. Similar, but less marked, changes were observed in participants with features of prodromal PD, in both microbial features and functions. INTERPRETATION PD and features of prodromal PD were associated with similar changes in the gut microbiome. These findings suggest that changes in the microbiome could represent novel biomarkers for the earliest phases of PD. ANN NEUROL 2023;94:486-501.
Collapse
Affiliation(s)
- Natalia Palacios
- Department of Public Health, University of Massachusetts Lowell, Lowell, MA
- Department of Veterans Affairs, ENRM VA Hospital, Bedford, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Harvard Chan Microbiome in Public Health Center (HCMPH)
| | | | - Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Harvard Chan Microbiome in Public Health Center (HCMPH)
| | | | - Lauren McIver
- Harvard Chan Microbiome in Public Health Center (HCMPH)
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Harvard Chan Microbiome in Public Health Center (HCMPH)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center (HCMPH)
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
87
|
Zhao Q, Chen J, Wu M, Yin X, Jiang Q, Gao H, Zheng H. Microbiota from healthy mice alleviates cognitive decline via reshaping the gut-brain metabolic axis in diabetic mice. Chem Biol Interact 2023; 382:110638. [PMID: 37473910 DOI: 10.1016/j.cbi.2023.110638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Diabetic cognitive decline has been associated with the gut microbial disorders, but its potential gut-brain axis mechanisms remain unclear. Herein we transplanted the gut microbiota from healthy mice into type 1 diabetic (T1D) mice and then investigated the effect of fecal microbiota transplantation (FMT) on cognitive function and the gut-brain metabolic axis. The results demonstrate that FMT from healthy mice effectively improved the learning and memory abilities in T1D mice, and significantly reduced neuroinflammation and neuron injury in the cortex and hippocampus. Moreover, FMT partly reversed the gut microbiota and gut-brain metabolic disorders, particularly glutamate metabolism. In vitro study, we found that glutamate notably decreased microglia activation and the expression levels of proinflammatory factor. Hence, our study suggests that glutamate serves as a key signal metabolite connecting the gut to brain and affects cognitive functions.
Collapse
Affiliation(s)
- Qihui Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junli Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mengjun Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaoli Yin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiaoying Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
88
|
Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, Martínez-Miguel E, Pérez-Curiel A, Gómez-Senent S, Beltrán-Velasco AI. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review. Int J Mol Sci 2023; 24:13294. [PMID: 37686104 PMCID: PMC10487945 DOI: 10.3390/ijms241713294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Uceda
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Víctor Echeverry-Alzate
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Manuel Reiriz-Rojas
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Esther Martínez-Miguel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Ana Pérez-Curiel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Silvia Gómez-Senent
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | | |
Collapse
|
89
|
Lamberty BG, Estrella LD, Mattingly JE, Emanuel K, Trease A, Totusek S, Sheldon L, George JW, Almikhlafi MA, Farmer T, Stauch KL. Parkinson's disease relevant pathological features are manifested in male Pink1/Parkin deficient rats. Brain Behav Immun Health 2023; 31:100656. [PMID: 37484197 PMCID: PMC10362548 DOI: 10.1016/j.bbih.2023.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Animal disease models are important for neuroscience experimentation and in the study of neurodegenerative disorders. The major neurodegenerative disorder leading to motor impairments is Parkinson's disease (PD). The identification of hereditary forms of PD uncovered gene mutations and variants, such as loss-of-function mutations in PTEN-induced putative kinase 1 (Pink1) and the E3 ubiquitin ligase Parkin, two proteins involved in mitochondrial quality control, that could be harnessed to create animal models. However, to date, such models have not reproducibly recapitulated major aspects of the disease. Here, we describe the generation and phenotypic characterization of a combined Pink1/Parkin double knockout (dKO) rat, which reproducibly exhibits PD-relevant abnormalities, particularly in male animals. Motor dysfunction in Pink1/Parkin dKO rats was characterized by gait abnormalities and decreased rearing frequency, the latter of which was responsive to levodopa treatment. Pink1/Parkin dKO rats exhibited elevated plasma levels of neurofilament light chain and significant loss of tyrosine hydroxylase expression in the substantia nigra pars compacta (SNpc). Glial cell activation was also observed in the SNpc. Pink1/Parkin dKO rats showed elevated plasma and reduced cerebrospinal levels of alpha-synuclein as well as the presence of alpha-synuclein aggregates in the striatum. Further, the profile of circulating lymphocytes was altered, as elevated CD3+CD4+ T cells and reduced CD3+CD8+ T cells in Pink1/Parkin dKO rats were found. This coincided with mitochondrial dysfunction and infiltration of CD3+ T cells in the striatum. Altogether, the Pink1/Parkin dKO rats exhibited phenotypes similar to what is seen with PD patients, thus highlighting the suitability of this model for mechanistic studies of the role of Pink1 and Parkin in PD pathogenesis and as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kelly L. Stauch
- Corresponding author. Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
90
|
Videlock EJ, Xing T, Yehya AHS, Travagli RA. Experimental models of gut-first Parkinson's disease: A systematic review. Neurogastroenterol Motil 2023; 35:e14604. [PMID: 37125607 PMCID: PMC10524037 DOI: 10.1111/nmo.14604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND There is strong support from studies in humans and in animal models that Parkinson's disease (PD) may begin in the gut. This brings about a unique opportunity for researchers in the field of neurogastroenterology to contribute to advancing the field and making contributions that could lead to the ability to diagnose and treat PD in the premotor stages. Lack of familiarity with some of the aspects of the experimental approaches used in these studies may present a barrier for neurogastroenterology researchers to enter the field. Much remains to be understood about intestinal-specific components of gut-first PD pathogenesis and the field would benefit from contributions of enteric and central nervous system neuroscientists. PURPOSE To address these issues, we have conducted a systematic review of the two most frequently used experimental models of gut-first PD: transneuronal propagation of α-synuclein preformed fibrils and oral exposure to environmental toxins. We have reviewed the details of these studies and present methodological considerations for the use of these models. Our aim is that this review will serve as a framework and useful reference for neuroscientists, gastroenterologists, and neurologists interested in applying their expertise to advancing our understanding of gut-first PD.
Collapse
Affiliation(s)
- Elizabeth J. Videlock
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Tiaosi Xing
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Ashwaq Hamid Salem Yehya
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
91
|
Blackmer-Raynolds L, Sampson TR. Overview of the Gut Microbiome. Semin Neurol 2023; 43:518-529. [PMID: 37562449 DOI: 10.1055/s-0043-1771463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The human gastrointestinal tract is home to trillions of microorganisms-collectively referred to as the gut microbiome-that maintain a symbiotic relationship with their host. This diverse community of microbes grows and changes as we do, with developmental, lifestyle, and environmental factors all shaping microbiome community structure. Increasing evidence suggests this relationship is bidirectional, with the microbiome also influencing host physiological processes. For example, changes in the gut microbiome have been shown to alter neurodevelopment and have lifelong effects on the brain and behavior. Age-related changes in gut microbiome composition have also been linked to inflammatory changes in the brain, perhaps increasing susceptibility to neurological disease. Indeed, associations between gut dysbiosis and many age-related neurological diseases-including Parkinson's disease, Alzheimer's disease, multiple sclerosis, and amyotrophic lateral sclerosis-have been reported. Further, microbiome manipulation in animal models of disease highlights a potential role for the gut microbiome in disease development and progression. Although much remains unknown, these associations open up an exciting new world of therapeutic targets, potentially allowing for improved quality of life for a wide range of patient populations.
Collapse
Affiliation(s)
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
92
|
Stensballe A, Bennike TB, Ravn-Haren G, Mortensen A, Aboo C, Knudsen LA, Rühlemann MC, Birkelund S, Bang C, Franke A, Vogel U, Hansen AK, Andersen V. Impaired Abcb1a function and red meat in a translational colitis mouse model induces inflammation and alters microbiota composition. Front Med (Lausanne) 2023; 10:1200317. [PMID: 37588005 PMCID: PMC10425965 DOI: 10.3389/fmed.2023.1200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) affects approximately 0.3% of the global population, with incidence rates rising dramatically worldwide. Emerging evidence points to an interplay between exposome factors such as diet and gut microbiota, host genetics, and the immune system as crucial elements in IBD development. ATP-binding cassette (ABC) transporters, including human p-glycoprotein encoded by the Abcb1 gene, influence intestinal inflammation, and their expression may interact with environmental factors such as diet and gut microbes. Our study aimed to examine the impact of protein sources on a genetic colitis mouse model. Methods Abcb1a-deficient colitis mice were fed either casein or red meat-supplemented diets to investigate potential colitis-aggravating components in red meat and their effects on host-microbiota interactions. We conducted deep label free quantitative proteomic inflammation profiling of gastrointestinal tissue (colon, ileum) and urine, and determined the overall microbiome in feces using 16S rRNA gene sequencing. Microbiota shifts by diet and protein transporter impairment were addressed by multivariate statistical analysis. Colon and systemic gut inflammation were validated through histology and immune assays, respectively. Results A quantitative discovery based proteomic analysis of intestinal tissue and urine revealed associations between ileum and urine proteomes in relation to Abcb1a deficiency. The absence of Abcb1a efflux pump function and diet-induced intestinal inflammation impacted multiple systemic immune processes, including extensive neutrophil extracellular trap (NET) components observed in relation to neutrophil degranulation throughout the gastrointestinal tract. The colitis model's microbiome differed significantly from that of wild-type mice, indicating the substantial influence of efflux transporter deficiency on microbiota. Conclusion The proteomic and microbiota analyzes of a well-established murine model enabled the correlation of gastrointestinal interactions not readily identifiable in human cohorts. Insights into dysregulated biological pathways in this disease model might offer translational biomarkers based on NETs and improved understanding of IBD pathogenesis in human patients. Our findings demonstrate that drug transporter deficiency induces substantial changes in the microbiota, leading to increased levels of IBD-associated strains and resulting in intestinal inflammation. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Gitte Ravn-Haren
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Alicja Mortensen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Sino-Danish Center for Research and Education, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Almind Knudsen
- Institute of Regional Health Research-Center Soenderjylland, University of Southern Denmark, Odense, Denmark
| | - Malte C. Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Corinne Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ulla Vogel
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Andersen
- Institute of Regional Health Research-Center Soenderjylland, University of Southern Denmark, Odense, Denmark
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
93
|
Müller-Nedebock AC, Dekker MCJ, Farrer MJ, Hattori N, Lim SY, Mellick GD, Rektorová I, Salama M, Schuh AFS, Stoessl AJ, Sue CM, Tan AH, Vidal RL, Klein C, Bardien S. Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:110. [PMID: 37443150 DOI: 10.1038/s41531-023-00535-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
The biological basis of the neurodegenerative movement disorder, Parkinson's disease (PD), is still unclear despite it being 'discovered' over 200 years ago in Western Medicine. Based on current PD knowledge, there are widely varying theories as to its pathobiology. The aim of this article was to explore some of these different theories by summarizing the viewpoints of laboratory and clinician scientists in the PD field, on the biological basis of the disease. To achieve this aim, we posed this question to thirteen "PD experts" from six continents (for global representation) and collated their personal opinions into this article. The views were varied, ranging from toxin exposure as a PD trigger, to LRRK2 as a potential root cause, to toxic alpha-synuclein being the most important etiological contributor. Notably, there was also growing recognition that the definition of PD as a single disease should be reconsidered, perhaps each with its own unique pathobiology and treatment regimen.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Marieke C J Dekker
- Department of Internal Medicine, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Matthew J Farrer
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Nobutaka Hattori
- Research Institute of Disease of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0106, Japan
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - George D Mellick
- Griffith Institute of Drug Discovery (GRIDD), Griffith University, Brisbane, QLD, Australia
| | - Irena Rektorová
- First Department of Neurology and International Clinical Research Center, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Applied Neuroscience Research Group, CEITEC, Masaryk University, Brno, Czech Republic
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo (AUC), New Cairo, 11835, Egypt
- Faculty of Medicine, Mansoura University, Dakahleya, Egypt
- Atlantic Senior Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland
| | - Artur F S Schuh
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, Department of Medicine (Division of Neurology), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Carolyn M Sue
- Neuroscience Research Australia; Faculty of Medicine, University of New South Wales; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst; Department of Neurology, Prince of Wales Hospital, South Eastern Sydney Local Health District, Randwick, NSW, Australia
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rene L Vidal
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany.
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
94
|
Hawrysh PJ, Gao J, Tan S, Oh A, Nodwell J, Tompkins TA, McQuibban GA. PRKN/parkin-mediated mitophagy is induced by the probiotics Saccharomyces boulardii and Lactococcus lactis. Autophagy 2023; 19:2094-2110. [PMID: 36708254 PMCID: PMC10283409 DOI: 10.1080/15548627.2023.2172873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial impairment is a hallmark feature of neurodegenerative disorders, such as Parkinson disease, and PRKN/parkin-mediated mitophagy serves to remove unhealthy mitochondria from cells. Notably, probiotics are used to alleviate several symptoms of Parkinson disease including impaired locomotion and neurodegeneration in preclinical studies and constipation in clinical trials. There is some evidence to suggest that probiotics can modulate mitochondrial quality control pathways. In this study, we screened 49 probiotic strains and tested distinct stages of mitophagy to determine whether probiotic treatment could upregulate mitophagy in cells undergoing mitochondrial stress. We found two probiotics, Saccharomyces boulardii and Lactococcus lactis, that upregulated mitochondrial PRKN recruitment, phospho-ubiquitination, and MFN degradation in our cellular assays. Administration of these strains to Drosophila that were exposed to paraquat, a mitochondrial toxin, resulted in improved longevity and motor function. Further, we directly observed increased lysosomal degradation of dysfunctional mitochondria in the treated Drosophila brains. These effects were replicated in vitro and in vivo with supra-physiological concentrations of exogenous soluble factors that are released by probiotics in cultures grown under laboratory conditions. We identified methyl-isoquinoline-6-carboxylate as one candidate molecule, which upregulates mitochondrial PRKN recruitment, phospho-ubiquitination, MFN degradation, and lysosomal degradation of damaged mitochondria. Addition of methyl-isoquinoline-6-carboxylate to the fly food restored motor function to paraquat-treated Drosophila. These data suggest a novel mechanism that is facilitated by probiotics to stimulate mitophagy through a PRKN-dependent pathway, which could explain the potential therapeutic benefit of probiotic administration to patients with Parkinson disease.
Collapse
Affiliation(s)
| | - Jinghua Gao
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Stephanie Tan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Amy Oh
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Justin Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
95
|
Schonhoff AM, Figge DA, Williams GP, Jurkuvenaite A, Gallups NJ, Childers GM, Webster JM, Standaert DG, Goldman JE, Harms AS. Border-associated macrophages mediate the neuroinflammatory response in an alpha-synuclein model of Parkinson disease. Nat Commun 2023; 14:3754. [PMID: 37365181 PMCID: PMC10293214 DOI: 10.1038/s41467-023-39060-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Dopaminergic cell loss due to the accumulation of α-syn is a core feature of the pathogenesis of Parkinson disease. Neuroinflammation specifically induced by α-synuclein has been shown to exacerbate neurodegeneration, yet the role of central nervous system (CNS) resident macrophages in this process remains unclear. We found that a specific subset of CNS resident macrophages, border-associated macrophages (BAMs), play an essential role in mediating α-synuclein related neuroinflammation due to their unique role as the antigen presenting cells necessary to initiate a CD4 T cell response whereas the loss of MHCII antigen presentation on microglia had no effect on neuroinflammation. Furthermore, α-synuclein expression led to an expansion in border-associated macrophage numbers and a unique damage-associated activation state. Through a combinatorial approach of single-cell RNA sequencing and depletion experiments, we found that border-associated macrophages played an essential role in immune cell recruitment, infiltration, and antigen presentation. Furthermore, border-associated macrophages were identified in post-mortem PD brain in close proximity to T cells. These results point to a role for border-associated macrophages in mediating the pathogenesis of Parkinson disease through their role in the orchestration of the α-synuclein-mediated neuroinflammatory response.
Collapse
Affiliation(s)
- A M Schonhoff
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D A Figge
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - G P Williams
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A Jurkuvenaite
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - N J Gallups
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - G M Childers
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J M Webster
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D G Standaert
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J E Goldman
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - A S Harms
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
96
|
Ortega Moreno L, Bagues A, Martínez V, Abalo R. New Pieces for an Old Puzzle: Approaching Parkinson's Disease from Translatable Animal Models, Gut Microbiota Modulation, and Lipidomics. Nutrients 2023; 15:2775. [PMID: 37375679 DOI: 10.3390/nu15122775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease characterized by disabling motor alterations that are diagnosed at a relatively late stage in its development, and non-motor symptoms, including those affecting the gastrointestinal tract (mainly constipation), which start much earlier than the motor symptoms. Remarkably, current treatments only reduce motor symptoms, not without important drawbacks (relatively low efficiency and impactful side effects). Thus, new approaches are needed to halt PD progression and, possibly, to prevent its development, including new therapeutic strategies that target PD etiopathogeny and new biomarkers. Our aim was to review some of these new approaches. Although PD is complex and heterogeneous, compelling evidence suggests it might have a gastrointestinal origin, at least in a significant number of patients, and findings in recently developed animal models strongly support this hypothesis. Furthermore, the modulation of the gut microbiome, mainly through probiotics, is being tested to improve motor and non-motor symptoms and even to prevent PD. Finally, lipidomics has emerged as a useful tool to identify lipid biomarkers that may help analyze PD progression and treatment efficacy in a personalized manner, although, as of today, it has only scarcely been applied to monitor gut motility, dysbiosis, and probiotic effects in PD. Altogether, these new pieces should be helpful in solving the old puzzle of PD.
Collapse
Affiliation(s)
- Lorena Ortega Moreno
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Ana Bagues
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
97
|
Mei X, Lei Y, Ouyang L, Zhao M, Lu Q. Deficiency of Pink1 promotes the differentiation of Th1 cells. Mol Immunol 2023; 160:23-31. [PMID: 37331031 DOI: 10.1016/j.molimm.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Previous studies have found that Pink1 is crucial for T cell activation and the function of Treg cells. However, the effect of Pink1 on inflammatory Th1 cells is largely unknown. In the process of Th1 differentiation from human naïve T cells, we found a reduction of Pink1 and Parkin. We then focused our attention on the Pink1 KO mice. Although there was no difference in the baseline of the T cell subset of Pink1 KO mice, Th1 differentiation from Pink1 KO naïve T cells in vitro showed a significant increase. Subsequently, we transferred naïve CD4+ T cells into Rag2 KO mice to establish a T-cell colitis mouse model and found that CD4+ T cells in mesentery lymph nodes of mice receiving Pink1 KO cells increased significantly, especially Th1 cells. Intestinal IHC staining also showed that the transcription factor T-bet of Th1 increased. Treatment of CD4+ T cells from lupus-like mice with mitophagy agonist urolithin A, a reduction of Th1 cells was observed, suggesting the clinical value of using mitophagy agonists to suppress Th1-dominated disease in the future.
Collapse
Affiliation(s)
- Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yu Lei
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Lianlian Ouyang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
98
|
Bi M, Liu C, Wang Y, Liu SJ. Therapeutic Prospect of New Probiotics in Neurodegenerative Diseases. Microorganisms 2023; 11:1527. [PMID: 37375029 DOI: 10.3390/microorganisms11061527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Increasing clinical and preclinical evidence implicates gut microbiome (GM) dysbiosis as a key susceptibility factor for neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). In recent years, neurodegenerative diseases have been viewed as being driven not solely by defects in the brain, and the role of GM in modulating central nervous system function via the gut-brain axis has attracted considerable interest. Encouraged by current GM research, the development of new probiotics may lead to tangible impacts on the treatment of neurodegenerative disorders. This review summarizes current understandings of GM composition and characteristics associated with neurodegenerative diseases and research demonstrations of key molecules from the GM that affect neurodegeneration. Furthermore, applications of new probiotics, such as Clostridium butyricum, Akkermansia muciniphila, Faecalibacterium prausnitzii, and Bacteroides fragilis, for the remediation of neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Mingxia Bi
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
| | - Chang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulin Wang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
99
|
Wang B, Ma Y, Li S, Yao H, Gu M, Liu Y, Xue Y, Ding J, Ma C, Yang S, Hu G. GSDMD in peripheral myeloid cells regulates microglial immune training and neuroinflammation in Parkinson's disease. Acta Pharm Sin B 2023; 13:2663-2679. [PMID: 37425058 PMCID: PMC10326292 DOI: 10.1016/j.apsb.2023.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 03/02/2023] [Indexed: 07/11/2023] Open
Abstract
Peripheral bacterial infections without impaired blood-brain barrier integrity have been attributed to the pathogenesis of Parkinson's disease (PD). Peripheral infection promotes innate immune training in microglia and exacerbates neuroinflammation. However, how changes in the peripheral environment mediate microglial training and exacerbation of infection-related PD is unknown. In this study, we demonstrate that GSDMD activation was enhanced in the spleen but not in the CNS of mice primed with low-dose LPS. GSDMD in peripheral myeloid cells promoted microglial immune training, thus exacerbating neuroinflammation and neurodegeneration during PD in an IL-1R-dependent manner. Furthermore, pharmacological inhibition of GSDMD alleviated the symptoms of PD in experimental PD models. Collectively, these findings demonstrate that GSDMD-induced pyroptosis in myeloid cells initiates neuroinflammation by regulating microglial training during infection-related PD. Based on these findings, GSDMD may serve as a therapeutic target for patients with PD.
Collapse
Affiliation(s)
- Bingwei Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Li
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Hang Yao
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Mingna Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - You Xue
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianhua Ding
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Chunmei Ma
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Shuo Yang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Gang Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
100
|
Stevens MU, Croteau N, Eldeeb MA, Antico O, Zeng ZW, Toth R, Durcan TM, Springer W, Fon EA, Muqit MM, Trempe JF. Structure-based design and characterization of Parkin-activating mutations. Life Sci Alliance 2023; 6:e202201419. [PMID: 36941054 PMCID: PMC10027901 DOI: 10.26508/lsa.202201419] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Autosomal recessive mutations in the Parkin gene cause Parkinson's disease. Parkin encodes an ubiquitin E3 ligase that functions together with the kinase PINK1 in a mitochondrial quality control pathway. Parkin exists in an inactive conformation mediated by autoinhibitory domain interfaces. Thus, Parkin has become a target for the development of therapeutics that activate its ligase activity. Yet, the extent to which different regions of Parkin can be targeted for activation remained unknown. Here, we have used a rational structure-based approach to design new activating mutations in both human and rat Parkin across interdomain interfaces. Out of 31 mutations tested, we identified 11 activating mutations that all cluster near the RING0:RING2 or REP:RING1 interfaces. The activity of these mutants correlates with reduced thermal stability. Furthermore, three mutations V393D, A401D, and W403A rescue a Parkin S65A mutant, defective in mitophagy, in cell-based studies. Overall our data extend previous analysis of Parkin activation mutants and suggests that small molecules that would mimic RING0:RING2 or REP:RING1 destabilisation offer therapeutic potential for Parkinson's disease patients harbouring select Parkin mutations.
Collapse
Affiliation(s)
- Michael U Stevens
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nathalie Croteau
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structurale, Montpellier, France
| | - Mohamed A Eldeeb
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Zhi Wei Zeng
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas M Durcan
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Edward A Fon
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Miratul Mk Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structurale, Montpellier, France
| |
Collapse
|