51
|
Kaklamanos A, Belogiannis K, Skendros P, Gorgoulis VG, Vlachoyiannopoulos PG, Tzioufas AG. COVID-19 Immunobiology: Lessons Learned, New Questions Arise. Front Immunol 2021; 12:719023. [PMID: 34512643 PMCID: PMC8427766 DOI: 10.3389/fimmu.2021.719023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
There is strong evidence that COVID-19 pathophysiology is mainly driven by a spatiotemporal immune deregulation. Both its phenotypic heterogeneity, spanning from asymptomatic to severe disease/death, and its associated mortality, are dictated by and linked to maladaptive innate and adaptive immune responses against SARS-CoV-2, the etiologic factor of the disease. Deregulated interferon and cytokine responses, with the contribution of immune and cellular stress-response mediators (like cellular senescence or uncontrolled inflammatory cell death), result in innate and adaptive immune system malfunction, endothelial activation and inflammation (endothelitis), as well as immunothrombosis (with enhanced platelet activation, NET production/release and complement hyper-activation). All these factors play key roles in the development of severe COVID-19. Interestingly, another consequence of this immune deregulation, is the production of autoantibodies and the subsequent development of autoimmune phenomena observed in some COVID-19 patients with severe disease. These new aspects of the disease that are now emerging (like autoimmunity and cellular senescence), could offer us new opportunities in the field of disease prevention and treatment. Simultaneously, lessons already learned from the immunobiology of COVID-19 could offer new insights, not only for this disease, but also for a variety of chronic inflammatory responses observed in autoimmune and (auto)inflammatory diseases.
Collapse
Affiliation(s)
- Aimilios Kaklamanos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Skendros
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiotis G. Vlachoyiannopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| |
Collapse
|
52
|
He YD, Wohlford EM, Uhle F, Buturovic L, Liesenfeld O, Sweeney TE. The Optimization and Biological Significance of a 29-Host-Immune-mRNA Panel for the Diagnosis of Acute Infections and Sepsis. J Pers Med 2021; 11:735. [PMID: 34442377 PMCID: PMC8402342 DOI: 10.3390/jpm11080735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
In response to the unmet need for timely accurate diagnosis and prognosis of acute infections and sepsis, host-immune-response-based tests are being developed to help clinicians make more informed decisions including prescribing antimicrobials, ordering additional diagnostics, and assigning level of care. One such test (InSep™, Inflammatix, Inc.) uses a 29-mRNA panel to determine the likelihood of bacterial infection, the separate likelihood of viral infection, and the risk of physiologic decompensation (severity of illness). The test, being implemented in a rapid point-of-care platform with a turnaround time of 30 min, enables accurate and rapid diagnostic use at the point of impact. In this report, we provide details on how the 29-biomarker signature was chosen and optimized, together with its molecular, immunological, and medical significance to better understand the pathophysiological relevance of altered gene expression in disease. We synthesize key results obtained from gene-level functional annotations, geneset-level enrichment analysis, pathway-level analysis, and gene-network-level upstream regulator analysis. Emerging findings are summarized as hallmarks on immune cell interaction, inflammatory mediators, cellular metabolism and homeostasis, immune receptors, intracellular signaling and antiviral response; and converging themes on neutrophil degranulation and activation involved in immune response, interferon, and other signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy E. Sweeney
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA 94010, USA; (Y.D.H.); (E.M.W.); (F.U.); (L.B.); (O.L.)
| |
Collapse
|
53
|
Lu F, Wang R, Xia L, Nie T, Gao F, Yang S, Huang L, Shao K, Liu J, Yang Q. Regulation of IFN-Is by MEF2D Promotes Inflammatory Homeostasis in Microglia. J Inflamm Res 2021; 14:2851-2863. [PMID: 34234510 PMCID: PMC8254549 DOI: 10.2147/jir.s307624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background Microglia play an essential role in the central nervous system immune response. The transcription factor myocyte enhancer factor-2 D (MEF2D) is known to participate in stress regulation in various cell types and is easily activated in microglia. MEF2D has been shown to transcriptionally regulate several cytokine genes in immune cells and directly regulates the inflammatory response, suggesting that MEF2D may act as a key stimulus response regulator of microglia and is involved in the regulation of brain microhomeostasis. To uncover the molecular mechanism of MEF2D in the inflammatory system, in the present study, we investigated the global effect of MEF2D in activated microglia and explored its potential regulatory network. Methods Experiments with a recombinant lentiviral vector containing either shRNA or overexpressing MEF2D were performed in the murine microglial BV2 cell line. Transcriptome sequencing and global gene expression patterns were analysed in lipopolysaccharide-stimulated shMEF2D BV2 cells. Pro- and anti-inflammatory factors were assessed by Western blot, qPCR or ELISA, and microglial activity was assessed by phagocytosis and morphologic analysis. The direct binding of MEF2D to the promoter region of interferon regulatory factor 7 (IRF7) was tested by ChIP-qPCR. The interferon-stimulated genes (ISGs) were tested by qPCR. Results MEF2D actively participated in the inflammatory response of BV2 microglial cells. Stably expressed RNAi-induced silencing of MEF2D disrupted the microglial immune balance in two ways: (1) the expression of proinflammatory factors, such as NLRP3, IL-1β, and iNOS was promoted; and (2) the type-I interferon signalling pathway was markedly inhibited by directly modulating IRF7 transcription. In contrast, overexpression of MEF2D significantly reduced the expression of NLRP3 and iNOS under LPS stimulation and alleviated the level of immune stress in microglia. Conclusion These findings demonstrate that MEF2D plays an important role in regulating inflammatory homeostasis partly through transcriptional regulation of the type-I interferon signalling pathway.
Collapse
Affiliation(s)
- Fangfang Lu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.,Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Li Xia
- Department of Neurosurgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Fei Gao
- Department of Neurosurgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Shaosong Yang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Lu Huang
- Department of Neurosurgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Kaifeng Shao
- Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| |
Collapse
|
54
|
A Study of Within-Host Dynamics of Dengue Infection incorporating both Humoral and Cellular Response with a Time Delay for Production of Antibodies. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2021. [DOI: 10.1515/cmb-2020-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
a. Background: Dengue is an acute illness caused by a virus. The complex behaviour of the virus in human body can be captured using mathematical models. These models helps us to enhance our understanding on the dynamics of the virus.
b. Objectives: We propose to study the dynamics of within-host epidemic model of dengue infection which incorporates both innate immune response and adaptive immune response (Cellular and Humoral). The proposed model also incorporates the time delay for production of antibodies from B cells. We propose to understand the dynamics of the this model using the dynamical systems approach by performing the stability and sensitivity analysis.
c. Methods used: The basic reproduction number (R0) has been computed using the next generation matrix method. The standard stability analysis and sensitivity analysis were performed on the proposed model.
d. Results: The critical level of the antibody recruitment rate(q) was found to be responsible for the existence and stability of various steady states. The stability of endemic state was found to be dependent on time delay(τ). The sensitivity analysis identified the production rate of antibodies (q) to be highly sensitive parameter.
e. Conclusions: The existence and stability conditions for the equilibrium points have been obtained. The threshold value of time delay (τ0) has been computed which is critical for change in stability of the endemic state. Sensitivity analysis was performed to identify the crucial and sensitive parameters of the model.
Collapse
|
55
|
Zhai H, Shi J, Sun R, Tan Z, Swaiba UE, Li W, Zhang L, Zhang L, Guo Y, Huang J. The superposition anti-viral activity of porcine tri-subtype interferon expressed by Saccharomyces cerevisiae. Vet Microbiol 2021; 259:109150. [PMID: 34144506 DOI: 10.1016/j.vetmic.2021.109150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
Interferon (IFN)-mediated antiviral responses are central to host defense against viral infection. Porcine viral infection has emerged as a serious hazard for the pig industry. The construction of an engineered Saccharomyces cerevisiae strain that efficiently produces porcine IFN has demonstrated several advantages. It can be easily fed to pigs, which helps in reducing antibiotic residues in pork and improve meat quality. In this study, the stable expression of several porcine IFN molecules (pIFN-α1, pIFN-β, pIFN-λ1, pIFN-λ1-β, pIFN-λ1-β-α1) were determined using an engineered S. cerevisiae system. With the YeastFab assembly method, the complete transcriptional units containing promoter (GPD), secretory peptide (α-mating factor), target gene (IFN) and terminator (ADH1) were successfully constructed using the characteristics of type II restriction endonuclease, and then integrated into the chromosomes Ⅳ and XVI of ST1814 yeast host strain, respectively. The expression kinetics of recombinant pIFNs were further analyzed. Synergism in the expression level of IFN receptor, antiviral protein, and viral loading was observed in viral-cell infection model treated with different porcine IFN subtypes. The porcine reproductive and respiratory syndrome viral load and antibody titer in serum decreased significantly after oral administration of IFN expression yeast fermentation broth. These findings indicate the potential efficacy of multi-valent pIFNs expressing S. cerevisiae as a potent feed material to prevent viral infections of pigs.
Collapse
Affiliation(s)
- Hui Zhai
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jingxuan Shi
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zheng Tan
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Umm E Swaiba
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Wanqing Li
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
56
|
Jangra S, Landers JJ, Rathnasinghe R, O'Konek JJ, Janczak KW, Cascalho M, Kennedy AA, Tai AW, Baker JR, Schotsaert M, Wong PT. A Combination Adjuvant for the Induction of Potent Antiviral Immune Responses for a Recombinant SARS-CoV-2 Protein Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.18.431484. [PMID: 33619480 PMCID: PMC7899444 DOI: 10.1101/2021.02.18.431484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Several SARS-CoV-2 vaccines have received EUAs, but many issues remain unresolved, including duration of conferred immunity and breadth of cross-protection. Adjuvants that enhance and shape adaptive immune responses that confer broad protection against SARS-CoV-2 variants will be pivotal for long-term protection. We developed an intranasal, rationally designed adjuvant integrating a nanoemulsion (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI). The combination adjuvant with spike protein antigen elicited robust responses to SARS-CoV-2 in mice, with markedly enhanced T H 1-biased cellular responses and high virus-neutralizing antibody titers towards both homologous SARS-CoV-2 and a variant harboring the N501Y mutation shared by B1.1.7, B.1.351 and P.1 variants. Furthermore, passive transfer of vaccination-induced antibodies protected naive mice against heterologous viral challenge. NE/IVT DI enables mucosal vaccination, and has the potential to improve the immune profile of a variety of SARS-CoV-2 vaccine candidates to provide effective cross-protection against future drift variants.
Collapse
|
57
|
Zhuang Z, Lai X, Sun J, Chen Z, Zhang Z, Dai J, Liu D, Li Y, Li F, Wang Y, Zhu A, Wang J, Yang W, Huang J, Li X, Hu L, Wen L, Zhuo J, Zhang Y, Chen D, Li S, Huang S, Shi Y, Zheng K, Zhong N, Zhao J, Zhou D, Zhao J. Mapping and role of T cell response in SARS-CoV-2-infected mice. J Exp Med 2021; 218:e20202187. [PMID: 33464307 PMCID: PMC7814348 DOI: 10.1084/jem.20202187] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/06/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Virus-specific T cells play essential roles in protection against multiple virus infections, including SARS-CoV and MERS-CoV. While SARS-CoV-2-specific T cells have been identified in COVID-19 patients, their role in the protection of SARS-CoV-2-infected mice is not established. Here, using mice sensitized for infection with SARS-CoV-2 by transduction with an adenovirus expressing the human receptor (Ad5-hACE2), we identified SARS-CoV-2-specific T cell epitopes recognized by CD4+ and CD8+ T cells in BALB/c and C57BL/6 mice. Virus-specific T cells were polyfunctional and were able to lyse target cells in vivo. Further, type I interferon pathway was proved to be critical for generating optimal antiviral T cell responses after SARS-CoV-2 infection. T cell vaccination alone partially protected SARS-CoV-2-infected mice from severe disease. In addition, the results demonstrated cross-reactive T cell responses between SARS-CoV and SARS-CoV-2, but not MERS-CoV, in mice. Understanding the role of the T cell response will guide immunopathogenesis studies of COVID-19 and vaccine design and validation.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junxiang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jicheng Huang
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Xiaobo Li
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liyan Wen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dingbin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suxiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuxiang Huang
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Kui Zheng
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
58
|
Shinchi H, Yuki M, Yamauchi T, Niimura M, Wakao M, Cottam HB, Hayashi T, Carson DA, Moroishi T, Suda Y. Glyco-Nanoadjuvants: Sugar Structures on Carriers of a Small Molecule TLR7 Ligand Affect Their Immunostimulatory Activities. ACS APPLIED BIO MATERIALS 2021; 4:2732-2741. [PMID: 35014312 DOI: 10.1021/acsabm.0c01639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that activate innate immunity, and their ligands are promising adjuvants for vaccines and immunotherapies. Small molecule TLR7 ligands are ideal vaccine adjuvants as they induce not only proinflammatory cytokines but also type I interferons. However, their application has only been approved for local administration due to severe systemic immune-related adverse events. In a previous study, we prepared the gold nanoparticles coimmobilized with synthetic small molecule TLR7 ligand, 1V209, and α-mannose (1V209-αMan-GNPs). 1V209-αMan-GNPs were selectively delivered via a cell surface sugar-binding protein, mannose receptor, which enabled selective delivery of TLR7 ligands to immune cells. Besides the mannose receptor, immune cells express various sugar-binding proteins such as macrophage galactose binding lectins and sialic acid-binding immunoglobulin-type lectins and recognize distinct sugar structures. Hence, in the present study, we investigated whether sugar structures on GNPs affect the efficiency and selectivity of intracellular delivery and subsequent immunostimulatory potencies. Five neutral sugars and two sialosides were selected and each sugar was coimmobilized with 1V209 onto GNPs (1V209-SGNPs) and their innate immunostimulatory potencies were compared to that of 1V209-αMan-GNPs. The in vitro study using mouse bone marrow derived dendritic cells (BMDCs) demonstrated that α-glucose, α-N-acetylglucosamine, or α-fucose immobilized 1V209-SGNPs increased interleukin-6 and type I interferon release similar to that of 1V209-αMan-GNPs, whereas galacto-type sugar immobilized 1V209-SGNPs predominantly enhanced type I interferon release. In contrast, sialoside immobilized 1V209-SGNPs did not enhance the potency of 1V209. In the in vivo immunization study using ovalbumin as a model antigen, neutral sugar immobilized 1V209-SGNPs induced comparable T helper-1 immune response to that of 1V209-αMan-GNPs and by 10-fold higher than that of sialoside immobilized 1V209-SGNPs. These results indicate that the sugar structures on 1V209-SGNPs affect their immunostimulatory activities, and functionalization of the carrier particles is important to shape immune responses.
Collapse
Affiliation(s)
- Hiroyuki Shinchi
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Masaharu Yuki
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Takayoshi Yamauchi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mayumi Niimura
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masahiro Wakao
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Howard B Cottam
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0809, United States
| | - Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0809, United States
| | - Dennis A Carson
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0809, United States
| | - Toshiro Moroishi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Yasuo Suda
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.,SUDx-Biotec Corporation, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
59
|
Gao ZJ, Li WP, Mao XT, Huang T, Wang HL, Li YN, Liu BQ, Zhong JY, Renjie C, Jin J, Li YY. Single-nucleotide methylation specifically represses type I interferon in antiviral innate immunity. J Exp Med 2021; 218:e20201798. [PMID: 33616624 PMCID: PMC7903198 DOI: 10.1084/jem.20201798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Frequent outbreaks of viruses have caused a serious threat to public health. Previous evidence has revealed that DNA methylation is correlated with viral infections, but its role in innate immunity remains poorly investigated. Additionally, DNA methylation inhibitors promote IFN-I by upregulating endogenous retrovirus; however, studies of intrinsically demethylated tumors do not support this conclusion. This study found that Uhrf1 deficiency in myeloid cells significantly upregulated Ifnb expression, increasing resistance to viral infection. We performed whole-genome bisulfite sequencing and found that a single-nucleotide methylation site in the Ifnb promoter region disrupted IRF3 recruitment. We used site-specific mutant knock-in mice and a region-specific demethylation tool to confirm that this methylated site plays a critical role in regulating Ifnb expression and antiviral responses. These findings provide essential insight into DNA methylation in the regulation of the innate antiviral immune response.
Collapse
Affiliation(s)
- Zheng-jun Gao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Wen-ping Li
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-tao Mao
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Huang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao-li Wang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-ning Li
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bao-qin Liu
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiang-yan Zhong
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chai Renjie
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Jin Jin
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
60
|
Xu P, Gao J, Shan C, Dunn TJ, Xie X, Xia H, Zou J, Thames BH, Sajja A, Yu Y, Freiberg AN, Vasilakis N, Shi PY, Weaver SC, Wu P. Inhibition of innate immune response ameliorates Zika virus-induced neurogenesis deficit in human neural stem cells. PLoS Negl Trop Dis 2021; 15:e0009183. [PMID: 33657175 PMCID: PMC7959377 DOI: 10.1371/journal.pntd.0009183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Global Zika virus (ZIKV) outbreaks and their strong link to microcephaly have raised major public health concerns. ZIKV has been reported to affect the innate immune responses in neural stem/progenitor cells (NS/PCs). However, it is unclear how these immune factors affect neurogenesis. In this study, we used Asian-American lineage ZIKV strain PRVABC59 to infect primary human NS/PCs originally derived from fetal brains. We found that ZIKV overactivated key molecules in the innate immune pathways to impair neurogenesis in a cell stage-dependent manner. Inhibiting the overactivated innate immune responses ameliorated ZIKV-induced neurogenesis reduction. This study thus suggests that orchestrating the host innate immune responses in NS/PCs after ZIKV infection could be promising therapeutic approach to attenuate ZIKV-associated neuropathology.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tiffany J. Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Beatriz H. Thames
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Amulya Sajja
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yongjia Yu
- Department of Radiology and Oncology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
61
|
Yu J, Dai Y, Fu Y, Wang K, Yang Y, Li M, Xu W, Wei L. Cathelicidin antimicrobial peptides suppress EV71 infection via regulating antiviral response and inhibiting viral binding. Antiviral Res 2021; 187:105021. [PMID: 33508330 DOI: 10.1016/j.antiviral.2021.105021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022]
Abstract
Cathelicidin antimicrobial peptides (human LL-37 and mouse CRAMP) are mainly virucidal to enveloped virus. However, the effects and relative mechanisms of LL-37 and CRAMP on non-enveloped virus are elusive. We herein found that CRAMP expression was significantly up-regulated post non-enveloped Enterovirus 71 (EV71) infection in different tissues of newborn ICR mice, while EV71 replication gradually declined post CRAMP up-regulation, indicating the antiviral potential of cathelicidin against EV71. In vitro antiviral assay showed that LL-37 and CRAMP markedly reduced cytopathic effects (CPE), intracellular viral RNA copy numbers, viral VP1 protein levels, and extracellular virons in U251 cells post EV71 infection, indicating that LL-37 and CRAMP significantly inhibited EV71 replication. Mechanism of action assay showed that LL-37 and CRAMP were not virucidal to EV71, but markedly regulated antiviral immune response in U251 cells. Co-incubation of LL-37 or CRAMP with U251 cells markedly increased the basal interferon-β (IFN-β) expression and interferon regulatory transcription factor 3 (IRF3) phosphorylation, modestly enhanced IFN-β production and IRF3 phosphorylation upon EV71 infection, and significantly reduced interleukin-6 (IL-6) production and p38 mitogen-activated protein kinase (MAPK) activation post EV71 infection. Additionally, LL-37 and CRAMP directly inhibited viral binding to U251 cells. Collectively, LL-37 and CRAMP markedly inhibited EV71 replication via regulating antiviral response and inhibiting viral binding, providing potent candidates for peptide drug development against EV71 infection.
Collapse
Affiliation(s)
- Jie Yu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yue Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Kezhen Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
62
|
Inagaki T, Sato Y, Ito J, Takaki M, Okuno Y, Yaguchi M, Masud HMAA, Watanabe T, Sato K, Iwami S, Murata T, Kimura H. Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency During B-Cell Infection. Front Microbiol 2021; 11:575255. [PMID: 33613459 PMCID: PMC7888302 DOI: 10.3389/fmicb.2020.575255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Viral infection induces dynamic changes in transcriptional profiles. Virus-induced and antiviral responses are intertwined during the infection. Epstein-Barr virus (EBV) is a human gammaherpesvirus that provides a model of herpesvirus latency. To measure the transcriptome changes during the establishment of EBV latency, we infected EBV-negative Akata cells with EBV-EGFP and performed transcriptome sequencing (RNA-seq) at 0, 2, 4, 7, 10, and 14 days after infection. We found transient downregulation of mitotic division-related genes, reflecting reprogramming of cell growth by EBV, and a burst of viral lytic gene expression in the early phase of infection. Experimental and mathematical investigations demonstrate that infectious virions were not produced in the pre-latent phase, suggesting the presence of an abortive lytic infection. Fate mapping using recombinant EBV provided direct evidence that the abortive lytic infection in the pre-latent phase converges to latent infection during EBV infection of B-cells, shedding light on novel roles of viral lytic gene(s) in establishing latency. Furthermore, we find that the BZLF1 protein, which is a key regulator of reactivation, was dispensable for abortive lytic infection in the pre-latent phase, suggesting the divergent regulation of viral gene expressions from a productive lytic infection.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mitsuaki Takaki
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Yaguchi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H. M. Abdullah Al Masud
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shingo Iwami
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
- MIRAI, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
63
|
Mahapatro M, Erkert L, Becker C. Cytokine-Mediated Crosstalk between Immune Cells and Epithelial Cells in the Gut. Cells 2021; 10:cells10010111. [PMID: 33435303 PMCID: PMC7827439 DOI: 10.3390/cells10010111] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small proteins that are secreted by a vast majority of cell types in the gut. They not only establish cell-to-cell interactions and facilitate cellular signaling, but also regulate both innate and adaptive immune responses, thereby playing a central role in genetic, inflammatory, and infectious diseases of the gut. Both, immune cells and gut epithelial cells, play important roles in intestinal disease development. The epithelium is located in between the mucosal immune system and the gut microbiome. It not only establishes an efficient barrier against gut microbes, but it also signals information from the gut lumen and its composition to the immune cell compartment. Communication across the epithelial cell layer also occurs in the other direction. Intestinal epithelial cells respond to immune cell cytokines and their response influences and shapes the microbial community within the gut lumen. Thus, the epithelium should be seen as a translator or a moderator between the microbiota and the mucosal immune system. Proper communication across the epithelium seems to be a key to gut homeostasis. Indeed, current genome-wide association studies for intestinal disorders have identified several disease susceptibility loci, which map cytokine signatures and their related signaling genes. A thorough understanding of this tightly regulated cytokine signaling network is crucial. The main objective of this review was to shed light on how cytokines can orchestrate epithelial functions such as proliferation, cell death, permeability, microbe interaction, and barrier maintenance, thereby safeguarding host health. In addition, cytokine-mediated therapy for inflammation and cancer are discussed.
Collapse
|
64
|
Dai W, Rao R, Sher A, Tania N, Musante CJ, Allen R. A Prototype QSP Model of the Immune Response to SARS-CoV-2 for Community Development. CPT Pharmacometrics Syst Pharmacol 2021; 10:18-29. [PMID: 33217169 PMCID: PMC7753647 DOI: 10.1002/psp4.12574] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic requires the rapid development of efficacious treatments for patients with life-threatening coronavirus disease 2019 (COVID-19). Quantitative systems pharmacology (QSP) models are mathematical representations of pathophysiology for simulating and predicting the effects of existing or putative therapies. The application of model-based approaches, including QSP, have accelerated the development of some novel therapeutics. Nevertheless, the development of disease-scale mechanistic models can be a slow process, often taking years to be validated and considered mature. Furthermore, emerging data may make any QSP model quickly obsolete. We present a prototype QSP model to facilitate further development by the scientific community. The model accounts for the interactions between viral dynamics, the major host immune response mediators and tissue damage and regeneration. The immune response is determined by viral activation of innate and adaptive immune processes that regulate viral clearance and cell damage. The prototype model captures two physiologically relevant outcomes following infection: a "healthy" immune response that appropriately defends against the virus, and an uncontrolled alveolar inflammatory response that is characteristic of acute respiratory distress syndrome. We aim to significantly shorten the typical QSP model development and validation timeline by encouraging community use, testing, and refinement of this prototype model. It is our expectation that the model will be further advanced in an open science approach (i.e., by multiple contributions toward a validated quantitative platform in an open forum), with the ultimate goal of informing and accelerating the development of safe and effective treatment options for patients.
Collapse
Affiliation(s)
- Wei Dai
- Early Clinical DevelopmentPfizer Worldwide Research, Development and MedicalCambridgeMassachusettsUSA
| | - Rohit Rao
- Early Clinical DevelopmentPfizer Worldwide Research, Development and MedicalCambridgeMassachusettsUSA
| | - Anna Sher
- Early Clinical DevelopmentPfizer Worldwide Research, Development and MedicalCambridgeMassachusettsUSA
| | - Nessy Tania
- Early Clinical DevelopmentPfizer Worldwide Research, Development and MedicalCambridgeMassachusettsUSA
| | - Cynthia J. Musante
- Early Clinical DevelopmentPfizer Worldwide Research, Development and MedicalCambridgeMassachusettsUSA
| | - Richard Allen
- Early Clinical DevelopmentPfizer Worldwide Research, Development and MedicalCambridgeMassachusettsUSA
| |
Collapse
|
65
|
Ekanayaka P, Lee SY, Herath TUB, Kim JH, Kim TH, Lee H, Chathuranga K, Chathuranga WAG, Park JH, Lee JS. Foot-and-mouth disease virus VP1 target the MAVS to inhibit type-I interferon signaling and VP1 E83K mutation results in virus attenuation. PLoS Pathog 2020; 16:e1009057. [PMID: 33232374 PMCID: PMC7723281 DOI: 10.1371/journal.ppat.1009057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/08/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
VP1, a pivotal capsid protein encoded by the foot-and-mouth disease virus (FMDV), plays an important role in receptor-mediated attachment and humoral immune responses. Previous studies show that amino acid changes in the VP1 protein of cell culture-adapted strains of FMDV alter the properties of the virus. In addition, FMDV VP1 modulates host IFN signal transduction. Here, we examined the ability of cell culture-adapted FMDV VP1(83K) and wild-type FMDV VP1(83E) to evade host immunity by blocking mitochondrial antiviral signaling protein (MAVS)/TNF Receptor Associated Factor 3 (TRAF3) mediated cellular innate responses. Wild-type FMDV VP1(83E) interacted specifically with C-terminal TRAF3-binding site within MAVS and this interaction inhibited binding of TRAF3 to MAVS, thereby suppressing interferon-mediated responses. This was not observed for cell culture-adapted FMDV VP1(83K). Finally, chimeric FMDV harboring VP1(83K) showed very low pathogenicity in pigs. Collectively, these data highlight a critical role of VP1 with respect to suppression of type-I IFN pathway and attenuation of FMDV by the E83K mutation in VP1. Foot-and-Mouth disease (FMD), a highly contagious viral disease of cloven-hoofed animals, causes huge economic losses. To generate a FMD vaccine, cell culture-adapted strains of FMDV that show improved growth properties and allow repeated passage are needed. Generally, adaptation of field-isolated FMDV is accompanied by changes in viral properties, including amino acid mutations. A VP1 E83K mutation in cell culture-adapted FMDV was identified previously; here, we examined the impact of VP1 E83K on virus pathogenicity and type-I IFN pathway. Cell culture-adapted FMDV O1 Manisa, and highly virulent strain of O/Andong/SKR/2010, acquired the E83K mutation in the VP1 protein, which attenuated the virus via disposing VP1 mediate negative regulation ability of host cellular IFN responses. The data suggest a rational approach to viral propagation in cell culture and virus attenuation, which could be utilized for future development of FMDV vaccines.
Collapse
Affiliation(s)
- Pathum Ekanayaka
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seo-Yong Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Republic of Korea.,FVC, Gyeongsangbuk-do, Republic of Korea
| | - Thilina U B Herath
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyuncheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
66
|
Auderset F, Belnoue E, Mastelic-Gavillet B, Lambert PH, Siegrist CA. A TLR7/8 Agonist-Including DOEPC-Based Cationic Liposome Formulation Mediates Its Adjuvanticity Through the Sustained Recruitment of Highly Activated Monocytes in a Type I IFN-Independent but NF-κB-Dependent Manner. Front Immunol 2020; 11:580974. [PMID: 33262759 PMCID: PMC7686571 DOI: 10.3389/fimmu.2020.580974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Novel adjuvants, such as Toll-like receptors (TLRs) agonists, are needed for the development of new formulations able to circumvent limitations of current vaccines. Among TLRs, TLR7/8 agonists represent promising candidates, as they are well described to enhance antigen-specific antibody responses and skew immunity toward T helper (TH) 1 responses. We find here that the incorporation of the synthetic TLR7/8 ligand 3M-052 in a cationic DOEPC-based liposome formulation shifts immunity toward TH1 responses and elicits strong and long-lasting germinal center and follicular T helper cell responses in adult mice. This reflects the prolonged recruitment of innate cells toward the site of immunization and homing of activated antigen-loaded monocytes and monocyte-derived dendritic cells toward draining lymph nodes. We further show that this adjuvanticity is independent of type I IFN but NF-κB-dependent. Overall, our data identify TLR7/8 agonists incorporated in liposomes as promising and effective adjuvants to enhance TH1 and germinal center responses.
Collapse
Affiliation(s)
- Floriane Auderset
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Elodie Belnoue
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Beatris Mastelic-Gavillet
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Paul-Henri Lambert
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
67
|
Zhao P, Saltiel AR. Interaction of Adipocyte Metabolic and Immune Functions Through TBK1. Front Immunol 2020; 11:592949. [PMID: 33193441 PMCID: PMC7606291 DOI: 10.3389/fimmu.2020.592949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Adipocytes and adipose tissue play critical roles in the regulation of metabolic homeostasis. In obesity and obesity-associated metabolic diseases, immune cells infiltrate into adipose tissues. Interaction between adipocytes and immune cells re-shapes both metabolic and immune properties of adipose tissue and dramatically changes metabolic set points. Both the expression and activity of the non-canonical IKK family member TBK1 are induced in adipose tissues during diet-induced obesity. TBK1 plays important roles in the regulation of both metabolism and inflammation in adipose tissue and thus affects glucose and energy metabolism. Here we review the regulation and functions of TBK1 and the molecular mechanisms by which TBK1 regulates both metabolism and inflammation in adipose tissue. Finally, we discuss the potential of a TBK1/IKKε inhibitor as a new therapy for metabolic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Alan R Saltiel
- Department of Medicine, University of California San Diego, La Jolla, CA, United States.,Department of Pharmacology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
68
|
Li Y, Ren P, Dawson A, Vasquez HG, Ageedi W, Zhang C, Luo W, Chen R, Li Y, Kim S, Lu HS, Cassis LA, Coselli JS, Daugherty A, Shen YH, LeMaire SA. Single-Cell Transcriptome Analysis Reveals Dynamic Cell Populations and Differential Gene Expression Patterns in Control and Aneurysmal Human Aortic Tissue. Circulation 2020; 142:1374-1388. [PMID: 33017217 DOI: 10.1161/circulationaha.120.046528] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ascending thoracic aortic aneurysm (ATAA) is caused by the progressive weakening and dilatation of the aortic wall and can lead to aortic dissection, rupture, and other life-threatening complications. To improve our understanding of ATAA pathogenesis, we aimed to comprehensively characterize the cellular composition of the ascending aortic wall and to identify molecular alterations in each cell population of human ATAA tissues. METHODS We performed single-cell RNA sequencing analysis of ascending aortic tissues from 11 study participants, including 8 patients with ATAA (4 women and 4 men) and 3 control subjects (2 women and 1 man). Cells extracted from aortic tissue were analyzed and categorized with single-cell RNA sequencing data to perform cluster identification. ATAA-related changes were then examined by comparing the proportions of each cell type and the gene expression profiles between ATAA and control tissues. We also examined which genes may be critical for ATAA by performing the integrative analysis of our single-cell RNA sequencing data with publicly available data from genome-wide association studies. RESULTS We identified 11 major cell types in human ascending aortic tissue; the high-resolution reclustering of these cells further divided them into 40 subtypes. Multiple subtypes were observed for smooth muscle cells, macrophages, and T lymphocytes, suggesting that these cells have multiple functional populations in the aortic wall. In general, ATAA tissues had fewer nonimmune cells and more immune cells, especially T lymphocytes, than control tissues did. Differential gene expression data suggested the presence of extensive mitochondrial dysfunction in ATAA tissues. In addition, integrative analysis of our single-cell RNA sequencing data with public genome-wide association study data and promoter capture Hi-C data suggested that the erythroblast transformation-specific related gene(ERG) exerts an important role in maintaining normal aortic wall function. CONCLUSIONS Our study provides a comprehensive evaluation of the cellular composition of the ascending aortic wall and reveals how the gene expression landscape is altered in human ATAA tissue. The information from this study makes important contributions to our understanding of ATAA formation and progression.
Collapse
Affiliation(s)
- Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Ashley Dawson
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Hernan G Vasquez
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Waleed Ageedi
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Rui Chen
- Human Genome Sequencing Center (R.C., Yumei Li, S.K.), Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center (R.C., Yumei Li, S.K.), Baylor College of Medicine, Houston, TX
| | - Sangbae Kim
- Human Genome Sequencing Center (R.C., Yumei Li, S.K.), Baylor College of Medicine, Houston, TX
| | - Hong S Lu
- Saha Cardiovascular Research Center (H.S.L., A. Daugherty), University of Kentucky, Lexington.,Department of Physiology (H.S.L., A. Daugherty), University of Kentucky, Lexington
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Alan Daugherty
- Saha Cardiovascular Research Center (H.S.L., A. Daugherty), University of Kentucky, Lexington.,Department of Physiology (H.S.L., A. Daugherty), University of Kentucky, Lexington
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (J.S.C., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (S.A.L.), Baylor College of Medicine, Houston, TX.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Yanming Li, P.R., A. Dawson, H.G.V., W.A., C.Z., W.L., J.S.C., Y.H.S., S.A.L.)
| |
Collapse
|
69
|
Mudla A, Jiang Y, Arimoto KI, Xu B, Rajesh A, Ryan AP, Wang W, Daugherty MD, Zhang DE, Hao N. Cell-cycle-gated feedback control mediates desensitization to interferon stimulation. eLife 2020; 9:58825. [PMID: 32945770 PMCID: PMC7500952 DOI: 10.7554/elife.58825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cells use molecular circuits to interpret and respond to extracellular cues, such as hormones and cytokines, which are often released in a temporally varying fashion. In this study, we combine microfluidics, time-lapse microscopy, and computational modeling to investigate how the type I interferon (IFN)-responsive regulatory network operates in single human cells to process repetitive IFN stimulation. We found that IFN-α pretreatments lead to opposite effects, priming versus desensitization, depending on input durations. These effects are governed by a regulatory network composed of a fast-acting positive feedback loop and a delayed negative feedback loop, mediated by upregulation of ubiquitin-specific peptidase 18 (USP18). We further revealed that USP18 upregulation can only be initiated at the G1/early S phases of cell cycle upon the treatment onset, resulting in heterogeneous and delayed induction kinetics in single cells. This cell cycle gating provides a temporal compartmentalization of feedback loops, enabling duration-dependent desensitization to repetitive stimulations.
Collapse
Affiliation(s)
- Anusorn Mudla
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Yanfei Jiang
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Kei-Ichiro Arimoto
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Bingxian Xu
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Adarsh Rajesh
- Department of Bioengineering, University of California, San Diego, La Jolla, United States
| | - Andy P Ryan
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, United States
| | - Matthew D Daugherty
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Dong-Er Zhang
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,Department of Pathology, Moores UCSD Cancer Center, University of California, San Diego, La Jolla, United States
| | - Nan Hao
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
70
|
Wiley CA. Emergent Viral Infections of the CNS. J Neuropathol Exp Neurol 2020; 79:823-842. [PMID: 32647884 DOI: 10.1093/jnen/nlaa054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Biological evolution of the microbiome continually drives the emergence of human viral pathogens, a subset of which attack the nervous system. The sheer number of pathogens that have appeared, along with their abundance in the environment, demand our attention. For the most part, our innate and adaptive immune systems have successfully protected us from infection; however, in the past 5 decades, through pathogen mutation and ecosystem disruption, a dozen viruses emerged to cause significant neurologic disease. Most of these pathogens have come from sylvatic reservoirs having made the energetically difficult, and fortuitously rare, jump into humans. But the human microbiome is also replete with agents already adapted to the host that need only minor mutations to create neurotropic/toxic agents. While each host/virus symbiosis is unique, this review examines virologic and immunologic principles that govern the pathogenesis of different viral CNS infections that were described in the past 50 years (Influenza, West Nile Virus, Zika, Rift Valley Fever Virus, Hendra/Nipah, Enterovirus-A71/-D68, Human parechovirus, HIV, and SARS-CoV). Knowledge of these pathogens provides us the opportunity to respond and mitigate infection while at the same time prepare for inevitable arrival of unknown agents.
Collapse
Affiliation(s)
- Clayton A Wiley
- From the Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
71
|
Wiatr M, Figueiredo R, Stump-Guthier C, Winter P, Ishikawa H, Adams O, Schwerk C, Schroten H, Rudolph H, Tenenbaum T. Polar Infection of Echovirus-30 Causes Differential Barrier Affection and Gene Regulation at the Blood-Cerebrospinal Fluid Barrier. Int J Mol Sci 2020; 21:E6268. [PMID: 32872518 PMCID: PMC7503638 DOI: 10.3390/ijms21176268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Echovirus-30 (E-30) is responsible for the extensive global outbreaks of meningitis in children. To gain access to the central nervous system, E-30 first has to cross the epithelial blood-cerebrospinal fluid barrier. Several meningitis causing bacteria preferentially infect human choroid plexus papilloma (HIBCPP) cells in a polar fashion from the basolateral cell side. Here, we investigated the polar infection of HIBCPP cells with E-30. Both apical and basolateral infections caused a significant decrease in the transepithelial electrical resistance of HIBCPP cells. However, to reach the same impact on the barrier properties, the multiplicity of infection of the apical side had to be higher than that of the basolateral infection. Furthermore, the number of infected cells at respective time-points after basolateral infection was significantly higher compared to apical infection. Cytotoxic effects of E-30 on HIBCPP cells during basolateral infection were observed following prolonged infection and appeared more drastically compared to the apical infection. Gene expression profiles determined by massive analysis of cDNA ends revealed distinct regulation of specific genes depending on the side of HIBCPP cells' infection. Altogether, our data highlights the polar effects of E-30 infection in a human in vitro model of the blood-cerebrospinal fluid barrier leading to central nervous system inflammation.
Collapse
Affiliation(s)
- Marie Wiatr
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Ricardo Figueiredo
- GenXpro GmbH, 60438 Frankfurt am Main, Germany; (R.F.); (P.W.)
- Johann Wolfgang Goethe University Frankfurt, 60438 Frankfurt Am Main, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Peter Winter
- GenXpro GmbH, 60438 Frankfurt am Main, Germany; (R.F.); (P.W.)
| | - Hiroshi Ishikawa
- Department of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-0005, Japan;
| | - Ortwin Adams
- Institute for Virology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Christian Schwerk
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Henriette Rudolph
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| |
Collapse
|
72
|
Luo W, Li YX, Jiang LJ, Chen Q, Wang T, Ye DW. Targeting JAK-STAT Signaling to Control Cytokine Release Syndrome in COVID-19. Trends Pharmacol Sci 2020; 41:531-543. [PMID: 32580895 PMCID: PMC7298494 DOI: 10.1016/j.tips.2020.06.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/08/2023]
Abstract
Recent advances in the pathophysiologic understanding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has indicated that patients with severe coronavirus disease 2019 (COVID-19) might experience cytokine release syndrome (CRS), characterized by increased interleukin (IL)-6, IL-2, IL-7, IL-10, etc. Therefore, the treatment of cytokine storm has been proposed as a critical part of rescuing severe COVID-19. Several of the cytokines involved in COVID-19 employ a distinct intracellular signaling pathway mediated by Janus kinases (JAKs). JAK inhibition, therefore, presents an attractive therapeutic strategy for CRS, which is a common cause of adverse clinical outcomes in COVID-19. Below, we review the possibilities and challenges of targeting the pathway in COVID-19.
Collapse
Affiliation(s)
- Wei Luo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Shanxi Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi-Xin Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Shanxi Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Jun Jiang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Da-Wei Ye
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Shanxi Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
73
|
Su Y, Chen D, Lausted C, Yuan D, Choi J, Dai C, Voillet V, Scherler K, Troisch P, Duvvuri VR, Baloni P, Qin G, Smith B, Kornilov S, Rostomily C, Xu A, Li J, Dong S, Rothchild A, Zhou J, Murray K, Edmark R, Hong S, Jones L, Zhou Y, Roper R, Mackay S, O'Mahony DS, Dale CR, Wallick JA, Algren HA, Michael ZA, Magis A, Wei W, Price ND, Huang S, Subramanian N, Wang K, Hadlock J, Hood L, Aderem A, Bluestone JA, Lanier LL, Greenberg P, Gottardo R, Davis MM, Goldman JD, Heath JR. Multiomic Immunophenotyping of COVID-19 Patients Reveals Early Infection Trajectories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.27.224063. [PMID: 32766585 PMCID: PMC7402042 DOI: 10.1101/2020.07.27.224063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Host immune responses play central roles in controlling SARS-CoV2 infection, yet remain incompletely characterized and understood. Here, we present a comprehensive immune response map spanning 454 proteins and 847 metabolites in plasma integrated with single-cell multi-omic assays of PBMCs in which whole transcriptome, 192 surface proteins, and T and B cell receptor sequence were co-analyzed within the context of clinical measures from 50 COVID19 patient samples. Our study reveals novel cellular subpopulations, such as proliferative exhausted CD8 + and CD4 + T cells, and cytotoxic CD4 + T cells, that may be features of severe COVID-19 infection. We condensed over 1 million immune features into a single immune response axis that independently aligns with many clinical features and is also strongly associated with disease severity. Our study represents an important resource towards understanding the heterogeneous immune responses of COVID-19 patients and may provide key information for informing therapeutic development.
Collapse
|
74
|
Wang Y, Ren K, Li S, Yang C, Chen L. Interferon stimulated gene 15 promotes Zika virus replication through regulating Jak/STAT and ISGylation pathways. Virus Res 2020; 287:198087. [PMID: 32738280 DOI: 10.1016/j.virusres.2020.198087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022]
Abstract
Zika virus is an emergent arbovirus that has caused a public health emergency in South America. Zika virus infection is known to cause microcephaly and other congenital defects and Guillain-Barré syndrome. Unfortunately no direct antiviral treatments are available at present. IFN-stimulated gene 15 (ISG15) is one of the most upregulated host genes following type I interferon treatment or virus infections. ISG15 has been shown to have antiviral effect on a wide variety of viruses although pro-HCV replication was observed. However, the effect of ISG15 on ZIKV infection is not well defined. In this study, we try to clarify the effect of ISG15 on ZIKV replication and to further dissect the underlying mechanism. Our results indicated that ZIKV infection led to the increased expression of ISG15 in A549, 2fTGH, U5A cells. Overexpression of ISG15 stimulated ZIKV replication although ISG15 did not affect the viral entry. Further studies showed that this proviral effect was mediated through Jak/STAT signaling pathway and was ISGylation-dependent. Taken together, our work demonstrates that ISG15 is an important host factor exploited by ZIKV to facilitate its replication and might serve as a potential target for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Yancui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Kai Ren
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Chunhui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China; Toronto General Research Institute, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
75
|
Shuai H, Chu H, Hou Y, Yang D, Wang Y, Hu B, Huang X, Zhang X, Chai Y, Cai JP, Chan JFW, Yuen KY. Differential immune activation profile of SARS-CoV-2 and SARS-CoV infection in human lung and intestinal cells: Implications for treatment with IFN-β and IFN inducer. J Infect 2020; 81:e1-e10. [PMID: 32707230 PMCID: PMC7373021 DOI: 10.1016/j.jinf.2020.07.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2 infection was more robust than SARS-CoV in Calu3. In contrast, SARS-CoV infected intestinal epithelial cells more efficiently. SARS-CoV-2 infection launched an attenuated interferon and pro-inflammatory cytokines/chemokines response in both Calu3 and Caco2 cells, despite robust virus infection and propagation. SARS-CoV-2 was more sensitive to IFNβ and poly(I:C) pretreatment than that of SARS-CoV.
Objectives Respiratory and intestinal tract are two primary target organs of SARS-CoV-2 infection. However, detailed characterization of the host-virus interplay in infected human lung and intestinal epithelial cells is lacking. Methods We utilized immunofluorescence assays, flow cytometry, and RT-qPCR to delineate the virological features and the innate immune response of the host cells against SARS-CoV-2 infection in two prototype human cell lines representing the human lung (Calu3) and intestinal (Caco2) epithelium when compared with SARS-CoV. Results Lung epithelial cells were significantly more susceptible to SARS-CoV-2 compared to SARS-CoV. However, SARS-CoV-2 infection induced an attenuated pro-inflammatory cytokines/chemokines induction and type I and type II IFN responses. A single dose of 10 U/mL interferon-β (IFNβ) pretreatment potently protected both Calu3 and Caco2 against SARS-CoV-2 infection. Interestingly, SARS-CoV-2 was more sensitive to the pretreatment with IFNβ and IFN inducer than SARS-CoV in Calu3. Conclusions Despite robust infection in both human lung and intestinal epithelial cells, SARS-CoV-2 could attenuate the virus-induced pro-inflammatory response and IFN response. Pre-activation of the type I IFN signaling pathway primed a highly efficient antiviral response in the host against SARS-CoV-2 infection, which could serve as a potential therapeutic and prophylactic maneuver to COVID-19 patients.
Collapse
Affiliation(s)
- Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Dong Yang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Yixin Wang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xi Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Kwok-Yung Yuen
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
76
|
Hodge K, Makjaroen J, Robinson J, Khoomrung S, Pisitkun T. Deep Proteomic Deconvolution of Interferons and HBV Transfection Effects on a Hepatoblastoma Cell Line. ACS OMEGA 2020; 5:16796-16810. [PMID: 32685848 PMCID: PMC7364717 DOI: 10.1021/acsomega.0c01865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/15/2020] [Indexed: 05/13/2023]
Abstract
Interferons are commonly utilized in the treatment of chronic hepatitis B virus (HBV) infection but are not effective for all patients. A deep understanding of the limitations of interferon treatment requires delineation of its activity at multiple "omic" levels. While myriad studies have characterized the transcriptomic effects of interferon treatment, surprisingly, few have examined interferon-induced effects at the proteomic level. To remedy this paucity, we stimulated HepG2 cells with both IFN-α and IFN-λ and performed proteomic analysis versus unstimulated cells. Alongside, we examined the effects of HBV transfection in the same cell line, reasoning that parallel IFN and HBV analysis might allow determination of cases where HBV transfection counters the effects of interferons. More than 6000 proteins were identified, with multiple replicates allowing for differential expression analysis at high confidence. Drawing on a compendium of transcriptomic data, as well as proteomic half-life data, we suggest means by which transcriptomic results diverge from our proteomic results. We also invoke a recent multiomic study of HBV-related hepatocarcinoma (HCC), showing that despite HBV's role in initiating HCC, the regulated proteomic landscapes of HBV transfection and HCC do not strongly align. Special focus is applied to the proteasome, with numerous components divergently altered under IFN and HBV-transfection conditions. We also examine alterations of other protein groups relevant to HLA complex peptide display, unveiling intriguing alterations in a number of ubiquitin ligases. Finally, we invoke genome-scale metabolic modeling to predict relevant alterations to the metabolic landscape under experimental conditions. Our data should be useful as a resource for interferon and HBV researchers.
Collapse
Affiliation(s)
- Kenneth Hodge
- The
Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- The
Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| | - Jonathan Robinson
- Department
of Biology and Biological Engineering, National Bioinformatics Infrastructure
Sweden, Science for Life Laboratory, Chalmers
University of Technology, Kemivägen 10, Gothenburg 412 96, Sweden
- Wallenberg
Center for Protein Research, Chalmers University
of Technology, Kemivägen
10, Gothenburg 412 96, Sweden
| | - Sakda Khoomrung
- Metabolomics
and Systems Biology, Department of Biochemistry, and Siriraj Metabolomics
and Phenomics Center Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center
for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Trairak Pisitkun
- The
Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
- . Phone: +6692-537-0549
| |
Collapse
|
77
|
Fu Q, Yuan J, Wang L, Ran H, Li F, Liu F, Zhang J, Liu W, Huang W, Huang Y, Xia X. Proteomic analysis of murine macrophages mitochondria and lysosomes reveal Cathepsin D as a potential broad-spectrum antimicrobial protein. J Proteomics 2020; 223:103821. [DOI: 10.1016/j.jprot.2020.103821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
|
78
|
Mirzaei R, Karampoor S, Sholeh M, Moradi P, Ranjbar R, Ghasemi F. A contemporary review on pathogenesis and immunity of COVID-19 infection. Mol Biol Rep 2020; 47:5365-5376. [PMID: 32601923 PMCID: PMC7323602 DOI: 10.1007/s11033-020-05621-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 02/09/2023]
Abstract
Emerging of the COVID-19 pandemic has raised interests in the field of biology and pathogenesis of coronaviruses; including interactions between host immune reactions specific, and viral factors. Deep knowledge about the interaction between coronaviruses and the host factors could be useful to provide a better support for the disease sufferers and be advantageous for managing and treatment of the lung infection caused by the virus. At this study, we reviewed the updated information on the pathogenesis of the COVID-19 and the immune responses toward it, with a special focus on structure, genetics, and viral accessory proteins, viral replication, viral receptors, the human immune reactions, cytopathic effects, and host-related factors.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pouya Moradi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
79
|
Tao Z, Chen J, Su J, Wu S, Yuang Y, Yao H, Wong CC, Lu H. Quantitative Proteomics Analysis of Systemic Responses and Biological Mechanisms of ShuFengJieDu Capsule Using H1N1-Infected RAW264.7 Cells. ACS OMEGA 2020; 5:15417-15423. [PMID: 32637816 PMCID: PMC7331074 DOI: 10.1021/acsomega.0c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/02/2020] [Indexed: 05/11/2023]
Abstract
Emerging infectious diseases (EIDs) are a significant burden on global economies and public health to any country in the world. With the extensive application of traditional Chinese medicines (TCMs) for EID treatment, the underlying molecular mechanisms have caught more attention than before. The ShuFengJieDu capsule (abbreviated as SFJD) is a TCM prescription used for treating upper respiratory infection (URI) with symptoms of fever, sore throat, headaches, nasal congestion, and cough for more than 30 years in China. SFJD is also widely used for the prevention and treatment of viral infectious diseases, especially for the EIDs. In this study, a bioactivity-integrated method of ultraperformance liquid chromatography quadrapole/time-of-flight mass spectrometry combined with methyl thiazolyl tetrazolium assay was applied to screen potential antivirus compounds in SFJD on the H1N1-infected RAW264.7 cell models. Three compounds (forsythoside E, verbenalin, and emodin) exert the advantages of protective effects in cell vitality during H1N1 infection. The isobaric tags for relative and absolute quantification (iTRAQ)-coupled liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis and the subsequent quantitative proteome analysis were performed to investigate the potential molecular mechanisms triggered by these three bioactive compound-triggered molecular mechanisms in H1N1-infected RAW264.7 cells. Dysregulated proteins were involved in regulating the levels of proinflammatory cytokines, the IFN (interferon)-stimulated gene signal in the Type I IFN, TBK/IRF3, and MAPK/NF-κB signaling pathways. In conclusion, we identified the main bioactive compounds in SFJD exerting antiviral effects and illuminated that Type I IFN and MAPK/NF-κB signaling pathways are involved in the anti-H1N1 infection effects of SFJD. Our study not only provides solid theoretical support for the clinic application of SFJD but also sheds light on the novel research methods for TCM study.
Collapse
Affiliation(s)
- Zhengang Tao
- Department
of Emergency, Affiliated Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Chen
- Department
of Infectious Diseases, Fudan University, Shanghai 200433, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China
| | - Jie Su
- Shanghai
Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Shifei Wu
- Center
for Precision Medicine Multiomics Research, Peking University Health Science Center, Beijing 100191, China
| | - Ying Yuang
- Department
of Presbyatrics, Affiliated Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hebing Yao
- Shanghai
Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Catherine C.L. Wong
- Center
for Precision Medicine Multiomics Research, Peking University Health Science Center, Beijing 100191, China
- . Fax: +86-2077-8073
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China
- Department
of Infectious Disease, Huashan Hospital
Affiliated to Fudan University, Shanghai, China
- . Fax: +86-2077-8881
| |
Collapse
|
80
|
Manohar P, Loh B, Athira S, Nachimuthu R, Hua X, Welburn SC, Leptihn S. Secondary Bacterial Infections During Pulmonary Viral Disease: Phage Therapeutics as Alternatives to Antibiotics? Front Microbiol 2020; 11:1434. [PMID: 32733404 PMCID: PMC7358648 DOI: 10.3389/fmicb.2020.01434] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Secondary bacterial infections manifest during or after a viral infection(s) and can lead to negative outcomes and sometimes fatal clinical complications. Research and development of clinical interventions is largely focused on the primary pathogen, with research on any secondary infection(s) being neglected. Here we highlight the impact of secondary bacterial infections and in particular those caused by antibiotic-resistant strains, on disease outcomes. We describe possible non-antibiotic treatment options, when small molecule drugs have no effect on the bacterial pathogen and explore the potential of phage therapy and phage-derived therapeutic proteins and strategies in treating secondary bacterial infections, including their application in combination with chemical antibiotics.
Collapse
Affiliation(s)
- Prasanth Manohar
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China.,The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Sudarsanan Athira
- Antibiotic Resistance and Phage Therapy Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Susan C Welburn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China.,Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China.,Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
81
|
Chaurasiya S, Fong Y, Warner SG. Optimizing Oncolytic Viral Design to Enhance Antitumor Efficacy: Progress and Challenges. Cancers (Basel) 2020; 12:cancers12061699. [PMID: 32604787 PMCID: PMC7352900 DOI: 10.3390/cancers12061699] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
The field of oncolytic virotherapy has seen remarkable advancements in last two decades, leading to approval of the first oncolytic immuno-virotherapy, Talimogene Laherparepvec, for the treatment of melanoma. A plethora of preclinical and clinical studies have demonstrated excellent safety profiles of other oncolytic viruses. While oncolytic viruses show clinical promise in already immunogenic malignancies, response rates are inconsistent. Response rates are even less consistent in immunosuppressed tumor microenvironments like those found in liver, pancreas, and MSI-stable colon cancers. Therefore, the efficacy of oncolytic viruses needs to be improved for more oncolytic viruses to enter mainstream cancer therapy. One approach to increase the therapeutic efficacy of oncolytic viruses is to use them as primers for other immunotherapeutics. The amenability of oncolytic viruses to transgene-arming provides an immense opportunity for investigators to explore different ways of improving the outcome of oncolytic therapy. In this regard, genes encoding immunomodulatory proteins are the most commonly studied genes for arming oncolytic viruses. Other transgenes used to arm oncolytic viruses include those with the potential to favorably modulate tumor stroma, making it possible to image the virus distribution and increase its suitability for combination with other therapeutics. This review will detail the progress made in arming oncolytic viruses with a focus on immune-modulatory transgenes, and will discuss the challenges that need to be addressed for more armed oncolytic viruses to find widespread clinical use.
Collapse
|
82
|
Qi X, Shen M, Fan P, Guo X, Wang T, Feng N, Zhang M, Sweet RA, Kirisci L, Wang L. The Performance of Gene Expression Signature-Guided Drug-Disease Association in Different Categories of Drugs and Diseases. Molecules 2020; 25:molecules25122776. [PMID: 32560162 PMCID: PMC7357095 DOI: 10.3390/molecules25122776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
A gene expression signature (GES) is a group of genes that shows a unique expression profile as a result of perturbations by drugs, genetic modification or diseases on the transcriptional machinery. The comparisons between GES profiles have been used to investigate the relationships between drugs, their targets and diseases with quite a few successful cases reported. Especially in the study of GES-guided drugs–disease associations, researchers believe that if a GES induced by a drug is opposite to a GES induced by a disease, the drug may have potential as a treatment of that disease. In this study, we data-mined the crowd extracted expression of differential signatures (CREEDS) database to evaluate the similarity between GES profiles from drugs and their indicated diseases. Our study aims to explore the application domains of GES-guided drug–disease associations through the analysis of the similarity of GES profiles on known pairs of drug–disease associations, thereby identifying subgroups of drugs/diseases that are suitable for GES-guided drug repositioning approaches. Our results supported our hypothesis that the GES-guided drug–disease association method is better suited for some subgroups or pathways such as drugs and diseases associated with the immune system, diseases of the nervous system, non-chemotherapy drugs or the mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiguang Qi
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, 3501 Terrace St Pittsburgh, PA 15261, USA; (X.Q.); (M.S.); (P.F.); (X.G.)
| | - Mingzhe Shen
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, 3501 Terrace St Pittsburgh, PA 15261, USA; (X.Q.); (M.S.); (P.F.); (X.G.)
| | - Peihao Fan
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, 3501 Terrace St Pittsburgh, PA 15261, USA; (X.Q.); (M.S.); (P.F.); (X.G.)
| | - Xiaojiang Guo
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, 3501 Terrace St Pittsburgh, PA 15261, USA; (X.Q.); (M.S.); (P.F.); (X.G.)
| | - Tianqi Wang
- Department of Biological Sciences, University of Pittsburgh School of Arts & Sciences, Pittsburgh, PA 15260, USA;
| | - Ning Feng
- Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.F.); (M.Z.)
| | - Manling Zhang
- Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (N.F.); (M.Z.)
| | - Robert A. Sweet
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Correspondence: (R.A.S.); (L.K.); (L.W.); Tel.: +1 412-624-8118 (L.K.); +1 412-383-6089 (R.A.S.)
| | - Levent Kirisci
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, 3501 Terrace St Pittsburgh, PA 15261, USA; (X.Q.); (M.S.); (P.F.); (X.G.)
- Correspondence: (R.A.S.); (L.K.); (L.W.); Tel.: +1 412-624-8118 (L.K.); +1 412-383-6089 (R.A.S.)
| | - Lirong Wang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, 3501 Terrace St Pittsburgh, PA 15261, USA; (X.Q.); (M.S.); (P.F.); (X.G.)
- Correspondence: (R.A.S.); (L.K.); (L.W.); Tel.: +1 412-624-8118 (L.K.); +1 412-383-6089 (R.A.S.)
| |
Collapse
|
83
|
Abstract
Cell entry of influenza A virus (IAV) was reported to be promoted by epidermal growth factor receptor (EGFR). On the other hand, binding of heparin-binding EGF-like growth factor (HB-EGF) to EGFR leads to internalisation and degradation of the receptors. This study aimed to testify whether or not HB-EGF-induced downregulation of EGFR could attenuate IAV cell entry and subsequently diminish the infection. Immunoblotting and plaque assay revealed that HB-EGF-induced degradation of EGFR led to reduction of viral matrix 1 protein level and suppressed virion production. In addition, immunoblotting and imaging flow cytometric analysis demonstrated that IAV-induced phosphorylation of STAT1 and its localisation to nucleus in the early stage of infection were inhibited by HB-EGF treatment. This suggested the potential of HB-EGF in modulating uncontrolled and exaggerated inflammatory response caused by IAV infection. Together these findings attest the potential of HB-EGF mediated endocytosis and degradation of EGFR as a novel anti-IAV strategy.
Collapse
Affiliation(s)
- K M Lai
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - B H Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Health and Well-being Cluster, Global Asia, in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - W L Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Health and Well-being Cluster, Global Asia, in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
84
|
Porcine Epidemic Diarrhea Virus nsp15 Antagonizes Interferon Signaling by RNA Degradation of TBK1 and IRF3. Viruses 2020; 12:v12060599. [PMID: 32486349 PMCID: PMC7354440 DOI: 10.3390/v12060599] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a porcine disease associated with swine epidemic diarrhea. The type I interferon (IFN-I or IFN α/β) is a key mediator of innate antiviral response during virus infection. Different antagonistic strategies have been identified and determined as to how PEDV infection inhibits the host's IFN responses to escape the host innate immune pathway, but the pathogenic mechanisms of PEDV infection are not fully elucidated. Our preliminary results revealed that endogenous TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), the key components in the IFN signaling pathway were downregulated in PEDV infected IPEC-J2 cells by iTRAQ analysis. In this study, we screened nsp15 as the most important viral encoded protein involved in TBK1 and IRF3 reduction. Endoribonuclease (EndoU) activity has been well determined for coronavirus nsp15. Three residues (H226, H241, and K282) of PEDV nsp15 were identified as critical amino acids for PEDV EndoU but not D265, which was not well correlated with published results of other coronaviruses, such as severe acute respiratory syndrome virus (SARS-CoV). Moreover, PEDV nsp15 can directly degrade the RNA levels of TBK1 and IRF3 dependent on its EndoU activity to suppress IFN production and constrain the induction of IFN stimulated genes (ISGs), by which PEDV antagonizes the host innate response to facilitate its replication. Collectively, these results have confirmed that PEDV nsp15 was capable of subverting the IFN response by the RNA degradation of TBK1 and IRF3.
Collapse
|
85
|
Wang W, Xiong L, Wang P, Wang F, Ma Q. Major vault protein plays important roles in viral infection. IUBMB Life 2020; 72:624-631. [PMID: 31769934 PMCID: PMC7165711 DOI: 10.1002/iub.2200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Viral replication and related protein expression inside the host cells, and host antiviral immune responses can lead to the occurrence of diverse diseases. With the outbreak of viral infection, a large number of newly diagnosed and died patients infected with various viruses are still reported every year. Viral infection has already been one of the major global public health issues and lead to huge economic and social burdens. Studying of viral pathogenesis is a very important way to find methods for prevention, diagnosis, and cure of viral infection; more evidence has confirmed that major vault protein (MVP) is closely associated with viral infection and pathogenesis, and this review is intended to provide a broad relationship between viruses and MVP to stimulate the interest of related researchers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Puai Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fubing Wang
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qingfeng Ma
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
86
|
Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 2020; 526:135-140. [PMID: 32199615 PMCID: PMC7156119 DOI: 10.1016/j.bbrc.2020.03.044] [Citation(s) in RCA: 737] [Impact Index Per Article: 147.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 11/26/2022]
Abstract
The new coronavirus (SARS-CoV-2) outbreak from December 2019 in Wuhan, Hubei, China, has been declared a global public health emergency. Angiotensin I converting enzyme 2 (ACE2), is the host receptor by SARS-CoV-2 to infect human cells. Although ACE2 is reported to be expressed in lung, liver, stomach, ileum, kidney and colon, its expressing levels are rather low, especially in the lung. SARS-CoV-2 may use co-receptors/auxiliary proteins as ACE2 partner to facilitate the virus entry. To identify the potential candidates, we explored the single cell gene expression atlas including 119 cell types of 13 human tissues and analyzed the single cell co-expression spectrum of 51 reported RNA virus receptors and 400 other membrane proteins. Consistent with other recent reports, we confirmed that ACE2 was mainly expressed in lung AT2, liver cholangiocyte, colon colonocytes, esophagus keratinocytes, ileum ECs, rectum ECs, stomach epithelial cells, and kidney proximal tubules. Intriguingly, we found that the candidate co-receptors, manifesting the most similar expression patterns with ACE2 across 13 human tissues, are all peptidases, including ANPEP, DPP4 and ENPEP. Among them, ANPEP and DPP4 are the known receptors for human CoVs, suggesting ENPEP as another potential receptor for human CoVs. We also conducted "CellPhoneDB" analysis to understand the cell crosstalk between CoV-targets and their surrounding cells across different tissues. We found that macrophages frequently communicate with the CoVs targets through chemokine and phagocytosis signaling, highlighting the importance of tissue macrophages in immune defense and immune pathogenesis.
Collapse
Affiliation(s)
- Furong Qi
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, 518100, China
| | - Shen Qian
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, 518100, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, 518100, China; The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China.
| |
Collapse
|
87
|
Zhou L, Zhang Y, Wang Y, Zhang M, Sun W, Dai T, Wang A, Wu X, Zhang S, Wang S, Zhou F. A Dual Role of Type I Interferons in Antitumor Immunity. ACTA ACUST UNITED AC 2020; 4:e1900237. [PMID: 33245214 DOI: 10.1002/adbi.201900237] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFN-Is) are a family of cytokines that exert direct antiviral effects and regulate innate and adaptive immune responses through direct and indirect mechanisms. It is generally believed that IFN-Is repress tumor development via restricting tumor proliferation and inducing antitumor immune responses. However, recent emerging evidence suggests that IFN-Is play a dual role in antitumor immunity. That is, in the early stage of tumorigenesis, IFN-Is promote the antitumor immune response by enhancing antigen presentation in antigen-presenting cells and activating CD8+ T cells. However, in the late stage of tumor progression, persistent expression of IFN-Is induces the expression of immunosuppressive factors (PD-L1, IDO, and IL-10) on the surface of dendritic cells and other bone marrow cells and inhibits their antitumor immunity. This review outlines these dual functions of IFN-Is in antitumor immunity and elucidates the involved mechanisms, as well as their applications in tumor therapy.
Collapse
Affiliation(s)
- Lili Zhou
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yuqi Zhang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yongqiang Wang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Meirong Zhang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Wenhuan Sun
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Tong Dai
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Aijun Wang
- Department of Surgery, School of Medicine, UC Davis, Davis, CA, 95817, USA
| | - Xiaojin Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Suping Zhang
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, Base for international Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Shuai Wang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Fangfang Zhou
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
88
|
McCormack R, Hunte R, Podack ER, Plano GV, Shembade N. An Essential Role for Perforin-2 in Type I IFN Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 204:2242-2256. [PMID: 32161097 DOI: 10.4049/jimmunol.1901013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
Type I IFNs play a complex role in determining the fate of microbial pathogens and may also be deleterious to the host during bacterial and viral infections. Upon ligand binding, a receptor proximal complex consisting of IFN-α and -β receptors 1 and 2 (IFNAR1, IFNAR2, respectively), tyrosine kinase 2 (Tyk2), Jak1, and STAT2 are assembled and promote the phosphorylation of STAT1 and STAT2. However, how the IFNARs proximal complex is assembled upon binding to IFN is poorly understood. In this study, we show that the membrane-associated pore-forming protein Perforin-2 (P2) is critical for LPS-induced endotoxic shock in wild-type mice. Type I IFN-mediated JAK-STAT signaling is severely impaired, and activation of MAPKs and PI3K signaling pathways are delayed in P2-deficient mouse bone marrow-derived macrophages, mouse embryonic fibroblasts (MEFs), and human HeLa cells upon IFN stimulation. The P2 N-glycosylated extracellular membrane attack complex/perforin domain and the P2 domain independently associate with the extracellular regions of IFNAR1 and IFNAR2, respectively, in resting MEFs. In addition, the P2 cytoplasmic tail domain mediated the constitutive interaction between STAT2 and IFNAR2 in resting MEFs, an interaction that is dependent on the association of the extracellular regions of P2 and IFNAR2. Finally, the constitutive association of P2 with both receptors and STAT2 is critical for the receptor proximal complex assembly and reciprocal transphosphorylation of Jak1 and Tyk2 as well as the phosphorylation and activation of STAT1 and STAT2 upon IFN-β stimulation.
Collapse
Affiliation(s)
- Ryan McCormack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Richard Hunte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Eckhard R Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Gregory V Plano
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Noula Shembade
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136 .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| |
Collapse
|
89
|
Tao X, Chu B, Xin D, Li L, Sun Q. USP27X negatively regulates antiviral signaling by deubiquitinating RIG-I. PLoS Pathog 2020; 16:e1008293. [PMID: 32027733 PMCID: PMC7029883 DOI: 10.1371/journal.ppat.1008293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 02/19/2020] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
RIG-I plays important roles in pathogen sensing and activation of antiviral innate immune responses in response to RNA viruses. RIG-I-mediated signaling must be precisely controlled to maintain innate immune signaling homeostasis. Previous studies demonstrated that lysine 63 (K63)-linked polyubiquitination of RIG-I is vital for its activation, but the mechanisms through which RIG-I is deubiquitinated to control innate immune responses are not well understood. Here we identified USP27X as a negative regulator of antiviral signaling in response to RNA viruses through siRNA library screening. Further functional studies indicated that USP27X negatively modulated RIG-I-mediated antiviral signaling in a deubiquitinase-dependent manner. Mechanistically, we found that USP27X removed K63-linked polyubiquitin chains from RIG-I to negatively modulate type I interferon signaling. Collectively, these studies uncover a novel negative regulatory role of USP27X in targeting RIG-I to balance innate immune responses.
Collapse
Affiliation(s)
- Xinyue Tao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bei Chu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
90
|
Lamichhane R, Galvin H, Hannaway RF, de la Harpe SM, Munro F, Tyndall JDA, Vernall AJ, McCall JL, Husain M, Ussher JE. Type I interferons are important co-stimulatory signals during T cell receptor mediated human MAIT cell activation. Eur J Immunol 2019; 50:178-191. [PMID: 31608441 DOI: 10.1002/eji.201948279] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/20/2019] [Accepted: 10/11/2019] [Indexed: 01/12/2023]
Abstract
Mucosal associated invariant T (MAIT) cells are abundant unconventional T cells that can be stimulated either via their TCR or by innate cytokines. The MAIT cell TCR recognises a pyrimidine ligand, derived from riboflavin synthesising bacteria, bound to MR1. In infection, bacteria not only provide the pyrimidine ligand but also co-stimulatory signals, such as TLR agonists, that can modulate TCR-mediated activation. Recently, type I interferons (T1-IFNs) have been identified as contributing to cytokine-mediated MAIT cell activation. However, it is unknown whether T1-IFNs also have a role during TCR-mediated MAIT cell activation. In this study, we investigated the co-stimulatory role of T1-IFNs during TCR-mediated activation of MAIT cells by the MR1 ligand 5-amino-6-d-ribitylaminouracil/methylglyoxal. We found that T1-IFNs were able to boost interferon-γ and granzyme B production in 5-amino-6-d-ribitylaminouracil/methylglyoxal-stimulated MAIT cells. Similarly, influenza virus-induced T1-IFNs enhanced TCR-mediated MAIT cell activation. An essential role of T1-IFNs in regulating MAIT cell activation by riboflavin synthesising bacteria was also demonstrated. The co-stimulatory role of T1-IFNs was also evident in liver-derived MAIT cells. T1-IFNs acted directly on MAIT cells to enhance their response to TCR stimulation. Overall, our findings establish an important immunomodulatory role of T1-IFNs during TCR-mediated MAIT cell activation.
Collapse
Affiliation(s)
- Rajesh Lamichhane
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Henry Galvin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rachel F Hannaway
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Fran Munro
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Joel DA Tyndall
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | - John L McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Southern Community Laboratories, Dunedin, New Zealand
| |
Collapse
|
91
|
Ghaly M, Gogineni E, Saif MW. The Evolving Field of Stereotactic Body Radiation Therapy in Pancreatic Cancer. ACTA ACUST UNITED AC 2019; 3:9-14. [PMID: 31930185 PMCID: PMC6954104 DOI: 10.17140/poj-3-110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer remains a devastating disease with dismal outcomes despite the development of novel chemotherapeutic regimens and radiation techniques. Stereotactic body radiation therapy (SBRT) offers an advantage both in image guidance and radiation dose delivery to direct ablative doses to tumors with acceptable toxicity compared to conventional techniques. Recent literature is clustered with data pertaining to SBRT in patients with resectable, borderline resectable and locally advanced pancreatic tumors. We here present a summary of the current data and highlight the limitations and potential for future growth. Further clinical study in the form of multi-institutional trials is warranted to establish the role of SBRT in combination with new chemo- therapeutic agents as well as a non-invasive alternative to surgery.
Collapse
Affiliation(s)
- Maged Ghaly
- Department of Radiation Medicine, Northwell Health Cancer Institute, Lake Success, NY, USA
| | - Emile Gogineni
- Department of Radiation Medicine, Northwell Health Cancer Institute, Lake Success, NY, USA
| | - Muhammad W Saif
- Department of Medical Oncology, Northwell Health Cancer Institute, Lake Success, NY, USA
| |
Collapse
|
92
|
Zhang Z, Zhang L, Wang B, Zhu X, Zhao L, Chu C, Guo Q, Wei R, Yin X, Zhang Y, Li X. RNF144B inhibits LPS-induced inflammatory responses via binding TBK1. J Leukoc Biol 2019; 106:1303-1311. [PMID: 31509299 PMCID: PMC6899866 DOI: 10.1002/jlb.2a0819-055r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 01/02/2023] Open
Abstract
Innate immune responses need to be precisely controlled to avoid prolonged inflammation and prevent unwanted damage to the host. Here, we report that RNF144B responded dynamically to LPS stimulation and negatively regulated LPS‐induced inflammation. We found that RNF144B interacted with the scaffold/dimerization domain (SDD) of TANK binding kinase 1 (TBK1) through the in between RING (IBR) domain to inhibit its phosphorylation and K63‐linked polyubiquitination, which led to TBK1 inactivation, IRF3 dephosphorylation, and IFN‐β reduction. RNF144B knockdown with siRNA increased IRF3 activation and IFN‐β production in response to LPS stimulation. Our study identifies that RNF144B interaction with TBK1 is sufficient to inactivate TBK1 and delineates a previously unrecognized role for RNF144B in innate immune responses.
Collapse
Affiliation(s)
- Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Luoyan Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Bin Wang
- Department of Peripheral Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chu Chu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xunqiang Yin
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yunhong Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
93
|
Mechanisms linking bovine viral diarrhea virus (BVDV) infection with infertility in cattle. Anim Health Res Rev 2019; 20:72-85. [PMID: 31895016 DOI: 10.1017/s1466252319000057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is an important infectious disease agent that causes significant reproductive and economic losses in the cattle industry worldwide. Although BVDV infection is known to cause poor fertility in cattle, a greater part of the underlying mechanisms particularly associated with early reproductive losses are not clearly understood. Previous studies reported viral compromise of reproductive function in infected bulls. In females, BVDV infection is thought to be capable of killing the oocyte, embryo or fetus directly, or to induce lesions that result in fetal abortion or malformation. BVDV infections may also induce immune dysfunction, and predispose cattle to other diseases that cause poor health and fertility. Other reports also suggested BVDV-induced disruption of the reproductive endocrine system, and a disruption of leukocyte and cytokine functions in the reproductive organs. More recent studies have provided evidence of viral-induced suppression of endometrial innate immunity that may predispose to uterine disease. Furthermore, there is new evidence that BVDV may potentially disrupt the maternal recognition of pregnancy or the immune protection of the conceptus. This review brings together the previous reports with the more recent findings, and attempts to explain some of the mechanisms linking this important virus to infertility in cattle.
Collapse
|
94
|
Throw out the Map: Neuropathogenesis of the Globally Expanding California Serogroup of Orthobunyaviruses. Viruses 2019; 11:v11090794. [PMID: 31470541 PMCID: PMC6784171 DOI: 10.3390/v11090794] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
The California serogroup (CSG) comprises 18 serologically and genetically related mosquito-borne orthobunyaviruses. Of these viruses, at least seven have been shown to cause neurological disease in humans, including the leading cause of pediatric arboviral encephalitis in the USA, La Crosse virus. Despite the disease burden from these viruses, much is still unknown about the CSG viruses. This review summarizes our current knowledge of the CSG viruses, including human disease and the mechanisms of neuropathogenesis.
Collapse
|
95
|
Liu Z, Han C, Dong C, Shen A, Hsu E, Ren Z, Lu C, Liu L, Zhang A, Timmerman C, Pu Y, Wang Y, Chen M, Qiao J, Fu YX. Hypofractionated EGFR tyrosine kinase inhibitor limits tumor relapse through triggering innate and adaptive immunity. Sci Immunol 2019; 4:eaav6473. [PMID: 31399492 DOI: 10.1126/sciimmunol.aav6473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/05/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are a first-line therapy for rapidly killing tumors such as those associated with non-small cell lung cancer by blocking oncogenic receptor signaling, but tumor relapse often occurs. Here, we have observed that hypofractionated EGFR TKI treatment (HypoTKI) is more potent than standard hyperfractionated EGFR TKI treatment (HyperTKI), and its antitumor effect associated with preventing tumor relapse depends on T cells. HypoTKI triggers greater innate sensing for type I IFN and CXCL10 production through the Myd88 signaling pathway to enhance tumor-specific T cell infiltration and reactivation. We also demonstrate that timely programmed cell death ligand-1 (PD-L1) blockade can synergize with HypoTKI to control advanced large tumors and effectively limit tumor relapse without severe side effects. Our study provides evidence for exploring the potential of a proper combination of EGFR TKIs and immunotherapy as a first-line treatment for treating EGFR-driven tumors.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antibodies/drug effects
- Antibodies/immunology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Female
- Immunity, Innate/drug effects
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Zhida Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Chuanhui Han
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Chunbo Dong
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Aijun Shen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Eric Hsu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Zhenhua Ren
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Changzheng Lu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Longchao Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Anli Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Casey Timmerman
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Yang Pu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Yang Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Mingyi Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Jian Qiao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75235, USA.
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
96
|
Combating viral contaminants in CHO cells by engineering innate immunity. Sci Rep 2019; 9:8827. [PMID: 31222165 PMCID: PMC6586939 DOI: 10.1038/s41598-019-45126-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Viral contamination in biopharmaceutical manufacturing can lead to shortages in the supply of critical therapeutics. To facilitate the protection of bioprocesses, we explored the basis for the susceptibility of CHO cells to RNA virus infection. Upon infection with certain ssRNA and dsRNA viruses, CHO cells fail to generate a significant interferon (IFN) response. Nonetheless, the downstream machinery for generating IFN responses and its antiviral activity is intact in these cells: treatment of cells with exogenously-added type I IFN or poly I:C prior to infection limited the cytopathic effect from Vesicular stomatitis virus (VSV), Encephalomyocarditis virus (EMCV), and Reovirus-3 virus (Reo-3) in a STAT1-dependent manner. To harness the intrinsic antiviral mechanism, we used RNA-Seq to identify two upstream repressors of STAT1: Gfi1 and Trim24. By knocking out these genes, the engineered CHO cells exhibited activation of cellular immune responses and increased resistance to the RNA viruses tested. Thus, omics-guided engineering of mammalian cell culture can be deployed to increase safety in biotherapeutic protein production among many other biomedical applications.
Collapse
|
97
|
Wu SW, Li L, Wang Y, Xiao Z. CTL-Derived Exosomes Enhance the Activation of CTLs Stimulated by Low-Affinity Peptides. Front Immunol 2019; 10:1274. [PMID: 31275303 PMCID: PMC6593274 DOI: 10.3389/fimmu.2019.01274] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/20/2019] [Indexed: 01/07/2023] Open
Abstract
Cytotoxic T cells (CTLs) bind to peptides presented by MHC I (pMHC) through T cell receptors of various affinities. Low-affinity CTLs are important for the control of intracellular pathogens and cancers; however, the mechanisms by which these lower affinity CTLs are activated and maintained are not well understood. We recently discovered that fully activated CTLs stimulated by strong-affinity peptides in the presence of IL-12 are able to secrete exosomes that, in turn, stimulate bystander CTLs without requiring the presence of antigen. We hypothesized that exosomes secreted by high-affinity CTLs could strengthen the activation of low-affinity CTLs. Naive OT-I CD8+ cells were stimulated with altered N4 peptides of different affinities in the presence or absence of Exo. The presence of Exo preferentially increased cell proliferation and enhanced the production of IFNγ in CTLs stimulated by low-affinity peptides. The expression of granzyme B (GZB) was augmented in all affinities, with higher GZB production in low-affinity stimulated CTLs than in high-affinity stimulated ones. Exosomes promoted the rapid activation of low-affinity CTLs, which remained responsive to exosomes for a prolonged duration. Unexpectedly, exosomes could be induced quickly (24 h) following CTL activation and at a higher quantity per cell than later (72 h). While exosome protein profiles vary significantly between early exosomes and their later-derived counterparts, both appear to have similar downstream functions. These results reveal a potential mechanism for fully activated CTLs in activating lower-affinity CTLs that may have important implications in boosting the function of low-affinity CTLs in immunotherapy for cancers and chronic viral infections.
Collapse
Affiliation(s)
- Shu-Wei Wu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Yan Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
98
|
Chen Z, Zhong D, Li G. The role of microglia in viral encephalitis: a review. J Neuroinflammation 2019; 16:76. [PMID: 30967139 PMCID: PMC6454758 DOI: 10.1186/s12974-019-1443-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/24/2019] [Indexed: 12/16/2022] Open
Abstract
Viral encephalitis is still very prominent around the world, and traditional antiviral therapies still have shortcomings. Some patients cannot get effective relief or suffer from serious sequelae. At present, people are studying the role of the innate immune system in viral encephalitis. Microglia, as resident cells of the central nervous system (CNS), can respond quickly to various CNS injuries including trauma, ischemia, and infection and maintain the homeostasis of CNS, but this response is not always good; sometimes, it will exacerbate damage. Studies have shown that microglia also act as a double-edged sword during viral encephalitis. On the one hand, microglia can sense ATP signals through the purinergic receptor P2Y12 and are recruited around infected neurons to exert phagocytic activity. Microglia can exert a direct antiviral effect by producing type 1 interferon (IFN-1) to induce IFN-stimulated gene (ISG) expression of themselves or indirect antiviral effects by IFN-1 acting on other cells to activate corresponding signaling pathways. In addition, microglia can also exert an antiviral effect by inducing autophagy or secreting cytokines. On the other hand, microglia mediate presynaptic membrane damage in the hippocampus through complement, resulting in long-term memory impairment and cognitive dysfunction in patients with encephalitis. Microglia mediate fetal congenital malformations caused by Zika virus (ZIKV) infection. The gene expression profile of microglia in HIV encephalitis changes, and they tend to be a pro-inflammatory type. Microglia inhibited neuronal autophagy and aggravated the damage of CNS in HIV encephalitis; E3 ubiquitin ligase Pellino (pelia) expressed by microglia promotes the replication of virus in neurons. The interaction between amyloid-β peptide (Aβ) produced by neurons and activated microglia during viral infection is uncertain. Although neurons can mediate antiviral effects by activating receptor-interacting protein kinases 3 (RIPK3) in a death-independent pathway, the RIPK3 pathway of microglia is unknown. Different brain regions have different susceptibility to viruses, and the gene expression of microglia in different brain regions is specific. The relationship between the two needs to be further confirmed. How to properly regulate the function of microglia and make it exert more anti-inflammatory effects is our next research direction.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilong Jiang Province, People's Republic of China.
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilong Jiang Province, People's Republic of China
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilong Jiang Province, People's Republic of China
| |
Collapse
|
99
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Front Cell Infect Microbiol 2019; 9:42. [PMID: 30886834 PMCID: PMC6409310 DOI: 10.3389/fcimb.2019.00042] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection. This metabolic state of the host cells does not meet the extensive need for nutrients required for efficient intracellular replication of viruses and especially IBPs which, in contrast to the viral pathogens, have to perform their own specific intracellular metabolism to survive and efficiently replicate in their host cell niches. For this goal, viruses and IBPs have to reprogram the host cell metabolism in a pathogen-specific manner to increase the supply of nutrients, energy, and metabolites which have to be provided to the pathogen to allow its replication. In viral infections, this appears to be often achieved by the interaction of specific viral factors with central metabolic regulators, including oncogenes and tumor suppressors, or by the introduction of virus-specific oncogenes. Less is so far known on the mechanisms leading to metabolic reprogramming of the host cell by IBPs. However, the still scant data suggest that similar mechanisms may also determine the reprogramming of the host cell metabolism in IBP infections. In this review, we summarize and compare the present knowledge on this important, yet still poorly understood aspect of pathogenesis of human viral and especially IBP infections.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Chair of Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
100
|
Fagre AC, Lee JS, Kityo RM, Bergren NA, Mossel EC, Nakayiki T, Nalikka B, Nyakarahuka L, Gilbert AT, Peterhans JK, Crabtree MB, Towner JS, Amman BR, Sealy TK, Schuh AJ, Nichol ST, Lutwama JJ, Miller BR, Kading RC. Discovery and Characterization of Bukakata orbivirus ( Reoviridae:Orbivirus), a Novel Virus from a Ugandan Bat. Viruses 2019; 11:E209. [PMID: 30832334 PMCID: PMC6466370 DOI: 10.3390/v11030209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
While serological and virological evidence documents the exposure of bats to medically-important arboviruses, their role as reservoirs or amplifying hosts is less well-characterized. We describe a novel orbivirus (Reoviridae:Orbivirus) isolated from an Egyptian fruit bat (Rousettus aegyptiacus leachii) trapped in 2013 in Uganda and named Bukakata orbivirus. This is the fifth orbivirus isolated from a bat, however genetic information had previously only been available for one bat-associated orbivirus. We performed whole-genome sequencing on Bukakata orbivirus and three other bat-associated orbiviruses (Fomede, Ife, and Japanaut) to assess their phylogenetic relationship within the genus Orbivirus and develop hypotheses regarding potential arthropod vectors. Replication kinetics were assessed for Bukakata orbivirus in three different vertebrate cell lines. Lastly, qRT-PCR and nested PCR were used to determine the prevalence of Bukakata orbivirus RNA in archived samples from three populations of Egyptian fruit bats and one population of cave-associated soft ticks in Uganda. Complete coding sequences were obtained for all ten segments of Fomede, Ife, and Japanaut orbiviruses and for nine of the ten segments for Bukakata orbivirus. Phylogenetic analysis placed Bukakata and Fomede in the tick-borne orbivirus clade and Ife and Japanaut within the Culicoides/phlebotomine sandfly orbivirus clade. Further, Bukakata and Fomede appear to be serotypes of the Chobar Gorge virus species. Bukakata orbivirus replicated to high titers (10⁶⁻10⁷ PFU/mL) in Vero, BHK-21 [C-13], and R06E (Egyptian fruit bat) cells. Preliminary screening of archived bat and tick samples do not support Bukakata orbivirus presence in these collections, however additional testing is warranted given the phylogenetic associations observed. This study provided complete coding sequence for several bat-associated orbiviruses and in vitro characterization of a bat-associated orbivirus. Our results indicate that bats may play an important role in the epidemiology of viruses in the genus Orbivirus and further investigation is warranted into vector-host associations and ongoing surveillance efforts.
Collapse
Affiliation(s)
- Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Justin S Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Robert M Kityo
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda.
| | - Nicholas A Bergren
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Eric C Mossel
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| | - Teddy Nakayiki
- Department of Arbovirology, Emerging, and Re-emerging Viral Infections, Uganda Virus Research Institute, Entebbe, Uganda.
| | - Betty Nalikka
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda.
| | - Luke Nyakarahuka
- Department of Arbovirology, Emerging, and Re-emerging Viral Infections, Uganda Virus Research Institute, Entebbe, Uganda.
- Department of Biosecurity, Ecosystems and Veterinary Public Health, Makerere University, Kampala, Uganda.
| | - Amy T Gilbert
- National Wildlife Research Center, US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80521, USA.
| | - Julian Kerbis Peterhans
- College of Arts and Sciences, Roosevelt University, Collections & Research, The Field Museum of Natural History, Chicago, IL 60605, USA.
| | - Mary B Crabtree
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Brian R Amman
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Tara K Sealy
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Amy J Schuh
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
- United States Public Health Service, Commissioned Corps, Rockville, MD 20852, USA.
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Julius J Lutwama
- Department of Arbovirology, Emerging, and Re-emerging Viral Infections, Uganda Virus Research Institute, Entebbe, Uganda.
| | - Barry R Miller
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| | - Rebekah C Kading
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
- Arboviral Diseases Branch, Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80523, USA.
| |
Collapse
|