51
|
Headcase is a Repressor of Lamellocyte Fate in Drosophila melanogaster. Genes (Basel) 2019; 10:genes10030173. [PMID: 30841641 PMCID: PMC6470581 DOI: 10.3390/genes10030173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
Due to the evolutionary conservation of the regulation of hematopoiesis, Drosophila provides an excellent model organism to study blood cell differentiation and hematopoietic stem cell (HSC) maintenance. The larvae of Drosophila melanogaster respond to immune induction with the production of special effector blood cells, the lamellocytes, which encapsulate and subsequently kill the invader. Lamellocytes differentiate as a result of a concerted action of all three hematopoietic compartments of the larva: the lymph gland, the circulating hemocytes, and the sessile tissue. Within the lymph gland, the communication of the functional zones, the maintenance of HSC fate, and the differentiation of effector blood cells are regulated by a complex network of signaling pathways. Applying gene conversion, mutational analysis, and a candidate based genetic interaction screen, we investigated the role of Headcase (Hdc), the homolog of the tumor suppressor HECA in the hematopoiesis of Drosophila. We found that naive loss-of-function hdc mutant larvae produce lamellocytes, showing that Hdc has a repressive role in effector blood cell differentiation. We demonstrate that hdc genetically interacts with the Hedgehog and the Decapentaplegic pathways in the hematopoietic niche of the lymph gland. By adding further details to the model of blood cell fate regulation in the lymph gland of the larva, our findings contribute to the better understanding of HSC maintenance.
Collapse
|
52
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
53
|
Valanne S, Salminen TS, Järvelä-Stölting M, Vesala L, Rämet M. Immune-inducible non-coding RNA molecule lincRNA-IBIN connects immunity and metabolism in Drosophila melanogaster. PLoS Pathog 2019; 15:e1007504. [PMID: 30633769 PMCID: PMC6345493 DOI: 10.1371/journal.ppat.1007504] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/24/2019] [Accepted: 12/05/2018] [Indexed: 01/09/2023] Open
Abstract
Non-coding RNAs have important roles in regulating physiology, including immunity. Here, we performed transcriptome profiling of immune-responsive genes in Drosophila melanogaster during a Gram-positive bacterial infection, concentrating on long non-coding RNA (lncRNA) genes. The gene most highly induced by a Micrococcus luteus infection was CR44404, named Induced by Infection (lincRNA-IBIN). lincRNA-IBIN is induced by both Gram-positive and Gram-negative bacteria in Drosophila adults and parasitoid wasp Leptopilina boulardi in Drosophila larvae, as well as by the activation of the Toll or the Imd pathway in unchallenged flies. We show that upon infection, lincRNA-IBIN is expressed in the fat body, in hemocytes and in the gut, and its expression is regulated by NF-κB signaling and the chromatin modeling brahma complex. In the fat body, overexpression of lincRNA-IBIN affected the expression of Toll pathway -mediated genes. Notably, overexpression of lincRNA-IBIN in unchallenged flies elevated sugar levels in the hemolymph by enhancing the expression of genes important for glucose retrieval. These data show that lncRNA genes play a role in Drosophila immunity and indicate that lincRNA-IBIN acts as a link between innate immune responses and metabolism.
Collapse
Affiliation(s)
- Susanna Valanne
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tiina S. Salminen
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mirva Järvelä-Stölting
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Laura Vesala
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
54
|
Myers AL, Harris CM, Choe KM, Brennan CA. Inflammatory production of reactive oxygen species by Drosophila hemocytes activates cellular immune defenses. Biochem Biophys Res Commun 2018; 505:726-732. [PMID: 30292413 DOI: 10.1016/j.bbrc.2018.09.126] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 02/05/2023]
Abstract
The production of reactive oxygen species (ROS) is a prominent response to infection among innate immune cells such as macrophages and neutrophils. To better understand the relationship between antimicrobial and regulatory functions of blood cell ROS, we have characterized the ROS response to infection in Drosophila hemocytes. Using fluorescent probes, we find a biphasic hemocyte ROS response to bacterial infection. In the first hour, virtually all hemocytes generate a transient ROS signal, with nonphagocytic cells including prohemocytes and crystal cells displaying exceptionally strong responses. A distinct, and more delayed ROS response starting at 90 min is primarily within cells that have engulfed bacteria, and is sustained for several hours. The early response has a clear regulatory function, as dampening or intensifying the intracellular ROS level has profound effects on plasmatocyte activation. In addition, ROS are necessary and sufficient to activate JNK signalling in crystal cells, and to promote JNK-dependent crystal cell rupture. These findings indicate that Drosophila will be a promising model in which to dissect the mechanisms of ROS stimulation of immune activation.
Collapse
Affiliation(s)
- Amber L Myers
- Department of Biological Science, California State University Fullerton, Fullerton, CA, 92831, USA
| | - Caitlin M Harris
- Department of Biological Science, California State University Fullerton, Fullerton, CA, 92831, USA
| | - Kwang-Min Choe
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Catherine A Brennan
- Department of Biological Science, California State University Fullerton, Fullerton, CA, 92831, USA.
| |
Collapse
|
55
|
Im SH, Patel AA, Cox DN, Galko MJ. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization. Dis Model Mech 2018; 11:dmm034231. [PMID: 29752280 PMCID: PMC5992604 DOI: 10.1242/dmm.034231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/25/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi -expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity.
Collapse
Affiliation(s)
- Seol Hee Im
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Atit A Patel
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Michael J Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, University of Texas Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, TX 77030, USA
| |
Collapse
|
56
|
Gyoergy A, Roblek M, Ratheesh A, Valoskova K, Belyaeva V, Wachner S, Matsubayashi Y, Sánchez-Sánchez BJ, Stramer B, Siekhaus DE. Tools Allowing Independent Visualization and Genetic Manipulation of Drosophila melanogaster Macrophages and Surrounding Tissues. G3 (BETHESDA, MD.) 2018; 8:845-857. [PMID: 29321168 PMCID: PMC5844306 DOI: 10.1534/g3.117.300452] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 12/31/2017] [Indexed: 12/19/2022]
Abstract
Drosophila melanogaster plasmatocytes, the phagocytic cells among hemocytes, are essential for immune responses, but also play key roles from early development to death through their interactions with other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, metabolism, cancer, wound responses, and aging, displaying intriguing molecular and functional conservation with vertebrate macrophages. Given the relative ease of genetics in Drosophila compared to vertebrates, tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues independently at all stages would greatly aid a fuller understanding of these processes, but are lacking. Here, we describe a comprehensive set of transgenic lines that allow this. These include extremely brightly fluorescing mCherry-based lines that allow GAL4-independent visualization of plasmatocyte nuclei, the cytoplasm, or the actin cytoskeleton from embryonic stage 8 through adulthood in both live and fixed samples even as heterozygotes, greatly facilitating screening. These lines allow live visualization and tracking of embryonic plasmatocytes, as well as larval plasmatocytes residing at the body wall or flowing with the surrounding hemolymph. With confocal imaging, interactions of plasmatocytes and inner tissues can be seen in live or fixed embryos, larvae, and adults. They permit efficient GAL4-independent Fluorescence-Activated Cell Sorting (FACS) analysis/sorting of plasmatocytes throughout life. To facilitate genetic studies of reciprocal signaling, we have also made a plasmatocyte-expressing QF2 line that, in combination with extant GAL4 drivers, allows independent genetic manipulation of both plasmatocytes and surrounding tissues, and GAL80 lines that block GAL4 drivers from affecting plasmatocytes, all of which function from the early embryo to the adult.
Collapse
Affiliation(s)
- Attila Gyoergy
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Marko Roblek
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Aparna Ratheesh
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Katarina Valoskova
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Vera Belyaeva
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Stephanie Wachner
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Yutaka Matsubayashi
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL, United Kingdom
| | - Besaiz J Sánchez-Sánchez
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL, United Kingdom
| | - Brian Stramer
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL, United Kingdom
| | - Daria E Siekhaus
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
57
|
Blaquiere JA, Wong KKL, Kinsey SD, Wu J, Verheyen EM. Homeodomain-interacting protein kinase promotes tumorigenesis and metastatic cell behavior. Dis Model Mech 2018; 11:dmm.031146. [PMID: 29208636 PMCID: PMC5818076 DOI: 10.1242/dmm.031146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Aberrations in signaling pathways that regulate tissue growth often lead to tumorigenesis. Homeodomain-interacting protein kinase (Hipk) family members are reported to have distinct and contradictory effects on cell proliferation and tissue growth. From these studies, it is clear that much remains to be learned about the roles of Hipk family protein kinases in proliferation and cell behavior. Previous work has shown that Drosophila Hipk is a potent growth regulator, thus we predicted that it could have a role in tumorigenesis. In our study of Hipk-induced phenotypes, we observed the formation of tumor-like structures in multiple cell types in larvae and adults. Furthermore, elevated Hipk in epithelial cells induces cell spreading, invasion and epithelial-to-mesenchymal transition (EMT) in the imaginal disc. Further evidence comes from cell culture studies, in which we expressed Drosophila Hipk in human breast cancer cells and showed that it enhances proliferation and migration. Past studies have shown that Hipk can promote the action of conserved pathways implicated in cancer and EMT, such as Wnt/Wingless, Hippo, Notch and JNK. We show that Hipk phenotypes are not likely to arise from activation of a single target, but rather through a cumulative effect on numerous target pathways. Most Drosophila tumor models involve mutations in multiple genes, such as the well-known RasV12 model, in which EMT and invasiveness occur after the additional loss of the tumor suppressor gene scribble. Our study reveals that elevated levels of Hipk on their own can promote both hyperproliferation and invasive cell behavior, suggesting that Hipk family members could be potent oncogenes and drivers of EMT. Summary: The protein kinase Hipk can promote proliferation and invasive behaviors, and can synergize with known cancer pathways, in a new Drosophila model for tumorigenesis.
Collapse
Affiliation(s)
- Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Stephen D Kinsey
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Jin Wu
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
58
|
Rüder M, Nagel BM, Bogdan S. Analysis of Cell Shape and Cell Migration of Drosophila Macrophages In Vivo. Methods Mol Biol 2018; 1749:227-238. [PMID: 29526001 DOI: 10.1007/978-1-4939-7701-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The most abundant immune cells in Drosophila are macrophage-like plasmatocytes that fulfill central roles in morphogenesis, immune and tissue damage response. The various genetic tools available in Drosophila together with high-resolution and live-imaging microscopy techniques make Drosophila macrophages an excellent model system that combines many advantages of cultured cells with in vivo genetics. Here, we describe the isolation and staining of macrophages from larvae for ex vivo structured illumination microscopy (SIM), the preparation of white prepupae for in vivo 2D random cell migration analysis, and the preparation of pupae (18 h after puparium formation, APF) for in vivo 3D directed cell migration analysis upon wounding using spinning disk microscopy.
Collapse
Affiliation(s)
- Marike Rüder
- Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Marburg, Germany
| | - Benedikt M Nagel
- Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Marburg, Germany
| | - Sven Bogdan
- Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Marburg, Germany.
| |
Collapse
|
59
|
Duneau DF, Kondolf HC, Im JH, Ortiz GA, Chow C, Fox MA, Eugénio AT, Revah J, Buchon N, Lazzaro BP. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila. BMC Biol 2017; 15:124. [PMID: 29268741 PMCID: PMC5740927 DOI: 10.1186/s12915-017-0466-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Host sexual dimorphism is being increasingly recognized to generate strong differences in the outcome of infectious disease, but the mechanisms underlying immunological differences between males and females remain poorly characterized. Here, we used Drosophila melanogaster to assess and dissect sexual dimorphism in the innate response to systemic bacterial infection. RESULTS We demonstrated sexual dimorphism in susceptibility to infection by a broad spectrum of Gram-positive and Gram-negative bacteria. We found that both virgin and mated females are more susceptible than mated males to most, but not all, infections. We investigated in more detail the lower resistance of females to infection with Providencia rettgeri, a Gram-negative bacterium that naturally infects D. melanogaster. We found that females have a higher number of phagocytes than males and that ablation of hemocytes does not eliminate the dimorphism in resistance to P. rettgeri, so the observed dimorphism does not stem from differences in the cellular response. The Imd pathway is critical for the production of antimicrobial peptides in response to Gram-negative bacteria, but mutants for Imd signaling continued to exhibit dimorphism even though both sexes showed strongly reduced resistance. Instead, we found that the Toll pathway is responsible for the dimorphism in resistance. The Toll pathway is dimorphic in genome-wide constitutive gene expression and in induced response to infection. Toll signaling is dimorphic in both constitutive signaling and in induced activation in response to P. rettgeri infection. The dimorphism in pathway activation can be specifically attributed to Persephone-mediated immune stimulation, by which the Toll pathway is triggered in response to pathogen-derived virulence factors. We additionally found that, in absence of Toll signaling, males become more susceptible than females to the Gram-positive Enterococcus faecalis. This reversal in susceptibility between male and female Toll pathway mutants compared to wildtype hosts highlights the key role of the Toll pathway in D. melanogaster sexual dimorphism in resistance to infection. CONCLUSION Altogether, our data demonstrate that Toll pathway activity differs between male and female D. melanogaster in response to bacterial infection, thus identifying innate immune signaling as a determinant of sexual immune dimorphism.
Collapse
Affiliation(s)
- David F Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France. .,CNRS, Université Paul Sabatier, UMR5174 EDB, F-31062, Toulouse, France.
| | - Hannah C Kondolf
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France.,Present Address: Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Joo Hyun Im
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| | - Gerardo A Ortiz
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France
| | - Christopher Chow
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France
| | - Michael A Fox
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France
| | - Ana T Eugénio
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780, Oeiras, Portugal
| | - J Revah
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| | - Nicolas Buchon
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| | - Brian P Lazzaro
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| |
Collapse
|
60
|
Kenmoku H, Hori A, Kuraishi T, Kurata S. A novel mode of induction of the humoral innate immune response in Drosophila larvae. Dis Model Mech 2017; 10:271-281. [PMID: 28250052 PMCID: PMC5374318 DOI: 10.1242/dmm.027102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Hiroyuki Kenmoku
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Aki Hori
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.,Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-1192, Japan
| | - Takayuki Kuraishi
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan .,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa 920-1192, Japan.,PRESTO, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Shoichiro Kurata
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
61
|
Yang H, Hultmark D. Drosophila muscles regulate the immune response against wasp infection via carbohydrate metabolism. Sci Rep 2017; 7:15713. [PMID: 29146985 PMCID: PMC5691183 DOI: 10.1038/s41598-017-15940-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/06/2017] [Indexed: 11/09/2022] Open
Abstract
We recently found that JAK/STAT signaling in skeletal muscles is important for the immune response of Drosophila larvae against wasp infection, but it was not clear how muscles could affect the immune response. Here we show that insulin signaling is required in muscles, but not in fat body or hemocytes, during larval development for an efficient encapsulation response and for the formation of lamellocytes. This effect requires TOR signaling. We show that muscle tissue affects the immune response by acting as a master regulator of carbohydrate metabolism in the infected animal, via JAK/STAT and insulin signaling in the muscles, and that there is indirect positive feedback between JAK/STAT and insulin signaling in the muscles. Specifically, stimulation of JAK/STAT signaling in the muscles can rescue the deficient immune response when insulin signaling is suppressed. Our results shed new light on the interaction between metabolism, immunity, and tissue communication.
Collapse
Affiliation(s)
- Hairu Yang
- Department of Molecular Biology, Umeå University, S-901 87, Umeå, Sweden.,Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, S-901 87, Umeå, Sweden. .,Institute of Biomedical Technology, University of Tampere, FI-33520, Tampere, Finland.
| |
Collapse
|
62
|
Proapoptotic function of deubiquitinase DUSP31 in Drosophila. Oncotarget 2017; 8:70452-70462. [PMID: 29050293 PMCID: PMC5642568 DOI: 10.18632/oncotarget.19715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Drosophila have been used to identify new components in apoptosis regulation. The Drosophila protein Dark forms an octameric apoptosome complex that induces the initiator caspase Dronc to trigger the caspase cell death pathway and, therefore, plays an important role in controlling apoptosis. Caspases and Dark are constantly expressed in cells, but their activity is blocked by DIAP1 E3 ligase-mediated ubiquitination and subsequent inactivation or proteasomal degradation. One of the regulatory mechanisms that stabilize proapoptotic factors is the removal of ubiquitin chains by deubiquitinases. In this study performed a modified genetic screen for deubiquitinases (dsRNA lines) to identify those involved in stabilizing proapoptotic components. Loss-of-function alleles of deubiquitinase DUSP31 were identified as suppressors of the Dronc overexpression phenotype. DUSP31 deficiency also suppresses apoptosis induced by the RHG protein, Grim. Genetic analysis revealed for the first time that DUSP31 deficiency sufficiently suppresses the Dark phenotype, indicating its involvement in the control of Dark/Dronc apoptosome function in invertebrate apoptosis.
Collapse
|
63
|
Tassetto M, Kunitomi M, Andino R. Circulating Immune Cells Mediate a Systemic RNAi-Based Adaptive Antiviral Response in Drosophila. Cell 2017; 169:314-325.e13. [PMID: 28388413 DOI: 10.1016/j.cell.2017.03.033] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/12/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
Effective antiviral protection in multicellular organisms relies on both cell-autonomous and systemic immunity. Systemic immunity mediates the spread of antiviral signals from infection sites to distant uninfected tissues. In arthropods, RNA interference (RNAi) is responsible for antiviral defense. Here, we show that flies have a sophisticated systemic RNAi-based immunity mediated by macrophage-like haemocytes. Haemocytes take up dsRNA from infected cells and, through endogenous transposon reverse transcriptases, produce virus-derived complementary DNAs (vDNA). These vDNAs template de novo synthesis of secondary viral siRNAs (vsRNA), which are secreted in exosome-like vesicles. Strikingly, exosomes containing vsRNAs, purified from haemolymph of infected flies, confer passive protection against virus challenge in naive animals. Thus, similar to vertebrates, insects use immune cells to generate immunological memory in the form of stable vDNAs that generate systemic immunity, which is mediated by the vsRNA-containing exosomes.
Collapse
Affiliation(s)
- Michel Tassetto
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94122-2280, USA
| | - Mark Kunitomi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94122-2280, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94122-2280, USA.
| |
Collapse
|
64
|
Jo J, Im SH, Babcock DT, Iyer SC, Gunawan F, Cox DN, Galko MJ. Drosophila caspase activity is required independently of apoptosis to produce active TNF/Eiger during nociceptive sensitization. Cell Death Dis 2017; 8:e2786. [PMID: 28492538 PMCID: PMC5520682 DOI: 10.1038/cddis.2016.474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
Abstract
Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive (pain) sensitization in Drosophila and vertebrates. Nociceptive sensitization in Drosophila larvae following UV-induced tissue damage is accompanied by epidermal apoptosis and requires epidermal-derived TNF/Eiger and the initiator caspase, Dronc. Major gaps remain regarding TNF function in sensitization, including the relationship between apoptosis/tissue damage and TNF production, the downstream signaling in this context, and the target genes that modulate nociceptive behaviors. Here, apoptotic cell death and thermal nociceptive sensitization are genetically and procedurally separable in a Drosophila model of UV-induced nociceptive sensitization. Activation of epidermal Dronc induces TNF-dependent but effector caspase-independent nociceptive sensitization in the absence of UV. In addition, knockdown of Dronc attenuated nociceptive sensitization induced by full-length TNF/Eiger but not by a constitutively soluble form. UV irradiation induced TNF production in both in vitro and in vivo, but TNF secretion into hemolymph was not sufficient to induce thermal nociceptive sensitization. Downstream mediators of TNF-induced sensitization included two TNF receptor-associated factors, a p38 kinase, and the transcription factor nuclear factor kappa B. Finally, sensory neuron-specific microarray analysis revealed downstream TNF target genes induced during thermal nociceptive sensitization. One of these, enhancer of zeste (E(z)), functions downstream of TNF during thermal nociceptive sensitization. Our findings suggest that an initiator caspase is involved in TNF processing/secretion during nociceptive sensitization, and that TNF activation leads to a specific downstream signaling cascade and gene transcription required for sensitization. These findings have implications for both the evolution of inflammatory caspase function following tissue damage signals and the action of TNF during sensitization in vertebrates.
Collapse
Affiliation(s)
- Juyeon Jo
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seol Hee Im
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel T Babcock
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srividya C Iyer
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Felona Gunawan
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Michael J Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
65
|
Nagel BM, Bechtold M, Rodriguez LG, Bogdan S. Drosophila WASH is required for integrin-mediated cell adhesion, cell motility and lysosomal neutralization. J Cell Sci 2016; 130:344-359. [PMID: 27884932 DOI: 10.1242/jcs.193086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
The Wiskott-Aldrich syndrome protein and SCAR homolog (WASH; also known as Washout in flies) is a conserved actin-nucleation-promoting factor controlling Arp2/3 complex activity in endosomal sorting and recycling. Previous studies have identified WASH as an essential regulator in Drosophila development. Here, we show that homozygous wash mutant flies are viable and fertile. We demonstrate that Drosophila WASH has conserved functions in integrin receptor recycling and lysosome neutralization. WASH generates actin patches on endosomes and lysosomes, thereby mediating both aforementioned functions. Consistently, loss of WASH function results in cell spreading and cell migration defects of macrophages, and an increased lysosomal acidification that affects efficient phagocytic and autophagic clearance. WASH physically interacts with the vacuolar (V)-ATPase subunit Vha55 that is crucial to establish and maintain lysosome acidification. As a consequence, starved flies that lack WASH function show a dramatic increase in acidic autolysosomes, causing a reduced lifespan. Thus, our data highlight a conserved role for WASH in the endocytic sorting and recycling of membrane proteins, such as integrins and the V-ATPase, that increase the likelihood of survival under nutrient deprivation.
Collapse
Affiliation(s)
- Benedikt M Nagel
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany.,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| | - Meike Bechtold
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | | | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany .,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| |
Collapse
|
66
|
Baril C, Gavory G, Bidla G, Knævelsrud H, Sauvageau G, Therrien M. Human NUP98-HOXA9 promotes hyperplastic growth of hematopoietic tissues in Drosophila. Dev Biol 2016; 421:16-26. [PMID: 27838340 DOI: 10.1016/j.ydbio.2016.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a complex malignancy with poor prognosis. Several genetic lesions can lead to the disease. One of these corresponds to the NUP98-HOXA9 (NA9) translocation that fuses sequences encoding the N-terminal part of NUP98 to those encoding the DNA-binding domain of HOXA9. Despite several studies, the mechanism underlying NA9 ability to induce leukemia is still unclear. To bridge this gap, we sought to functionally dissect NA9 activity using Drosophila. For this, we generated transgenic NA9 fly lines and expressed the oncoprotein during larval hematopoiesis. This markedly enhanced cell proliferation and tissue growth, but did not alter cell fate specification. Moreover, reminiscent to NA9 activity in mammals, strong cooperation was observed between NA9 and the MEIS homolog HTH. Genetic characterization of NA9-induced phenotypes suggested interference with PVR (Flt1-4 RTK homolog) signaling, which is similar to functional interactions observed in mammals between Flt3 and HOXA9 in leukemia. Finally, NA9 expression was also found to induce non-cell autonomous effects, raising the possibility that its leukemia-inducing activity also relies on this property. Together, our work suggests that NA9 ability to induce blood cell expansion is evolutionarily conserved. The amenability of NA9 activity to a genetically-tractable system should facilitate unraveling its molecular underpinnings.
Collapse
Affiliation(s)
- Caroline Baril
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Gwenaëlle Gavory
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Gawa Bidla
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Helene Knævelsrud
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7; Département de médecine, Université de Montréal, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7; Département de pathologie et de biologie cellulaire, Université de Montréal, Canada.
| |
Collapse
|
67
|
Guillou A, Troha K, Wang H, Franc NC, Buchon N. The Drosophila CD36 Homologue croquemort Is Required to Maintain Immune and Gut Homeostasis during Development and Aging. PLoS Pathog 2016; 12:e1005961. [PMID: 27780230 PMCID: PMC5079587 DOI: 10.1371/journal.ppat.1005961] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022] Open
Abstract
Phagocytosis is an ancient mechanism central to both tissue homeostasis and immune defense. Both the identity of the receptors that mediate bacterial phagocytosis and the nature of the interactions between phagocytosis and other defense mechanisms remain elusive. Here, we report that Croquemort (Crq), a Drosophila member of the CD36 family of scavenger receptors, is required for microbial phagocytosis and efficient bacterial clearance. Flies mutant for crq are susceptible to environmental microbes during development and succumb to a variety of microbial infections as adults. Crq acts parallel to the Toll and Imd pathways to eliminate bacteria via phagocytosis. crq mutant flies exhibit enhanced and prolonged immune and cytokine induction accompanied by premature gut dysplasia and decreased lifespan. The chronic state of immune activation in crq mutant flies is further regulated by negative regulators of the Imd pathway. Altogether, our data demonstrate that Crq plays a key role in maintaining immune and organismal homeostasis.
Collapse
Affiliation(s)
- Aurélien Guillou
- Department of Entomology, Cornell University, Ithaca, NY, United States Of America
| | - Katia Troha
- Department of Entomology, Cornell University, Ithaca, NY, United States Of America
| | - Hui Wang
- Department of Cell & Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States Of America
| | - Nathalie C. Franc
- Department of Cell & Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States Of America
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, NY, United States Of America
| |
Collapse
|
68
|
Schmid MR, Anderl I, Vo HTM, Valanne S, Yang H, Kronhamn J, Rämet M, Rusten TE, Hultmark D. Genetic Screen in Drosophila Larvae Links ird1 Function to Toll Signaling in the Fat Body and Hemocyte Motility. PLoS One 2016; 11:e0159473. [PMID: 27467079 PMCID: PMC4965076 DOI: 10.1371/journal.pone.0159473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/05/2016] [Indexed: 12/26/2022] Open
Abstract
To understand how Toll signaling controls the activation of a cellular immune response in Drosophila blood cells (hemocytes), we carried out a genetic modifier screen, looking for deletions that suppress or enhance the mobilization of sessile hemocytes by the gain-of-function mutation Toll10b (Tl10b). Here we describe the results from chromosome arm 3R, where five regions strongly suppressed this phenotype. We identified the specific genes immune response deficient 1 (ird1), headcase (hdc) and possibly Rab23 as suppressors, and we studied the role of ird1 in more detail. An ird1 null mutant and a mutant that truncates the N-terminal kinase domain of the encoded Ird1 protein affected the Tl10b phenotype, unlike mutations that affect the C-terminal part of the protein. The ird1 null mutant suppressed mobilization of sessile hemocytes, but enhanced other Tl10b hemocyte phenotypes, like the formation of melanotic nodules and the increased number of circulating hemocytes. ird1 mutants also had blood cell phenotypes on their own. They lacked crystal cells and showed aberrant formation of lamellocytes. ird1 mutant plasmatocytes had a reduced ability to spread on an artificial substrate by forming protrusions, which may explain why they did not go into circulation in response to Toll signaling. The effect of the ird1 mutation depended mainly on ird1 expression in hemocytes, but ird1-dependent effects in other tissues may contribute. Specifically, the Toll receptor was translocated from the cell membrane to intracellular vesicles in the fat body of the ird1 mutant, and Toll signaling was activated in that tissue, partially explaining the Tl10b-like phenotype. As ird1 is otherwise known to control vesicular transport, we conclude that the vesicular transport system may be of particular importance during an immune response.
Collapse
Affiliation(s)
| | - Ines Anderl
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- BioMediTech, University of Tampere, Tampere, Finland
| | - Hoa T. M. Vo
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Hairu Yang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jesper Kronhamn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mika Rämet
- BioMediTech, University of Tampere, Tampere, Finland
- PEDEGO Research Center, and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tor Erik Rusten
- Department of Molecular Cell Biology, Oslo University Hospital, Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- BioMediTech, University of Tampere, Tampere, Finland
| |
Collapse
|
69
|
Anderl I, Vesala L, Ihalainen TO, Vanha-aho LM, Andó I, Rämet M, Hultmark D. Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection. PLoS Pathog 2016; 12:e1005746. [PMID: 27414410 PMCID: PMC4945071 DOI: 10.1371/journal.ppat.1005746] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022] Open
Abstract
Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail.
Collapse
Affiliation(s)
- Ines Anderl
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Laura Vesala
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - Teemu O. Ihalainen
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - Leena-Maija Vanha-aho
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - István Andó
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Mika Rämet
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Dan Hultmark
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
70
|
Neves J, Zhu J, Sousa-Victor P, Konjikusic M, Riley R, Chew S, Qi Y, Jasper H, Lamba DA. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science 2016; 353:aaf3646. [PMID: 27365452 PMCID: PMC5270511 DOI: 10.1126/science.aaf3646] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
Abstract
Regenerative therapies are limited by unfavorable environments in aging and diseased tissues. A promising strategy to improve success is to balance inflammatory and anti-inflammatory signals and enhance endogenous tissue repair mechanisms. Here, we identified a conserved immune modulatory mechanism that governs the interaction between damaged retinal cells and immune cells to promote tissue repair. In damaged retina of flies and mice, platelet-derived growth factor (PDGF)-like signaling induced mesencephalic astrocyte-derived neurotrophic factor (MANF) in innate immune cells. MANF promoted alternative activation of innate immune cells, enhanced neuroprotection and tissue repair, and improved the success of photoreceptor replacement therapies. Thus, immune modulation is required during tissue repair and regeneration. This approach may improve the efficacy of stem-cell-based regenerative therapies.
Collapse
Affiliation(s)
- Joana Neves
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Jie Zhu
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Pedro Sousa-Victor
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Mia Konjikusic
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Rebeccah Riley
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Shereen Chew
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Yanyan Qi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.
| | - Deepak A Lamba
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.
| |
Collapse
|
71
|
Chakrabarti S, Dudzic JP, Li X, Collas EJ, Boquete JP, Lemaitre B. Remote Control of Intestinal Stem Cell Activity by Haemocytes in Drosophila. PLoS Genet 2016; 12:e1006089. [PMID: 27231872 PMCID: PMC4883764 DOI: 10.1371/journal.pgen.1006089] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
The JAK/STAT pathway is a key signaling pathway in the regulation of development and immunity in metazoans. In contrast to the multiple combinatorial JAK/STAT pathways in mammals, only one canonical JAK/STAT pathway exists in Drosophila. It is activated by three secreted proteins of the Unpaired family (Upd): Upd1, Upd2 and Upd3. Although many studies have established a link between JAK/STAT activation and tissue damage, the mode of activation and the precise function of this pathway in the Drosophila systemic immune response remain unclear. In this study, we used mutations in upd2 and upd3 to investigate the role of the JAK/STAT pathway in the systemic immune response. Our study shows that haemocytes express the three upd genes and that injury markedly induces the expression of upd3 by the JNK pathway in haemocytes, which in turn activates the JAK/STAT pathway in the fat body and the gut. Surprisingly, release of Upd3 from haemocytes upon injury can remotely stimulate stem cell proliferation and the expression of Drosomycin-like genes in the intestine. Our results also suggest that a certain level of intestinal epithelium renewal is required for optimal survival to septic injury. While haemocyte-derived Upd promotes intestinal stem cell activation and survival upon septic injury, haemocytes are dispensable for epithelium renewal upon oral bacterial infection. Our study also indicates that intestinal epithelium renewal is sensitive to insults from both the lumen and the haemocoel. It also reveals that release of Upds by haemocytes coordinates the wound-healing program in multiple tissues, including the gut, an organ whose integrity is critical to fly survival.
Collapse
Affiliation(s)
- Sveta Chakrabarti
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail: (SC); (BL)
| | - Jan Paul Dudzic
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxue Li
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Jeanne Collas
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Phillipe Boquete
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail: (SC); (BL)
| |
Collapse
|
72
|
Gold KS, Brückner K. Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 2016; 27:357-68. [PMID: 27117654 DOI: 10.1016/j.smim.2016.03.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022]
Abstract
The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life.
Collapse
Affiliation(s)
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Department of Cell and Tissue Biology; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
73
|
Petraki S, Alexander B, Brückner K. Assaying Blood Cell Populations of the Drosophila melanogaster Larva. J Vis Exp 2015:52733. [PMID: 26650404 PMCID: PMC4692709 DOI: 10.3791/52733] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In vertebrates, hematopoiesis is regulated by inductive microenvironments (niches). Likewise, in the invertebrate model organism Drosophila melanogaster, inductive microenvironments known as larval Hematopoietic Pockets (HPs) have been identified as anatomical sites for the development and regulation of blood cells (hemocytes), in particular of the self-renewing macrophage lineage. HPs are segmentally repeated pockets between the epidermis and muscle layers of the larva, which also comprise sensory neurons of the peripheral nervous system. In the larva, resident (sessile) hemocytes are exposed to anti-apoptotic, adhesive and proliferative cues from these sensory neurons and potentially other components of the HPs, such as the lining muscle and epithelial layers. During normal development, gradual release of resident hemocytes from the HPs fuels the population of circulating hemocytes, which culminates in the release of most of the resident hemocytes at the beginning of metamorphosis. Immune assaults, physical injury or mechanical disturbance trigger the premature release of resident hemocytes into circulation. The switch of larval hemocytes between resident locations and circulation raises the need for a common standard/procedure to selectively isolate and quantify these two populations of blood cells from single Drosophila larvae. Accordingly, this protocol describes an automated method to release and quantify the resident and circulating hemocytes from single larvae. The method facilitates ex vivo approaches, and may be adapted to serve a variety of developmental stages of Drosophila and other invertebrate organisms.
Collapse
Affiliation(s)
- Sophia Petraki
- Department of Cell and Tissue Biology, University of California San Francisco
| | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California San Francisco
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California San Francisco; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; Cardiovascular Research Institute, University of California San Francisco;
| |
Collapse
|
74
|
Yang H, Kronhamn J, Ekström JO, Korkut GG, Hultmark D. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection. EMBO Rep 2015; 16:1664-72. [PMID: 26412855 PMCID: PMC4687419 DOI: 10.15252/embr.201540277] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/28/2015] [Indexed: 11/09/2022] Open
Abstract
The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.
Collapse
Affiliation(s)
- Hairu Yang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jesper Kronhamn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jens-Ola Ekström
- Department of Molecular Biology, Umeå University, Umeå, Sweden Institute of Biomedical Technology BMT Tampere University, Tampere, Finland
| | | | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden Institute of Biomedical Technology BMT Tampere University, Tampere, Finland
| |
Collapse
|
75
|
Leitão AB, Sucena É. Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation. eLife 2015; 4. [PMID: 25650737 PMCID: PMC4357286 DOI: 10.7554/elife.06166] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
Virtually all species of coelomate animals contain blood cells that display a division of labor necessary for homeostasis. This functional partition depends upon the balance between proliferation and differentiation mostly accomplished in the hematopoietic organs. In Drosophila melanogaster, the lymph gland produces plasmatocytes and crystal cells that are not released until pupariation. Yet, throughout larval development, both hemocyte types increase in numbers. Mature plasmatocytes can proliferate but it is not known if crystal cell numbers increase by self-renewal or by de novo differentiation. We show that new crystal cells in third instar larvae originate through a Notch-dependent process of plasmatocyte transdifferentiation. This process occurs in the sessile clusters and is contingent upon the integrity of these structures. The existence of this hematopoietic tissue, relying on structure-dependent signaling events to promote blood homeostasis, creates a new paradigm for addressing outstanding questions in Drosophila hematopoiesis and establishing further parallels with vertebrate systems.
Collapse
Affiliation(s)
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
76
|
Genetic dissection of leukemia-associated IDH1 and IDH2 mutants and D-2-hydroxyglutarate in Drosophila. Blood 2014; 125:336-45. [PMID: 25398939 DOI: 10.1182/blood-2014-05-577940] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gain-of-function mutations in nicotinamide adenine dinucleotide phosphate-dependent isocitrate dehydrogenase (IDH)1 and IDH2 frequently arise in human leukemias and other cancers and produce high levels of D-2-hydroxyglutarate (D-2HG). We expressed the R195H mutant of Drosophila Idh (CG7176), which is equivalent to the human cancer-associated IDH1-R132H mutant, in fly tissues using the UAS-Gal4 binary expression system. Idh-R195H caused a >25-fold elevation of D-2HG when expressed ubiquitously in flies. Expression of mutant Idh in larval blood cells (hemocytes) resulted in higher numbers of circulating blood cells. Mutant Idh expression in fly neurons resulted in neurologic and wing-expansion defects, and these phenotypes were rescued by genetic modulation of superoxide dismutase 2, p53, and apoptotic caspase cascade mediators. Idh-R163Q, which is homologous to the common leukemia-associated IDH2-R140Q mutant, resulted in moderately elevated D-2HG and milder phenotypes. We identified the fly homolog of D-2-hydroxyglutaric acid dehydrogenase (CG3835), which metabolizes D-2HG, and showed that coexpression of this enzyme with mutant Idh abolishes mutant Idh-associated phenotypes. These results provide a flexible model system to interrogate a cancer-related genetic and metabolic pathway and offer insights into the impact of IDH mutation and D-2HG on metazoan tissues.
Collapse
|
77
|
Basement membrane and cell integrity of self-tissues in maintaining Drosophila immunological tolerance. PLoS Genet 2014; 10:e1004683. [PMID: 25329560 PMCID: PMC4199487 DOI: 10.1371/journal.pgen.1004683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
The mechanism underlying immune system recognition of different types of pathogens has been extensively studied over the past few decades; however, the mechanism by which healthy self-tissue evades an attack by its own immune system is less well-understood. Here, we established an autoimmune model of melanotic mass formation in Drosophila by genetically disrupting the basement membrane. We found that the basement membrane endows otherwise susceptible target tissues with self-tolerance that prevents autoimmunity, and further demonstrated that laminin is a key component for both structural maintenance and the self-tolerance checkpoint function of the basement membrane. Moreover, we found that cell integrity, as determined by cell-cell interaction and apicobasal polarity, functions as a second discrete checkpoint. Target tissues became vulnerable to blood cell encapsulation and subsequent melanization only after loss of both the basement membrane and cell integrity.
Collapse
|
78
|
Mondal BC, Shim J, Evans CJ, Banerjee U. Pvr expression regulators in equilibrium signal control and maintenance of Drosophila blood progenitors. eLife 2014; 3:e03626. [PMID: 25201876 PMCID: PMC4185420 DOI: 10.7554/elife.03626] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/05/2014] [Indexed: 12/18/2022] Open
Abstract
Blood progenitors within the lymph gland, a larval organ that supports hematopoiesis in Drosophila melanogaster, are maintained by integrating signals emanating from niche-like cells and those from differentiating blood cells. We term the signal from differentiating cells the 'equilibrium signal' in order to distinguish it from the 'niche signal'. Earlier we showed that equilibrium signaling utilizes Pvr (the Drosophila PDGF/VEGF receptor), STAT92E, and adenosine deaminase-related growth factor A (ADGF-A) (Mondal et al., 2011). Little is known about how this signal initiates during hematopoietic development. To identify new genes involved in lymph gland blood progenitor maintenance, particularly those involved in equilibrium signaling, we performed a genetic screen that identified bip1 (bric à brac interacting protein 1) and Nucleoporin 98 (Nup98) as additional regulators of the equilibrium signal. We show that the products of these genes along with the Bip1-interacting protein RpS8 (Ribosomal protein S8) are required for the proper expression of Pvr.
Collapse
Affiliation(s)
- Bama Charan Mondal
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Jiwon Shim
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Cory J Evans
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
79
|
Control of Drosophila blood cell activation via Toll signaling in the fat body. PLoS One 2014; 9:e102568. [PMID: 25102059 PMCID: PMC4125153 DOI: 10.1371/journal.pone.0102568] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022] Open
Abstract
The Toll signaling pathway, first discovered in Drosophila, has a well-established role in immune responses in insects as well as in mammals. In Drosophila, the Toll-dependent induction of antimicrobial peptide production has been intensely studied as a model for innate immune responses in general. Besides this humoral immune response, Toll signaling is also known to activate blood cells in a reaction that is similar to the cellular immune response to parasite infections, but the mechanisms of this response are poorly understood. Here we have studied this response in detail, and found that Toll signaling in several different tissues can activate a cellular immune defense, and that this response does not require Toll signaling in the blood cells themselves. Like in the humoral immune response, we show that Toll signaling in the fat body (analogous to the liver in vertebrates) is of major importance in the Toll-dependent activation of blood cells. However, this Toll-dependent mechanism of blood cell activation contributes very little to the immune response against the parasitoid wasp, Leptopilina boulardi, probably because the wasp is able to suppress Toll induction. Other redundant pathways may be more important in the defense against this pathogen.
Collapse
|
80
|
Evans CJ, Liu T, Banerjee U. Drosophila hematopoiesis: Markers and methods for molecular genetic analysis. Methods 2014; 68:242-51. [PMID: 24613936 PMCID: PMC4051208 DOI: 10.1016/j.ymeth.2014.02.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 01/09/2023] Open
Abstract
Analyses of the Drosophila hematopoietic system are becoming more and more prevalent as developmental and functional parallels with vertebrate blood cells become more evident. Investigative work on the fly blood system has, out of necessity, led to the identification of new molecular markers for blood cell types and lineages and to the refinement of useful molecular genetic tools and analytical methods. This review briefly describes the Drosophila hematopoietic system at different developmental stages, summarizes the major useful cell markers and tools for each stage, and provides basic protocols for practical analysis of circulating blood cells and of the lymph gland, the larval hematopoietic organ.
Collapse
Affiliation(s)
- Cory J Evans
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ting Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
81
|
Taillebourg E, Schneider DS, Fauvarque MO. The Drosophila deubiquitinating enzyme dUSP36 acts in the hemocytes for tolerance to Listeria monocytogenes infections. J Innate Immun 2014; 6:632-8. [PMID: 24777180 DOI: 10.1159/000360293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/04/2014] [Indexed: 01/07/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular pathogen which can infect Drosophila melanogaster. Upon infection, Drosophila mounts an immune response including antimicrobial peptide production and autophagy activation. A set of previously published results prompted us to study the role of the deubiquitinating enzyme dUSP36 in response to L. monocytogenes infections. We show in this report that flies with dUsp36-specific inactivation in hemocytes are susceptible to L. monocytogenes infections (as are flies with autophagy-deficient hemocytes) but are still able to control bacterial growth. Interestingly, flies with dUsp36-depleted hemocytes are not sensitized to infection by other pathogens. We conclude that dUsp36 plays a major role in hemocytes for tolerance to L. monocytogenes.
Collapse
Affiliation(s)
- Emmanuel Taillebourg
- Department of Microbiology and Immunology, Stanford University, Stanford, Calif., USA
| | | | | |
Collapse
|
82
|
Lammel U, Bechtold M, Risse B, Berh D, Fleige A, Bunse I, Jiang X, Klämbt C, Bogdan S. The Drosophila FHOD1-like formin Knittrig acts through Rok to promote stress fiber formation and directed macrophage migration during the cellular immune response. Development 2014; 141:1366-80. [PMID: 24553290 DOI: 10.1242/dev.101352] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A tight spatiotemporal control of actin polymerization is important for many cellular processes that shape cells into a multicellular organism. The formation of unbranched F-actin is induced by several members of the formin family. Drosophila encodes six formin genes, representing six of the seven known mammalian subclasses. Knittrig, the Drosophila homolog of mammalian FHOD1, is specifically expressed in the developing central nervous system midline glia, the trachea, the wing and in macrophages. knittrig mutants exhibit mild tracheal defects but survive until late pupal stages and mainly die as pharate adult flies. knittrig mutant macrophages are smaller and show reduced cell spreading and cell migration in in vivo wounding experiments. Rescue experiments further demonstrate a cell-autonomous function of Knittrig in regulating actin dynamics and cell migration. Knittrig localizes at the rear of migrating macrophages in vivo, suggesting a cellular requirement of Knittrig in the retraction of the trailing edge. Supporting this notion, we found that Knittrig is a target of the Rho-dependent kinase Rok. Co-expression with Rok or expression of an activated form of Knittrig induces actin stress fibers in macrophages and in epithelial tissues. Thus, we propose a model in which Rok-induced phosphorylation of residues within the basic region mediates the activation of Knittrig in controlling macrophage migration.
Collapse
Affiliation(s)
- Uwe Lammel
- Institute for Neurobiology, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Shim J, Mukherjee T, Mondal BC, Liu T, Young GC, Wijewarnasuriya DP, Banerjee U. Olfactory control of blood progenitor maintenance. Cell 2014; 155:1141-53. [PMID: 24267893 DOI: 10.1016/j.cell.2013.10.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/28/2013] [Accepted: 10/07/2013] [Indexed: 12/25/2022]
Abstract
Drosophila hematopoietic progenitor maintenance involves both near neighbor and systemic interactions. This study shows that olfactory receptor neurons (ORNs) function upstream of a small set of neurosecretory cells that express GABA. Upon olfactory stimulation, GABA from these neurosecretory cells is secreted into the circulating hemolymph and binds to metabotropic GABAB receptors expressed on blood progenitors within the hematopoietic organ, the lymph gland. The resulting GABA signal causes high cytosolic Ca(2+), which is necessary and sufficient for progenitor maintenance. Thus, the activation of an odorant receptor is essential for blood progenitor maintenance, and consequently, larvae raised on minimal odor environments fail to sustain a pool of hematopoietic progenitors. This study links sensory perception and the effects of its deprivation on the integrity of the hematopoietic and innate immune systems in Drosophila. PAPERCLIP:
Collapse
Affiliation(s)
- Jiwon Shim
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Regan JC, Brandão AS, Leitão AB, Mantas Dias ÂR, Sucena É, Jacinto A, Zaidman-Rémy A. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila. PLoS Pathog 2013; 9:e1003720. [PMID: 24204269 PMCID: PMC3812043 DOI: 10.1371/journal.ppat.1003720] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 09/06/2013] [Indexed: 01/28/2023] Open
Abstract
Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils) is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of immunity in vivo in Drosophila, and paves the way for genetic dissection of the mechanisms at work behind steroid regulation of innate immune cells.
Collapse
Affiliation(s)
- Jennifer C. Regan
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | - Ana S. Brandão
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | - Ângela Raquel Mantas Dias
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Animal, Edifício C2, Lisboa, Portugal
| | - António Jacinto
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Anna Zaidman-Rémy
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
85
|
Sander M, Squarr AJ, Risse B, Jiang X, Bogdan S. Drosophila pupal macrophages--a versatile tool for combined ex vivo and in vivo imaging of actin dynamics at high resolution. Eur J Cell Biol 2013; 92:349-54. [PMID: 24183239 DOI: 10.1016/j.ejcb.2013.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 12/21/2022] Open
Abstract
Molecular understanding of actin dynamics requires a genetically traceable model system that allows live cell imaging together with high-resolution microscopy techniques. Here, we used Drosophila pupal macrophages that combine many advantages of cultured cells with a genetic in vivo model system. Using structured illumination microscopy together with advanced spinning disk confocal microscopy we show that these cells provide a powerful system for single gene analysis. It allows forward genetic screens to characterize the regulatory network controlling cell shape and directed cell migration in a physiological context. We knocked down components regulating lamellipodia formation, including WAVE, single subunits of Arp2/3 complex and CPA, one of the two capping protein subunits and demonstrate the advantages of this model system by imaging mutant macrophages ex vivo as well as in vivo upon laser-induced wounding.
Collapse
Affiliation(s)
- Moritz Sander
- Institute for Neurobiology, University of Münster, Germany
| | | | | | | | | |
Collapse
|
86
|
Honti V, Cinege G, Csordás G, Kurucz E, Zsámboki J, Evans CJ, Banerjee U, Andó I. Variation of NimC1 expression in Drosophila stocks and transgenic strains. Fly (Austin) 2013; 7:263-6. [PMID: 23899817 DOI: 10.4161/fly.25654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The NimC1 molecule has been described as a phagocytosis receptor, and is being used as a marker for professional phagocytes, the plasmatocytes, in Drosophila melanogaster. In studies including tumor-biology, developmental biology, and cell mediated immunity, monoclonal antibodies (P1a and P1b) to the NimC1 antigen are used. As we observed that these antibodies did not react with plasmatocytes of several strains and genetic combinations, a molecular analysis was performed on the structure of the nimC1 gene. In these strains we found 2 deletions and an insertion within the nimC1 gene, which may result in the production of a truncated NimC1 protein. The NimC1 positivity was regained by recombining the mutation with a wild-type allele or by using nimC1 mutant lines under heterozygous conditions. By means of these procedures or using the recombined stock, NimC1 can be used as a marker for phagocytic cells in the majority of the possible genetic backgrounds.
Collapse
Affiliation(s)
- Viktor Honti
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences; Szeged, Hungary
| | - Gyöngyi Cinege
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences; Szeged, Hungary
| | - Gábor Csordás
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences; Szeged, Hungary
| | - Eva Kurucz
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences; Szeged, Hungary
| | - János Zsámboki
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences; Szeged, Hungary
| | - Cory J Evans
- Department of Molecular, Cell and Developmental Biology; University of California Los Angeles; Los Angeles, CA USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology; University of California Los Angeles; Los Angeles, CA USA
| | - István Andó
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences; Szeged, Hungary
| |
Collapse
|
87
|
Moreira CGA, Jacinto A, Prag S. Drosophila integrin adhesion complexes are essential for hemocyte migration in vivo. Biol Open 2013; 2:795-801. [PMID: 23951405 PMCID: PMC3744071 DOI: 10.1242/bio.20134564] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/01/2013] [Indexed: 01/01/2023] Open
Abstract
Cell migration is an important biological process which has been intensively studied in the past decades. Numerous techniques, mainly involving two-dimensional cell culture systems, have contributed to dissecting the essential mechanisms underlying this process. However, the development of three-dimensional cell culture and in vivo systems has shown some differences with what was previously believed to be well-established cell migration mechanisms, suggesting that two-dimensional cell motility would be a poor predictor of in vivo behaviour. Drosophila is a widely recognized model organism to study developmental and homeostatic processes and has been widely used to investigate cell migration. Here, we focus on the migration of small groups of pupal hemocytes that accumulate during larval stages in dorsal patches. We show that integrins, and other known nascent adhesion-related proteins such as Rhea and Fermitin 1, are crucial for this process and that their depletion does not affect polarization in response to environmental cues. We also present evidence for the importance of adhesion maturation-related proteins in hemocyte migration, namely Zyxin. Zyxin depletion in hemocytes leads to a significant increase of cell speed without affecting their response to a chemotactic cue. This is the first report of a systematic analysis using Drosophila melanogaster hemocytes to study adhesion-related proteins and their function in cell migration in vivo. Our data point to mechanisms of cell migration similar to those described in three-dimensional in vitro systems and other in vivo model organisms.
Collapse
Affiliation(s)
- Carolina G A Moreira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , 1649-028 Lisboa , Portugal
| | | | | |
Collapse
|
88
|
CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. Blood 2012; 121:975-83. [PMID: 23212519 DOI: 10.1182/blood-2012-04-426965] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Loss of chromosome 7 and del(7q) [-7/del(7q)] are recurring cytogenetic abnormalities in hematologic malignancies, including acute myeloid leukemia and therapy-related myeloid neoplasms, and associated with an adverse prognosis. Despite intensive effort by many laboratories, the putative myeloid tumor suppressor(s) on chromosome 7 has not yet been identified.We performed transcriptome sequencing and SNP array analysis on de novo and therapy-related myeloid neoplasms, half with -7/del(7q). We identified a 2.17-Mb commonly deleted segment on chromosome band 7q22.1 containing CUX1, a gene encoding a homeodomain-containing transcription factor. In 1 case, CUX1 was disrupted by a translocation, resulting in a loss-of-function RNA fusion transcript. CUX1 was the most significantly differentially expressed gene within the commonly deleted segment and was expressed at haploinsufficient levels in -7/del(7q) leukemias. Haploinsufficiency of the highly conserved ortholog, cut, led to hemocyte overgrowth and tumor formation in Drosophila melanogaster. Similarly, haploinsufficiency of CUX1 gave human hematopoietic cells a significant engraftment advantage on transplantation into immunodeficient mice. Within the RNA-sequencing data, we identified a CUX1-associated cell cycle transcriptional gene signature, suggesting that CUX1 exerts tumor suppressor activity by regulating proliferative genes. These data identify CUX1 as a conserved, haploinsufficient tumor suppressor frequently deleted in myeloid neoplasms.
Collapse
|
89
|
Zaidman-Rémy A, Regan JC, Brandão AS, Jacinto A. The Drosophila larva as a tool to study gut-associated macrophages: PI3K regulates a discrete hemocyte population at the proventriculus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:638-647. [PMID: 22085781 DOI: 10.1016/j.dci.2011.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/24/2011] [Accepted: 10/28/2011] [Indexed: 05/31/2023]
Abstract
Immune cells not only patrol the body in the circulation but also importantly, associate with specific tissues, such as the intestinal epithelium. The complex interactions between immune cells and their target tissues are difficult to study and simple, genetically tractable models are lacking. Here, we present the first thorough characterization of gut-associated macrophages in Drosophila larvae. We analyze their gene expression, morphology, development and lineage and importantly, demonstrate that they are functional (phagocytic) macrophages. We test their regulation by phosphoinositide 3-kinase (PI3K) and show evidence that this pathway regulates the population size of gut hemocytes and their phagocytic activity, reminiscent of recent findings in mammalian colitis models. Our data suggest that PI3K signaling modifies the adhesive properties of hemocytes, a possible mechanism for gut-hemocyte regulation. These results demonstrate the potential of the Drosophila larva as a simple tool to uncover mechanisms regulating recruitment and maintenance of innate immune cells at their target tissues.
Collapse
Affiliation(s)
- Anna Zaidman-Rémy
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| | | | | | | |
Collapse
|
90
|
Kalamarz ME, Paddibhatla I, Nadar C, Govind S. Sumoylation is tumor-suppressive and confers proliferative quiescence to hematopoietic progenitors in Drosophila melanogaster larvae. Biol Open 2012; 1:161-72. [PMID: 23213407 PMCID: PMC3507282 DOI: 10.1242/bio.2012043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
How cell-intrinsic regulation of the cell cycle and the extrinsic influence of the niche converge to provide proliferative quiescence, safeguard tissue integrity, and provide avenues to stop stem cells from giving rise to tumors is a major challenge in gene therapy and tissue engineering. We explore this question in sumoylation-deficient mutants of Drosophila. In wild type third instar larval lymph glands, a group of hematopoietic stem/progenitor cells acquires quiescence; a multicellular niche supports their undifferentiated state. However, how proliferative quiescence is instilled in this population is not understood. We show that Ubc9 protein is nuclear in this population. Loss of the SUMO-activating E1 enzyme, Aos1/Uba2, the conjugating E2 enzyme, Ubc9, or the E3 SUMO ligase, PIAS, results in a failure of progenitors to quiesce; progenitors become hyperplastic, misdifferentiate, and develop into microtumors that eventually detach from the dorsal vessel. Significantly, dysplasia and lethality of Ubc9 mutants are rescued when Ubc9(wt) is provided specifically in the progenitor populations, but not when it is provided in the niche or in the differentiated cortex. While normal progenitors express high levels of the Drosophila cyclin-dependent kinase inhibitor p21 homolog, Dacapo, the corresponding overgrown mutant population exhibits a marked reduction in Dacapo. Forced expression of either Dacapo or human p21 in progenitors shrinks this population. The selective expression of either protein in mutant progenitor cells, but not in other hematopoietic populations, limits overgrowth, blocks tumorogenesis, and restores organ integrity. We discuss an essential and complex role for sumoylation in preserving the hematopoietic progenitor states for stress response and in the context of normal development of the fly.
Collapse
Affiliation(s)
- Marta E Kalamarz
- Biology Department, The City College of the City University of New York , 138th Street and Convent Avenue, New York, NY 10031 , USA ; The Graduate Center of the City University of New York , 365 Fifth Avenue, New York, NY 10016 , USA
| | | | | | | |
Collapse
|
91
|
Kalamarz ME, Paddibhatla I, Nadar C, Govind S. Sumoylation is tumor-suppressive and confers proliferative quiescence to hematopoietic progenitors in Drosophila melanogaster larvae. Biol Open 2011. [DOI: 10.1242/bio.2011043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Summary
How cell-intrinsic regulation of the cell cycle and the extrinsic influence of the niche converge to provide proliferative quiescence, safeguard tissue integrity, and provide avenues to stop stem cells from giving rise to tumors is a major challenge in gene therapy and tissue engineering. We explore this question in sumoylation-deficient mutants of Drosophila. In wild type third instar larval lymph glands, a group of hematopoietic stem/progenitor cells acquires quiescence; a multicellular niche supports their undifferentiated state. However, how proliferative quiescence is instilled in this population is not understood. We show that Ubc9 protein is nuclear in this population. Loss of the SUMO-activating E1 enzyme, Aos1/Uba2, the conjugating E2 enzyme, Ubc9, or the E3 SUMO ligase, PIAS, results in a failure of progenitors to quiesce; progenitors become hyperplastic, misdifferentiate, and develop into microtumors that eventually detach from the dorsal vessel. Significantly, dysplasia and lethality of Ubc9 mutants are rescued when Ubc9wt is provided specifically in the progenitor populations, but not when it is provided in the niche or in the differentiated cortex. While normal progenitors express high levels of the Drosophila cyclin-dependent kinase inhibitor p21 homolog, Dacapo, the corresponding overgrown mutant population exhibits a marked reduction in Dacapo. Forced expression of either Dacapo or human p21 in progenitors shrinks this population. The selective expression of either protein in mutant progenitor cells, but not in other hematopoietic populations, limits overgrowth, blocks tumorogenesis, and restores organ integrity. We discuss an essential and complex role for sumoylation in preserving the hematopoietic progenitor states for stress response and in the context of normal development of the fly.
Collapse
Affiliation(s)
- Marta E. Kalamarz
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Indira Paddibhatla
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Christina Nadar
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
| | - Shubha Govind
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
92
|
Makhijani K, Alexander B, Tanaka T, Rulifson E, Brückner K. The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development 2011; 138:5379-91. [PMID: 22071105 PMCID: PMC3222213 DOI: 10.1242/dev.067322] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2011] [Indexed: 12/13/2022]
Abstract
Interactions of hematopoietic cells with their microenvironment control blood cell colonization, homing and hematopoiesis. Here, we introduce larval hematopoiesis as the first Drosophila model for hematopoietic colonization and the role of the peripheral nervous system (PNS) as a microenvironment in hematopoiesis. The Drosophila larval hematopoietic system is founded by differentiated hemocytes of the embryo, which colonize segmentally repeated epidermal-muscular pockets and proliferate in these locations. Importantly, we show that these resident hemocytes tightly colocalize with peripheral neurons and we demonstrate that larval hemocytes depend on the PNS as an attractive and trophic microenvironment. atonal (ato) mutant or genetically ablated larvae, which are deficient for subsets of peripheral neurons, show a progressive apoptotic decline in hemocytes and an incomplete resident hemocyte pattern, whereas supernumerary peripheral neurons induced by ectopic expression of the proneural gene scute (sc) misdirect hemocytes to these ectopic locations. This PNS-hematopoietic connection in Drosophila parallels the emerging role of the PNS in hematopoiesis and immune functions in vertebrates, and provides the basis for the systematic genetic dissection of the PNS-hematopoietic axis in the future.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Tsubasa Tanaka
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Eric Rulifson
- Department of Anatomy, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
- Department of Anatomy, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| |
Collapse
|
93
|
Clark RI, Woodcock KJ, Geissmann F, Trouillet C, Dionne MS. Multiple TGF-β superfamily signals modulate the adult Drosophila immune response. Curr Biol 2011; 21:1672-7. [PMID: 21962711 PMCID: PMC3191266 DOI: 10.1016/j.cub.2011.08.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/02/2011] [Accepted: 08/19/2011] [Indexed: 12/29/2022]
Abstract
TGF-β superfamily signals play complex roles in regulation of tissue repair and inflammation in mammals [1]. Drosophila melanogaster is a well-established model for the study of innate immune function [2, 3] and wound healing [4–7]. Here, we explore the role and regulation of two TGF-β superfamily members, dawdle and decapentaplegic (dpp), in response to wounding and infection in adult Drosophila. We find that both TGF-β signals exhibit complex regulation in response to wounding and infection, each is expressed in a subset of phagocytes, and each inhibits a specific arm of the immune response. dpp is rapidly activated by wounds and represses the production of antimicrobial peptides; flies lacking dpp function display persistent, strong antimicrobial peptide expression after even a small wound. dawdle, in contrast, is activated by Gram-positive bacterial infection but repressed by Gram-negative infection or wounding; its role is to limit infection-induced melanization. Flies lacking dawdle function exhibit melanization even when uninfected. Together, these data imply a model in which the bone morphogenetic protein (BMP) dpp is an important inhibitor of inflammation following sterile injury whereas the activin-like dawdle determines the nature of the induced immune response.
Collapse
Affiliation(s)
- Rebecca I Clark
- Centre for the Molecular and Cellular Biology of Inflammation and Peter Gorer Department of Immunobiology, King's College London School of Medicine, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
94
|
Marcu O, Lera MP, Sanchez ME, Levic E, Higgins LA, Shmygelska A, Fahlen TF, Nichol H, Bhattacharya S. Innate immune responses of Drosophila melanogaster are altered by spaceflight. PLoS One 2011; 6:e15361. [PMID: 21264297 PMCID: PMC3019151 DOI: 10.1371/journal.pone.0015361] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/11/2010] [Indexed: 01/20/2023] Open
Abstract
Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.
Collapse
Affiliation(s)
- Oana Marcu
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
- Carl Sagan Center, SETI Institute, Mountain View, California, United States of America
| | - Matthew P. Lera
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
- Lockheed Martin Exploration & Science, NASA Ames Research Center, Mountain View, California, United States of America
| | - Max E. Sanchez
- Lockheed Martin Exploration & Science, NASA Ames Research Center, Mountain View, California, United States of America
| | - Edina Levic
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
| | - Laura A. Higgins
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
| | - Alena Shmygelska
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
- Silicon Valley Campus of Carnegie Mellon University, NASA Ames Research Center, Mountain View, California, United States of America
| | - Thomas F. Fahlen
- Lockheed Martin Exploration & Science, NASA Ames Research Center, Mountain View, California, United States of America
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California, United States of America
- * E-mail:
| |
Collapse
|
95
|
Paddibhatla I, Lee MJ, Kalamarz ME, Ferrarese R, Govind S. Role for sumoylation in systemic inflammation and immune homeostasis in Drosophila larvae. PLoS Pathog 2010; 6:e1001234. [PMID: 21203476 PMCID: PMC3009591 DOI: 10.1371/journal.ppat.1001234] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/18/2010] [Indexed: 01/01/2023] Open
Abstract
To counter systemic risk of infection by parasitic wasps, Drosophila larvae activate humoral immunity in the fat body and mount a robust cellular response resulting in encapsulation of the wasp egg. Innate immune reactions are tightly regulated and are resolved within hours. To understand the mechanisms underlying activation and resolution of the egg encapsulation response and examine if failure of the latter develops into systemic inflammatory disease, we correlated parasitic wasp-induced changes in the Drosophila larva with systemic chronic conditions in sumoylation-deficient mutants. We have previously reported that loss of either Cactus, the Drosophila (IκB) protein or Ubc9, the SUMO-conjugating enzyme, leads to constitutive activation of the humoral and cellular pathways, hematopoietic overproliferation and tumorogenesis. Here we report that parasite infection simultaneously activates NF-κB-dependent transcription of Spätzle processing enzyme (SPE) and cactus. Endogenous Spätzle protein (the Toll ligand) is expressed in immune cells and excessive SPE or Spätzle is pro-inflammatory. Consistent with this function, loss of Spz suppresses Ubc9− defects. In contrast to the pro-inflammatory roles of SPE and Spätzle, Cactus and Ubc9 exert an anti-inflammatory effect. We show that Ubc9 maintains steady state levels of Cactus protein. In a series of immuno-genetic experiments, we demonstrate the existence of a robust bidirectional interaction between blood cells and the fat body and propose that wasp infection activates Toll signaling in both compartments via extracellular activation of Spätzle. Within each organ, the IκB/Ubc9-dependent inhibitory feedback resolves immune signaling and restores homeostasis. The loss of this feedback leads to chronic inflammation. Our studies not only provide an integrated framework for understanding the molecular basis of the evolutionary arms race between insect hosts and their parasites, but also offer insights into developing novel strategies for medical and agricultural pest control. Parasitoid wasps are a large group of insects in which the female injects her eggs into the bodies of host caterpillars (also called larvae). When the wasp egg hatches, the parasite larva gradually eats the host alive and takes over its body. Soon after the parasite egg is laid, an arms race between the parasite and the host is initiated. In a dramatic and highly restrained reaction, the host's blood cells surround and choke the development of the parasite egg. This encapsulation reaction allows the host to resume its development. We use Drosophila and its natural parasites to identify the mechanism that is essential for proper activation and termination of the encapsulation reaction. Unchecked encapsulation-like reaction flares up into a chronic inflammatory blood cancer in uninfected sumoylation-deficient larvae. Our studies reveal the parallels between acute (egg encapsulation) and chronic (blood cancer) inflammation in the fly. Moreover, these parallels match the criteria for acute and chronic inflammation in mammals. We can now understand more clearly how virus-like particles and factors introduced into the host along with the wasp egg disable the host's immune system to win the host/parasite arms race.
Collapse
Affiliation(s)
- Indira Paddibhatla
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Mark J. Lee
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Marta E. Kalamarz
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Roberto Ferrarese
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Shubha Govind
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
96
|
Genetic manipulation of AML1-ETO-induced expansion of hematopoietic precursors in a Drosophila model. Blood 2010; 116:4612-20. [PMID: 20688956 DOI: 10.1182/blood-2010-03-276998] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Among mutations in human Runx1/AML1 transcription factors, the t(8;21)(q22;q22) genomic translocation that creates an AML1-ETO fusion protein is implicated in etiology of the acute myeloid leukemia. To identify genes and components associated with this oncogene we used Drosophila as a genetic model. Expression of AML1-ETO caused an expansion of hematopoietic precursors in Drosophila, which expressed high levels of reactive oxygen species (ROS). Mutations in functional domains of the fusion protein suppress the proliferative phenotype. In a genetic screen, we found that inactivation of EcRB1 or activation of Foxo and superoxide dismutase-2 (SOD2) suppress the AML1-ETO-induced phenotype by reducing ROS expression in the precursor cells. Our studies indicate that ROS is a signaling factor promoting maintenance of normal as well as the aberrant myeloid precursors and suggests the importance of antioxidant enzymes and their regulators as targets for further study in the context of leukemia.
Collapse
|
97
|
Avet-Rochex A, Boyer K, Polesello C, Gobert V, Osman D, Roch F, Augé B, Zanet J, Haenlin M, Waltzer L. An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis. BMC DEVELOPMENTAL BIOLOGY 2010; 10:65. [PMID: 20540764 PMCID: PMC2891661 DOI: 10.1186/1471-213x-10-65] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/11/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND In metazoans, the hematopoietic system plays a key role both in normal development and in defense of the organism. In Drosophila, the cellular immune response involves three types of blood cells: plasmatocytes, crystal cells and lamellocytes. This last cell type is barely present in healthy larvae, but its production is strongly induced upon wasp parasitization or in mutant contexts affecting larval blood cell homeostasis. Notably, several zygotic mutations leading to melanotic mass (or "tumor") formation in larvae have been associated to the deregulated differentiation of lamellocytes. To gain further insights into the gene regulatory network and the mechanisms controlling larval blood cell homeostasis, we conducted a tissue-specific loss of function screen using hemocyte-specific Gal4 drivers and UAS-dsRNA transgenic lines. RESULTS By targeting around 10% of the Drosophila genes, this in vivo RNA interference screen allowed us to recover 59 melanotic tumor suppressor genes. In line with previous studies, we show that melanotic tumor formation is associated with the precocious differentiation of stem-cell like blood progenitors in the larval hematopoietic organ (the lymph gland) and the spurious differentiation of lamellocytes. We also find that melanotic tumor formation can be elicited by defects either in the fat body, the embryo-derived hemocytes or the lymph gland. In addition, we provide a definitive confirmation that lymph gland is not the only source of lamellocytes as embryo-derived plasmatocytes can differentiate into lamellocytes either upon wasp infection or upon loss of function of the Friend of GATA cofactor U-shaped. CONCLUSIONS In this study, we identify 55 genes whose function had not been linked to blood cell development or function before in Drosophila. Moreover our analyses reveal an unanticipated plasticity of embryo-derived plasmatocytes, thereby shedding new light on blood cell lineage relationship, and pinpoint the Friend of GATA transcription cofactor U-shaped as a key regulator of the plasmatocyte to lamellocyte transformation.
Collapse
Affiliation(s)
- Amélie Avet-Rochex
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
- King's College London, Guy's Campus, London SE1 1UL, UK
| | - Karène Boyer
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Cédric Polesello
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Vanessa Gobert
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Dani Osman
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Fernando Roch
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Benoit Augé
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Jennifer Zanet
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
- King's College London, Guy's Campus, London SE1 1UL, UK
| | - Marc Haenlin
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Lucas Waltzer
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| |
Collapse
|
98
|
Valanne S, Myllymäki H, Kallio J, Schmid MR, Kleino A, Murumägi A, Airaksinen L, Kotipelto T, Kaustio M, Ulvila J, Esfahani SS, Engström Y, Silvennoinen O, Hultmark D, Parikka M, Rämet M. Genome-wide RNA interference in Drosophila cells identifies G protein-coupled receptor kinase 2 as a conserved regulator of NF-kappaB signaling. THE JOURNAL OF IMMUNOLOGY 2010; 184:6188-98. [PMID: 20421637 DOI: 10.4049/jimmunol.1000261] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Because NF-kappaB signaling pathways are highly conserved in evolution, the fruit fly Drosophila melanogaster provides a good model to study these cascades. We carried out an RNA interference (RNAi)-based genome-wide in vitro reporter assay screen in Drosophila for components of NF-kappaB pathways. We analyzed 16,025 dsRNA-treatments and identified 10 novel NF-kappaB regulators. Of these, nine dsRNA-treatments affect primarily the Toll pathway. G protein-coupled receptor kinase (Gprk)2, CG15737/Toll pathway activation mediating protein, and u-shaped were required for normal Drosomycin response in vivo. Interaction studies revealed that Gprk2 interacts with the Drosophila IkappaB homolog Cactus, but is not required in Cactus degradation, indicating a novel mechanism for NF-kappaB regulation. Morpholino silencing of the zebrafish ortholog of Gprk2 in fish embryos caused impaired cytokine expression after Escherichia coli infection, indicating a conserved role in NF-kappaB signaling. Moreover, small interfering RNA silencing of the human ortholog GRK5 in HeLa cells impaired NF-kappaB reporter activity. Gprk2 RNAi flies are susceptible to infection with Enterococcus faecalis and Gprk2 RNAi rescues Toll(10b)-induced blood cell activation in Drosophila larvae in vivo. We conclude that Gprk2/GRK5 has an evolutionarily conserved role in regulating NF-kappaB signaling.
Collapse
Affiliation(s)
- Susanna Valanne
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Shia AKH, Glittenberg M, Thompson G, Weber AN, Reichhart JM, Ligoxygakis P. Toll-dependent antimicrobial responses in Drosophila larval fat body require Spätzle secreted by haemocytes. J Cell Sci 2009; 122:4505-15. [PMID: 19934223 DOI: 10.1242/jcs.049155] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In Drosophila, the humoral response characterised by the synthesis of antimicrobial peptides (AMPs) in the fat body (the equivalent of the mammalian liver) and the cellular response mediated by haemocytes (blood cells) engaged in phagocytosis represent two major reactions that counter pathogens. Although considerable analysis has permitted the elucidation of mechanisms pertaining to the two responses individually, the mechanism of their coordination has been unclear. To characterise the signals with which infection might be communicated between blood cells and fat body, we ablated circulating haemocytes and defined the parameters of AMP gene activation in larvae. We found that targeted ablation of blood cells influenced the levels of AMP gene expression in the fat body following both septic injury and oral infection. Expression of the AMP gene drosomycin (a Toll target) was blocked when expression of the Toll ligand Spätzle was knocked down in haemocytes. These results show that in larvae, integration of the two responses in a systemic reaction depend on the production of a cytokine (spz), a process that strongly parallels the mammalian immune response.
Collapse
Affiliation(s)
- Alice K H Shia
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
100
|
Ruden DM, Chen L, Possidente D, Possidente B, Rasouli P, Wang L, Lu X, Garfinkel MD, Hirsch HVB, Page GP. Genetical toxicogenomics in Drosophila identifies master-modulatory loci that are regulated by developmental exposure to lead. Neurotoxicology 2009; 30:898-914. [PMID: 19737576 PMCID: PMC2789871 DOI: 10.1016/j.neuro.2009.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/17/2009] [Accepted: 08/27/2009] [Indexed: 12/20/2022]
Abstract
The genetics of gene expression in recombinant inbred lines (RILs) can be mapped as expression quantitative trait loci (eQTLs). So-called "genetical genomics" studies have identified locally acting eQTLs (cis-eQTLs) for genes that show differences in steady-state RNA levels. These studies have also identified distantly acting master-modulatory trans-eQTLs that regulate tens or hundreds of transcripts (hotspots or transbands). We expand on these studies by performing genetical genomics experiments in two environments in order to identify trans-eQTL that might be regulated by developmental exposure to the neurotoxin lead. Flies from each of 75 RIL were raised from eggs to adults on either control food (made with 250 microM sodium acetate), or lead-treated food (made with 250 microM lead acetate, PbAc). RNA expression analyses of whole adult male flies (5-10 days old) were performed with Affymetrix DrosII whole genome arrays (18,952 probesets). Among the 1389 genes with cis-eQTL, there were 405 genes unique to control flies and 544 genes unique to lead-treated ones (440 genes had the same cis-eQTLs in both samples). There are 2396 genes with trans-eQTL which mapped to 12 major transbands with greater than 95 genes. Permutation analyses of the strain labels but not the expression data suggests that the total number of eQTL and the number of transbands are more important criteria for validation than the size of the transband. Two transbands, one located on the 2nd chromosome and one on the 3rd chromosome, co-regulate 33 lead-induced genes, many of which are involved in neurodevelopmental processes. For these 33 genes, rather than allelic variation at one locus exerting differential effects in two environments, we found that variation at two different loci are required for optimal effects on lead-induced expression.
Collapse
Affiliation(s)
- Douglas M Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201-2654, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|