51
|
Wei H, Krishnaswamy S. Direct laser writing of a phase-shifted Bragg grating waveguide for ultrasound detection. OPTICS LETTERS 2019; 44:3817-3820. [PMID: 31368973 DOI: 10.1364/ol.44.003817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate a phase-shifted Bragg grating waveguide (PS-BGW) fabricated by a direct laser writing technique via two-photon polymerization as a high-frequency ultrasonic sensor. The PS-BGW device has a cross-sectional area of 1.5 μm×2 μm, and the grating length is about 100 μm. The optical resonant spectrum is investigated numerically and experimentally. The result shows that the fabricated device with a grating depth of 250 nm and a quarter wave phase lead to a 20-nm stopband and a 0.085-nm full-linewidth of the transmission notch, making it suitable for photonic sensing applications. Here, the PS-BGW device is demonstrated for the detection of acoustic waves, which can cause strain or deformation of the device and lead to a shift in the resonance wavelength. The sensitivity and the limitations of the device for ultrasound detection are also investigated.
Collapse
|
52
|
Mora JT, Feng X, Gao L. Photoacoustic shadow-casting microscopy. OPTICS LETTERS 2019; 44:3897-3900. [PMID: 31368996 PMCID: PMC6711168 DOI: 10.1364/ol.44.003897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
We present photoacoustic shadow-casting microscopy (PASM), a technique that allows high-resolution imaging of weakly absorbing biological samples with unprecedented sensitivity. In PASM, a uniform optical absorbing layer is placed in contact with the samples and is excited by the light transmitted through the sample, producing photoacoustic (PA) waves with an increased signal-to-noise ratio compared with that generated by the sample itself. Therefore, given a desired image quality, the required excitation fluence is much reduced, alleviating the photothermal damage to the specimen. The system provides a lateral resolution of 5 μm when using a 0.30 NA microscope objective lens. To demonstrate PASM, we present images of bovine red blood cells and microbeads.
Collapse
Affiliation(s)
- Jorge Tordera Mora
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright St, Urbana, Illinois 61801, USA
| | - Xiaohua Feng
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright St, Urbana, Illinois 61801, USA
| | - Liang Gao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright St, Urbana, Illinois 61801, USA
| |
Collapse
|
53
|
Song W, Peng L, Guo G, Yang F, Zhu Y, Zhang C, Min C, Fang H, Zhu S, Yuan X. Isometrically Resolved Photoacoustic Microscopy Based on Broadband Surface Plasmon Resonance Ultrasound Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27378-27385. [PMID: 31267733 DOI: 10.1021/acsami.9b03164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photoacoustic microscopy (PAM) can measure optical absorption-based molecular specificities within tissues. Despite the diffraction-limited lateral resolution in optical-resolution photoacoustic microscopy (OR-PAM), the ongoing challenge is poor axial resolution because of an insufficient ultrasound detection bandwidth, which hampers PAM volumetric imaging. We propose polarization-differential surface plasmon resonance (SPR) sensing for broadband and high-sensitivity photoacoustic (PA) detection, allowing OR-PAM with comparable resolution along lateral and axial directions. This sensor possesses an estimated noise-equivalent-pressure sensitivity of ∼477 Pa over an approximately linear pressure response up to 107 kPa. Moreover, an improved PA detection bandwidth of ∼173 MHz permits an axial resolution (∼7.6 μm) that approaches the lateral resolution (∼4.5 μm) of our OR-PAM system. The capability in spatially isometric micrometer-scale resolution enables in vivo volumetric label-free imaging of the microvasculature of a mouse ear. The SPR sensing technology promises broader applications of PAM in biomedical studies such as microcirculation.
Collapse
Affiliation(s)
- Wei Song
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Liangliang Peng
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Guangdi Guo
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Fan Yang
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Yan Zhu
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Chonglei Zhang
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Changjun Min
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Hui Fang
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| | - Siwei Zhu
- Institute of Oncology, Tianjin Union Medical Centre , Tianjin 300121 , China
| | - Xiaocong Yuan
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology , Shenzhen University , Shenzhen 518060 , China
| |
Collapse
|
54
|
Liu C, Liao J, Chen L, Chen J, Ding R, Gong X, Cui C, Pang Z, Zheng W, Song L. The integrated high-resolution reflection-mode photoacoustic and fluorescence confocal microscopy. PHOTOACOUSTICS 2019; 14:12-18. [PMID: 30923675 PMCID: PMC6423349 DOI: 10.1016/j.pacs.2019.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 05/05/2023]
Abstract
A dual modality microscopy with the highest imaging resolution reported so far based on reflection-mode photoacoustic and confocal fluorescence is presented in this study. The unique design of the imaging head of the microscope makes it highly convenient for scalable high-resolution imaging by simply switching the optical objectives. The submicron resolution performance of the system is demonstrated via in vivo imaging of zebrafish, normal mouse ear, and a xenograft tumor model inoculated in the mouse ear. The imaging results confirm that the presented dual-modality microscopy imaging system could play a vital role in observing model organism, studying tumor angiogenesis and assessment of antineoplastic drugs.
Collapse
Affiliation(s)
- Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiuling Liao
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Longchao Chen
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Jianhua Chen
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Rubo Ding
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Xiaojing Gong
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Caimei Cui
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Zhiqiang Pang
- Guangzhou SENVIV Technology Co. Ltd, Guangzhou 510006, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding authors.
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding authors.
| |
Collapse
|
55
|
Single Transparent Piezoelectric Detector for Optoacoustic Sensing-Design and Signal Processing. SENSORS 2019; 19:s19092195. [PMID: 31083637 PMCID: PMC6539709 DOI: 10.3390/s19092195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 01/12/2023]
Abstract
In this article, we present a simple and intuitive approach to create a handheld optoacoustic setup for near field measurements. A single piezoelectric transducer glued in between two sheets of polymethyl methacrylate (PMMA) facilitates nearfield depth profiling of layered media. The detector electrodes are made of indium tin oxide (ITO) which is both electrically conducting as well as optically transparent, enabling an on-axis illumination through the detector. By mapping the active detector area, we show that it matches the design form precisely. We also present a straightforward approach to determine the instrument response function, which allows to obtain the original pressure profile arriving at the detector. To demonstrate the validity of this approach, the measurement on a simple test sample is deconvolved with the instrument response function and compared to simulation results. Except for the sputter instrumentation, all required materials and instruments as well as the tools needed to create such a setup are available to standard scientific laboratories.
Collapse
|
56
|
MEMS Actuators for Optical Microendoscopy. MICROMACHINES 2019; 10:mi10020085. [PMID: 30682852 PMCID: PMC6412441 DOI: 10.3390/mi10020085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 01/21/2023]
Abstract
Growing demands for affordable, portable, and reliable optical microendoscopic imaging devices are attracting research institutes and industries to find new manufacturing methods. However, the integration of microscopic components into these subsystems is one of today's challenges in manufacturing and packaging. Together with this kind of miniaturization more and more functional parts have to be accommodated in ever smaller spaces. Therefore, solving this challenge with the use of microelectromechanical systems (MEMS) fabrication technology has opened the promising opportunities in enabling a wide variety of novel optical microendoscopy to be miniaturized. MEMS fabrication technology enables abilities to apply batch fabrication methods with high-precision and to include a wide variety of optical functionalities to the optical components. As a result, MEMS technology has enabled greater accessibility to advance optical microendoscopy technology to provide high-resolution and high-performance imaging matching with traditional table-top microscopy. In this review the latest advancements of MEMS actuators for optical microendoscopy will be discussed in detail.
Collapse
|
57
|
Heo J, Lee KT, Kim RK, Baac HW. Side-Polished Fiber-Optic Line Sensor for High-Frequency Broadband Ultrasound Detection. SENSORS 2019; 19:s19020398. [PMID: 30669420 PMCID: PMC6358836 DOI: 10.3390/s19020398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 11/16/2022]
Abstract
We demonstrate a side-polished fiber-optic ultrasound sensor (SPFS) with a broad frequency bandwidth (dc⁻46 MHz at 6-dB reduction) and a wide amplitude detection range from several kPa to 4.8 MPa. It also exhibits a high acoustic sensitivity of 426 mV/MPa with a signal-to-noise ratio of 35 dB and a noise-equivalent pressure of 6.6 kPa (over 1⁻50 MHz bandwidth) measured at 7-MHz frequency. The SPFS does not require multi-layer-coated structures that are used in other high-sensitivity optical detectors. Without any coating, this uses a microscale-roughened structure for evanescent-field interaction with an external medium acoustically modulated. Such unique structure allows significantly high sensitivity despite having a small detection area of only 0.016 mm² as a narrow line sensor with a width of 8 μm. The SPFS performance is characterized in terms of acoustic frequency, amplitude responses, and sensitivities that are compared with those of a 1-mm diameter piezoelectric hydrophone used as a reference.
Collapse
Affiliation(s)
- Jeongmin Heo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Kyu-Tae Lee
- Department of Physics, Inha University, Incheon 22212, Korea.
| | - Ryun Kyung Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
58
|
Guo Z, Li G, Chen SL. Miniature probe for all-optical double gradient-index lenses photoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201800147. [PMID: 30003707 DOI: 10.1002/jbio.201800147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/03/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
A novel all-optical double gradient-index (GRIN) lens optical-resolution photoacoustic microscopy (OR-PAM), termed as DGL-PAM, is demonstrated. The miniature probe consists of a single-mode fiber and double GRIN lenses for optical focusing and a miniature fiber Fabry-Perot sensor for ultrasound detection. The new design is simple and realizes high resolution with long working distance (WD) by virtue of the double GRIN lenses. The overall size of the probe is 2.7 mm in diameter. High lateral resolution of 3.7 μm (at 532 nm laser wavelength) and long WD of 5.5 mm are achieved. In vivo OR-PAM of mouse ear demonstrates the imaging ability of DGL-PAM. Since precise alignment of optical and acoustic foci is not needed, the proposed DGL-PAM is relatively easy to implement. It has potential to be developed as a low-cost, disposable OR-PAM probe and for endoscopic applications. The proposed double GRIN lenses for making miniature endoscopic probes can also be applied to other modalities, such as optical coherence tomography and confocal fluorescence microscopy, to enable high resolution and long WD.
Collapse
Affiliation(s)
- Zhendong Guo
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyao Li
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Sung-Liang Chen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
59
|
Learkthanakhachon S, Pechprasarn S, Somekh MG. Optical detection of ultrasound by lateral shearing interference of a transparent PDMS thin film. OPTICS LETTERS 2018; 43:5797-5800. [PMID: 30499944 DOI: 10.1364/ol.43.005797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
A lateral shearing interferometric technique combined with an 11.6 μm polydimethylsiloxane (PDMS) transparent thin film is proposed and demonstrated for optical detection of ultrasound. We experimentally report the device change of reflectivity with pressure of 5.1×10-7 Pa-1, 9.5 times more sensitive than the critical-angle-based sensor, 31 times more sensitive than the surface-plasmon-based sensor, and comparable to the Fabry-Perot sensor. The objective-lens-based angle scanning characterization setup inspired from a laser scanning system allows direct comparison between the PDMS sensor and critical-angle-based sensor by adjusting the incident angle with a scanning mirror, thereby eliminating optical and electronics system dependence. The sensing element is easily fabricated through spin coating and the detection element incorporated into an existing optical system with minimum modification.
Collapse
|
60
|
Lee C, Kim JY, Kim C. Recent Progress on Photoacoustic Imaging Enhanced with Microelectromechanical Systems (MEMS) Technologies. MICROMACHINES 2018; 9:E584. [PMID: 30413091 PMCID: PMC6266184 DOI: 10.3390/mi9110584] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023]
Abstract
Photoacoustic imaging (PAI) is a new biomedical imaging technology currently in the spotlight providing a hybrid contrast mechanism and excellent spatial resolution in the biological tissues. It has been extensively studied for preclinical and clinical applications taking advantage of its ability to provide anatomical and functional information of live bodies noninvasively. Recently, microelectromechanical systems (MEMS) technologies, particularly actuators and sensors, have contributed to improving the PAI system performance, further expanding the research fields. This review introduces cutting-edge MEMS technologies for PAI and summarizes the recent advances of scanning mirrors and detectors in MEMS.
Collapse
Affiliation(s)
- Changho Lee
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, Hwasun 58128, Korea.
| | - Jin Young Kim
- Departments of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Chulhong Kim
- Departments of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
- Departments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| |
Collapse
|
61
|
Xie D, Li Q, Gao Q, Song W, Zhang HF, Yuan X. In vivo blind-deconvolution photoacoustic ophthalmoscopy with total variation regularization. JOURNAL OF BIOPHOTONICS 2018; 11:e201700360. [PMID: 29577625 DOI: 10.1002/jbio.201700360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Photoacoustic ophthalmoscopy (PAOM) is capable of noninvasively imaging anatomic and functional information of the retina in living rodents. However, the strong ocular aberration in rodent eyes and limited ultrasonic detection sensitivity affect PAOM's spatial resolution and signal-to-noise ratio (SNR) in in vivo eyes. In this work, we report a computational approach to combine blind deconvolution (BD) algorithm with a regularizing constraint based on total variation (BDTV) for PAOM imaging restoration. We tested the algorithm in retinal and choroidal microvascular images in albino rat eyes. The algorithm improved PAOM's lateral resolution by around 2-fold. Moreover, it enabled the improvement in imaging SNR for both major vessels and capillaries, and realized the well-preserved blood vessels' edges simultaneously, which surpasses conventional Richardson-Lucy BD algorithm. The reported results indicate that the BDTV algorithm potentially facilitate PAOM in extracting retinal pathophysiological information by enhancing in vivo imaging quality without physically modifying PAOM's optical configuration.
Collapse
Affiliation(s)
- Deyan Xie
- State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi'an, China
| | - Qin Li
- School of Software Engineering, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Quanxue Gao
- State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, Xi'an, China
| | - Wei Song
- Nanophotonics Research Centre, Shenzhen University, Shenzhen, China
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Department of Ophthalmology, Northwestern University, Chicago, Illinois
| | - Xiaocong Yuan
- Nanophotonics Research Centre, Shenzhen University, Shenzhen, China
| |
Collapse
|
62
|
Wissmeyer G, Pleitez MA, Rosenthal A, Ntziachristos V. Looking at sound: optoacoustics with all-optical ultrasound detection. LIGHT, SCIENCE & APPLICATIONS 2018; 7:53. [PMID: 30839640 PMCID: PMC6107019 DOI: 10.1038/s41377-018-0036-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 05/03/2023]
Abstract
Originally developed for diagnostic ultrasound imaging, piezoelectric transducers are the most widespread technology employed in optoacoustic (photoacoustic) signal detection. However, the detection requirements of optoacoustic sensing and imaging differ from those of conventional ultrasonography and lead to specifications not sufficiently addressed by piezoelectric detectors. Consequently, interest has shifted to utilizing entirely optical methods for measuring optoacoustic waves. All-optical sound detectors yield a higher signal-to-noise ratio per unit area than piezoelectric detectors and feature wide detection bandwidths that may be more appropriate for optoacoustic applications, enabling several biomedical or industrial applications. Additionally, optical sensing of sound is less sensitive to electromagnetic noise, making it appropriate for a greater spectrum of environments. In this review, we categorize different methods of optical ultrasound detection and discuss key technology trends geared towards the development of all-optical optoacoustic systems. We also review application areas that are enabled by all-optical sound detectors, including interventional imaging, non-contact measurements, magnetoacoustics, and non-destructive testing.
Collapse
Affiliation(s)
- Georg Wissmeyer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
| | - Miguel A. Pleitez
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
| | - Amir Rosenthal
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
| |
Collapse
|
63
|
Varkentin A, Mazurenka M, Blumenröther E, Behrendt L, Emmert S, Morgner U, Meinhardt-Wollweber M, Rahlves M, Roth B. Trimodal system for in vivo skin cancer screening with combined optical coherence tomography-Raman and colocalized optoacoustic measurements. JOURNAL OF BIOPHOTONICS 2018; 11:e201700288. [PMID: 29360199 DOI: 10.1002/jbio.201700288] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/18/2018] [Indexed: 05/21/2023]
Abstract
A new multimodal system for rapid, noninvasive in vivo skin cancer screening is presented, combining optical coherence tomography (OCT) and optoacoustic (OA) modalities to provide precise tumor depth determination with a Raman spectroscopic modality capable of detecting the lesion type and, thus, providing diagnostic capability. Both OA and Raman setups use wide field skin illumination to ensure the compliance with maximum permissible exposure (MPE) requirements. The Raman signal is collected via the OCT scanning lens to maximize the signal-to-noise ratio of the measured signal while keeping radiation levels below MPE limits. OCT is used to optically determine the tumor thickness and for volumetric imaging whereas OA utilizes acoustic signals generated by optical absorption contrast for thickness determination at potentially higher penetration depths compared to OCT. Preliminary results of first clinical trials using our setup are presented. The measured lesion depth is in good agreement with histology results, while Raman measurements show distinctive differences between normal skin and melanocytic lesions, and, moreover, between different skin areas. In future, we will validate the setup presented for reliable detection of pathophysiological parameters, morphology and thickness of suspicious skin lesions.
Collapse
Affiliation(s)
- Arthur Varkentin
- Hannoversches Zentrum für Optische Technologien (HOT), Leibniz Universität Hannover, Hannover, Germany
| | - Mikhail Mazurenka
- Hannoversches Zentrum für Optische Technologien (HOT), Leibniz Universität Hannover, Hannover, Germany
| | - Elias Blumenröther
- Hannoversches Zentrum für Optische Technologien (HOT), Leibniz Universität Hannover, Hannover, Germany
| | - Lea Behrendt
- Hannoversches Zentrum für Optische Technologien (HOT), Leibniz Universität Hannover, Hannover, Germany
| | - Steffen Emmert
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock, Rostock, Germany
| | - Uwe Morgner
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
| | - Merve Meinhardt-Wollweber
- Hannoversches Zentrum für Optische Technologien (HOT), Leibniz Universität Hannover, Hannover, Germany
| | - Maik Rahlves
- Hannoversches Zentrum für Optische Technologien (HOT), Leibniz Universität Hannover, Hannover, Germany
| | - Bernhard Roth
- Hannoversches Zentrum für Optische Technologien (HOT), Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
64
|
Yang F, Song W, Zhang C, Min C, Fang H, Du L, Wu P, Zheng W, Li C, Zhu S, Yuan X. Broadband graphene-based photoacoustic microscopy with high sensitivity. NANOSCALE 2018; 10:8606-8614. [PMID: 29696248 DOI: 10.1039/c7nr09319e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoacoustic microscopy (PAM) enables the measurement of properties associated with optical absorption within tissues and complements sophisticated technologies employing optical microscopy. An inadequate frequency response as determined by a piezoelectric ultrasonic transducer results, however, in poor depth resolution and inaccurate measurements of the coefficients of optical absorption. We developed a PAM system configured as an attenuated total reflectance sensor with a ten-layer graphene film sandwiched between a prism and water (the coupling medium) for photoacoustic (PA) wave detection. Transients of the PA pressure cause perturbations in the refractive index of the water thereby changing the polarization-dependent absorption of the graphene film. The signal in PA detection involves recording the difference in the temporal-varying reflectance intensity between the two orthogonally polarized probe beams. The graphene-based sensor has an estimated noise-equivalent-pressure sensitivity of ∼550 Pa over an approximately linear pressure response from 11.0 kPa to 55.0 kPa. Moreover, it enables a much broader PA bandwidth detection of up to ∼150 MHz, primarily dominated by a highly localized evanescent field. From the strong optical absorption of inherent hemoglobin, in vivo label-free PAM imaging provided a three-dimensional viewing of the microvasculature of a mouse ear. These results suggest great potential for graphene-based PAM in biomedical investigations, such as microcirculation studies.
Collapse
Affiliation(s)
- Fan Yang
- Nanophotonics Research Centre, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Hazan Y, Rosenthal A. Passive-demodulation pulse interferometry for ultrasound detection with a high dynamic range. OPTICS LETTERS 2018; 43:1039-1042. [PMID: 29489775 DOI: 10.1364/ol.43.001039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
In the optical detection of ultrasound, resonators with high Q-factors are often used to maximize sensitivity. However, increasing the Q-factor of a resonator may reduce the linear range of the interrogation scheme, making it more susceptible to strong external perturbations and incapable of measuring strong acoustic signals. In this Letter, a passive-demodulation scheme for pulse interferometry was developed for high dynamic-range measurements. The passive scheme was based on an unbalanced Mach-Zehnder interferometer and a 90° optical hybrid, which was implemented in a dual-polarization all-fiber setup. We demonstrated the passive scheme for detecting ultrasound bursts with pressure levels for which the response of conventional, active interferometric techniques became nonlinear.
Collapse
|
66
|
Zhang X, Wu X, Adelegan OJ, Yamaner FY, Oralkan O. Backward-Mode Photoacoustic Imaging Using Illumination Through a CMUT With Improved Transparency. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:85-94. [PMID: 29283350 PMCID: PMC5763917 DOI: 10.1109/tuffc.2017.2774283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this paper, we describe a capacitive micromachined ultrasonic transducer (CMUT) with improved transparency for photoacoustic imaging (PAI) with backside illumination. The CMUT was fabricated on a glass substrate with indium-tin oxide bottom electrodes. The plate was a 1.5- silicon layer formed over the glass cavities by anodic bonding, with a 1- silicon nitride passivation layer on top. The fabricated device shows approximately 30%-40% transmission in the wavelength range from 700 to 800 nm and approximately 40%-60% transmission in the wavelength range from 800 to 900 nm, which correspond to the wavelength range commonly used for in vivo PAI. The center frequency of the CMUT was 3.62 MHz in air and 1.4 MHz in immersion. Two preliminary PAI experiments were performed to demonstrate the imaging capability of the fabricated device. The first imaging target was a 0.7-mm diameter pencil lead in vegetable oil as a line target with a subwavelength cross section. A 2-mm-diameter single CMUT element with an optical fiber bundle attached to its backside was linearly scanned to reconstruct a 2-D cross-sectional PA image of the pencil lead. We investigated the spurious signals caused by the light absorption in the 1.5- silicon plate. For pencil lead as a strong absorber and also a strong reflector, the received echo signal due to the acoustic excitation generated by the absorption in silicon is approximately 30 dB lower than the received PA signal generated by the absorption in pencil lead at the wavelength of 830 nm. The second imaging target was a "loop-shape" polyethylene tube filled with indocyanine green solution ( ) suspended using fishing lines in a tissue-mimicking material. We formed a 3-D volumetric image of the phantom by scanning the transducer in the - and -directions. The two experimental imaging results demonstrated that CMUTs with the proposed structure are promising for PAI with backside illumination.
Collapse
|
67
|
Guggenheim JA, Zhang EZ, Beard PC. A Method for Measuring the Directional Response of Ultrasound Receivers in the Range 0.3-80 MHz Using a Laser-Generated Ultrasound Source. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1857-1863. [PMID: 28976314 DOI: 10.1109/tuffc.2017.2758173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A simple method for measuring the directivity of an ultrasound receiver is described. The method makes use of a custom-designed laser ultrasound source which generates a large diameter (>1 cm) broadband monopolar plane wave with a continuous frequency content extending from to . The plane wave is highly uniform in amplitude (±5% over >8 mm) and phase (equivalent to at 80 MHz over ). To measure directivity, the source is rotated around the receiver under test in a compact centimeter-scale setup. To demonstrate the method, it was used to measure the directivity of two broadband small aperture Fabry-Perot ultrasound sensors over an angular range of ±50° at frequencies up to 80 MHz. Measurements were found to be highly repeatable with an estimated typical repeatability <4% in the range of 0.5-25 MHz. Due to the broad bandwidth, large size, and adjustable nature of the source, the method is widely applicable and could aid the characterization of receivers used in medical ultrasound, ultrasonic nondestructive testing. and ultrasound metrology.
Collapse
|
68
|
Haindl R, Preisser S, Andreana M, Rohringer W, Sturtzel C, Distel M, Chen Z, Rank E, Fischer B, Drexler W, Liu M. Dual modality reflection mode optical coherence and photoacoustic microscopy using an akinetic sensor. OPTICS LETTERS 2017; 42:4319-4322. [PMID: 29088153 DOI: 10.1364/ol.42.004319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This Letter presents a novel dual modality reflection mode optical coherence and photoacoustic microscopy (OC-PAM) system. The optical coherence microscopy modality features a broadband source to accomplish 5 μm axial resolution. The photoacoustic microscopy modality uses a rigid akinetic Fabry-Perot etalon encapsulated in an optically transparent medium, which forms a 2 mm×11 mm translucent imaging window, permitting reflection mode dual modality imaging. After characterization, the OC-PAM system was applied to image zebrafish larvae in vivo, demonstrating its capability in biomedical imaging with complementary optical scattering and absorption contrasts by revealing morphology in the fish larvae.
Collapse
|
69
|
Bai X, Liang Y, Sun H, Jin L, Ma J, Guan BO, Wang L. Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy. OPTICS EXPRESS 2017; 25:17616-17626. [PMID: 28789254 DOI: 10.1364/oe.25.017616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/10/2017] [Indexed: 05/24/2023]
Abstract
High-frequency fiber laser sensor is a new acoustic detector for photoacoustic imaging. However, its performance has not been thoroughly studied. Here, we present a comprehensive characterization of a fiber laser sensor for photoacoustic imaging. Ultrasound waves deform the fiber laser cavity and induce frequency changes in the heterodyning output signal. The sensitivity peaks at 22 MHz, which is associated with an azimuthal mode number l = 2 and a radial mode number n = 1. The broadband acoustic sensitivity in terms of frequency shift is 2.25 MHz/kPa and the noise-equivalent pressure reaches 45 Pa with a sampling rate of 100 MHz. The 3-dB bandwidth is 18 MHz for spherical-wave detection. We characterized the spatial distribution of acoustic sensitivity. The sensitivity along the fiber longitudinal direction varies with the laser spatial mode and is determined by the grating and cavity parameters. The sensitivity at the azimuthal direction presents a |cos(2θ)| dependence as a result of fiber core asymmetry. In the radial direction, the sensitivity is inversely proportional to the square root of the distance between the source and the detector. The acoustic sensitivity can be enhanced by reducing the cavity length. We experimentally show that a short sensor can enhance the contrast and penetration depth of PAM than a long one.
Collapse
|
70
|
Qiu Z, Piyawattanamatha W. New Endoscopic Imaging Technology Based on MEMS Sensors and Actuators. MICROMACHINES 2017; 8:mi8070210. [PMID: 30400401 PMCID: PMC6190023 DOI: 10.3390/mi8070210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
Abstract
Over the last decade, optical fiber-based forms of microscopy and endoscopy have extended the realm of applicability for many imaging modalities. Optical fiber-based imaging modalities permit the use of remote illumination sources and enable flexible forms supporting the creation of portable and hand-held imaging instrumentations to interrogate within hollow tissue cavities. A common challenge in the development of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, microelectromechanical systems (MEMS) sensors and actuators have been playing a key role in shaping the miniaturization of these components. This is due to the precision mechanics of MEMS, microfabrication techniques, and optical functionality enabling a wide variety of movable and tunable mirrors, lenses, filters, and other optical structures. Many promising results from MEMS based optical fiber endoscopy have demonstrated great potentials for clinical translation. In this article, reviews of MEMS sensors and actuators for various fiber-optical endoscopy such as fluorescence, optical coherence tomography, confocal, photo-acoustic, and two-photon imaging modalities will be discussed. This advanced MEMS based optical fiber endoscopy can provide cellular and molecular features with deep tissue penetration enabling guided resections and early cancer assessment to better treatment outcomes.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Wibool Piyawattanamatha
- Departments of Biomedical and Electronics Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
71
|
Wei H, Krishnaswamy S. Polymer micro-ring resonator integrated with a fiber ring laser for ultrasound detection. OPTICS LETTERS 2017; 42:2655-2658. [PMID: 28957308 DOI: 10.1364/ol.42.002655] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polymer micro-ring resonators fabricated by a direct laser writing technique are presented as sensors for ultrasound detection. The optical micro-ring resonator consists of a micro-ring waveguide that acts as a wavelength selective feedback mirror to an erbium-doped fiber-ring laser (FRL). The micro-ring resonator reflection spectrum determines the lasing frequencies of the FRL. Acoustic waves, which cause strain or deformation of the micro-ring resonator, lead to shifts of the resonance wavelength and thereby shifts in the FRL lasing spectrum. The spectral shifts are demodulated using an unbalanced Michelson interferometer. The experiments demonstrate that polymer micro-ring resonators integrated with a FRL can be used as adaptive high-frequency ultrasound detectors.
Collapse
|
72
|
Bell KL, Hajireza P, Shi W, Zemp RJ. Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy. APPLIED OPTICS 2017; 56:5172-5181. [PMID: 29047569 DOI: 10.1364/ao.56.005172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/22/2017] [Indexed: 05/22/2023]
Abstract
Recently, a new noncontact reflection-mode imaging modality called photoacoustic remote sensing (PARS) microscopy was introduced providing optical absorption contrast. Unlike previous modalities, which rely on interferometric detection of a probe beam to measure surface oscillations, the PARS technique detects photoacoustic initial pressures induced by a pulsed laser at their origin by monitoring intensity modulations of a reflected probe beam. In this paper, a model describing the temporal evolution from a finite excitation pulse is developed with consideration given to the coherence length of the interrogation beam. Analytical models are compared with approximations, finite-difference time-domain (FDTD) simulations, and experiments with good agreement.
Collapse
|
73
|
Shu X, Li H, Dong B, Sun C, Zhang HF. Quantifying melanin concentration in retinal pigment epithelium using broadband photoacoustic microscopy. BIOMEDICAL OPTICS EXPRESS 2017; 8:2851-2865. [PMID: 28663911 PMCID: PMC5480434 DOI: 10.1364/boe.8.002851] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 05/20/2023]
Abstract
Melanin is the dominant light absorber in retinal pigment epithelium (RPE). The loss of RPE melanin is a sign of ocular senescence and is both a risk factor and a symptom of age-related macular degeneration (AMD). Quantifying the RPE melanin concentration provides insight into the pathological role of RPE in ocular aging and the onset and progression of AMD. The main challenge in accurate quantification of RPE melanin concentration is to distinguish this ten-micrometer-thick cell monolayer from the underlying choroid, which also contains melanin but carries different pathognomonic information. In this work, we investigated a three-dimensional photoacoustic microscopic (PAM) method with high axial resolution, empowered by broad acoustic detection bandwidth, to distinguish RPE from choroid and quantify melanin concentrations in the RPE ex vivo. We first conducted numerical simulation on photoacoustic generation in the RPE, which suggested that a PAM system with at least 100-MHz detection bandwidth provided sufficient axial resolution to distinguish the melanin in RPE from that in choroid. Based on simulation results, we integrated a transparent broadband micro-ring resonator (MRR) based detector in a homebuilt PAM system. We imaged ex vivo RPE-choroid complexes (RCCs) from both porcine and human eyes and quantified the absolute melanin concentrations in the RPE and choroid, respectively. In our study, the measured melanin concentrations were 14.7 mg/mL and 17.0 mg/mL in human and porcine RPE, and 12 mg/mL and 61 mg/mL in human and porcine choroid, respectively. This study suggests that broadband PAM is capable of quantifying the RPE melanin concentration from RCCs ex vivo.
Collapse
Affiliation(s)
- Xiao Shu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
- Both authors contributed equally to this work
| | - Hao Li
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
- Both authors contributed equally to this work
| | - Biqin Dong
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
- Department of Ophthalmology, Northwestern University, 645 North Michigan Ave., Chicago, IL 60611, USA
| |
Collapse
|
74
|
Kim KH, Luo W, Zhang C, Tian C, Guo LJ, Wang X, Fan X. Air-coupled ultrasound detection using capillary-based optical ring resonators. Sci Rep 2017; 7:109. [PMID: 28250443 PMCID: PMC5427941 DOI: 10.1038/s41598-017-00134-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/09/2017] [Indexed: 11/20/2022] Open
Abstract
We experimentally demonstrate and theoretically analyze high Q-factor (~107) capillary-based optical ring resonators for non-contact detection of air-coupled ultrasound. Noise equivalent pressures in air as low as 215 mPa/√Hz and 41 mPa/√Hz at 50 kHz and 800 kHz in air, respectively, are achieved. Furthermore, non-contact detection of air-coupled photoacoustic pulses optically generated from a 200 nm thick Chromium film is demonstrated. The interaction of an acoustic pulse and the mechanical mode of the ring resonator is also studied. Significant improvement in detection bandwidth is demonstrated by encapsulating the ring resonator in a damping medium. Our work will enable compact and sensitive ultrasound detection in many applications, such as air-coupled non-destructive ultrasound testing, photoacoustic imaging, and remote sensing. It will also provide a model system for fundamental study of the mechanical modes in the ring resonator.
Collapse
Affiliation(s)
- Kyu Hyun Kim
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Wei Luo
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, MI, 48109, USA
- School of Optical and Electrical Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, 430074, Wuhan, Hubei, PR China
| | - Cheng Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Chao Tian
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI, 48109, USA
| | - L Jay Guo
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
75
|
Linsenmeier RA, Zhang HF. Retinal oxygen: from animals to humans. Prog Retin Eye Res 2017; 58:115-151. [PMID: 28109737 DOI: 10.1016/j.preteyeres.2017.01.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
This article discusses retinal oxygenation and retinal metabolism by focusing on measurements made with two of the principal methods used to study O2 in the retina: measurements of PO2 with oxygen-sensitive microelectrodes in vivo in animals with a retinal circulation similar to that of humans, and oximetry, which can be used non-invasively in both animals and humans to measure O2 concentration in retinal vessels. Microelectrodes uniquely have high spatial resolution, allowing the mapping of PO2 in detail, and when combined with mathematical models of diffusion and consumption, they provide information about retinal metabolism. Mathematical models, grounded in experiments, can also be used to simulate situations that are not amenable to experimental study. New methods of oximetry, particularly photoacoustic ophthalmoscopy and visible light optical coherence tomography, provide depth-resolved methods that can separate signals from blood vessels and surrounding tissues, and can be combined with blood flow measures to determine metabolic rate. We discuss the effects on retinal oxygenation of illumination, hypoxia and hyperoxia, and describe retinal oxygenation in diabetes, retinal detachment, arterial occlusion, and macular degeneration. We explain how the metabolic measurements obtained from microelectrodes and imaging are different, and how they need to be brought together in the future. Finally, we argue for revisiting the clinical use of hyperoxia in ophthalmology, particularly in retinal arterial occlusions and retinal detachment, based on animal research and diffusion theory.
Collapse
Affiliation(s)
- Robert A Linsenmeier
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston 60208-3107, IL, USA; Neurobiology Department, Northwestern University, 2205 Tech Drive, Evanston 60208-3520, IL, USA; Ophthalmology Department, Northwestern University, 645 N. Michigan Ave, Suite 440, Chicago 60611, IL, USA.
| | - Hao F Zhang
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston 60208-3107, IL, USA; Ophthalmology Department, Northwestern University, 645 N. Michigan Ave, Suite 440, Chicago 60611, IL, USA.
| |
Collapse
|
76
|
Abstract
OBJECTIVE Photoacoustic (PA) imaging emerges as a unique tool to study biological samples based on optical absorption contrast. In PA imaging, piezoelectric transducers are commonly used to detect laser-induced ultrasonic waves. However, they typically lack adequate broadband sensitivity at ultrasonic frequency higher than 100 MHz, whereas their bulky size and optically opaque nature cause technical difficulties in integrating PA imaging with conventional optical imaging modalities. To overcome these limitations, optical methods of ultrasound detection were developed and shown their unique applications in PA imaging. METHODS We provide an overview of recent technological advances in optical methods of ultrasound detection and their applications in PA imaging. A general theoretical framework describing sensitivity, bandwidth, and angular responses of optical ultrasound detection is also introduced. RESULTS Optical methods of ultrasound detection can provide improved detection angle and sensitivity over significantly extended bandwidth. In addition, its versatile variants also offer additional advantages, such as device miniaturization, optical transparency, mechanical flexibility, minimal electrical/mechanical crosstalk, and potential noncontact PA imaging. CONCLUSION The optical ultrasound detection methods discussed in this review and their future evolution may play an important role in PA imaging for biomedical study and clinical diagnosis.
Collapse
|
77
|
Tian C, Feng T, Wang C, Liu S, Cheng Q, Oliver DE, Wang X, Xu G. Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer. IEEE SENSORS JOURNAL 2016; 16:8381-8388. [PMID: 28210188 PMCID: PMC5305171 DOI: 10.1109/jsen.2016.2611569] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most current photoacoustic imaging (PAI) systems employ piezoelectric transducers to receive photoacoustic signals, which requires coupling medium to facilitate photoacoustic wave propagation and are not favored in many applications. Here, we report an all-optical non-contact PAI system based on a commercial heterodyne interferometer working at 1550 nm. The interferometer remotely detects ultrasound-induced surface vibration and does not involve any physical contact with the sample. The theoretically predicated and experimentally measured noise equivalent detection limits of the optical sensor are about 4.5 and 810 Pa over 1.2 MHz bandwidth. Using a raster-scan PAI system equipped with the non-contact design, stereotactic boundaries of an artificial tumor in a pig brain were accurately delineated. The non-contact design also enables the tomographic PAI of biological tissue samples in a non-invasive manner. The preliminary results and analyses reveal that the heterodyne interferometer-based non-contact PAI system holds good potential in biomedical imaging.
Collapse
Affiliation(s)
- Chao Tian
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ting Feng
- Department of Electronic Science and Engineering, Nanjing University, Nanjing 21000, China, and also with the Department of Radiology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Cheng Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shengchun Liu
- College of Physical Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Qian Cheng
- Institute of Acoustics, Tongji University, Shanghai 200092, China
| | | | - Xueding Wang
- Department of Biomedical Engineering and the Department of Radiology, University of Michigan, Ann Arbor, MI 48109 USA, and also with the Institute of Acoustics, Tongji University, Shanghai 200092, China
| | - Guan Xu
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
78
|
Preisser S, Rohringer W, Liu M, Kollmann C, Zotter S, Fischer B, Drexler W. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2016; 7:4171-4186. [PMID: 27867723 PMCID: PMC5102516 DOI: 10.1364/boe.7.004171] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 05/03/2023]
Abstract
A novel all-optical akinetic ultrasound sensor, consisting of a rigid, fiber-coupled Fabry-Pérot etalon with a transparent central opening is presented. The sensing principle relies exclusively on the detection of pressure-induced changes of the refractive index in the fluid filling the Fabry-Pérot cavity. This enables resonance-free, inherently linear signal detection over a broad bandwidth. We demonstrate that the sensor achieves a exceptionally low peak noise equivalent pressure (NEP) values of 2 Pa over a 20 MHz measurement bandwidth (without signal averaging), while maintaining a flat frequency response, and a detection bandwidth up to 22.5 MHz (-6 dB). The measured large full field of view of the sensor is 2.7 mm × 1.3 mm and the dynamic range is [Formula: see text] or 63 dB at 20 MHz bandwidth. For different required amplitude ranges the upper amplitude detection limit can be customized from at least 2 kPa to 2 MPa by using cavity mirrors with a lower optical reflectivity. Imaging tests on a resolution target and on biological tissue show the excellent suitability of the akinetic sensor for optical resolution photoacoustic microscopy (OR-PAM) applications.
Collapse
Affiliation(s)
- Stefan Preisser
- XARION Laser Acoustics GmbH, Ghegastraße 3, 1030, Vienna,
Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090, Vienna,
Austria
| | - Wolfgang Rohringer
- XARION Laser Acoustics GmbH, Ghegastraße 3, 1030, Vienna,
Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090, Vienna,
Austria
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090, Vienna,
Austria
| | - Christian Kollmann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090, Vienna,
Austria
| | - Stefan Zotter
- XARION Laser Acoustics GmbH, Ghegastraße 3, 1030, Vienna,
Austria
| | | | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, 1090, Vienna,
Austria
| |
Collapse
|
79
|
Abstract
Ultrasound is a valuable biomedical imaging modality and diagnostic tool. Here we theoretically demonstrate that a single dipole plasmonic nanoantenna can be used as an optical hydrophone for MHz-range ultrasound. The nanoantenna is tuned to operate on a high-order plasmon mode, which provides an increased sensitivity to ultrasound in contrast to the usual approach of using the fundamental dipolar plasmon resonance. Plasmonic nanoantenna hydrophones may be useful for ultrasonic imaging of biological cells, cancer tissues or small blood vessels, as well as for Brillouin spectroscopy at the nanoscale.
Collapse
|
80
|
Maswadi SM, Ibey BL, Roth CC, Tsyboulski DA, Beier HT, Glickman RD, Oraevsky AA. All-optical optoacoustic microscopy based on probe beam deflection technique. PHOTOACOUSTICS 2016; 4:91-101. [PMID: 27761408 PMCID: PMC5063357 DOI: 10.1016/j.pacs.2016.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/02/2016] [Accepted: 02/20/2016] [Indexed: 05/11/2023]
Abstract
Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP) of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.
Collapse
Affiliation(s)
- Saher M. Maswadi
- Oak Ridge Institute for Science and Education, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
- EchoLase, Inc., 5234 Tomas Circle, San Antonio, TX 78240, USA
| | - Bennett L. Ibey
- Radio Frequency Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA
| | - Caleb C. Roth
- School of Medicine, Dept. of Radiological Sciences, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | - Hope T. Beier
- Optical Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA
| | - Randolph D. Glickman
- School of Medicine, Dept. of Ophthalmology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- EchoLase, Inc., 5234 Tomas Circle, San Antonio, TX 78240, USA
| | | |
Collapse
|
81
|
Liu W, Zhang HF. Photoacoustic imaging of the eye: A mini review. PHOTOACOUSTICS 2016; 4:112-123. [PMID: 27761410 PMCID: PMC5063360 DOI: 10.1016/j.pacs.2016.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/15/2016] [Accepted: 05/17/2016] [Indexed: 05/04/2023]
Abstract
The eye relies on the synergistic cooperation of many different ocular components, including the cornea, crystalline lens, photoreceptors, and retinal neurons, to precisely sense visual information. Complications with a single ocular component can degrade vision and sometimes cause blindness. Immediate treatment and long-term monitoring are paramount to alleviate symptoms, restore vision, and cure ocular diseases. However, successful treatment requires understanding ocular pathological mechanisms, precisely detecting and monitoring the diseases. The investigation and diagnosis of ocular diseases require advanced medical tools. In this mini review, we discuss non-invasive photoacoustic (PA) imaging as a potential research tool and medical screening device. In the research setting, PA imaging can provide valuable information on the disease progression. In the clinical setting, PA imaging can potentially aid in disease detection and treatment monitoring.
Collapse
Affiliation(s)
- Wenzhong Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208,USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208,USA
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611, USA
- Corresponding author at: Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
82
|
Cho YK, Zheng G, Augustine GJ, Hochbaum D, Cohen A, Knöpfel T, Pisanello F, Pavone FS, Vellekoop IM, Booth MJ, Hu S, Zhu J, Chen Z, Hoshi Y. Roadmap on neurophotonics. JOURNAL OF OPTICS (2010) 2016; 18:093007. [PMID: 28386392 PMCID: PMC5378317 DOI: 10.1088/2040-8978/18/9/093007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mechanistic understanding of how the brain gives rise to complex behavioral and cognitive functions is one of science's grand challenges. The technical challenges that we face as we attempt to gain a systems-level understanding of the brain are manifold. The brain's structural complexity requires us to push the limit of imaging resolution and depth, while being able to cover large areas, resulting in enormous data acquisition and processing needs. Furthermore, it is necessary to detect functional activities and 'map' them onto the structural features. The functional activity occurs at multiple levels, using electrical and chemical signals. Certain electrical signals are only decipherable with sub-millisecond timescale resolution, while other modes of signals occur in minutes to hours. For these reasons, there is a wide consensus that new tools are necessary to undertake this daunting task. Optical techniques, due to their versatile and scalable nature, have great potentials to answer these challenges. Optical microscopy can now image beyond the diffraction limit, record multiple types of brain activity, and trace structural features across large areas of tissue. Genetically encoded molecular tools opened doors to controlling and detecting neural activity using light in specific cell types within the intact brain. Novel sample preparation methods that reduce light scattering have been developed, allowing whole brain imaging in rodent models. Adaptive optical methods have the potential to resolve images from deep brain regions. In this roadmap article, we showcase a few major advances in this area, survey the current challenges, and identify potential future needs that may be used as a guideline for the next steps to be taken.
Collapse
Affiliation(s)
- Yong Ku Cho
- Department of Chemical and Biomolecular Engineering, Institute for Systems Genomics, University of Connecticut, 191 Auditorium Rd, Storrs, CT 06269-3222, USA
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Singapore 637553, Singapore
| | - Daniel Hochbaum
- Departments of Chemistry and Chemical Biology and Physics, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Adam Cohen
- Departments of Chemistry and Chemical Biology and Physics, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Thomas Knöpfel
- Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti sn, I-73010 Arnesano (Lecce), Italy
| | - Francesco S Pavone
- European Laboratory for Non Linear Spectroscopy, University of Florence, Via N. Carrara 1, I-50019 Sesto Fiorentino (FI), Italy; Department of Physics, University of Florence, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy; Istituto Nazionale di Ottica, L.go E. fermi 2, I-50100 Firenze, Italy
| | - Ivo M Vellekoop
- Biomedical Photonic Imaging group, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Martin J Booth
- Centre for Neural Circuits and Behaviour, University of Oxford, Mansfield Road, Oxford OX1 3SR, UK; Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Song Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Jiang Zhu
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92617, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92617, USA
| | - Yoko Hoshi
- Department of Biomedical Optics, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
83
|
Wang LV, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nat Methods 2016; 13:627-38. [PMID: 27467726 PMCID: PMC4980387 DOI: 10.1038/nmeth.3925] [Citation(s) in RCA: 766] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022]
Abstract
The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. One technology uniquely positioned to provide such benefits is photoacoustic tomography (PAT), a sensitive modality for imaging optical absorption contrast over a range of spatial scales at high speed. In PAT, endogenous contrast reveals a tissue's anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small animals. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision PAT's potential to lead to further breakthroughs.
Collapse
Affiliation(s)
- Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
84
|
Kneipp M, Turner J, Estrada H, Rebling J, Shoham S, Razansky D. Effects of the murine skull in optoacoustic brain microscopy. JOURNAL OF BIOPHOTONICS 2016; 9:117-23. [PMID: 25919801 DOI: 10.1002/jbio.201400152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 05/20/2023]
Abstract
Despite the great promise behind the recent introduction of optoacoustic technology into the arsenal of small-animal neuroimaging methods, a variety of acoustic and light-related effects introduced by adult murine skull severely compromise the performance of optoacoustics in transcranial imaging. As a result, high-resolution noninvasive optoacoustic microscopy studies are still limited to a thin layer of pial microvasculature, which can be effectively resolved by tight focusing of the excitation light. We examined a range of distortions introduced by an adult murine skull in transcranial optoacoustic imaging under both acoustically- and optically-determined resolution scenarios. It is shown that strong low-pass filtering characteristics of the skull may significantly deteriorate the achievable spatial resolution in deep brain imaging where no light focusing is possible. While only brain vasculature with a diameter larger than 60 µm was effectively resolved via transcranial measurements with acoustic resolution, significant improvements are seen through cranial windows and thinned skull experiments.
Collapse
Affiliation(s)
- Moritz Kneipp
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine and Faculty of Electrical Engineering and Information Technology, Technische Universität München, Germany
| | - Jake Turner
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine and Faculty of Electrical Engineering and Information Technology, Technische Universität München, Germany
| | - Héctor Estrada
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Rebling
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine and Faculty of Electrical Engineering and Information Technology, Technische Universität München, Germany
| | - Shy Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Daniel Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany.
- Faculty of Medicine and Faculty of Electrical Engineering and Information Technology, Technische Universität München, Germany.
| |
Collapse
|
85
|
Abstract
Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT.
Collapse
Affiliation(s)
- Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Jun Xia
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lihong V Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| |
Collapse
|
86
|
Chen SL, Guo LJ, Wang X. All-optical photoacoustic microscopy. PHOTOACOUSTICS 2015; 3:143-150. [PMID: 31467845 PMCID: PMC6713062 DOI: 10.1016/j.pacs.2015.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 05/04/2023]
Abstract
Three-dimensional photoacoustic microscopy (PAM) has gained considerable attention within the biomedical imaging community during the past decade. Detecting laser-induced photoacoustic waves by optical sensing techniques facilitates the idea of all-optical PAM (AOPAM), which is of particular interest as it provides unique advantages for achieving high spatial resolution using miniaturized embodiments of the imaging system. The review presents the technology aspects of optical-sensing techniques for ultrasound detection, such as those based on optical resonators, as well as system developments of all-optical photoacoustic systems including PAM, photoacoustic endoscopy, and multi-modality microscopy. The progress of different AOPAM systems and their representative applications are summarized.
Collapse
Affiliation(s)
- Sung-Liang Chen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - L. Jay Guo
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Xueding Wang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Corresponding author at: Tel.: +1734-647-2728; fax: +1734-764-8541.
| |
Collapse
|
87
|
Hajireza P, Sorge J, Brett M, Zemp R. In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons. OPTICS LETTERS 2015; 40:1350-3. [PMID: 25831330 DOI: 10.1364/ol.40.001350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this Letter, reflection-mode optical resolution photoacoustic microscopy (OR-PAM) using glancing angle-deposited (GLAD) nanostructured Fabry-Perot interferometers (FPI) for in vivo applications is reported. GLAD is a single-step physical vapor deposition (PVD) technique used to fabricate porous nanostructured thin films. Using titanium dioxide, a transparent semiconductor with a high refractive index (n=2.4), the GLAD technique can be employed to fabricate samples with tailored nano-porosity, refractive index periodicities, and high Q-factor reflectance spectra. The OR-PAM in vivo images of chorioallantoic membrane (CAM) of 5-day chicken embryo model are demonstrated. The phantom study shows lateral resolution and signal-to-noise ratio better than 7 μm and 35 dB, respectively. The sensitive GLAD FPI allows photoacoustic imaging down to a few-nJ pulse energy. To the best of our knowledge, this is the first time that a FPI-based reflection mode optical resolution photoacoustic imaging technique is demonstrated for in vivo applications.
Collapse
|
88
|
Dong B, Li H, Zhang Z, Zhang K, Chen S, Sun C, Zhang HF. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection. OPTICA 2015; 2:169-176. [PMID: 29805988 PMCID: PMC5969522 DOI: 10.1364/optica.2.000169] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.
Collapse
Affiliation(s)
- Biqin Dong
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208
| | - Hao Li
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
| | - Zhen Zhang
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208
| | - Kevin Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
| | - Siyu Chen
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208
- Corresponding author: &
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
- Department of Ophthalmology, Northwestern University, Chicago IL 60611
- Corresponding author: &
| |
Collapse
|
89
|
Chistiakova MV, Armani AM. Photoelastic ultrasound detection using ultra-high-Q silica optical resonators. OPTICS EXPRESS 2014; 22:28169-28179. [PMID: 25402057 DOI: 10.1364/oe.22.028169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As a result of its non-invasive and non-destructive nature, ultrasound imaging has found a variety of applications in a wide range of fields, including healthcare and electronics. One accurate and sensitive approach for detecting ultrasound waves is based on optical microcavities. Previous research using polymer microring resonators demonstrated detection based on the deformation of the cavity induced by the ultrasound wave. An alternative detection approach is based on the photoelastic effect in which the ultrasound wave induces a strain in the material that is converted to a refractive index change. In the present work, photoelastic-based ultrasound detection is experimentally demonstrated using ultra high quality factor silica optical microcavities. As a result of the increase in Q and in coupled power, the noise equivalent pressure is reduced, and the device response is increased. A finite element method model that includes both the acoustics and optics components of this system is developed, and the predictive accuracy of the model is determined.
Collapse
|
90
|
Zhang Z, Dong B, Li H, Zhou F, Zhang HF, Sun C. Theoretical and experimental studies of distance dependent response of micro-ring resonator-based ultrasonic detectors for photoacoustic microscopy. JOURNAL OF APPLIED PHYSICS 2014; 116:144501. [PMID: 25378712 PMCID: PMC4214344 DOI: 10.1063/1.4897455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/26/2014] [Indexed: 05/07/2023]
Abstract
We present in this paper a systematic study of the distance dependent detection characteristics of the newly developed micro-ring resonator (MRR)-based ultrasonic detector for photoacoustic microscopy (PAM). A simple analytic model was first developed to study the steady-state response to the continuous ultrasonic waves. While placing the MRR detector at the acoustic far-field provides longer working distance and broader field of view, the detection at acoustic near-field offers the improved sensitivity and broader bandwidth but at the cost of reduction in the field of view. Furthermore, a numerical model was developed to analyze the transient response to the photoacoustic-induced impulsive waves. Notably, far-field detection exhibits a flat wavefront of its response pattern in the time domain while large distortions are clearly visible in the case of near-field detection. Finally, both analytic and numerical models are validated by experimental studies. This work establishes a theoretical framework for quantitatively analyzing the trade-offs between near-field and far-field detection using MRR detector, creating a guideline for optimizing the PAM for various applications in biomedical imaging and diagnostics.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Mechanical Engineering, Northwestern University , Evanston, Illinois 60208, USA
| | | | - Hao Li
- Department of Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, USA
| | - Fan Zhou
- Department of Mechanical Engineering, Northwestern University , Evanston, Illinois 60208, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University , Evanston, Illinois 60208, USA
| |
Collapse
|
91
|
Song W, Wei Q, Liu W, Liu T, Yi J, Sheibani N, Fawzi AA, Linsenmeier RA, Jiao S, Zhang HF. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Sci Rep 2014; 4:6525. [PMID: 25283870 PMCID: PMC4185377 DOI: 10.1038/srep06525] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022] Open
Abstract
Quantitatively determining physiological parameters at a microscopic level in the retina furthers the understanding of the molecular pathways of blinding diseases, such as diabetic retinopathy and glaucoma. An essential parameter, which has yet to be quantified noninvasively, is the retinal oxygen metabolic rate (rMRO2). Quantifying rMRO2 is challenging because two parameters, the blood flow rate and hemoglobin oxygen saturation (sO2), must be measured together. We combined photoacoustic ophthalmoscopy (PAOM) with spectral domain-optical coherence tomography (SD-OCT) to tackle this challenge, in which PAOM measured the sO2 and SD-OCT mapped the blood flow rate. We tested the integrated system on normal wild-type rats, in which the measured rMRO2 was 297.86 ± 70.23 nl/minute. This quantitative method may shed new light on both fundamental research and clinical care in ophthalmology in the future.
Collapse
Affiliation(s)
- Wei Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Physics, Harbin Institute of Technology, 92 West Da-Zhi Street Nangang District, Harbin, Heilongjiang 150080, China
- These authors contributed equally to this work
| | - Qing Wei
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- These authors contributed equally to this work
| | - Wenzhong Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- These authors contributed equally to this work
| | - Tan Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ji Yi
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, WI 53792, USA
| | - Amani A. Fawzi
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611, USA
| | - Robert A. Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611, USA
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
92
|
Dong B, Chen S, Zhang Z, Sun C, Zhang HF. Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications. OPTICS LETTERS 2014; 39:4372-5. [PMID: 25078180 PMCID: PMC4560527 DOI: 10.1364/ol.39.004372] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We designed an all-optical photoacoustic (PA) probe for endoscopic applications by employing an optically transparent, coverslip-type, polymeric microring resonator ultrasonic sensor. We experimentally quantified the axial, tangential, and radial resolutions and angular sensitive stability of this probe. Using this probe, we achieved volumetric imaging of several phantoms. Our all-optical probe design offers clear benefit in integrating PA endoscope with other optical endoscopic imaging modalities to facilitate the transformation from bench to bedside.
Collapse
Affiliation(s)
- Biqin Dong
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208
| | - Siyu Chen
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
| | - Zhen Zhang
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
| |
Collapse
|
93
|
Yao J, Wang LV. Sensitivity of photoacoustic microscopy. PHOTOACOUSTICS 2014; 2:87-101. [PMID: 25302158 PMCID: PMC4182819 DOI: 10.1016/j.pacs.2014.04.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/12/2014] [Indexed: 05/03/2023]
Abstract
Building on its high spatial resolution, deep penetration depth and excellent image contrast, 3D photoacoustic microscopy (PAM) has grown tremendously since its first publication in 2005. Integrating optical excitation and acoustic detection, PAM has broken through both the optical diffusion and optical diffraction limits. PAM has 100% relative sensitivity to optical absorption (i.e., a given percentage change in the optical absorption coefficient yields the same percentage change in the photoacoustic amplitude), and its ultimate detection sensitivity is limited only by thermal noise. Focusing on the engineering aspects of PAM, this Review discusses the detection sensitivity of PAM, compares the detection efficiency of different PAM designs, and summarizes the imaging performance of various endogenous and exogenous contrast agents. It then describes representative PAM applications with high detection sensitivity, and outlines paths to further improvement.
Collapse
Affiliation(s)
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|