51
|
Zenere A, Hellberg S, Papapavlou Lingehed G, Svenvik M, Mellergård J, Dahle C, Vrethem M, Raffetseder J, Khademi M, Olsson T, Blomberg M, Jenmalm MC, Altafini C, Gustafsson M, Ernerudh J. Prominent epigenetic and transcriptomic changes in CD4 + and CD8 + T cells during and after pregnancy in women with multiple sclerosis and controls. J Neuroinflammation 2023; 20:98. [PMID: 37106402 PMCID: PMC10134602 DOI: 10.1186/s12974-023-02781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neuroinflammatory disease in which pregnancy leads to a temporary amelioration in disease activity as indicated by the profound decrease in relapses rate during the 3rd trimester of pregnancy. CD4+ and CD8+ T cells are implicated in MS pathogenesis as being key regulators of inflammation and brain lesion formation. Although Tcells are prime candidates for the pregnancy-associated improvement of MS, the precise mechanisms are yet unclear, and in particular, a deep characterization of the epigenetic and transcriptomic events that occur in peripheral T cells during pregnancy in MS is lacking. METHODS Women with MS and healthy controls were longitudinally sampled before, during (1st, 2nd and 3rd trimesters) and after pregnancy. DNA methylation array and RNA sequencing were performed on paired CD4+ and CD8+ T cells samples. Differential analysis and network-based approaches were used to analyze the global dynamics of epigenetic and transcriptomic changes. RESULTS Both DNA methylation and RNA sequencing revealed a prominent regulation, mostly peaking in the 3rd trimester and reversing post-partum, thus mirroring the clinical course with improvement followed by a worsening in disease activity. This rebound pattern was found to represent a general adaptation of the maternal immune system, with only minor differences between MS and controls. By using a network-based approach, we highlighted several genes at the core of this pregnancy-induced regulation, which were found to be enriched for genes and pathways previously reported to be involved in MS. Moreover, these pathways were enriched for in vitro stimulated genes and pregnancy hormones targets. CONCLUSION This study represents, to our knowledge, the first in-depth investigation of the methylation and expression changes in peripheral CD4+ and CD8+ T cells during pregnancy in MS. Our findings indicate that pregnancy induces profound changes in peripheral T cells, in both MS and healthy controls, which are associated with the modulation of inflammation and MS activity.
Collapse
Affiliation(s)
- Alberto Zenere
- Division of Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Georgia Papapavlou Lingehed
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Svenvik
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Obstetrics and Gynecology, Region Kalmar County, Kalmar, Sweden
| | - Johan Mellergård
- Department of Neurology, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotte Dahle
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Magnus Vrethem
- Department of Neurology, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Raffetseder
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Blomberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Obstetrics and Gynecology, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claudio Altafini
- Division of Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Jan Ernerudh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
52
|
Davis MM. Systems Immunology: Origins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:845-847. [PMID: 36947821 PMCID: PMC10325628 DOI: 10.4049/jimmunol.2200631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Affiliation(s)
- Mark M Davis
- Department of Microbiology and Immunology Stanford Institute for Immunity, Transplantation and Infection
| |
Collapse
|
53
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
54
|
Charabati M, Wheeler MA, Weiner HL, Quintana FJ. Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell 2023; 186:1309-1327. [PMID: 37001498 PMCID: PMC10119687 DOI: 10.1016/j.cell.2023.03.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system afflicting nearly three million individuals worldwide. Neuroimmune interactions between glial, neural, and immune cells play important roles in MS pathology and offer potential targets for therapeutic intervention. Here, we review underlying risk factors, mechanisms of MS pathogenesis, available disease modifying therapies, and examine the value of emerging technologies, which may address unmet clinical needs and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Marc Charabati
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
55
|
Garcia A, Dugast E, Shah S, Morille J, Lebrun-Frenay C, Thouvenot E, De Sèze J, Le Page E, Vukusic S, Maurousset A, Berger E, Casez O, Labauge P, Ruet A, Raposo C, Bakdache F, Buffels R, Le Frère F, Nicot A, Wiertlewski S, Gourraud PA, Berthelot L, Laplaud D. Immune Profiling Reveals the T-Cell Effect of Ocrelizumab in Early Relapsing-Remitting Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/3/e200091. [PMID: 36810163 PMCID: PMC9944617 DOI: 10.1212/nxi.0000000000200091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/12/2022] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Ocrelizumab (OCR), a humanized anti-CD20 monoclonal antibody, is highly efficient in patients with relapsing-remitting multiple sclerosis (RR-MS). We assessed early cellular immune profiles and their association with disease activity at treatment start and under therapy, which may provide new clues on the mechanisms of action of OCR and on the disease pathophysiology. METHODS A first group of 42 patients with an early RR-MS, never exposed to disease-modifying therapy, was included in 11 centers participating to an ancillary study of the ENSEMBLE trial (NCT03085810) to evaluate the effectiveness and safety of OCR. The phenotypic immune profile was comprehensively assessed by multiparametric spectral flow cytometry at baseline and after 24 and 48 weeks of OCR treatment on cryopreserved peripheral blood mononuclear cells and analyzed in relation to disease clinical activity. A second group of 13 untreated patients with RR-MS was included for comparative analysis of peripheral blood and CSF. The transcriptomic profile was assessed by single-cell qPCRs of 96 genes of immunologic interest. RESULTS Using an unbiased analysis, we found that OCR as an effect on 4 clusters of CD4+ T cells: one corresponding to naive CD4+ T cells was increased, the other clusters corresponded to effector memory (EM) CD4+CCR6- T cells expressing homing and migration markers, 2 of them also expressing CCR5 and were decreased by the treatment. Of interest, one CD8+ T-cell cluster was decreased by OCR corresponding to EM CCR5-expressing T cells with high expression of the brain homing markers CD49d and CD11a and correlated with the time elapsed since the last relapse. These EM CD8+CCR5+ T cells were enriched in the CSF of patients with RR-MS and corresponded to activated and cytotoxic cells. DISCUSSION Our study provides novel insights into the mode of action of anti-CD20, pointing toward the role of EM T cells, particularly a subset of CD8 T cells expressing CCR5.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David Laplaud
- From the CHU Nantes (A.G., E.D., S.S., J.M., A.N., S.W., P.-A.G., L.B., D.L.), Nantes Université, INSERM UMR1064, Center for Research in Transplantation and Translational Immunology (CR2TI); CRCSEP (C.L.-F.), CHU de Nice Pasteur 2, Université Nice Côte d'Azur UR2CA URRIS; Service de Neurologie (E.T.), CHU de Nîmes, Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM; Service de Neurologie et Centre d'Investigation Clinique (J.D.S.), CHU de Strasbourg; Service de Neurologie (E.L.P.), CHU Pontchaillou, Rennes; Université de Lyon (S.V.), Université Claude Bernard Lyon 1; Service de Neurologie (S.V.), sclérose en plaques, pathologies de la Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron; Observatoire Français de la Sclérose en Plaques (S.V.), Centre de Recherche en Neurosciences de Lyon; EUGENE DEVIC EDMUS Foundation Against Multiple sclerosis (S.V.), state-approved Foundation, Bron; Service de Neurologie (A.M.), CHU Bretonneau, Tours; Service de Neurologie (E.B.), CHU de Besançon; Service de Neurologie (O.C.), CHU de Grenoble; Service de Neurologie (P.L.), CHU de Montpellier, Montpellier; Service de Neurologie (A.R.), CHU de Bordeaux; Université de Bordeaux (A.R.), INSERM, Neurocentre Magendie; F. Hoffmann-La Roche Ltd (C.R., F.B., R.B.) CIC INSERM 1413 (F.L.F., S.W., D.L.), Nantes; CHU Nantes (S.W., D.L.), Nantes Université, Service de Neurologie; and CHU Nantes (P.-A.G.), Nantes Université, Clinique des données, France.
| |
Collapse
|
56
|
Mangani D, Yang D, Anderson AC. Learning from the nexus of autoimmunity and cancer. Immunity 2023; 56:256-271. [PMID: 36792572 PMCID: PMC9986833 DOI: 10.1016/j.immuni.2023.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The immune system plays critical roles in both autoimmunity and cancer, diseases at opposite ends of the immune spectrum. Autoimmunity arises from loss of T cell tolerance against self, while in cancer, poor immunity against transformed self fails to control tumor growth. Blockade of pathways that preserve self-tolerance is being leveraged to unleash immunity against many tumors; however, widespread success is hindered by the autoimmune-like toxicities that arise in treated patients. Knowledge gained from the treatment of autoimmunity can be leveraged to treat these toxicities in patients. Further, the understanding of how T cell dysfunction arises in cancer can be leveraged to induce a similar state in autoreactive T cells. Here, we review what is known about the T cell response in autoimmunity and cancer and highlight ways in which we can learn from the nexus of these two diseases to improve the application, efficacy, and management of immunotherapies.
Collapse
Affiliation(s)
- Davide Mangani
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universita della Svizzera Italiana, Bellinzona 6500, Switzerland.
| | - Dandan Yang
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA.
| |
Collapse
|
57
|
Li H, Zeng Y, Luo S, Li Z, Huang F, Liu Z. GPX4 aggravates experimental autoimmune encephalomyelitis by inhibiting the functions of CD4 + T cells. Biochem Biophys Res Commun 2023; 642:57-65. [PMID: 36565564 DOI: 10.1016/j.bbrc.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a common autoimmunity disease of the central nervous system (CNS) that mostly happens in young adults. The chronic clinical features of MS include inflammatory demyelination, infiltration of immune cells, and secretion of inflammatory cytokines, which have been proved to be associated with CD4+ T cells. Ferroptosis is a newly discovered programmed cell death mediated by the massive lipid peroxidation and more sensitive to CD4+ T cells. However, the effect of ferroptosis of CD4+ T cells on the occurrence and progression of MS retains unclear. Here, the experimental autoimmune encephalomyelitis (EAE) model was used to investigate the role of GPX4, a leading inhibitor of ferroptosis, which plays in the function of CD4+ T cells. Our results showed that GPX4 was highly expressed in CD4+ T cells of MS patients based on existing databases. Strikingly, conditional knockout of GPX4 in CD4cre mice (cKO mice) significantly alleviated the average symptom scores and immunopathology of EAE. The infiltration of immune cells, including CD4+ T and CD8+ T cells, and the generation of GM-CSF, TNF-α, and IL-17A, were remarkably reduced in the CNS from cKO mice compared with WT mice. These findings further revealed the vital role of GPX4 in the expansion and function of CD4+ T cells. Moreover, GPX4-deficient CD4+ T cells were susceptible to ferroptosis in EAE model. Overall, this study provided novel insights into therapeutic strategies targeting GPX4 in CD4+ T cells for inhibiting CNS inflammation and treating MS.
Collapse
Affiliation(s)
- Haishan Li
- Faculty of Medical Science, Jinan University, Guangzhou, 510632, China
| | - Yingying Zeng
- Faculty of Medical Science, Jinan University, Guangzhou, 510632, China
| | - Shunchang Luo
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, 510655, China
| | - Zhenhua Li
- Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, China
| | - Fang Huang
- Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, China.
| | - Zonghua Liu
- Faculty of Medical Science, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
58
|
Saratov GA, Vladimirov VI, Novoselov AL, Ziganshin RH, Chen G, Baymukhametov TN, Konevega AL, Belogurov AA, Kudriaeva AA. Myelin Basic Protein Fragmentation by Engineered Human Proteasomes with Different Catalytic Phenotypes Revealed Direct Peptide Ligands of MS-Associated and Protective HLA Class I Molecules. Int J Mol Sci 2023; 24:ijms24032091. [PMID: 36768413 PMCID: PMC9917034 DOI: 10.3390/ijms24032091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Proteasomes exist in mammalian cells in multiple combinatorial variants due to the diverse regulatory particles and exchange of catalytic subunits. Here, using biotin carboxyl carrier domain of transcarboxylase from Propionibacterium shermanii fused with different proteasome subunits of catalytic and regulatory particles, we report comprehensive characterization of highly homogenous one-step purified human constitutive and immune 20S and 26S/30S proteasomes. Hydrolysis of a multiple sclerosis (MS) autoantigen, myelin basic protein (MBP), by engineered human proteasomes with different catalytic phenotypes, revealed that peptides which may be directly loaded on the HLA class I molecules are produced mainly by immunoproteasomes. We detected at least five MBP immunodominant core regions, namely, LPRHRDTGIL, SLPQKSHGR, QDENPVVHFF, KGRGLSLSRF and GYGGRASDY. All peptides, except QDENPVVHFF, which originates from the encephalitogenic MBP part, were associated with HLA I alleles considered to increase MS risk. Prediction of the affinity of HLA class I to this peptide demonstrated that MS-protective HLA-A*44 and -B*35 molecules are high-affinity binders, whereas MS-associated HLA-A*23, -A*24, -A*26 and -B*51 molecules tend to have moderate to low affinity. The HLA-A*44 molecules may bind QDENPVVHFF and its deamidated form in several registers with unprecedently high affinity, probably linking its distinct protective phenotype with thymic depletion of the repertoire of autoreactive cytotoxic T cells or induction of CD8+ regulatory T cells, specific to the encephalitogenic MBP peptide.
Collapse
Affiliation(s)
- George A. Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Vasiliy I. Vladimirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey L. Novoselov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | | | - Andrey L. Konevega
- National Research Center, “Kurchatov Institute”, 123182 Moscow, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre, Kurchatov Institute, 188300 Gatchina, Russia
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Ministry of Health of Russian Federation, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
- Correspondence: (A.A.B.J.); (A.A.K.); Tel.: +7-495-3352288 (A.A.B.J. & A.A.K.)
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: (A.A.B.J.); (A.A.K.); Tel.: +7-495-3352288 (A.A.B.J. & A.A.K.)
| |
Collapse
|
59
|
Oparaugo NC, Ouyang K, Nguyen NPN, Nelson AM, Agak GW. Human Regulatory T Cells: Understanding the Role of Tregs in Select Autoimmune Skin Diseases and Post-Transplant Nonmelanoma Skin Cancers. Int J Mol Sci 2023; 24:1527. [PMID: 36675037 PMCID: PMC9864298 DOI: 10.3390/ijms24021527] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in maintaining immune tolerance and homeostasis by modulating how the immune system is activated. Several studies have documented the critical role of Tregs in suppressing the functions of effector T cells and antigen-presenting cells. Under certain conditions, Tregs can lose their suppressive capability, leading to a compromised immune system. For example, mutations in the Treg transcription factor, Forkhead box P3 (FOXP3), can drive the development of autoimmune diseases in multiple organs within the body. Furthermore, mutations leading to a reduction in the numbers of Tregs or a change in their function facilitate autoimmunity, whereas an overabundance can inhibit anti-tumor and anti-pathogen immunity. This review discusses the characteristics of Tregs and their mechanism of action in select autoimmune skin diseases, transplantation, and skin cancer. We also examine the potential of Tregs-based cellular therapies in autoimmunity.
Collapse
Affiliation(s)
- Nicole Chizara Oparaugo
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | | | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
60
|
Chen BY, Salas JR, Trias AO, Rodriguez AP, Tsang JE, Guemes M, Le TM, Galic Z, Shepard HM, Steinman L, Nathanson DA, Czernin J, Witte ON, Radu CG, Schultz KA, Clark PM. Targeting deoxycytidine kinase improves symptoms in mouse models of multiple sclerosis. Immunology 2023; 168:152-169. [PMID: 35986643 PMCID: PMC9844239 DOI: 10.1111/imm.13569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease driven by lymphocyte activation against myelin autoantigens in the central nervous system leading to demyelination and neurodegeneration. The deoxyribonucleoside salvage pathway with the rate-limiting enzyme deoxycytidine kinase (dCK) captures extracellular deoxyribonucleosides for use in intracellular deoxyribonucleotide metabolism. Previous studies have shown that deoxyribonucleoside salvage activity is enriched in lymphocytes and required for early lymphocyte development. However, specific roles for the deoxyribonucleoside salvage pathway and dCK in autoimmune diseases such as MS are unknown. Here we demonstrate that dCK activity is necessary for the development of clinical symptoms in the MOG35-55 and MOG1-125 experimental autoimmune encephalomyelitis (EAE) mouse models of MS. During EAE disease, deoxyribonucleoside salvage activity is elevated in the spleen and lymph nodes. Targeting dCK with the small molecule dCK inhibitor TRE-515 limits disease severity when treatments are started at disease induction or when symptoms first appear. EAE mice treated with TRE-515 have significantly fewer infiltrating leukocytes in the spinal cord, and TRE-515 blocks activation-induced B and T cell proliferation and MOG35-55 -specific T cell expansion without affecting innate immune cells or naïve T and B cell populations. Our results demonstrate that targeting dCK limits symptoms in EAE mice and suggest that dCK activity is required for MOG35-55 -specific lymphocyte activation-induced proliferation.
Collapse
Affiliation(s)
- Bao Ying Chen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica R. Salas
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alyssa O. Trias
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arely Perez Rodriguez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonathan E. Tsang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miriam Guemes
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thuc M. Le
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoran Galic
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - David A. Nathanson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Peter M. Clark
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
61
|
Regulatory T cells and systemic vasculitis. Curr Opin Rheumatol 2023; 35:25-30. [PMID: 36508306 DOI: 10.1097/bor.0000000000000915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Emerging data suggest that regulatory T-cells (Treg) alterations play a major role in systemic vasculitis pathophysiology. We performed a systematic review of recent advances in the role of Treg and interleukin (IL)-10 in the pathogenesis and treatment of systemic vasculitis, including giant cell arteritis (GCA), Takayasu arteritis, Behçet's disease, antineutrophil cytoplasm antibodies (ANCA) associated vasculitis (AAV), and cryoglobulinemia associated vasculitis. RECENT FINDINGS Emerging data suggest that Treg deficiencies are disease-specific, affecting distinct pathways in distinct vasculitides. Decreased peripheral blood frequencies of Treg are described in all vasculitis when compared to healthy donors. Altered Treg functions are reported in GCA, Takayasu arteritis, AAV, and Behçet's disease with different mechanisms proposed. Treatment with biologics, and sometimes other immunosuppressants, may restore Treg frequencies and/or immune activity with significant differences in active disease or disease in remission in several systemic vasculitis. IL-10 is elevated in GCA, AAV, cryoglobulinemia associated vasculitis. In Behçet's disease, IL-10 is decreased in peripheral blood and elevated in saliva. In Takayasu arteritis, IL-10 levels were essentially elevated in patients' vessel wall. Several new therapeutic approaches targeting Treg and Il-10 (low dose IL-2, CAR Treg…) are developed to treat patients with systemic vasculitis. SUMMARY Treg and IL-10 play a central role in the regulation of inflammation in vasculitis and new targeting approaches are emerging.
Collapse
|
62
|
Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol 2022; 22:734-750. [PMID: 35508809 DOI: 10.1038/s41577-022-00718-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Our incomplete understanding of the causes and pathways involved in the onset and progression of multiple sclerosis (MS) limits our ability to effectively treat this complex neurological disease. Recent studies explore the role of immune cells at different stages of MS and how they interact with cells of the central nervous system (CNS). The findings presented here begin to question the exclusivity of an antigen-specific cause and highlight how seemingly distinct immune cell types can share common functions that drive disease. Innovative techniques further expose new disease-associated immune cell populations and reinforce how environmental context is critical to their phenotype and subsequent role in disease. Importantly, the differentiation of immune cells into a pathogenic state is potentially reversible through therapeutic manipulation. As such, understanding the mechanisms that provide plasticity to causal cell types is likely key to uncoupling these disease processes and may identify novel therapeutic targets that replace the need for cell ablation.
Collapse
Affiliation(s)
- Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK
| | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Max Kaufmann
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
63
|
Maladaptive consequences of inflammatory events shape individual immune identity. Nat Immunol 2022; 23:1675-1686. [PMID: 36411382 DOI: 10.1038/s41590-022-01342-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
The vertebrate immune system develops in layers, as modes of immunity have evolved on top of each other through time with the expansion of organismal complexity. The maturation timing of immune cell subsets, such as innate immune cells, innate-like cells and adaptive cells, corresponds to their physiological roles in protective immunity. While various cell subsets have specialized roles, they also complement each other to clear pathogens, resolve inflammation and maintain homeostasis, especially at barrier sites with high microbial density. Immune cells adapt to inflammatory insults through mechanisms including epigenetic and metabolic reprogramming, clonal expansion and enhanced communication with the surrounding tissue environment. Over time, these adaptations shape an individual immune identity, reflective of the overlay between the genetic predisposition and the antigenic and environmental exposures of each individual. While some aspects of this immune shaping are natural consequences of immune maturation over time, others are maladaptive and predispose to irreversible pathology. In this Perspective, we provide a framework for categorizing the shaping events of the immune response, in terms of mechanisms, contexts and functional outcomes. We aim to clarify how these terms can be appropriately applied to future findings that impact immune function.
Collapse
|
64
|
Mooslechner AA, Schuller M, Artinger K, Kirsch AH, Schabhüttl C, Eller P, Rosenkranz AR, Eller K. Low-Dose rIL-15 Protects from Nephrotoxic Serum Nephritis via CD8 + T Cells. Cells 2022; 11:cells11223656. [PMID: 36429085 PMCID: PMC9688325 DOI: 10.3390/cells11223656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Rapid progressive glomerulonephritis (GN) often leads to end-stage kidney disease, driving the need for renal replacement therapy and posing a global health burden. Low-dose cytokine-based immunotherapies provide a new strategy to treat GN. IL-15 is a strong candidate for the therapy of immune-mediated kidney disease since it has proven to be tubular-protective before. Therefore, we set out to test the potential of low-dose rIL-15 treatment in a mouse model of nephrotoxic serum nephritis (NTS), mimicking immune complex-driven GN in humans. A single low-dose treatment with rIL-15 ameliorated NTS, reflected by reduced albuminuria, less tissue scarring, fewer myeloid cells in the kidney, and improved tubular epithelial cell survival. In addition, CD8+ T cells, a primary target of IL-15, showed altered gene expression and function corresponding with less cytotoxicity mediated by rIL-15. With the use of transgenic knock-out mice, antibody depletion, and adoptive cell transfer studies, we here show that the beneficial effects of rIL-15 treatment in NTS depended on CD8+ T cells, suggesting a pivotal role for them in the underlying mechanism. Our findings add to existing evidence of the association of IL-15 with kidney health and imply a potential for low-dose rIL-15 immunotherapies in GN.
Collapse
Affiliation(s)
- Agnes A. Mooslechner
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Max Schuller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Katharina Artinger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander H. Kirsch
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Corinna Schabhüttl
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander R. Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Kathrin Eller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
65
|
Matter AL, Liggitt D, Goverman JM. B Cells Drive MHC Class I-Restricted CD4 T Cells to Induce Spontaneous Central Nervous System Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1880-1891. [PMID: 36426938 PMCID: PMC9665903 DOI: 10.4049/jimmunol.2200494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/15/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating CNS disease believed to be mediated by CD4 T cells specific for CNS self-antigens. CD8 T cells are also implicated in MS but their function is not well understood. MS lesions are heterogeneous and may reflect variation in the contribution of different types of lymphocytes. Understanding how lymphocytes with different effector functions contribute to MS is essential to develop effective therapies. We investigated how T cells expressing an MHC class I-restricted transgenic TCR specific for myelin basic protein (MBP) contribute to CNS autoimmunity using the mouse model of MS, experimental autoimmune encephalomyelitis. Virus infection triggered cytotoxic TCR-transgenic CD8 T cells to initiate acute experimental autoimmune encephalomyelitis in an IFN-γ- and perforin-dependent manner. Unexpectedly, spontaneous CNS autoimmunity developed in the TCR-transgenic mice that was accelerated by IFN-γ-deficiency. Spontaneous disease was associated with CD4 T cells that develop via endogenous TCR rearrangements but retain specificity for the MHC class I-restricted MBP epitope. The CD4 T cells produced TNF-α without other inflammatory cytokines and caused lesions with striking similarity to active MS lesions. Surprisingly, B cells were the predominant cell type that cross-presented MBP, and their depletion halted disease progression. This work provides a new model of spontaneous CNS autoimmunity with unique similarities to MS that is mediated by T cells with a distinct effector phenotype.
Collapse
Affiliation(s)
- Aubry L. Matter
- Department of Immunology, University of Washington, Seattle, WA; and
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Joan M. Goverman
- Department of Immunology, University of Washington, Seattle, WA; and
| |
Collapse
|
66
|
Santambrogio L, Franco A. The yin/yang balance of the MHC-self -immunopeptidome. Front Immunol 2022; 13:1035363. [PMID: 36405763 PMCID: PMC9666884 DOI: 10.3389/fimmu.2022.1035363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 07/22/2023] Open
Abstract
The MHC-self immunopeptidome of professional antigen presenting cells is a cognate ligand for the TCRs expressed on both conventional and thymic-derived natural regulatory T cells. In regulatory T cells, the TCR signaling associated with MHC-peptide recognition induces antigen specific as well as bystander immunosuppression. On the other hand, TCR activation of conventional T cells is associated with protective immunity. As such the peripheral T cell repertoire is populated by a number of T cells with different phenotypes and different TCRs, which can recognize the same MHC-self-peptide complex, resulting in opposite immunological outcomes. This article summarizes what is known about regulatory and conventional T cell recognition of the MHC-self-immunopeptidome at steady state and in inflammatory conditions associated with increased T and B cell self-reactivity, discussing how changes in the MHC-ligandome including epitope copy number and post-translational modifications can tilt the balance toward the expansion of pro-inflammatory or regulatory T cells.
Collapse
Affiliation(s)
- Laura Santambrogio
- Department of Radiation Oncology, Physiology and Biophysics, Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Alessandra Franco
- University of California San Diego School of Medicine, Department of Pediatrics, La Jolla, CA, United States
| |
Collapse
|
67
|
Chung EYM, Wang YM, Keung K, Hu M, McCarthy H, Wong G, Kairaitis L, Bose B, Harris DCH, Alexander SI. Membranous nephropathy: Clearer pathology and mechanisms identify potential strategies for treatment. Front Immunol 2022; 13:1036249. [PMID: 36405681 PMCID: PMC9667740 DOI: 10.3389/fimmu.2022.1036249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Primary membranous nephropathy (PMN) is one of the common causes of adult-onset nephrotic syndrome and is characterized by autoantibodies against podocyte antigens causing in situ immune complex deposition. Much of our understanding of the disease mechanisms underpinning this kidney-limited autoimmune disease originally came from studies of Heymann nephritis, a rat model of PMN, where autoantibodies against megalin produced a similar disease phenotype though megalin is not implicated in human disease. In PMN, the major target antigen was identified to be M-type phospholipase A2 receptor 1 (PLA2R) in 2009. Further utilization of mass spectrometry on immunoprecipitated glomerular extracts and laser micro dissected glomeruli has allowed the rapid discovery of other antigens (thrombospondin type-1 domain-containing protein 7A, neural epidermal growth factor-like 1 protein, semaphorin 3B, protocadherin 7, high temperature requirement A serine peptidase 1, netrin G1) targeted by autoantibodies in PMN. Despite these major advances in our understanding of the pathophysiology of PMN, treatments remain non-specific, often ineffective, or toxic. In this review, we summarize our current understanding of the immune mechanisms driving PMN from animal models and clinical studies, and the implications on the development of future targeted therapeutic strategies.
Collapse
Affiliation(s)
- Edmund Y. M. Chung
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Yuan M. Wang
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Karen Keung
- Department of Nephrology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Min Hu
- The Centre for Transplant and Renal Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - Hugh McCarthy
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Germaine Wong
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, Westmead Hospital, Westmead, NSW, Australia
| | - Lukas Kairaitis
- Department of Nephrology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Bhadran Bose
- Department of Nephrology, Nepean Hospital, Kingswood, NSW, Australia
| | - David C. H. Harris
- The Centre for Transplant and Renal Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
- Department of Nephrology, Westmead Hospital, Westmead, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
68
|
Benallegue N, Nicol B, Lasselin J, Bézie S, Flippe L, Regue H, Vimond N, Remy S, Garcia A, Le Frère F, Anegon I, Laplaud D, Guillonneau C. Patients With Severe Multiple Sclerosis Exhibit Functionally Altered CD8 + Regulatory T Cells. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200016. [PMID: 36266052 PMCID: PMC9621606 DOI: 10.1212/nxi.0000000000200016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Studies of immune dysfunction in MS have mostly focused on CD4+ Tregs, but the role of CD8+ Tregs remains largely unexplored. We previously evidenced the suppressive properties of rat and human CD8+CD45RClow/neg Tregs from healthy individuals, expressing Forkhead box P3 (FOXP3) and acting through interferon-gamma (IFN-γ), transforming growth factor beta (TGFβ), and interleukin-34 (IL-34). secretions to regulate immune responses and control diseases such as transplant rejection. To better understand CD8+CD45RClow/neg Tregs contribution to MS pathology, we further investigated their phenotype, function, and transcriptome in patients with MS. METHODS We enrolled adults with relapsing-remitting MS and age-matched and sex-matched healthy volunteers (HVs). CD8+ T cells were segregated based on low or lack of expression of CD45RC. First, the frequency in CSF and blood, phenotype, transcriptome, and function of CD8+CD45RClow and neg were investigated according to exacerbation status and secondarily, according to clinical severity based on the MS severity score (MSSS) in patients with nonexacerbating MS. We then induced active MOG35-55 EAE in C57Bl/6 mice and performed adoptive transfer of fresh and expanded CD8+CD45RCneg Tregs to assess their ability to mitigate neuroinflammation in vivo. RESULTS Thirty-one untreated patients with relapsing-remitting MS were compared with 40 age-matched and sex-matched HVs. We demonstrated no difference of CSF CD8+CD45RClow and CD8+CD45RCneg proportions, but blood CD8+CD45RClow frequency was lower in patients with MS exacerbation when compared with that in HVs. CD8+CD45RCneg Tregs but not CD8+CD45RClow showed higher suppressive capacities in vitro in MS patients with exacerbation than in patients without acute inflammatory attack. In vitro functional assays showed a compromised suppression capacity of CD8+CD45RClow Tregs in patients with nonexacerbating severe MS, defined by the MSSS. We then characterized murine CD8+CD45RCneg Tregs and demonstrated the potential of CD45RCneg cells to migrate to the CNS and mitigate experimental autoimmune encephalomyelitis in vivo. DISCUSSION Altogether, these results suggest a defect in the number and function of CD8+CD45RClow Tregs during MS relapse and an association of CD8+CD45RClow Tregs dysfunction with MS severity. Thus, CD8+CD45RClow/neg T cells might bring new insights into the pathophysiology and new therapeutic approaches of MS.
Collapse
Affiliation(s)
- Nail Benallegue
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Bryan Nicol
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Juliette Lasselin
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Severine Bézie
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Lea Flippe
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Hadrien Regue
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Nadege Vimond
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Severine Remy
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Alexandra Garcia
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Fabienne Le Frère
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Ignacio Anegon
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - David Laplaud
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Carole Guillonneau
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France.
| |
Collapse
|
69
|
Single-Cell Analysis to Better Understand the Mechanisms Involved in MS. Int J Mol Sci 2022; 23:ijms232012142. [PMID: 36292995 PMCID: PMC9602568 DOI: 10.3390/ijms232012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis is a chronic and inflammatory disease of the central nervous system. Although this disease is widely studied, many of the precise mechanisms involved are still not well known. Numerous studies currently focusing on multiple sclerosis highlight the involvement of many major immune cell subsets, such as CD4+ T cells, CD8+ T cells and more recently B cells. However, our vision of its pathology has remained too broad to allow the proper use of targeted therapeutics. This past decade, new technologies have emerged, enabling deeper research into the different cell subsets at the single-cell level both in the periphery and in the central nervous system. These technologies could allow us to identify new cell populations involved in the disease process and new therapeutic targets. In this review, we briefly introduce the major single-cell technologies currently used in studies before diving into the major findings from the multiple sclerosis research from the past 5 years. We focus on results that were obtained using single-cell technologies to study immune cells and cells from the central nervous system.
Collapse
|
70
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
71
|
Metabolic regulation and function of T helper cells in neuroinflammation. Semin Immunopathol 2022; 44:581-598. [PMID: 36068310 DOI: 10.1007/s00281-022-00959-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022]
Abstract
Neuroinflammatory conditions such as multiple sclerosis (MS) are initiated by pathogenic immune cells invading the central nervous system (CNS). Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in MS and in other neuroinflammatory autoimmune diseases including animal models that have been developed for MS. T helper cells are classically categorized into different subsets, but heterogeneity exists within these subsets. Untangling the more complex regulation of these subsets will clarify their functional roles in neuroinflammation. Here, we will discuss how differentiation, immune checkpoint pathways, transcriptional regulation and metabolic factors determine the function of CD4+ T cell subsets in CNS autoimmunity. T cells rely on metabolic reprogramming for their activation and proliferation to meet bioenergetic demands. This includes changes in glycolysis, glutamine metabolism and polyamine metabolism. Importantly, these pathways were recently also implicated in the fine tuning of T cell fate decisions during neuroinflammation. A particular focus of this review will be on the Th17/Treg balance and intra-subset functional states that can either promote or dampen autoimmune responses in the CNS and thus affect disease outcome. An increased understanding of factors that could tip CD4+ T cell subsets and populations towards an anti-inflammatory phenotype will be critical to better understand neuroinflammatory diseases and pave the way for novel treatment paradigms.
Collapse
|
72
|
Luoqian J, Yang W, Ding X, Tuo QZ, Xiang Z, Zheng Z, Guo YJ, Li L, Guan P, Ayton S, Dong B, Zhang H, Hu H, Lei P. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell Mol Immunol 2022; 19:913-924. [PMID: 35676325 PMCID: PMC9338013 DOI: 10.1038/s41423-022-00883-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
While many drugs are effective at reducing the relapse frequency of multiple sclerosis (MS), there is an unmet need for treatments that slow neurodegeneration resulting from secondary disease progression. The mechanism of neurodegeneration in MS has not yet been established. Here, we discovered a potential pathogenetic role of ferroptosis, an iron-dependent regulated cell death mechanism, in MS. We found that critical ferroptosis proteins (acyl-CoA synthetase long-chain family member 4, ACSL4) were altered in an existing genomic database of MS patients, and biochemical features of ferroptosis, including lipid reactive oxygen species (ROS) accumulation and mitochondrial shrinkage, were observed in the experimental autoimmune encephalitis (EAE) mouse model. Targeting ferroptosis with ferroptosis inhibitors or reducing ACSL4 expression improved the behavioral phenotypes of EAE mice, reduced neuroinflammation, and prevented neuronal death. We found that ferroptosis was an early event in EAE, which may promote T-cell activation through T-cell receptor (TCR) signaling in vitro and in vivo. These data indicate that ferroptosis may be a potential target for treating MS.
Collapse
Affiliation(s)
- Jinyuan Luoqian
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Wenyong Yang
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Xulong Ding
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Qing-Zhang Tuo
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Zheng Xiang
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Zhaoyue Zheng
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Yu-Jie Guo
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Li Li
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Pengbo Guan
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Biao Dong
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Huiyuan Zhang
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Hongbo Hu
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China.
| | - Peng Lei
- Department of Neurology and Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China.
| |
Collapse
|
73
|
Zhu H, Galdos FX, Lee D, Waliany S, Huang YV, Ryan J, Dang K, Neal JW, Wakelee HA, Reddy SA, Srinivas S, Lin LL, Witteles RM, Maecker HT, Davis MM, Nguyen PK, Wu SM. Identification of Pathogenic Immune Cell Subsets Associated With Checkpoint Inhibitor-Induced Myocarditis. Circulation 2022; 146:316-335. [PMID: 35762356 PMCID: PMC9397491 DOI: 10.1161/circulationaha.121.056730] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are monoclonal antibodies used to activate the immune system against tumor cells. Despite therapeutic benefits, ICIs have the potential to cause immune-related adverse events such as myocarditis, a rare but serious side effect with up to 50% mortality in affected patients. Histologically, patients with ICI myocarditis have lymphocytic infiltrates in the heart, implicating T cell-mediated mechanisms. However, the precise pathological immune subsets and molecular changes in ICI myocarditis are unknown. METHODS To identify immune subset(s) associated with ICI myocarditis, we performed time-of-flight mass cytometry on peripheral blood mononuclear cells from 52 individuals: 29 patients with autoimmune adverse events (immune-related adverse events) on ICI, including 8 patients with ICI myocarditis, and 23 healthy control subjects. We also used multiomics single-cell technology to immunophenotype 30 patients/control subjects using single-cell RNA sequencing, single-cell T-cell receptor sequencing, and cellular indexing of transcriptomes and epitopes by sequencing with feature barcoding for surface marker expression confirmation. To correlate between the blood and the heart, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing on MRL/Pdcd1-/- (Murphy Roths large/programmed death-1-deficient) mice with spontaneous myocarditis. RESULTS Using these complementary approaches, we found an expansion of cytotoxic CD8+ T effector cells re-expressing CD45RA (Temra CD8+ cells) in patients with ICI myocarditis compared with control subjects. T-cell receptor sequencing demonstrated that these CD8+ Temra cells were clonally expanded in patients with myocarditis compared with control subjects. Transcriptomic analysis of these Temra CD8+ clones confirmed a highly activated and cytotoxic phenotype. Longitudinal study demonstrated progression of these Temra CD8+ cells into an exhausted phenotype 2 months after treatment with glucocorticoids. Differential expression analysis demonstrated elevated expression levels of proinflammatory chemokines (CCL5/CCL4/CCL4L2) in the clonally expanded Temra CD8+ cells, and ligand receptor analysis demonstrated their interactions with innate immune cells, including monocytes/macrophages, dendritic cells, and neutrophils, as well as the absence of key anti-inflammatory signals. To complement the human study, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing in Pdcd1-/- mice with spontaneous myocarditis and found analogous expansions of cytotoxic clonal effector CD8+ cells in both blood and hearts of such mice compared with controls. CONCLUSIONS Clonal cytotoxic Temra CD8+ cells are significantly increased in the blood of patients with ICI myocarditis, corresponding to an analogous increase in effector cytotoxic CD8+ cells in the blood/hearts of Pdcd1-/- mice with myocarditis. These expanded effector CD8+ cells have unique transcriptional changes, including upregulation of chemokines CCL5/CCL4/CCL4L2, which may serve as attractive diagnostic/therapeutic targets for reducing life-threatening cardiac immune-related adverse events in ICI-treated patients with cancer.
Collapse
Affiliation(s)
- Han Zhu
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Francisco X. Galdos
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine; Stanford, California 94305
| | - Daniel Lee
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA
| | - Sarah Waliany
- Department of Medicine, Stanford University; Stanford, California 94305, USA
| | | | - Julia Ryan
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA
| | - Katherine Dang
- University of California, Santa Barbara, California, 93106
| | - Joel W. Neal
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Heather A. Wakelee
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Sunil A. Reddy
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Sandy Srinivas
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Lih-Ling Lin
- Checkpoint Immunology Cluster, Immunology and Inflammation, Sanofi US, Cambridge, MA, USA
| | - Ronald M. Witteles
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Holden T. Maecker
- Department of Microbiology & Immunology, Stanford University School of Medicine; Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Mark M. Davis
- Department of Microbiology & Immunology, Stanford University School of Medicine; Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; Stanford, California 94305, USA.,Howard Hughes Medical Institute, Stanford University; Stanford, California 94035
| | - Patricia K. Nguyen
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Sean M. Wu
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| |
Collapse
|
74
|
Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun 2022; 132:102870. [PMID: 35872102 DOI: 10.1016/j.jaut.2022.102870] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of immune tolerance and sustained production of autoantibodies. Multiple and profound T cell abnormalities in SLE are intertwined with disease expression. Both numerical and functional disturbances have been reported in main CD4+ T helper cell subsets including Th1, Th2, Th17, regulatory, and follicular helper cells. SLE CD4+ T cells are known to provide help to B cells, produce excessive IL-17 but insufficient IL-2, and infiltrate tissues. In the absence of sufficient amounts of IL-2, regulatory T cells, do not function properly to constrain inflammation. A complicated series of early signaling defects and aberrant activation of kinases and phosphatases result in complex cell phenotypes by altering the metabolic profile and the epigenetic landscape. All main metabolic pathways including glycolysis, glutaminolysis and oxidative phosphorylation are altered in T cells from lupus prone mice and patients with SLE. SLE CD8+ cytotoxic T cells display reduced cytolytic activity which accounts for higher rates of infection and the sustenance of autoimmunity. Further, CD8+ T cells in the context of rheumatic diseases lose the expression of CD8, acquire IL-17+CD4-CD8- double negative T (DNT) cell phenotype and infiltrate tissues. Herein we present an update on these T cell abnormalities along with underlying mechanisms and discuss how these advances can be exploited therapeutically. Novel strategies to correct these aberrations in T cells show promise for SLE treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
75
|
Bian H, Wang L, Gao C, Liu Z, Sun Y, Hu M, Xiao Y, Hao F, Ma Y, Zhao X. Expression and Clinical Significance of Th1/Th2/Th17 Cytokines and Lymphocyte Subsets in PCNSL. J Inflamm Res 2022; 15:3815-3828. [PMID: 35836720 PMCID: PMC9273637 DOI: 10.2147/jir.s366761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Primary central nervous system lymphoma (PCNSL) responds favorably to radiation, chemotherapy and targeted drug therapy. However survival is usually worse, the treatment-related drug resistance and recurrence are still clinical problems to be solved urgently. Studies have shown that cytokines are expressed in varying degrees in patients with lymphoma, which is significantly related to the progression, poor prognosis and drug resistance of lymphoma. We explore the expression and clinical significance of Th1/Th2/Th17 cytokines and lymphocyte subsets in patients with PCNSL to provide a more sufficient theoretical basis for its diagnosis and treatment. Patients and Methods We measured and analysed the levels of Th1/Th2/Th17 cytokines and the distribution of lymphocyte subsets (including Treg cells, CD3+, CD4+, CD8+, CD19+, and CD4+/CD8+) in 39 patients with PCNSL and 96 patients with diffuse large B-cell lymphoma (DLBCL) without central nervous system involvement. The cytokines of 13 healthy people and the lymphocyte subsets of 27 healthy people were measured as the control group. Results We found a significant difference in the level of Th1/Th2/Th17 cytokines and lymphocyte subsets between PCNSL and healthy controls, especially IL-2, after treatment, which was significantly higher than before treatment (p<0.01). However, the level of CD19+ and CD4+/CD8+ decreased while CD8+ and CD3+ increased after treatment (regardless of whether the treatment was effective), and the difference was statistically significant. In addition, our analysis of different prognostic factors found that HD-MTX-based chemotherapy appears to have a longer progression-free survival and overall survival than osimertinib-based chemotherapy. Conclusion There are significant differences in Th1/Th2/Th17 cytokines and lymphocyte subsets among PCNSL, DLBCL, and healthy controls, and their detection is helpful for the diagnosis, treatment, and prognosis of PCNSL. HD-MTX-based chemotherapy may still be the first choice for PCNSL.
Collapse
Affiliation(s)
- Haiyan Bian
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Chengwen Gao
- Laboratory of Medical Biology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zhihe Liu
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yang Sun
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Minghui Hu
- Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yujing Xiao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Fengyun Hao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yushuo Ma
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xia Zhao
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Correspondence: Xia Zhao, Department of Hematology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, People’s Republic of China, Email
| |
Collapse
|
76
|
Koto S, Chihara N, Akatani R, Nakano H, Hara A, Sekiguchi K, Matsumoto R, Toda T. Transcription Factor c-Maf Promotes Immunoregulation of Programmed Cell Death 1-Expressed CD8 + T Cells in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/4/e1166. [PMID: 35383094 PMCID: PMC8985076 DOI: 10.1212/nxi.0000000000001166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/28/2022] [Indexed: 12/22/2022]
Abstract
Background and Objectives Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. CD8+ T cells are prominently found at inflammatory sites. Recent advances in understanding checkpoint molecules, including programmed cell death 1 (PD-1), expressed on CD8+ T cells, highlight the immune regulatory roles of this T-cell subset; however, the role of CD8+ T cells in MS is unclear. Thus, we aimed to reveal the characteristics of PD-1–expressed (PD-1+) CD8+ T cells in MS. Methods We performed a cohort, case-control study for phenotyping analysis of PD-1+CD8+ T cells in disease remission and flare states using CSF and peripheral blood samples of 45 patients with MS or clinically isolated syndrome and 12 healthy subjects. We further analyzed the transcriptome of sorted PD-1+CD8+ T cells obtained from interferon (IFN)-β–treated patients and validated their regulatory machinery using in vitro cell culture assays with lentiviral gene transfer. Results In the disease remission state, PD-1+CD8+ T cells were decreased in the peripheral blood of patients with MS and resolved in patients treated with IFN-β treatment who showed immune regulatory cytokine interleukin (IL)-10 expression. In the disease flare state, we found that PD-1+CD8+ T cells were enriched in the CSF, which predicted a good response to subsequent IV steroid therapy. Transcriptome analysis of sorted PD-1+CD8+ T cells revealed the transcription factor c-Maf as a potential major regulator of the gene module, including multiple coinhibitory molecules. Furthermore, c-Maf expressed in CD8+ T cells induced PD-1 expression and production of IL-10 as well as suppressed alloactivated CD4+ T-cell survival. Discussion This study uncovered a favorable role of PD-1+CD8+ T cells against MS and demonstrated that c-Maf–driven IL-10 is an immune regulatory machinery.
Collapse
Affiliation(s)
- Shusuke Koto
- From the Division of Neurology (S.K., N.C., R.A., H.N., A.H., K.S., R.M.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, the University of Tokyo, Japan
| | - Norio Chihara
- From the Division of Neurology (S.K., N.C., R.A., H.N., A.H., K.S., R.M.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, the University of Tokyo, Japan
| | - Ritsu Akatani
- From the Division of Neurology (S.K., N.C., R.A., H.N., A.H., K.S., R.M.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, the University of Tokyo, Japan
| | - Hiroko Nakano
- From the Division of Neurology (S.K., N.C., R.A., H.N., A.H., K.S., R.M.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, the University of Tokyo, Japan
| | - Atsushi Hara
- From the Division of Neurology (S.K., N.C., R.A., H.N., A.H., K.S., R.M.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, the University of Tokyo, Japan
| | - Kenji Sekiguchi
- From the Division of Neurology (S.K., N.C., R.A., H.N., A.H., K.S., R.M.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, the University of Tokyo, Japan
| | - Riki Matsumoto
- From the Division of Neurology (S.K., N.C., R.A., H.N., A.H., K.S., R.M.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, the University of Tokyo, Japan
| | - Tatsushi Toda
- From the Division of Neurology (S.K., N.C., R.A., H.N., A.H., K.S., R.M.), Kobe University Graduate School of Medicine; and Department of Neurology (T.T.), Graduate School of Medicine, the University of Tokyo, Japan
| |
Collapse
|
77
|
Abstract
We present a protocol to localize T cell receptor clones using the Visium spatial transcriptomics platform. This approach permits simultaneous localization of both gene expression and T cell clonotypes in situ within tissue sections. T cell receptor sequences identified by this protocol are readily recapitulated by single-cell sequencing. This technique enables detailed studies of the spatial organization of the human T cell repertoire, such as the localization of infiltrating T cell clones within the tumor microenvironment. For complete details on the use and execution of this protocol, please refer to Sudmeier et al. (2022).
Collapse
Affiliation(s)
- William H. Hudson
- Emory Vaccine Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lisa J. Sudmeier
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
78
|
París-Muñoz A, Aizpurua G, Barber DF. Helios Expression Is Downregulated on CD8+ Treg in Two Mouse Models of Lupus During Disease Progression. Front Immunol 2022; 13:922958. [PMID: 35784310 PMCID: PMC9244697 DOI: 10.3389/fimmu.2022.922958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
T-cell–mediated autoimmunity reflects an imbalance in this compartment that is not restored by tolerogenic immune cells, e.g., regulatory T cells or tolerogenic dendritic cells (tolDCs). Although studies into T-cell equilibrium have mainly focused on regulatory CD4+FoxP3+ T cells (CD4+ Tregs), recent findings on the lesser known CD8+ Tregs (CD44+CD122+Ly49+) have highlighted their non-redundant role in regulating lupus-like disease and their regulatory phenotype facilitated by the transcription factor Helios in mice and humans. However, there are still remaining questions about Helios regulation and dynamics in different autoimmune contexts. Here, we show the absence of CD8+ Tregs in two lupus-prone murine models: MRL/MPJ and MRL/lpr, in comparison with a non-prone mouse strain like C57BL/6. We observed that all MRL animals showed a dramatically reduced population of CD8+ Tregs and a greater Helios downregulation on diseased mice. Helios induction was detected preferentially on CD8+ T cells from OT-I mice co-cultured with tolDCs from C57BL/6 but not in MRL animals. Furthermore, the Helios profile was also altered in other relevant T-cell populations implicated in lupus, such as CD4+ Tregs, conventional CD4+, and double-negative T cells. Together, these findings could make Helios a versatile maker across the T-cell repertoire that is capable of differentiating lupus disease states.
Collapse
Affiliation(s)
- Andrés París-Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gonzalo Aizpurua
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Domingo F. Barber
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- *Correspondence: Domingo F. Barber,
| |
Collapse
|
79
|
Single-cell multiomics in neuroinflammation. Curr Opin Immunol 2022; 76:102180. [DOI: 10.1016/j.coi.2022.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
|
80
|
CD8+ Tregs kill pathogenic cells to avert autoimmunity. Trends Immunol 2022; 43:415-416. [DOI: 10.1016/j.it.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 11/20/2022]
|
81
|
Li J, Zaslavsky M, Su Y, Guo J, Sikora MJ, van Unen V, Christophersen A, Chiou SH, Chen L, Li J, Ji X, Wilhelmy J, McSween AM, Palanski BA, Mallajosyula VVA, Bracey NA, Dhondalay GKR, Bhamidipati K, Pai J, Kipp LB, Dunn JE, Hauser SL, Oksenberg JR, Satpathy AT, Robinson WH, Dekker CL, Steinmetz LM, Khosla C, Utz PJ, Sollid LM, Chien YH, Heath JR, Fernandez-Becker NQ, Nadeau KC, Saligrama N, Davis MM. KIR +CD8 + T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science 2022; 376:eabi9591. [PMID: 35258337 PMCID: PMC8995031 DOI: 10.1126/science.abi9591] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/12/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Jing Li
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxim Zaslavsky
- Program in Computer Science, Stanford University, Stanford, CA, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J. Sikora
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent van Unen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Asbjørn Christophersen
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Shin-Heng Chiou
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang Chen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiefu Li
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xuhuai Ji
- Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie Wilhelmy
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Alana M. McSween
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Nathan A. Bracey
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Gopal Krishna R. Dhondalay
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Kartik Bhamidipati
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joy Pai
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucas B. Kipp
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey E. Dunn
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen L. Hauser
- Department of Neurology and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Jorge R. Oksenberg
- Department of Neurology and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - William H. Robinson
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Cornelia L. Dekker
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lars M. Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Paul J. Utz
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ludvig M. Sollid
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Yueh-Hsiu Chien
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Kari C. Nadeau
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Naresha Saligrama
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M. Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
82
|
Abstract
A subset of CD8+ T cells regulate chronic inflammation by killing pathogenic CD4+ T cells.
Collapse
Affiliation(s)
- Anaïs Levescot
- Université de Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM UMR 1163, Paris, France
| | - Nadine Cerf-Bensussan
- Université de Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM UMR 1163, Paris, France
| |
Collapse
|
83
|
Bolivar-Wagers S, Larson JH, Jin S, Blazar BR. Cytolytic CD4 + and CD8 + Regulatory T-Cells and Implications for Developing Immunotherapies to Combat Graft-Versus-Host Disease. Front Immunol 2022; 13:864748. [PMID: 35493508 PMCID: PMC9040077 DOI: 10.3389/fimmu.2022.864748] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T-cells (Treg) are critical for the maintenance of immune homeostasis and tolerance induction. While the immunosuppressive mechanisms of Treg have been extensively investigated for decades, the mechanisms responsible for Treg cytotoxicity and their therapeutic potential in regulating immune responses have been incompletely explored and exploited. Conventional cytotoxic T effector cells (Teffs) are known to be important for adaptive immune responses, particularly in the settings of viral infections and cancer. CD4+ and CD8+ Treg subsets may also share similar cytotoxic properties with conventional Teffs. Cytotoxic effector Treg (cyTreg) are a heterogeneous population in the periphery that retain the capacity to suppress T-cell proliferation and activation, induce cellular apoptosis, and migrate to tissues to ensure immune homeostasis. The latter can occur through several cytolytic mechanisms, including the Granzyme/Perforin and Fas/FasL signaling pathways. This review focuses on the current knowledge and recent advances in our understanding of cyTreg and their potential application in the treatment of human disease, particularly Graft-versus-Host Disease (GVHD).
Collapse
Affiliation(s)
| | | | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
84
|
Kunkl M, Amormino C, Tedeschi V, Fiorillo MT, Tuosto L. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Front Immunol 2022; 13:824411. [PMID: 35211120 PMCID: PMC8860818 DOI: 10.3389/fimmu.2022.824411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th cells produce several inflammatory cytokines and chemokines that activate resident glial cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and axonal loss. Astrocytes are recognized as key players of MS immunopathology, which respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify neuroinflammation into the CNS and contribute to MS progression. In this review, we summarize current knowledge of the astrocytic changes and behaviour in both MS and experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and functional modifications occurring in astrocytes and their pathological outcomes.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
85
|
Zorzella-Pezavento SFG, Mimura LAN, Denadai MB, de Souza WDF, Fraga-Silva TFDC, Sartori A. Is there a window of opportunity for the therapeutic use of vitamin D in multiple sclerosis? Neural Regen Res 2022; 17:1945-1954. [PMID: 35142671 PMCID: PMC8848597 DOI: 10.4103/1673-5374.335139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis is an autoimmune treatable but not curable disease. There are a multiplicity of medications for multiple sclerosis therapy, including a class entitled disease-modifying drugs that are mainly indicated to reduce the number and severity of disease relapses. Not all patients respond well to these therapies, and minor to severe adverse effects have been reported. Vitamin D, called sunshine vitamin, is being studied as a possible light at the end of the tunnel. In this review, we recapitulated the similar immunopathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis, the immunomodulatory and neuroprotective potential of vitamin D and the state-of-art concerning its supplementation to multiple sclerosis patients. Finally, based on our and other groups’ experimental findings, we analyzed the need to consider the relevance of the route and the different time-point administration aspects for a more rational indication of this vitamin to multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Luiza Ayumi Nishiyama Mimura
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marina Bonifácio Denadai
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - William Danilo Fernandes de Souza
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Alexandrina Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
86
|
Yang G, Postoak JL, Song W, Martinez J, Zhang J, Wu L, Van Kaer L. Dendritic cell PIK3C3/VPS34 controls the pathogenicity of CNS autoimmunity independently of LC3-associated phagocytosis. Autophagy 2022; 18:161-170. [PMID: 33960279 PMCID: PMC8865280 DOI: 10.1080/15548627.2021.1922051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/13/2023] Open
Abstract
PIK3C3/VPS34 is a key player in macroautophagy/autophagy and MAP1LC3/LC3-associated phagocytosis (LAP), which play critical roles in dendritic cell (DC) function. In this study, we assessed the contribution of PIK3C3 to DC function during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We found that Pik3c3-deficient DCs exhibit attenuated capacity to reactivate encephalitogenic T cells in the central nervous system, leading to reduced incidence and severity of EAE in DC-specific Pik3c3-deficient mice. Additionally, animals with a DC-specific deficiency in Rb1cc1/Fip200 but not Rubcn were protected against EAE, suggesting that the EAE phenotype of DC-specific Pik3c3-deficient mice is due to defective canonical autophagy rather than LAP. Collectively, our studies have revealed a critical role of PIK3C3 in DC function and the pathogenicity of these cells during EAE, with important implications for the development of immunotherapies for autoimmune diseases such as MS.Abbreviations: ATG: autophagy-related; CNS: central nervous system; DC: dendritic cell; DEG: differentially expressed gene; EAE: experimental autoimmune encephalomyelitis; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MHC: major histocompatibility complex; MOG: myelin oligodendrocyte glycoprotein; MS: multiple sclerosis; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; ROS: reactive oxygen species.
Collapse
Affiliation(s)
- Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J. Luke Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wenqiang Song
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Veterans Affairs, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
87
|
Li J, Wilhelmy J, Davis MM. Characterization of KIR +CD8 + Regulatory T Cells in Humans by scRNA- and TCR-seq. Methods Mol Biol 2022; 2574:41-121. [PMID: 36087198 PMCID: PMC10035765 DOI: 10.1007/978-1-0716-2712-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previous studies have demonstrated the regulatory functions of Ly49+CD8+ T cells toward self-reactive CD4+ T cells in mice. Recently, we found KIR+CD8+ T cells are the equivalent of mouse Ly49+CD8+ T cells in humans. They are increased in patients with autoimmune or infectious diseases as a negative feedback mechanism to suppress the arising pathogenic cells and maintain peripheral tolerance. Here, we describe the methods on how we characterize the KIR+CD8+ T cells from different diseases using single-cell RNA and TCR sequencing.
Collapse
Affiliation(s)
- Jing Li
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie Wilhelmy
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
88
|
Chen B, Gui MC, Ji SQ, Xie Y, Tian DS, Bu BT. Distinct Immunological Features of Inflammatory Demyelinating Diseases of the Central Nervous System. Neuroimmunomodulation 2022; 29:220-230. [PMID: 34823248 DOI: 10.1159/000519835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The immunological features between neuromyelitis optica spectrum disorder (NMOSD), multiple sclerosis (MS), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), lacked systemic comparisons. Accordingly, we aimed to investigate immunological differences between NMOSD, MS, and MOGAD. METHODS Patients with MOGAD, MS, and NMOSD who received immunological tests including cytokine profiles and cytometry analysis of the lymphocyte subgroups were retrospectively reviewed and divided into training and validation sets. Discriminatory models based on immunological data were established to identify optimal classifiers using orthogonal partial least square discriminant analysis (OPLS-DA). Constructed models were tested in another independent cohort. RESULTS OPLS-DA of the immunological data from 50 patients (26 NMOSD, 14 MS, and 10 MOGAD) demonstrated the discriminatory values of a relatively low level of T-lymphocyte subsets, especially the CD4+ T cells, in MOGAD; a decreased NK cell, eosinophil, and lymphocyte level; an elevated neutrophil-to-lymphocyte ratio in NMOSD; and a declined IFN-γ-producing CD4+ T cells/Th with an increased IL-8 concentration in MS. All the models (NMOSD vs. MS, NMOSD vs. MOGAD, and MS vs. MOGAD) exhibited a significant predictive value and accuracy (>85%). CONCLUSIONS NMOSD, MS, and MOGAD may be different in pathogenesis, and several immunological biomarkers can serve as potential classifiers clinically.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Cui Gui
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su-Qiong Ji
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
89
|
Li J, Zaslavsky M, Su Y, Sikora MJ, van Unen V, Christophersen A, Chiou SH, Chen L, Li J, Ji X, Wilhelmy J, McSween AM, Palanski BA, Aditya Mallajosyula VV, Dhondalay GKR, Bhamidipati K, Pai J, Kipp LB, Dunn JE, Hauser SL, Oksenberg JR, Satpathy AT, Robinson WH, Steinmetz LM, Khosla C, Utz PJ, Sollid LM, Heath JR, Fernandez-Becker NQ, Nadeau KC, Saligrama N, Davis MM. Human KIR + CD8 + T cells target pathogenic T cells in Celiac disease and are active in autoimmune diseases and COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.23.473930. [PMID: 34981055 PMCID: PMC8722592 DOI: 10.1101/2021.12.23.473930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
UNLABELLED Previous reports show that Ly49 + CD8 + T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8 + T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR + CD8 + T cells can efficiently eliminate pathogenic gliadin-specific CD4 + T cells from Celiac disease (CeD) patients' leukocytes in vitro . Furthermore, we observe elevated levels of KIR + CD8 + T cells, but not CD4 + regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR + CD8 + T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8 + T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells. ONE-SENTENCE SUMMARY Here we identified KIR + CD8 + T cells as a regulatory CD8 + T cell subset in humans that suppresses self-reactive or otherwise pathogenic CD4 + T cells.
Collapse
|
90
|
Dasgupta S, Maricic I, Tang J, Wandro S, Weldon K, Carpenter CS, Eckmann L, Rivera-Nieves J, Sandborn W, Knight R, Dorrestein P, Swafford AD, Kumar V. Class Ib MHC-Mediated Immune Interactions Play a Critical Role in Maintaining Mucosal Homeostasis in the Mammalian Large Intestine. Immunohorizons 2021; 5:953-971. [PMID: 34911745 PMCID: PMC10026853 DOI: 10.4049/immunohorizons.2100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Lymphocytes within the intestinal epithelial layer (IEL) in mammals have unique composition compared with their counterparts in the lamina propria. Little is known about the role of some of the key colonic IEL subsets, such as TCRαβ+CD8+ T cells, in inflammation. We have recently described liver-enriched innate-like TCRαβ+CD8αα regulatory T cells, partly controlled by the non-classical MHC molecule, Qa-1b, that upon adoptive transfer protect from T cell-induced colitis. In this study, we found that TCRαβ+CD8αα T cells are reduced among the colonic IEL during inflammation, and that their activation with an agonistic peptide leads to significant Qa-1b-dependent protection in an acute model of colitis. Cellular expression of Qa-1b during inflammation and corresponding dependency in peptide-mediated protection suggest that Batf3-dependent CD103+CD11b- type 1 conventional dendritic cells control the protective function of TCRαβ+CD8αα T cells in the colonic epithelium. In the colitis model, expression of the potential barrier-protective gene, Muc2, is enhanced upon administration of a Qa-1b agonistic peptide. Notably, in steady state, the mucin metabolizing Akkermansia muciniphila was found in significantly lower abundance amid a dramatic change in overall microbiome and metabolome, increased IL-6 in explant culture, and enhanced sensitivity to dextran sulfate sodium in Qa-1b deficiency. Finally, in patients with inflammatory bowel disease, we found upregulation of HLA-E, a Qa-1b analog with inflammation and biologic non-response, in silico, suggesting the importance of this regulatory mechanism across species.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Igor Maricic
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jay Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Kelly Weldon
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Carolina S Carpenter
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Lars Eckmann
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jesus Rivera-Nieves
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - William Sandborn
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA; and
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Peter Dorrestein
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA;
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| |
Collapse
|
91
|
Simone D, Penkava F, Ridley A, Sansom S, Al-Mossawi MH, Bowness P. Single cell analysis of spondyloarthritis regulatory T cells identifies distinct synovial gene expression patterns and clonal fates. Commun Biol 2021; 4:1395. [PMID: 34907325 PMCID: PMC8671562 DOI: 10.1038/s42003-021-02931-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in controlling inflammation and limiting autoimmunity, but their phenotypes at inflammatory sites in human disease are poorly understood. We here analyze the single-cell transcriptome of >16,000 Tregs obtained from peripheral blood and synovial fluid of two patients with HLA-B27+ ankylosing spondylitis and three patients with psoriatic arthritis, closely related forms of inflammatory spondyloarthritis. We identify multiple Treg clusters with distinct transcriptomic profiles, including, among others, a regulatory CD8+ subset expressing cytotoxic markers/genes, and a Th17-like RORC+ Treg subset characterized by IL-10 and LAG-3 expression. Synovial Tregs show upregulation of interferon signature and TNF receptor superfamily genes, and marked clonal expansion, consistent with tissue adaptation and antigen contact respectively. Individual synovial Treg clones map to different clusters indicating cell fate divergence. Finally, we demonstrate that LAG-3 directly inhibits IL-12/23 and TNF secretion by patient-derived monocytes, a mechanism with translational potential in SpA. Our detailed characterization of Tregs at an important inflammatory site illustrates the marked specialization of Treg subpopulations.
Collapse
Affiliation(s)
- Davide Simone
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Frank Penkava
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Anna Ridley
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Stephen Sansom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - M Hussein Al-Mossawi
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
92
|
Meier UC, Cipian RC, Karimi A, Ramasamy R, Middeldorp JM. Cumulative Roles for Epstein-Barr Virus, Human Endogenous Retroviruses, and Human Herpes Virus-6 in Driving an Inflammatory Cascade Underlying MS Pathogenesis. Front Immunol 2021; 12:757302. [PMID: 34790199 PMCID: PMC8592026 DOI: 10.3389/fimmu.2021.757302] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Roles for viral infections and aberrant immune responses in driving localized neuroinflammation and neurodegeneration in multiple sclerosis (MS) are the focus of intense research. Epstein-Barr virus (EBV), as a persistent and frequently reactivating virus with major immunogenic influences and a near 100% epidemiological association with MS, is considered to play a leading role in MS pathogenesis, triggering localized inflammation near or within the central nervous system (CNS). This triggering may occur directly via viral products (RNA and protein) and/or indirectly via antigenic mimicry involving B-cells, T-cells and cytokine-activated astrocytes and microglia cells damaging the myelin sheath of neurons. The genetic MS-risk factor HLA-DR2b (DRB1*1501β, DRA1*0101α) may contribute to aberrant EBV antigen-presentation and anti-EBV reactivity but also to mimicry-induced autoimmune responses characteristic of MS. A central role is proposed for inflammatory EBER1, EBV-miRNA and LMP1 containing exosomes secreted by viable reactivating EBV+ B-cells and repetitive release of EBNA1-DNA complexes from apoptotic EBV+ B-cells, forming reactive immune complexes with EBNA1-IgG and complement. This may be accompanied by cytokine- or EBV-induced expression of human endogenous retrovirus-W/-K (HERV-W/-K) elements and possibly by activation of human herpesvirus-6A (HHV-6A) in early-stage CNS lesions, each contributing to an inflammatory cascade causing the relapsing-remitting neuro-inflammatory and/or progressive features characteristic of MS. Elimination of EBV-carrying B-cells by antibody- and EBV-specific T-cell therapy may hold the promise of reducing EBV activity in the CNS, thereby limiting CNS inflammation, MS symptoms and possibly reversing disease. Other approaches targeting HHV-6 and HERV-W and limiting inflammatory kinase-signaling to treat MS are also being tested with promising results. This article presents an overview of the evidence that EBV, HHV-6, and HERV-W may have a pathogenic role in initiating and promoting MS and possible approaches to mitigate development of the disease.
Collapse
Affiliation(s)
- Ute-Christiane Meier
- Institut für Laboratoriumsmedizin, Klinikum der Universität München, München, Germany.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
93
|
Hardardottir L, Bazzano MV, Glau L, Gattinoni L, Köninger A, Tolosa E, Solano ME. The New Old CD8+ T Cells in the Immune Paradox of Pregnancy. Front Immunol 2021; 12:765730. [PMID: 34868016 PMCID: PMC8635142 DOI: 10.3389/fimmu.2021.765730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
CD8+ T cells are the most frequent T cell population in the immune cell compartment at the feto-maternal interface. Due to their cytotoxic potential, the presence of CD8+ T cells in the immune privileged pregnant uterus has raised considerable interest. Here, we review our current understanding of CD8+ T cell biology in the uterus of pregnant women and discuss this knowledge in relation to a recently published immune cell Atlas of human decidua. We describe how the expansion of CD8+ T cells with an effector memory phenotype often presenting markers of exhaustion is critical for a successful pregnancy, and host defense towards pathogens. Moreover, we review new evidence on the presence of long-lasting immunological memory to former pregnancies and discuss its impact on prospective pregnancy outcomes. The formation of fetal-specific memory CD8+ T cell subests in the uterus, in particular of tissue resident, and stem cell memory cells requires further investigation, but promises interesting results to come. Advancing the knowledge of CD8+ T cell biology in the pregnant uterus will be pivotal for understanding not only tissue-specific immune tolerance but also the etiology of complications during pregnancy, thus enabling preventive or therapeutic interventions in the future.
Collapse
Affiliation(s)
- Lilja Hardardottir
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| | - Maria Victoria Bazzano
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Gattinoni
- Department of Functional Immune Cell Modulation, Regensburg Center for Interventional Immunology, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Angela Köninger
- Department of Obstetrics and Gynecology of the University of Regensburg at the St. Hedwig Hospital of the Order of St. John, Regensburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Emilia Solano
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
94
|
Simonetta F, Lohmeyer JK, Hirai T, Maas-Bauer K, Alvarez M, Wenokur AS, Baker J, Aalipour A, Ji X, Haile S, Mackall CL, Negrin RS. Allogeneic CAR Invariant Natural Killer T Cells Exert Potent Antitumor Effects through Host CD8 T-Cell Cross-Priming. Clin Cancer Res 2021; 27:6054-6064. [PMID: 34376537 PMCID: PMC8563377 DOI: 10.1158/1078-0432.ccr-21-1329] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE The development of allogeneic chimeric antigen receptor (CAR) T-cell therapies for off-the-shelf use is a major goal that faces two main immunologic challenges, namely the risk of graft-versus-host disease (GvHD) induction by the transferred cells and the rejection by the host immune system limiting their persistence. In this work we assessed the direct and indirect antitumor effect of allogeneic CAR-engineered invariant natural killer T (iNKT) cells, a cell population without GvHD-induction potential that displays immunomodulatory properties. EXPERIMENTAL DESIGN After assessing murine CAR iNKT cells direct antitumor effects in vitro and in vivo, we employed an immunocompetent mouse model of B-cell lymphoma to assess the interaction between allogeneic CAR iNKT cells and endogenous immune cells. RESULTS We demonstrate that allogeneic CAR iNKT cells exerted potent direct and indirect antitumor activity when administered across major MHC barriers by inducing tumor-specific antitumor immunity through host CD8 T-cell cross-priming. CONCLUSIONS In addition to their known direct cytotoxic effect, allogeneic CAR iNKT cells induce host CD8 T-cell antitumor responses, resulting in a potent antitumor effect lasting longer than the physical persistence of the allogeneic cells. The utilization of off-the-shelf allogeneic CAR iNKT cells could meet significant unmet needs in the clinic.
Collapse
Affiliation(s)
- Federico Simonetta
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Translational Research Centre in Onco-Haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Juliane K Lohmeyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Toshihito Hirai
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Kristina Maas-Bauer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Maite Alvarez
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Arielle S Wenokur
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Amin Aalipour
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Xuhuai Ji
- Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, California
| | - Samuel Haile
- Department of Pediatrics, Stanford University, Stanford, California
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University, Stanford, California
- Stanford Cancer Institute, Stanford University, Stanford, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
95
|
Christophersen A, Zühlke S, Lund EG, Snir O, Dahal‐Koirala S, Risnes LF, Jahnsen J, Lundin KEA, Sollid LM. Pathogenic T Cells in Celiac Disease Change Phenotype on Gluten Challenge: Implications for T-Cell-Directed Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102778. [PMID: 34495570 PMCID: PMC8564461 DOI: 10.1002/advs.202102778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 05/05/2023]
Abstract
Gluten-specific CD4+ T cells being drivers of celiac disease (CeD) are obvious targets for immunotherapy. Little is known about how cell markers harnessed for T-cell-directed therapy can change with time and upon activation in CeD and other autoimmune conditions. In-depth characterization of gluten-specific CD4+ T cells and CeD-associated (CD38+ and CD103+ ) CD8+ and γδ+ T cells in blood of treated CeD patients undergoing a 3 day gluten challenge is reported. The phenotypic profile of gluten-specific cells changes profoundly with gluten exposure and the cells adopt the profile of gluten-specific cells in untreated disease (CD147+ , CD70+ , programmed cell death protein 1 (PD-1)+ , inducible T-cell costimulator (ICOS)+ , CD28+ , CD95+ , CD38+ , and CD161+ ), yet with some markers being unique for day 6 cells (C-X-C chemokine receptor type 6 (CXCR6), CD132, and CD147) and with integrin α4β7, C-C motif chemokine receptor 9 (CCR9), and CXCR3 being expressed stably at baseline and day 6. Among gluten-specific CD4+ T cells, 52% are CXCR5+ at baseline, perhaps indicative of germinal-center reactions, while on day 6 all are CXCR5- . Strikingly, the phenotypic profile of gluten-specific CD4+ T cells on day 6 largely overlaps with that of CeD-associated (CD38+ and CD103+ ) CD8+ and γδ+ T cells. The antigen-induced shift in phenotype of CD4+ T cells being shared with other disease-associated T cells is relevant for development of T-cell-directed therapies.
Collapse
Affiliation(s)
- Asbjørn Christophersen
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of RheumatologyDermatology and Infectious DiseasesOslo University HospitalOslo0372Norway
| | - Stephanie Zühlke
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Eivind G. Lund
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Omri Snir
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Shiva Dahal‐Koirala
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Louise Fremgaard Risnes
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Department of ImmunologyOslo University HospitalOslo0372Norway
| | - Jørgen Jahnsen
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of GastroenterologyAkershus University HospitalLørenskog1478Norway
| | - Knut E. A. Lundin
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of GastroenterologyOslo University Hospital RikshospitaletOslo0372Norway
| | - Ludvig M. Sollid
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of ImmunologyOslo University HospitalOslo0372Norway
| |
Collapse
|
96
|
Feizi N, Focaccetti C, Pacella I, Tucci G, Rossi A, Costanza M, Pedotti R, Sidney J, Sette A, La Rocca C, Procaccini C, Matarese G, Barnaba V, Piconese S. CD8 + T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis. Cell Death Dis 2021; 12:1026. [PMID: 34716313 PMCID: PMC8556378 DOI: 10.1038/s41419-021-04310-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/12/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023]
Abstract
The autoimmune immunopathology occurring in multiple sclerosis (MS) is sustained by myelin-specific and -nonspecific CD8+ T cells. We have previously shown that, in MS, activated T cells undergoing apoptosis induce a CD8+ T cell response directed against antigens that are unveiled during the apoptotic process, namely caspase-cleaved structural proteins such as non-muscle myosin and vimentin. Here, we have explored in vivo the development and the function of the immune responses to cryptic apoptosis-associated epitopes (AEs) in a well-established mouse model of MS, experimental autoimmune encephalomyelitis (EAE), through a combination of immunization approaches, multiparametric flow cytometry, and functional assays. First, we confirmed that this model recapitulated the main findings observed in MS patients, namely that apoptotic T cells and effector/memory AE-specific CD8+ T cells accumulate in the central nervous system of mice with EAE, positively correlating with disease severity. Interestingly, we found that AE-specific CD8+ T cells were present also in the lymphoid organs of unprimed mice, proliferated under peptide stimulation in vitro, but failed to respond to peptide immunization in vivo, suggesting a physiological control of this response. However, when mice were immunized with AEs along with EAE induction, AE-specific CD8+ T cells with an effector/memory phenotype accumulated in the central nervous system, and the disease severity was exacerbated. In conclusion, we demonstrate that AE-specific autoimmunity may contribute to immunopathology in neuroinflammation.
Collapse
Affiliation(s)
- Neda Feizi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Chiara Focaccetti
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy.,Department of Human Science and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Ilenia Pacella
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Gloria Tucci
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Department of Clinical Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Rosetta Pedotti
- Molecular Neuro-Oncology Unit, Department of Clinical Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131, Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131, Naples, Italy.,Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Naples, Italy
| | - Vincenzo Barnaba
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy. .,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy. .,Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy. .,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
97
|
Freed-Pastor WA, Lambert LJ, Ely ZA, Pattada NB, Bhutkar A, Eng G, Mercer KL, Garcia AP, Lin L, Rideout WM, Hwang WL, Schenkel JM, Jaeger AM, Bronson RT, Westcott PMK, Hether TD, Divakar P, Reeves JW, Deshpande V, Delorey T, Phillips D, Yilmaz OH, Regev A, Jacks T. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer. Cancer Cell 2021; 39:1342-1360.e14. [PMID: 34358448 PMCID: PMC8511341 DOI: 10.1016/j.ccell.2021.07.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
The CD155/TIGIT axis can be co-opted during immune evasion in chronic viral infections and cancer. Pancreatic adenocarcinoma (PDAC) is a highly lethal malignancy, and immune-based strategies to combat this disease have been largely unsuccessful to date. We corroborate prior reports that a substantial portion of PDAC harbors predicted high-affinity MHC class I-restricted neoepitopes and extend these findings to advanced/metastatic disease. Using multiple preclinical models of neoantigen-expressing PDAC, we demonstrate that intratumoral neoantigen-specific CD8+ T cells adopt multiple states of dysfunction, resembling those in tumor-infiltrating lymphocytes of PDAC patients. Mechanistically, genetic and/or pharmacologic modulation of the CD155/TIGIT axis was sufficient to promote immune evasion in autochthonous neoantigen-expressing PDAC. Finally, we demonstrate that the CD155/TIGIT axis is critical in maintaining immune evasion in PDAC and uncover a combination immunotherapy (TIGIT/PD-1 co-blockade plus CD40 agonism) that elicits profound anti-tumor responses in preclinical models, now poised for clinical evaluation.
Collapse
Affiliation(s)
- William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Laurens J Lambert
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nimisha B Pattada
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George Eng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ana P Garcia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William L Hwang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason M Schenkel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex M Jaeger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roderick T Bronson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Toni Delorey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Devan Phillips
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Omer H Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aviv Regev
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
98
|
Mishra S, Liao W, Liu Y, Yang M, Ma C, Wu H, Zhao M, Zhang X, Qiu Y, Lu Q, Zhang N. TGF-β and Eomes control the homeostasis of CD8+ regulatory T cells. J Exp Med 2021; 218:152129. [PMID: 32991667 PMCID: PMC7527976 DOI: 10.1084/jem.20200030] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
In addition to Foxp3+ CD4+ regulatory T cells (CD4+ T reg cells), Foxp3- CD8+ regulatory T cells (CD8+ T reg cells) are critical to maintain immune tolerance. However, the molecular programs that specifically control CD8+ but not CD4+ T reg cells are largely unknown. Here, we demonstrate that simultaneous disruption of both TGF-β receptor and transcription factor Eomesodermin (Eomes) in T cells results in lethal autoimmunity due to a specific defect in CD8+ but not CD4+ T reg cells. Further, TGF-β signal maintains the regulatory identity, while Eomes controls the follicular location of CD8+ T reg cells. Both TGF-β signal and Eomes coordinate to promote the homeostasis of CD8+ T reg cells. Together, we have identified a unique molecular program designed for CD8+ T reg cells.
Collapse
Affiliation(s)
- Shruti Mishra
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Wei Liao
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX.,Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yong Liu
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX.,Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
| | - Yuanzheng Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
99
|
Qian Y, Arellano G, Ifergan I, Lin J, Snowden C, Kim T, Thomas JJ, Law C, Guan T, Balabanov RD, Kaech SM, Miller SD, Choi J. ZEB1 promotes pathogenic Th1 and Th17 cell differentiation in multiple sclerosis. Cell Rep 2021; 36:109602. [PMID: 34433042 PMCID: PMC8431781 DOI: 10.1016/j.celrep.2021.109602] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Inappropriate CD4+ T helper (Th) differentiation can compromise host immunity or promote autoimmune disease. To identify disease-relevant regulators of T cell fate, we examined mutations that modify risk for multiple sclerosis (MS), a canonical organ-specific autoimmune disease. This analysis identified a role for Zinc finger E-box-binding homeobox (ZEB1). Deletion of ZEB1 protects against experimental autoimmune encephalitis (EAE), a mouse model of multiple sclerosis (MS). Mechanistically, ZEB1 in CD4+ T cells is required for pathogenic Th1 and Th17 differentiation. Genomic analyses of paired human and mouse expression data elucidated an unexpected role for ZEB1 in JAK-STAT signaling. ZEB1 inhibits miR-101-3p that represses JAK2 expression, STAT3/STAT4 phosphorylation, and subsequent expression of interleukin-17 (IL-17) and interferon gamma (IFN-γ). Underscoring its clinical relevance, ZEB1 and JAK2 downregulation decreases pathogenic cytokines expression in T cells from MS patients. Moreover, a Food and Drug Administration (FDA)-approved JAK2 inhibitor is effective in EAE. Collectively, these findings identify a conserved, potentially targetable mechanism regulating disease-relevant inflammation. Qian et al. show that ZEB1 is required for the development of the autoimmune disease multiple sclerosis (MS). ZEB1, a transcription factor, promotes JAK-STAT signaling during Th1/Th17 differentiation by repressing expression of a JAK2-targeting miRNA. ZEB1 and JAK2 are potentially clinically relevant therapeutic targets for MS.
Collapse
Affiliation(s)
- Yuan Qian
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Gabriel Arellano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jean Lin
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; Department of Medicine, Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Caroline Snowden
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Taehyeung Kim
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Jane Joy Thomas
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Calvin Law
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Tianxia Guan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Roumen D Balabanov
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
100
|
Mishra S, Srinivasan S, Ma C, Zhang N. CD8 + Regulatory T Cell - A Mystery to Be Revealed. Front Immunol 2021; 12:708874. [PMID: 34484208 PMCID: PMC8416339 DOI: 10.3389/fimmu.2021.708874] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cells (Treg) are essential to maintain immune homeostasis and prevent autoimmune disorders. While the function and molecular regulation of Foxp3+CD4+ Tregs are well established, much of CD8+ Treg biology remains to be revealed. Here, we will review the heterogenous subsets of CD8+ T cells have been named "CD8+ Treg" and mainly focus on CD122hiLy49+CD8+ Tregs present in naïve mice. CD122hiLy49+CD8+ Tregs, which depends on transcription factor Helios and homeostatic cytokine IL-15, have been established as a non-redundant regulator of germinal center (GC) reaction. Recently, we have demonstrated that TGF-β (Transforming growth factor-β) and transcription factor Eomes (Eomesodermin) are essential for the function and homeostasis of CD8+ Tregs. In addition, we will discuss several open questions regarding the differentiation, function and true identity of CD8+ Tregs as well as a brief comparison between two regulatory T cell subsets critical to control GC reaction, namely CD4+ TFR (follicular regulatory T cells) and CD8+ Tregs.
Collapse
Affiliation(s)
| | | | | | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, The Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|