51
|
Activation of proline metabolism maintains ATP levels during cocaine-induced polyADP-ribosylation. Amino Acids 2021; 53:1903-1915. [PMID: 34417893 PMCID: PMC8651605 DOI: 10.1007/s00726-021-03065-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
Cocaine is a commonly abused drug worldwide. Acute as well as repeated exposure to cocaine activates persistent cellular and molecular changes in the brain reward regions. The effects of cocaine are predominantly mediated via alterations in neuronal gene expression by chromatin remodeling. Poly(ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation of chromatin has been reported as an important regulator of cocaine-mediated gene expression. PARP-1 dependent ADP-ribosylation is an energy-dependent process. In this study, we investigated the cellular energy response to cocaine-induced upregulation of PARP-1 expression. Exposure of differentiated SH-SY5Y cells to varying concentrations of cocaine resulted in the induction of PARP-1 dependent PARylation of p53 tumor suppressor. Further analysis revealed that PARylation of p53 by cocaine treatment resulted in nuclear accumulation of p53. However, induction and nuclear accumulation of p53 did not correlate with neuronal apoptosis/cell death upon cocaine exposure. Interestingly, cocaine-induced p53 PARylation resulted in the induction of proline oxidase (POX)—a p53 responsive gene involved in cellular metabolism. Given that cocaine-induced p53 PARylation is an energy-dependent process, we observed that cocaine-induced PARP-1/p53/POX axes alters cellular energy metabolism. Accordingly, using pharmacological and genetic studies of PARP-1, p53, and POX, we demonstrated the contribution of POX in maintaining cellular energy during neuronal function. Collectively, these studies highlight activation of a novel metabolic pathway in response to cocaine treatment.
Collapse
|
52
|
Geng P, Qin W, Xu G. Proline metabolism in cancer. Amino Acids 2021; 53:1769-1777. [PMID: 34390414 DOI: 10.1007/s00726-021-03060-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/01/2021] [Indexed: 01/01/2023]
Abstract
Cancer cells often change their metabolism to support uncontrolled proliferation. Proline is the only proteogenic secondary amino acid that is abundant in the body. Recent studies have shown that proline metabolism plays an important role in metabolic reprogramming and affects the occurrence and development of cancer. Proline metabolism is related to ATP production, protein and nucleotide synthesis, and redox homeostasis in tumor cells. Proline can be synthesized by aldehyde dehydrogenase family 18 member A1 (ALDH18A1) and delta1-pyrroline-5-carboxylate reductase (PYCR), up-regulating ALDH18A1 and PYCR can promote the proliferation and invasion of cancer cells. As the main storage of proline, collagen can influence cancer cells proliferation, invasion, and metastasis. Its synthesis depends on the hydroxylation of proline catalyzed by prolyl 4-hydroxylases (P4Hs), which will affect the plasticity and metastasis of cancer cells. The degradation of proline occurs in the mitochondria and involves an oxidation step catalyzed by proline dehydrogenase/proline oxidase (PRODH/POX). Proline catabolism has a dual role in cancer, linking apoptosis with the survival and metastasis of cancer cells. In addition, it has been demonstrated that the regulation of proline metabolic enzymes at the genetic and post-translational levels is related to cancer. This article reviews the role of proline metabolic enzymes in cancer proliferation, apoptosis, metastasis, and development. Research on proline metabolism may provide a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Pengyu Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
53
|
Wang S, Gu L, Huang L, Fang J, Liu Z, Xu Q. The upregulation of PYCR2 is associated with aggressive colon cancer progression and a poor prognosis. Biochem Biophys Res Commun 2021; 572:20-26. [PMID: 34332325 DOI: 10.1016/j.bbrc.2021.07.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/05/2023]
Abstract
PYCR2 has previously been shown to be related to a range of malignancies including hepatocellular carcinoma and melanoma, but its mechanistic functions and prognostic relevance in colon cancer patients remain to be defined. Herein, we used the Oncomine, Human Protein Atlas, The Cancer Genome Atlas (TCGA), and UALCAN databases to explore the expression of this gene in different human cancer, after which the relationship between PYCR2 expression and patient clinicopathologic characteristics was evaluated. We utilized an in vitro approach to evaluate the association between PYCR2 expression and colon cancer cell proliferation, migration, invasion, and tumor microsphere formation. The cell apoptosis was analyzed by flow cytometry. Gene set enrichment analysis (GSEA) approaches were additionally used to probe signaling pathways related to PYCR2. These analyses confirmed that PYCR2 was upregulated in several cancer types including colon cancer, with such upregulation correlating with a poor patient prognosis and with malignant clinicopathological characteristics. PYCR2 expression was identified as an independent predictor of colon cancer patients' survival, and in vitro analyses suggested that knocking down this gene was sufficient to disrupt the proliferative, migratory, invasive, and microsphere formation activities of colon cancer cells. Moreover, shPYCR2 transfection induced colon cancer cell apoptosis. GSEA suggested that high PYCR2 expression correlates with the differential enrichment of the Wnt β-catenin signaling, MYC targets, RNA polymerase, and Notch signaling pathways. Overall, these data indicate that PYCR2 is an important mediator of tumor progression and metastasis, and suggest that it may be a valuable prognostic indicator for colon cancer patient evaluation.
Collapse
Affiliation(s)
- Sitong Wang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China
| | - Linaer Gu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China
| | - Lili Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China
| | - Juemin Fang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China
| | - Zhuqing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China.
| |
Collapse
|
54
|
Pietkiewicz D, Klupczynska-Gabryszak A, Plewa S, Misiura M, Horala A, Miltyk W, Nowak-Markwitz E, Kokot ZJ, Matysiak J. Free Amino Acid Alterations in Patients with Gynecological and Breast Cancer: A Review. Pharmaceuticals (Basel) 2021; 14:ph14080731. [PMID: 34451829 PMCID: PMC8400482 DOI: 10.3390/ph14080731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gynecological and breast cancers still remain a significant health problem worldwide. Diagnostic methods are not sensitive and specific enough to detect the disease at an early stage. During carcinogenesis and tumor progression, the cellular need for DNA and protein synthesis increases leading to changes in the levels of amino acids. An important role of amino acids in many biological pathways, including biosynthesis of proteins, nucleic acids, enzymes, etc., which serve as an energy source and maintain redox balance, has been highlighted in many research articles. The aim of this review is a detailed analysis of the literature on metabolomic studies of gynecology and breast cancers with particular emphasis on alterations in free amino acid profiles. The work includes a brief overview of the metabolomic methodology and types of biological samples used in the studies. Special attention was paid to the possible role of selected amino acids in the carcinogenesis, especially proline and amino acids related to its metabolism. There is a clear need for further research and multiple external validation studies to establish the role of amino acid profiling in diagnosing gynecological and breast cancers.
Collapse
Affiliation(s)
- Dagmara Pietkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
| | - Agnieszka Klupczynska-Gabryszak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
| | - Magdalena Misiura
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.M.); (W.M.)
| | - Agnieszka Horala
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.H.); (E.N.-M.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.M.); (W.M.)
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.H.); (E.N.-M.)
| | - Zenon J. Kokot
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (D.P.); (A.K.-G.); (S.P.)
- Correspondence:
| |
Collapse
|
55
|
Cui C, Wang J, Guo L, Wu C. PINCH-1 promotes Δ 1-pyrroline-5-carboxylate synthase expression and contributes to proline metabolic reprogramming in lung adenocarcinoma. Amino Acids 2021; 53:1875-1890. [PMID: 34283311 DOI: 10.1007/s00726-021-03050-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/10/2021] [Indexed: 12/26/2022]
Abstract
Proline metabolic reprogramming is intimately involved in cancer progression. We recently identified a critical role of PINCH-1, a cell-extracellular matrix (ECM) adhesion protein whose expression is elevated in lung adenocarcinoma, in the promotion of proline biosynthesis, fibrosis and lung adenocarcinoma growth. How PINCH-1 promotes proline biosynthesis, however, was incompletely understood. In this study, we show that PINCH-1 promotes the expression of Δ1-pyrroline-5-carboxylate synthase (P5CS), a key enzyme that links glutamate metabolism to proline biosynthesis. Depletion of PINCH-1 from lung adenocarcinoma cells reduced the protein but not mRNA level of P5CS, resulting in down-regulation of the cellular level of P5C and cell proliferation. Treatment of the cells with protease inhibitor leupeptin effectively reversed PINCH-1 deficiency-induced reduction of the P5CS level. At the molecular level, PINCH-1, through its LIM2 domain, physically associated with P5CS in lung adenocarcinoma cells. Re-expression of wild type PINCH-1, but not that of the PINCH-1 LIM2 deletion mutant, in PINCH-1 deficient lung adenocarcinoma cells restored P5CS expression, proline biosynthesis and cell proliferation. Finally, P5CS expression, like that of PINCH-1, is elevated in human and mouse lung adenocarcinoma. Using a mouse model of lung adenocarcinoma in which PINCH-1 is conditionally ablated, we show that knockout of PINCH-1 from lung adenocarcinoma effectively reduced the P5CS level in vivo. Our results reveal an important role of PINCH-1 in the promotion of P5CS expression, which likely contributes to proline metabolic reprogramming and consequently lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Chunhong Cui
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
56
|
Li Y, Bie J, Song C, Liu M, Luo J. PYCR, a key enzyme in proline metabolism, functions in tumorigenesis. Amino Acids 2021; 53:1841-1850. [PMID: 34273023 DOI: 10.1007/s00726-021-03047-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022]
Abstract
Pyrroline-5-carboxylate reductase (PYCR), the last enzyme in proline synthesis that converts P5C into proline, was found promoting cancer growth and inhibiting apoptosis through multiple approaches, including regulating cell cycle and redox homeostasis, and promoting growth signaling pathways. Proline is abnormally up-regulated in multiple cancers and becomes one of the critical players in the reprogramming of cancer metabolism. As the last key enzymes in proline generation, PYCRs have been the subject of many investigations, and have been demonstrated to play an indispensable role in promoting tumorigenesis and cancer progression. In this article, we will thoroughly review the recent investigations on PYCRs in cancer development.
Collapse
Affiliation(s)
- Yutong Li
- Department of Medical Genetics, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Juntao Bie
- Department of Medical Genetics, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Chen Song
- Department of Medical Genetics, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Minghui Liu
- Department of Medical Genetics, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Peking University, 38 Xueyuan Road, Beijing, 100191, China. .,Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing, 100191, China. .,Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, 100191, China. .,Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
57
|
Chen K, Guo L, Wu C. How signaling pathways link extracellular mechano-environment to proline biosynthesis: A hypothesis: PINCH-1 and kindlin-2 sense mechanical signals from extracellular matrix and link them to proline biosynthesis. Bioessays 2021; 43:e2100116. [PMID: 34218442 DOI: 10.1002/bies.202100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
We propose a signaling pathway in which cell-extracellular matrix (ECM) adhesion components PINCH-1 and kindlin-2 sense mechanical signals from ECM and link them to proline biosynthesis, a vital metabolic pathway for macromolecule synthesis, redox balance, and ECM remodeling. ECM stiffening promotes PINCH-1 expression via integrin signaling, which suppresses dynamin-related protein 1 (DRP1) expression and mitochondrial fission, resulting in increased kindlin-2 translocation into mitochondria and interaction with Δ1 -pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1). Kindlin-2 interaction with PYCR1 protects the latter from proteolytic degradation, leading to elevated PYCR1 level. Additionally, PINCH-1 promotes P5C synthase (P5CS) expression and P5C synthesis, which, together with increased PYCR1 level, support augmented proline biosynthesis. This signaling pathway is frequently activated in fibrosis and cancer, resulting in increased proline biosynthesis and excessive collagen matrix production, which in turn further promotes ECM stiffening. Targeting this signaling pathway, therefore, may provide an effective strategy for alleviating fibrosis and cancer progression.
Collapse
Affiliation(s)
- Keng Chen
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Ling Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
58
|
Tejedor G, Contreras-Lopez R, Barthelaix A, Ruiz M, Noël D, De Ceuninck F, Pastoureau P, Luz-Crawford P, Jorgensen C, Djouad F. Pyrroline-5-Carboxylate Reductase 1 Directs the Cartilage Protective and Regenerative Potential of Murphy Roths Large Mouse Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:604756. [PMID: 34277596 PMCID: PMC8284254 DOI: 10.3389/fcell.2021.604756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Murphy Roths Large (MRL) mice possess outstanding capacity to regenerate several tissues. In the present study, we investigated whether this regenerative potential could be associated with the intrinsic particularities possessed by their mesenchymal stem cells (MSCs). We demonstrated that MSCs derived from MRL mice (MRL MSCs) display a superior chondrogenic potential than do C57BL/6 MSC (BL6 MSCs). This higher chondrogenic potential of MRL MSCs was associated with a higher expression level of pyrroline-5-carboxylate reductase 1 (PYCR1), an enzyme that catalyzes the biosynthesis of proline, in MRL MSCs compared with BL6 MSCs. The knockdown of PYCR1 in MRL MSCs, using a specific small interfering RNA (siRNA), abolishes their chondrogenic potential. Moreover, we showed that PYCR1 silencing in MRL MSCs induced a metabolic switch from glycolysis to oxidative phosphorylation. In two in vitro chondrocyte models that reproduce the main features of osteoarthritis (OA) chondrocytes including a downregulation of chondrocyte markers, a significant decrease of PYCR1 was observed. A downregulation of chondrocyte markers was also observed by silencing PYCR1 in freshly isolated healthy chondrocytes. Regarding MSC chondroprotective properties on chondrocytes with OA features, we showed that MSCs silenced for PYCR1 failed to protect chondrocytes from a reduced expression of anabolic markers, while MSCs overexpressing PYCR1 exhibited an increased chondroprotective potential. Finally, using the ear punch model, we demonstrated that MRL MSCs induced a regenerative response in non-regenerating BL6 mice, while BL6 and MRL MSCs deficient for PYCR1 did not. In conclusion, our results provide evidence that MRL mouse regenerative potential is, in part, attributed to its MSCs that exhibit higher PYCR1-dependent glycolytic potential, differentiation capacities, chondroprotective abilities, and regenerative potential than BL6 MSCs.
Collapse
Affiliation(s)
| | | | | | - Maxime Ruiz
- IRMB, INSERM, University Montpellier, Montpellier, France
| | - Danièle Noël
- IRMB, INSERM, University Montpellier, Montpellier, France.,CHU Montpellier, Montpellier, France
| | - Frédéric De Ceuninck
- Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Philippe Pastoureau
- Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Christian Jorgensen
- IRMB, INSERM, University Montpellier, Montpellier, France.,CHU Montpellier, Montpellier, France
| | - Farida Djouad
- IRMB, INSERM, University Montpellier, Montpellier, France
| |
Collapse
|
59
|
Oscilowska I, Huynh TYL, Baszanowska W, Prokop I, Surazynski A, Galli M, Zabielski P, Palka J. Proline oxidase silencing inhibits p53-dependent apoptosis in MCF-7 breast cancer cells. Amino Acids 2021; 53:1943-1956. [PMID: 34085157 PMCID: PMC8651586 DOI: 10.1007/s00726-021-03013-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 02/02/2023]
Abstract
Proline oxidase (POX) is mitochondrial proline-degrading enzyme of dual apoptosis/survival function. POX expression and proline availability are considered an underlying mechanism for differential POX functions. The mechanism for POX-dependent regulation of cell death/survival was studied in wild-type (MCF-7WT) and shRNA POX-silenced breast cancer cells (MCF-7iPOX). Proline concentration and proteomic analyses were determined by LC/MS/QTOF and LC/MS/ORBITRA, respectively. Inhibition of collagen biosynthesis (proline utilizing process) by 2-methoxyestradiol (2ME) contributed to induction of apoptosis in MCF-7WT cells, as detected by increase in the expression of active caspase-3, -9 and p53. The process was not shown in MCF-7iPOX. In MCF-7iPOX cells prolidase activity and expression as well as proline concentration were drastically increased, compared to MCF-7WT cells. Down-regulation of p53 in MCF-7iPOX cells was corroborated by proteomic analysis showing decrease in the expression of p53-related proteins. The mechanism for down-regulation of p53 expression in MCF-7iPOX cells was found at the level of p53-PEPD complex formation that was counteracted by hydrogen peroxide treatment. In this study, we found that silencing POX modulate pro-survival phenotype of MCF-7 cells and suggest that the mechanism of this process undergoes through down-regulation of p53-dependent signaling.
Collapse
Affiliation(s)
- Ilona Oscilowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Thi Y L Huynh
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Weronika Baszanowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Izabela Prokop
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, Mickiewicza 2C, 15-222, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Mickiewicza 2C, 15-222, Bialystok, Poland
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
60
|
Karvelsson ST, Sigurdsson A, Seip K, Grinde MT, Wang Q, Johannsson F, Mælandsmo GM, Moestue SA, Rolfsson O, Halldorsson S. EMT-Derived Alterations in Glutamine Metabolism Sensitize Mesenchymal Breast Cells to mTOR Inhibition. Mol Cancer Res 2021; 19:1546-1558. [PMID: 34088869 DOI: 10.1158/1541-7786.mcr-20-0962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process with strong implications in cancer progression. Understanding the metabolic alterations associated with EMT may open new avenues of treatment and prevention. Here we used 13C carbon analogs of glucose and glutamine to examine differences in their utilization within central carbon and lipid metabolism following EMT in breast epithelial cell lines. We found that there are inherent differences in metabolic profiles before and after EMT. We observed EMT-dependent re-routing of the TCA-cycle, characterized by increased mitochondrial IDH2-mediated reductive carboxylation of glutamine to lipid biosynthesis with a concomitant lowering of glycolytic rates and glutamine-dependent glutathione (GSH) generation. Using weighted correlation network analysis, we identified cancer drugs whose efficacy against the NCI-60 Human Tumor Cell Line panel is significantly associated with GSH abundance and confirmed these in vitro. We report that EMT-linked alterations in GSH synthesis modulate the sensitivity of breast epithelial cells to mTOR inhibitors. IMPLICATIONS: EMT in breast cells causes an increased demand for glutamine for fatty acid biosynthesis, altering its contribution to glutathione biosynthesis, which sensitizes the cells to mTOR inhibitors.
Collapse
Affiliation(s)
| | - Arnar Sigurdsson
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Kotryna Seip
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Qiong Wang
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Freyr Johannsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Siver Andreas Moestue
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway.,Department of Pharmacy, Nord University, Namsos, Norway
| | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland.
| | - Skarphedinn Halldorsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland.,Institute for Surgical Research, Vilhelm Magnus Laboratory, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
61
|
Xu Y, Zuo W, Wang X, Zhang Q, Gan X, Tan N, Jia W, Liu J, Li Z, Zhou B, Zhao D, Xie Z, Tan Y, Zheng S, Liu C, Li H, Chen Z, Yang X, Huang Z. Deciphering the effects of PYCR1 on cell function and its associated mechanism in hepatocellular carcinoma. Int J Biol Sci 2021; 17:2223-2239. [PMID: 34239351 PMCID: PMC8241733 DOI: 10.7150/ijbs.58026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/16/2021] [Indexed: 12/28/2022] Open
Abstract
Overexpression of pyrroline-5-carboxylate reductase 1 (PYCR1) has been associated with the development of certain cancers; however, no studies have specifically examined the role of PYCR1 in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas expression array and meta-analysis conducted using the Gene Expression Omnibus database, we determined that PYCR1 was upregulated in HCC compared to adjacent nontumor tissues (P < 0.05). These data were verified using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry analysis. Additionally, patients with low PYCR1 expression showed a higher overall survival rate than patients with high PYCR1 expression. Furthermore, PYCR1 overexpression was associated with the female sex, higher levels of alpha-fetoprotein, advanced clinical stages (III and IV), and a younger age (< 45 years old). Silencing of PYCR1 inhibited cell proliferation, invasive migration, epithelial-mesenchymal transition, and metastatic properties in HCC in vitro and in vivo. Using RNA sequencing and bioinformatics tools for data-dependent network analysis, we found binary relationships among PYCR1 and its interacting proteins in defined pathway modules. These findings indicated that PYCR1 played a multifunctional role in coordinating a variety of biological pathways involved in cell communication, cell proliferation and growth, cell migration, a mitogen-activated protein kinase cascade, ion binding, etc. The structural characteristics of key pathway components and PYCR1-interacting proteins were evaluated by molecular docking, and hotspot analysis showed that better affinities between PYCR1 and its interacting molecules were associated with the presence of arginine in the binding site. Finally, a candidate regulatory microRNA, miR-2355-5p, for PYCR1 mRNA was discovered in HCC. Overall, our study suggests that PYCR1 plays a vital role in HCC pathogenesis and may potentially serve as a molecular target for HCC treatment.
Collapse
Affiliation(s)
- Yanzhen Xu
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 310000, Hangzhou, China
| | - Wenpu Zuo
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Medical Scientific Research Center, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qinle Zhang
- Genetic and metabolic central laboratory, the maternal and children's health hospital of Guangxi, Nanning, 530000, Guangxi, China
| | - Xiang Gan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Ning Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Wenxian Jia
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jiayi Liu
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhouquan Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Bo Zhou
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Dong Zhao
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhibin Xie
- Department of Urology, the Five Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Shengfeng Zheng
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Chengwu Liu
- Department of Pathophysiology, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Hongtao Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhijian Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhaoquan Huang
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| |
Collapse
|
62
|
Bailey TL, Hernandez-Fernaud JR, Gibson MI. Proline pre-conditioning of cell monolayers increases post-thaw recovery and viability by distinct mechanisms to other osmolytes. RSC Med Chem 2021; 12:982-993. [PMID: 34223163 PMCID: PMC8221256 DOI: 10.1039/d1md00078k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell cryopreservation is an essential tool for drug toxicity/function screening and transporting cell-based therapies, and is essential in most areas of biotechnology. There is a challenge, however, associated with the cryopreservation of cells in monolayer format (attached to tissue culture substrates) which gives far lower cell yields (<20% typically) compared to suspension freezing. Here we investigate the mechanisms by which the protective osmolyte l-proline enhances cell-monolayer cryopreservation. Pre-incubating A549 cells with proline, prior to cryopreservation in monolayers, increased post-thaw cell yields two-fold, and the recovered cells grow faster compared to cells cryopreserved using DMSO alone. Further increases in yield were achieved by adding polymeric ice recrystallization inhibitors, which gave limited benefit in the absence of proline. Mechanistic studies demonstrated a biochemical, rather than biophysical (i.e. not affecting ice growth) mode of action. It was observed that incubating cells with proline (before freezing) transiently reduced the growth rate of the cells, which was not seen with other osmolytes (betaine and alanine). Removal of proline led to rapid growth recovery, suggesting that proline pre-conditions the cells for cold stress, but with no impact on downstream cell function. Whole cell proteomics did not reveal a single pathway or protein target but rather cells appeared to be primed for a stress response in multiple directions, which together prepare the cells for freezing. These results support the use of proline alongside standard conditions to improve post-thaw recovery of cell monolayers, which is currently considered impractical. It also demonstrates that a chemical biology approach to discovering small molecule biochemical modulators of cryopreservation may be possible, to be used alongside traditional (solvent) based cryoprotectants. Cell cryopreservation is an essential tool for transporting cell-based therapies, and is essential in most areas of biotechnology. Here proline pre-incubation prior to cell monolayer cryopreservation is explored, increasing post-thaw yields.![]()
Collapse
Affiliation(s)
- Trisha L Bailey
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK .,Warwick Medical School, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
63
|
Wang Y, Huang R, Zheng G, Shen J. Small ring has big potential: insights into extrachromosomal DNA in cancer. Cancer Cell Int 2021; 21:236. [PMID: 33902601 PMCID: PMC8077740 DOI: 10.1186/s12935-021-01936-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Recent technical advances have led to the discovery of novel functions of extrachromosomal DNA (ecDNA) in multiple cancer types. Studies have revealed that cancer-associated ecDNA shows a unique circular shape and contains oncogenes that are more frequently amplified than that in linear chromatin DNA. Importantly, the ecDNA-mediated amplification of oncogenes was frequently found in most cancers but rare in normal tissues. Multiple reports have shown that ecDNA has a profound impact on oncogene activation, genomic instability, drug sensitivity, tumor heterogeneity and tumor immunology, therefore may offer the potential for cancer diagnosis and therapeutics. Nevertheless, the underlying mechanisms and future applications of ecDNA remain to be determined. In this review, we summarize the basic concepts, biological functions and molecular mechanisms of ecDNA. We also provide novel insights into the fundamental role of ecDNA in cancer.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Guopei Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
64
|
Adeshakin FO, Adeshakin AO, Afolabi LO, Yan D, Zhang G, Wan X. Mechanisms for Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic Reprogramming. Front Oncol 2021; 11:626577. [PMID: 33854965 PMCID: PMC8039382 DOI: 10.3389/fonc.2021.626577] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
The attachment of cells to the extracellular matrix (ECM) is the hallmark of structure–function stability and well-being. ECM detachment in localized tumors precedes abnormal dissemination of tumor cells culminating in metastasis. Programmed cell death (PCD) is activated during tumorigenesis to clear off ECM-detached cells through “anoikis.” However, cancer cells develop several mechanisms for abrogating anoikis, thus promoting their invasiveness and metastasis. Specific factors, such as growth proteins, pH, transcriptional signaling pathways, and oxidative stress, have been reported as drivers of anoikis resistance, thus enhancing cancer proliferation and metastasis. Recent studies highlighted the key contributions of metabolic pathways, enabling the cells to bypass anoikis. Therefore, understanding the mechanisms driving anoikis resistance could help to counteract tumor progression and prevent metastasis. This review elucidates the dynamics employed by cancer cells to impede anoikis, thus promoting proliferation, invasion, and metastasis. In addition, the authors have discussed other metabolic intermediates (especially amino acids and nucleotides) that are less explored, which could be crucial for anoikis resistance and metastasis.
Collapse
Affiliation(s)
- Funmilayo O Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Adeleye O Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lukman O Afolabi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
65
|
Disease variants of human Δ 1-pyrroline-5-carboxylate reductase 2 (PYCR2). Arch Biochem Biophys 2021; 703:108852. [PMID: 33771508 DOI: 10.1016/j.abb.2021.108852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Pyrroline-5-carboxylate reductase (PYCR in humans) catalyzes the final step of l-proline biosynthesis by catalyzing the reduction of L-Δ1-pyrroline-5-carboxylate (L-P5C) to l-proline using NAD(P)H as the hydride donor. In humans, three isoforms PYCR1, PYCR2, and PYCR3 are known. Recent genome-wide association and clinical studies have revealed that homozygous mutations in human PYCR2 lead to postnatal microcephaly and hypomyelination, including hypomyelinating leukodystrophy type 10. To uncover biochemical and structural insights into human PYCR2, we characterized the steady-state kinetics of the wild-type enzyme along with two protein variants, Arg119Cys and Arg251Cys, that were previously identified in patients with microcephaly and hypomyelination. Kinetic measurements with PYCR2 suggest a sequential binding mechanism with L-P5C binding before NAD(P)H and NAD(P)+ releasing before L-Pro. Both disease-related variants are catalytically impaired. Depending on whether NADPH or NADH was used, the catalytic efficiency of the R119C protein variant was 40 or 366 times lower than that of the wild-type enzyme, while the catalytic efficiency of the R251C protein variant was 7 or 26 times lower than that of the wild-type enzyme. In addition, thermostability and circular dichroism measurements suggest that the R251C protein variant has a pronounced folding defect. These results are consistent with the involvement of Arg119Cys and Arg251Cys in disease pathology.
Collapse
|
66
|
Stum MG, Tadenev ALD, Seburn KL, Miers KE, Poon PP, McMaster CR, Robinson C, Kane C, Silva KA, Cliften PF, Sundberg JP, Reinholdt LG, John SWM, Burgess RW. Genetic analysis of Pycr1 and Pycr2 in mice. Genetics 2021; 218:6178002. [PMID: 33734376 DOI: 10.1093/genetics/iyab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 01/09/2023] Open
Abstract
The final step in proline biosynthesis is catalyzed by three pyrroline-5-carboxylate reductases, PYCR1, PYCR2, and PYCR3, which convert pyrroline-5-carboxylate (P5C) to proline. Mutations in human PYCR1 and ALDH18A1 (P5C Synthetase) cause Cutis Laxa (CL), whereas mutations in PYCR2 cause hypomyelinating leukodystrophy 10 (HLD10). Here, we investigated the genetics of Pycr1 and Pycr2 in mice. A null allele of Pycr1 did not show integument or CL-related phenotypes. We also studied a novel chemically-induced mutation in Pycr2. Mice with recessive loss-of-function mutations in Pycr2 showed phenotypes consistent with neurological and neuromuscular disorders, including weight loss, kyphosis, and hind-limb clasping. The peripheral nervous system was largely unaffected, with only mild axonal atrophy in peripheral nerves. A severe loss of subcutaneous fat in Pycr2 mutant mice is reminiscent of a CL-like phenotype, but primary features such as elastin abnormalities were not observed. Aged Pycr2 mutant mice had reduced white blood cell counts and altered lipid metabolism, suggesting a generalized metabolic disorder. PYCR1 and -2 have similar enzymatic and cellular activities, and consistent with previous studies, both were localized in the mitochondria in fibroblasts. Both PYCR1 and -2 were able to complement the loss of Pro3, the yeast enzyme that converts P5C to proline, confirming their activity as P5C reductases. In mice, Pycr1; Pycr2 double mutants were sub-viable and unhealthy compared to either single mutant, indicating the genes are largely functionally redundant. Proline levels were not reduced, and precursors were not increased in serum from Pycr2 mutant mice or in lysates from skin fibroblast cultures, but placing Pycr2 mutant mice on a proline-free diet worsened the phenotype. Thus, Pycr1 and -2 have redundant functions in proline biosynthesis, and their loss makes proline a semi-essential amino acid. These findings have implications for understanding the genetics of CL and HLD10, and for modeling these disorders in mice.
Collapse
Affiliation(s)
| | | | | | | | - Pak P Poon
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Carolyn Robinson
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Coleen Kane
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Paul F Cliften
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.,Department of Ophthalmology, Howard Hughes Medical Institute, New York, NY 10032, USA.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
67
|
Sun X, Zhou ZR, Fang Y, Ding S, Lu S, Wang Z, Wang H, Chen X, Shen K. A novel metabolic gene signature-based nomogram to predict overall survival in breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:367. [PMID: 33842588 PMCID: PMC8033348 DOI: 10.21037/atm-20-4813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Breast cancer risk prediction is often based on clinicopathological characteristics despite the high heterogeneity derived from gene expression. Metabolic alteration is a hallmark of cancer, and thus, the integration of a metabolic signature with clinical parameters is necessary to predict disease outcomes in breast cancers. Methods Metabolic genes were downloaded from the Gene Set Enrichment Analysis (GSEA) dataset. Genes with statistical significance in the univariate analysis were applied in the least absolute shrinkage and selection operator (LASSO) analysis to build a gene signature in the GSE20685 dataset. Clinicopathological characteristics and risk scores with prognostic significance were incorporated into the nomogram to predict the overall survival (OS) of patients. The Cancer Genome Atlas (TCGA) and GSE866166 datasets were used as the validation datasets. Time-dependent receiver operating characteristic (tROC) curves and calibration plots were used to assess the accuracy and discrimination of the model. Results A 55-gene metabolic gene signature (MGS) was constructed, and was significantly related to OS both in the discovery (P<0.001) and validation (P<0.001) datasets. The MGS was an independent prognostic factor and could divide patients into high- and low-risk groups regardless of their different prediction analysis of microarray 50 (PAM50) subtypes. Time-dependent ROC curves indicated that the risk scores based on the MGS [area under the ROC curve (AUC): 0.931] were superior to the those based on the American Joint Committee on Cancer (AJCC) stage (AUC: 0.781) and PAM50 (AUC: 0.675). A nomogram based on the AJCC stage and risk score could predict OS, and the calibration curves showed good agreement to the actual outcome, indicating that the nomogram may have practical utility. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis indicated that this MGS was primarily enriched in amino acid pathways. Conclusions Our results demonstrated that the MGS was superior to existing risk predictors such as PAM50 and AJCC stage. By combining clinical factors (AJCC stage) and the MGS, a nomogram was constructed and showed good predictive ability for OS in breast cancer.
Collapse
Affiliation(s)
- Xi Sun
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Rui Zhou
- Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Fang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuning Ding
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangshuang Lu
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
68
|
Ding Z, Ericksen RE, Lee QY, Han W. Reprogramming of mitochondrial proline metabolism promotes liver tumorigenesis. Amino Acids 2021; 53:1807-1815. [PMID: 33646427 DOI: 10.1007/s00726-021-02961-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Dysregulated cellular energetics has recently been recognized as a hallmark of cancer and garnered attention as a potential targeting strategy for cancer therapeutics. Cancer cells reprogram metabolic activities to meet bio-energetic, biosynthetic and redox requirements needed to sustain indefinite proliferation. In many cases, metabolic reprogramming is the result of complex interactions between genetic alterations in well-known oncogenes and tumor suppressors and epigenetic changes. While the metabolism of the two most abundant nutrients, glucose and glutamine, is reprogrammed in a wide range of cancers, accumulating evidence demonstrates that additional metabolic pathways are also critical for cell survival and growth. Proline metabolism is one such metabolic pathway that promotes tumorigenesis in multiple cancer types, including liver cancer, which is the fourth main cause of cancer mortality in the world. Despite the recent spate of approved treatments, including targeted therapy and combined immunotherapies, there has been no significant gain in clinical benefits in the majority of liver cancer patients. Thus, exploring novel therapeutic strategies and identifying new molecular targets remains a top priority for liver cancer. Two of the enzymes in the proline biosynthetic pathway, pyrroline-5-carboxylate reductase (PYCR1) and Aldehyde Dehydrogenase 18 Family Member A1 (ALDH18A1), are upregulated in liver cancer of both human and animal models, while proline catabolic enzymes, such as proline dehydrogenase (PRODH) are downregulated. Here we review the latest evidence linking proline metabolism to liver and other cancers and potential mechanisms of action for the proline pathway in cancer development.
Collapse
Affiliation(s)
- Zhaobing Ding
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Russell E Ericksen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Qian Yi Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore.
| |
Collapse
|
69
|
Marzec J, Ross-Adams H, Pirrò S, Wang J, Zhu Y, Mao X, Gadaleta E, Ahmad AS, North BV, Kammerer-Jacquet SF, Stankiewicz E, Kudahetti SC, Beltran L, Ren G, Berney DM, Lu YJ, Chelala C. The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis. Cancers (Basel) 2021; 13:345. [PMID: 33477882 PMCID: PMC7838904 DOI: 10.3390/cancers13020345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing of primary tumors is now standard for transcriptomic studies, but microarray-based data still constitute the majority of available information on other clinically valuable samples, including archive material. Using prostate cancer (PC) as a model, we developed a robust analytical framework to integrate data across different technical platforms and disease subtypes to connect distinct disease stages and reveal potentially relevant genes not identifiable from single studies alone. We reconstructed the molecular profile of PC to yield the first comprehensive insight into its development, by tracking changes in mRNA levels from normal prostate to high-grade prostatic intraepithelial neoplasia, and metastatic disease. A total of nine previously unreported stage-specific candidate genes with prognostic significance were also found. Here, we integrate gene expression data from disparate sample types, disease stages and technical platforms into one coherent whole, to give a global view of the expression changes associated with the development and progression of PC from normal tissue through to metastatic disease. Summary and individual data are available online at the Prostate Integrative Expression Database (PIXdb), a user-friendly interface designed for clinicians and laboratory researchers to facilitate translational research.
Collapse
Affiliation(s)
- Jacek Marzec
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Helen Ross-Adams
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Stefano Pirrò
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Jun Wang
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Yanan Zhu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Xueying Mao
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Emanuela Gadaleta
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Amar S. Ahmad
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK; (A.S.A.); (B.V.N.)
| | - Bernard V. North
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK; (A.S.A.); (B.V.N.)
| | - Solène-Florence Kammerer-Jacquet
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Elzbieta Stankiewicz
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Sakunthala C. Kudahetti
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Luis Beltran
- Department of Pathology, Barts Health NHS, London E1 F1R, UK;
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310058, China;
| | - Daniel M. Berney
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
- Department of Pathology, Barts Health NHS, London E1 F1R, UK;
| | - Yong-Jie Lu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Claude Chelala
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
- Centre for Computational Biology, Life Sciences Initiative, Queen Mary University London, London EC1M 6BQ, UK
| |
Collapse
|
70
|
Activation of proline biosynthesis is critical to maintain glutamate homeostasis during acute methamphetamine exposure. Sci Rep 2021; 11:1422. [PMID: 33446840 PMCID: PMC7809342 DOI: 10.1038/s41598-020-80917-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/30/2020] [Indexed: 01/29/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that causes long-lasting effects in the brain and increases the risk of developing neurodegenerative diseases. The cellular and molecular effects of METH in the brain are functionally linked to alterations in glutamate levels. Despite the well-documented effects of METH on glutamate neurotransmission, the underlying mechanism by which METH alters glutamate levels is not clearly understood. In this study, we report an essential role of proline biosynthesis in maintaining METH-induced glutamate homeostasis. We observed that acute METH exposure resulted in the induction of proline biosynthetic enzymes in both undifferentiated and differentiated neuronal cells. Proline level was also increased in these cells after METH exposure. Surprisingly, METH treatment did not increase glutamate levels nor caused neuronal excitotoxicity. However, METH exposure resulted in a significant upregulation of pyrroline-5-carboxylate synthase (P5CS), the key enzyme that catalyzes synthesis of proline from glutamate. Interestingly, depletion of P5CS by CRISPR/Cas9 resulted in a significant increase in glutamate levels upon METH exposure. METH exposure also increased glutamate levels in P5CS-deficient proline-auxotropic cells. Conversely, restoration of P5CS expression in P5CS-deficient cells abrogated the effect of METH on glutamate levels. Consistent with these findings, P5CS expression was significantly enhanced in the cortical brain region of mice administered with METH and in the slices of cortical brain tissues treated with METH. Collectively, these results uncover a key role of P5CS for the molecular effects of METH and highlight that excess glutamate can be sequestered for proline biosynthesis as a protective mechanism to maintain glutamate homeostasis during drug exposure.
Collapse
|
71
|
Hyroššová P, Aragó M, Moreno-Felici J, Fu X, Mendez-Lucas A, García-Rovés PM, Burgess S, Figueras A, Viñals F, Perales JC. PEPCK-M recoups tumor cell anabolic potential in a PKC-ζ-dependent manner. Cancer Metab 2021; 9:1. [PMID: 33413684 PMCID: PMC7791766 DOI: 10.1186/s40170-020-00236-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M; PCK2) is expressed in all cancer types examined and in neuroprogenitor cells. The gene is upregulated by amino acid limitation and ER-stress in an ATF4-dependent manner, and its activity modulates the PEP/Ca2+ signaling axis, providing clear arguments for a functional relationship with metabolic adaptations for cell survival. Despite its potential relevance to cancer metabolism, the mechanisms responsible for its pro-survival activity have not been completely elucidated. Methods [U-13C]glutamine and [U-13C]glucose labeling of glycolytic and TCA cycle intermediates and their anabolic end-products was evaluated quantitatively using LC/MS and GC/MS in conditions of abundant glucose and glucose limitation in loss-of-function (shRNA) and gain-of-function (lentiviral constitutive overexpression) HeLa cervix carcinoma cell models. Cell viability was assessed in conjunction with various glucose concentrations and in xenografts in vivo. Results PEPCK-M levels linearly correlated with [U-13C]glutamine label abundance in most glycolytic and TCA cycle intermediate pools under nutritional stress. In particular, serine, glycine, and proline metabolism, and the anabolic potential of the cell, were sensitive to PEPCK-M activity. Therefore, cell viability defects could be rescued by supplementing with an excess of those amino acids. PEPCK-M silenced or inhibited cells in the presence of abundant glucose showed limited growth secondary to TCA cycle blockade and increased ROS. In limiting glucose conditions, downregulation of PKC-ζ tumor suppressor has been shown to enhance survival. Consistently, HeLa cells also sustained a survival advantage when PKC-ζ tumor suppressor was downregulated using shRNA, but this advantage was abolished in the absence of PEPCK-M, as its inhibition restores cell growth to control levels. The relationship between these two pathways is also highlighted by the anti-correlation observed between PEPCK-M and PKC-ζ protein levels in all clones tested, suggesting co-regulation in the absence of glucose. Finally, PEPCK-M loss negatively impacted on anchorage-independent colony formation and xenograft growth in vivo. Conclusions All in all, our data suggest that PEPCK-M might participate in the mechanisms to regulate proteostasis in the anabolic and stalling phases of tumor growth. We provide molecular clues into the clinical relevance of PEPCK-M as a mechanism of evasion of cancer cells in conditions of nutrient stress. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-020-00236-3.
Collapse
Affiliation(s)
- Petra Hyroššová
- Department of Physiological Sciences, School of Medicine, University of Barcelona, Feixa Llarga s/n, 08907, L'Hospitalet del Llobregat, Spain
| | - Marc Aragó
- Department of Physiological Sciences, School of Medicine, University of Barcelona, Feixa Llarga s/n, 08907, L'Hospitalet del Llobregat, Spain
| | - Juan Moreno-Felici
- Department of Physiological Sciences, School of Medicine, University of Barcelona, Feixa Llarga s/n, 08907, L'Hospitalet del Llobregat, Spain
| | - Xiarong Fu
- Center for Human Nutrition and Department of Pharmacology, University of Texas, Dallas, 75390, USA
| | - Andrés Mendez-Lucas
- Department of Physiological Sciences, School of Medicine, University of Barcelona, Feixa Llarga s/n, 08907, L'Hospitalet del Llobregat, Spain
| | - Pablo M García-Rovés
- Department of Physiological Sciences, School of Medicine, University of Barcelona, Feixa Llarga s/n, 08907, L'Hospitalet del Llobregat, Spain
| | - Shawn Burgess
- Center for Human Nutrition and Department of Pharmacology, University of Texas, Dallas, 75390, USA
| | - Agnès Figueras
- IDIBELL, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Spain
| | - Francesc Viñals
- IDIBELL, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Spain
| | - Jose C Perales
- Department of Physiological Sciences, School of Medicine, University of Barcelona, Feixa Llarga s/n, 08907, L'Hospitalet del Llobregat, Spain. .,IDIBELL, Gran Via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
72
|
Xie Y, Meng WY, Li RZ, Wang YW, Qian X, Chan C, Yu ZF, Fan XX, Pan HD, Xie C, Wu QB, Yan PY, Liu L, Tang YJ, Yao XJ, Wang MF, Leung ELH. Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl Oncol 2021; 14:100907. [PMID: 33217646 PMCID: PMC7683339 DOI: 10.1016/j.tranon.2020.100907] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Early diagnosis has been proved to improve survival rate of lung cancer patients. The availability of blood-based screening could increase early lung cancer patient uptake. Our present study attempted to discover Chinese patients' plasma metabolites as diagnostic biomarkers for lung cancer. In this work, we use a pioneering interdisciplinary mechanism, which is firstly applied to lung cancer, to detect early lung cancer diagnostic biomarkers by combining metabolomics and machine learning methods. We collected total 110 lung cancer patients and 43 healthy individuals in our study. Levels of 61 plasma metabolites were from targeted metabolomic study using LC-MS/MS. A specific combination of six metabolic biomarkers note-worthily enabling the discrimination between stage I lung cancer patients and healthy individuals (AUC = 0.989, Sensitivity = 98.1%, Specificity = 100.0%). And the top 5 relative importance metabolic biomarkers developed by FCBF algorithm also could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction. This research will provide strong support for the feasibility of blood-based screening, and bring a more accurate, quick and integrated application tool for early lung cancer diagnostic. The proposed interdisciplinary method could be adapted to other cancer beyond lung cancer.
Collapse
Affiliation(s)
- Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Wei-Yu Meng
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xin Qian
- Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Chang Chan
- Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Zhi-Fang Yu
- Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Hu-Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Chun Xie
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Qi-Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Pei-Yu Yan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yi-Jun Tang
- Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Mei-Fang Wang
- Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China.
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China; Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
73
|
Trypanosoma cruzi synthesizes proline via a Δ1-pyrroline-5-carboxylate reductase whose activity is fine-tuned by NADPH cytosolic pools. Biochem J 2020; 477:1827-1845. [PMID: 32315030 DOI: 10.1042/bcj20200232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022]
Abstract
In Trypanosoma cruzi, the etiological agent of Chagas disease, the amino acid proline participates in processes related to T. cruzi survival and infection, such as ATP production, cell differentiation, host-cell invasion, and in protection against osmotic, nutritional, and thermal stresses and oxidative imbalance. However, little is known about proline biosynthesis in this parasite. Δ1-Pyrroline-5-carboxylate reductase (P5CR, EC 1.5.1.2) catalyzes the biosynthesis of proline from Δ1-pyrroline-5-carboxylate (P5C) with concomitant NADPH oxidation. Herein, we show that unlike other eukaryotes, T. cruzi biosynthesizes proline from P5C, which is produced exclusively from glutamate. We found that TcP5CR is an NADPH-dependent cytosolic enzyme with a Kmapp for P5C of 27.7 μM and with a higher expression in the insect-resident form of the parasite. High concentrations of the co-substrate NADPH partially inhibited TcP5CR activity, prompting us to analyze multiple kinetic inhibition models. The model that best explained the obtained data included a non-competitive substrate inhibition mechanism (Kiapp=45±0.7μM). Therefore, TcP5CR is a candidate as a regulatory factor of this pathway. Finally, we show that P5C can exit trypanosomatid mitochondria in conditions that do not compromise organelle integrity. These observations, together with previously reported results, lead us to propose that in T. cruzi TcP5CR participates in a redox shuttle between the mitochondria and the cytoplasm. In this model, cytoplasmic redox equivalents from NADPH pools are transferred to the mitochondria using proline as a reduced metabolite, and shuttling to fuel electrons to the respiratory chain through proline oxidation by its cognate dehydrogenase.
Collapse
|
74
|
The Janus-like role of proline metabolism in cancer. Cell Death Discov 2020; 6:104. [PMID: 33083024 PMCID: PMC7560826 DOI: 10.1038/s41420-020-00341-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The metabolism of the non-essential amino acid L-proline is emerging as a key pathway in the metabolic rewiring that sustains cancer cells proliferation, survival and metastatic spread. Pyrroline-5-carboxylate reductase (PYCR) and proline dehydrogenase (PRODH) enzymes, which catalyze the last step in proline biosynthesis and the first step of its catabolism, respectively, have been extensively associated with the progression of several malignancies, and have been exposed as potential targets for anticancer drug development. As investigations into the links between proline metabolism and cancer accumulate, the complexity, and sometimes contradictory nature of this interaction emerge. It is clear that the role of proline metabolism enzymes in cancer depends on tumor type, with different cancers and cancer-related phenotypes displaying different dependencies on these enzymes. Unexpectedly, the outcome of rewiring proline metabolism also differs between conditions of nutrient and oxygen limitation. Here, we provide a comprehensive review of proline metabolism in cancer; we collate the experimental evidence that links proline metabolism with the different aspects of cancer progression and critically discuss the potential mechanisms involved.
Collapse
|
75
|
Metabolic Constrains Rule Metastasis Progression. Cells 2020; 9:cells9092081. [PMID: 32932943 PMCID: PMC7563739 DOI: 10.3390/cells9092081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation accounts for the majority of tumor-associated deaths and consists of different steps, each of them being characterized by a distinctive adaptive phenotype of the cancer cells. Metabolic reprogramming represents one of the main adaptive phenotypes exploited by cancer cells during all the main steps of tumor and metastatic progression. In particular, the metabolism of cancer cells evolves profoundly through all the main phases of metastasis formation, namely the metastatic dissemination, the metastatic colonization of distant organs, the metastatic dormancy, and ultimately the outgrowth into macroscopic lesions. However, the metabolic reprogramming of metastasizing cancer cells has only recently become the subject of intense study. From a clinical point of view, the latter steps of the metastatic process are very important, because patients often undergo surgical removal of the primary tumor when cancer cells have already left the primary tumor site, even though distant metastases are not clinically detectable yet. In this scenario, to precisely elucidate if and how metabolic reprogramming drives acquisition of cancer-specific adaptive phenotypes might pave the way to new therapeutic strategies by combining chemotherapy with metabolic drugs for better cancer eradication. In this review we discuss the latest evidence that claim the importance of metabolic adaptation for cancer progression.
Collapse
|
76
|
Shenoy A, Belugali Nataraj N, Perry G, Loayza Puch F, Nagel R, Marin I, Balint N, Bossel N, Pavlovsky A, Barshack I, Kaufman B, Agami R, Yarden Y, Dadiani M, Geiger T. Proteomic patterns associated with response to breast cancer neoadjuvant treatment. Mol Syst Biol 2020; 16:e9443. [PMID: 32960509 PMCID: PMC7507992 DOI: 10.15252/msb.20209443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
Tumor relapse as a consequence of chemotherapy resistance is a major clinical challenge in advanced stage breast tumors. To identify processes associated with poor clinical outcome, we took a mass spectrometry-based proteomic approach and analyzed a breast cancer cohort of 113 formalin-fixed paraffin-embedded samples. Proteomic profiling of matched tumors before and after chemotherapy, and tumor-adjacent normal tissue, all from the same patients, allowed us to define eight patterns of protein level changes, two of which correlate to better chemotherapy response. Supervised analysis identified two proteins of proline biosynthesis pathway, PYCR1 and ALDH18A1, that were significantly associated with resistance to treatment based on pattern dominance. Weighted gene correlation network analysis of post-treatment samples revealed that these proteins are associated with tumor relapse and affect patient survival. Functional analysis showed that knockdown of PYCR1 reduced invasion and migration capabilities of breast cancer cell lines. PYCR1 knockout significantly reduced tumor burden and increased drug sensitivity of orthotopically injected ER-positive tumor in vivo, thus emphasizing the role of PYCR1 in resistance to chemotherapy.
Collapse
Affiliation(s)
- Anjana Shenoy
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | | | - Gili Perry
- Sheba Medical CenterCancer Research CenterTel‐HashomerIsrael
| | | | - Remco Nagel
- Netherlands Cancer InstituteAmsterdamNetherlands
| | - Irina Marin
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Nora Balint
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Noa Bossel
- Weizmann Institute of ScienceRehovotIsrael
| | - Anya Pavlovsky
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Iris Barshack
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Bella Kaufman
- Sheba Medical CenterOncology InstituteTel‐HashomerIsrael
| | - Reuven Agami
- Netherlands Cancer InstituteAmsterdamNetherlands
| | | | - Maya Dadiani
- Sheba Medical CenterCancer Research CenterTel‐HashomerIsrael
| | - Tamar Geiger
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
77
|
Patel SM, Smith TG, Morton M, Stiers KM, Seravalli J, Mayclin SJ, Edwards TE, Tanner JJ, Becker DF. Cautionary Tale of Using Tris(alkyl)phosphine Reducing Agents with NAD +-Dependent Enzymes. Biochemistry 2020; 59:3285-3289. [PMID: 32841567 DOI: 10.1021/acs.biochem.0c00490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein biochemistry protocols typically include disulfide bond reducing agents to guard against unwanted thiol oxidation and protein aggregation. Commonly used disulfide bond reducing agents include dithiothreitol, β-mercaptoethanol, glutathione, and the tris(alkyl)phosphine compounds tris(2-carboxyethyl)phosphine (TCEP) and tris(3-hydroxypropyl)phosphine (THPP). While studying the catalytic activity of the NAD(P)H-dependent enzyme Δ1-pyrroline-5-carboxylate reductase, we unexpectedly observed a rapid non-enzymatic chemical reaction between NAD+ and the reducing agents TCEP and THPP. The product of the reaction exhibits a maximum ultraviolet absorbance peak at 334 nm and forms with an apparent association rate constant of 231-491 M-1 s-1. The reaction is reversible, and nuclear magnetic resonance characterization (1H, 13C, and 31P) of the product revealed a covalent adduct between the phosphorus of the tris(alkyl)phosphine reducing agent and the C4 atom of the nicotinamide ring of NAD+. We also report a 1.45 Å resolution crystal structure of short-chain dehydrogenase/reductase with the NADP+-TCEP reaction product bound in the cofactor binding site, which shows that the adduct can potentially inhibit enzymes. These findings serve to caution researchers when using TCEP or THPP in experimental protocols with NAD(P)+. Because NAD(P)+-dependent oxidoreductases are widespread in nature, our results may be broadly relevant.
Collapse
Affiliation(s)
| | | | | | - Kyle M Stiers
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Stephen J Mayclin
- Seattle Structural Genomics Center for Infectious Disease, UCB Pharma, Bainbridge Island, Washington 98110, United States
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease, UCB Pharma, Bainbridge Island, Washington 98110, United States
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | | |
Collapse
|
78
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
79
|
Current Understanding of the Emerging Role of Prolidase in Cellular Metabolism. Int J Mol Sci 2020; 21:ijms21165906. [PMID: 32824561 PMCID: PMC7460564 DOI: 10.3390/ijms21165906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Prolidase [EC 3.4.13.9], known as PEPD, cleaves di- and tripeptides containing carboxyl-terminal proline or hydroxyproline. For decades, prolidase has been thoroughly investigated, and several mechanisms regulating its activity are known, including the activation of the β1-integrin receptor, insulin-like growth factor 1 receptor (IGF-1) receptor, and transforming growth factor (TGF)-β1 receptor. This process may result in increased availability of proline in the mitochondrial proline cycle, thus making proline serve as a substrate for the resynthesis of collagen, an intracellular signaling molecule. However, as a ligand, PEPD can bind directly to the epidermal growth factor receptor (EGFR, epidermal growth factor receptor 2 (HER2)) and regulate cellular metabolism. Recent reports have indicated that PEPD protects p53 from uncontrolled p53 subcellular activation and its translocation between cellular compartments. PEPD also participates in the maturation of the interferon α/β receptor by regulating its expression. In addition to the biological effects, prolidase demonstrates clinical significance reflected in the disease known as prolidase deficiency. It is also known that prolidase activity is affected in collagen metabolism disorders, metabolic, and oncological conditions. In this article, we review the latest knowledge about prolidase and highlight its biological function, and thus provide an in-depth understanding of prolidase as a dipeptidase and protein regulating the function of key biomolecules in cellular metabolism.
Collapse
|
80
|
Xiao S, Li S, Yuan Z, Zhou L. Pyrroline-5-carboxylate reductase 1 (PYCR1) upregulation contributes to gastric cancer progression and indicates poor survival outcome. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:937. [PMID: 32953737 PMCID: PMC7475402 DOI: 10.21037/atm-19-4402] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Proline levels are significantly increased in tumor specimens and urine samples from gastric cancer (GC) patients, and we previously showed that intracellular proline levels significantly differ between human GC cell lines and normal gastric epithelial cells. Pyrroline-5-carboxylate reductase 1 (PYCR1) is the key enzyme in intracellular proline synthesis, but its role in GC remains largely unknown. Methods Bioinformatic analysis and immunohistochemical (IHC) staining with a tissue microarray were conducted to assess the association between PYCR1 expression and clinical parameters. PYCR1 downregulation and overexpression were then established in two GC cell lines (AGS and MKN28 cells) to determine whether PYCR1 promotes malignant behavior in GC. Gene set enrichment analysis (GSEA) was further performed to investigate the pathway regulating PYCR1 in GC. Results PYCR1 expression was up-regulated in different GC cohorts. High PYCR1 protein expression was correlated with advanced tumor stage, aggressive histological type and high Ki-67 index. High PYCR1 expression in GC tissues was an indicator of poor outcome in GC patients. In vitro, PYCR1 knockdown markedly attenuated GC cells growth and promoted apoptosis, while overexpression produced the opposite effects. GSEA analysis indicated PI3K/Akt axis was strongly correlated with PYCR1 expression and that PIK3CB and AKT1 mRNA expression was positively associated with PYCR1 in GC tissues. PI3K inhibition further significantly reduced PYCR1 mRNA and protein expression. Moreover, as PYCR1 is a mitochondrial endomembrane protein, nutrient stress induced by glucose deprivation also regulated PYCR1 expression. Conclusions PYCR1 is highly expressed in GC and acts as a mitochondrial oncogene to induce cancer progression by enhancing tumor proliferation and responding to metabolic stress. PYCR1 is a novel prognostic marker and a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Sizhu Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Ziying Yuan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| |
Collapse
|
81
|
Dong Y, Tu R, Liu H, Qing G. Regulation of cancer cell metabolism: oncogenic MYC in the driver's seat. Signal Transduct Target Ther 2020; 5:124. [PMID: 32651356 PMCID: PMC7351732 DOI: 10.1038/s41392-020-00235-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer cells must rewire cellular metabolism to satisfy the demands of unbridled growth and proliferation. As such, most human cancers differ from normal counterpart tissues by a plethora of energetic and metabolic reprogramming. Transcription factors of the MYC family are deregulated in up to 70% of all human cancers through a variety of mechanisms. Oncogenic levels of MYC regulates almost every aspect of cellular metabolism, a recently revisited hallmark of cancer development. Meanwhile, unrestrained growth in response to oncogenic MYC expression creates dependency on MYC-driven metabolic pathways, which in principle provides novel targets for development of effective cancer therapeutics. In the current review, we summarize the significant progress made toward understanding how MYC deregulation fuels metabolic rewiring in malignant transformation.
Collapse
Affiliation(s)
- Yang Dong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Rongfu Tu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Hudan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Guoliang Qing
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
82
|
Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma. Cell 2020; 179:561-577.e22. [PMID: 31585088 DOI: 10.1016/j.cell.2019.08.052] [Citation(s) in RCA: 601] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/02/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
We performed the first proteogenomic characterization of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) using paired tumor and adjacent liver tissues from 159 patients. Integrated proteogenomic analyses revealed consistency and discordance among multi-omics, activation status of key signaling pathways, and liver-specific metabolic reprogramming in HBV-related HCC. Proteomic profiling identified three subgroups associated with clinical and molecular attributes including patient survival, tumor thrombus, genetic profile, and the liver-specific proteome. These proteomic subgroups have distinct features in metabolic reprogramming, microenvironment dysregulation, cell proliferation, and potential therapeutics. Two prognostic biomarkers, PYCR2 and ADH1A, related to proteomic subgrouping and involved in HCC metabolic reprogramming, were identified. CTNNB1 and TP53 mutation-associated signaling and metabolic profiles were revealed, among which mutated CTNNB1-associated ALDOA phosphorylation was validated to promote glycolysis and cell proliferation. Our study provides a valuable resource that significantly expands the knowledge of HBV-related HCC and may eventually benefit clinical practice.
Collapse
|
83
|
D'Aniello C, Patriarca EJ, Phang JM, Minchiotti G. Proline Metabolism in Tumor Growth and Metastatic Progression. Front Oncol 2020; 10:776. [PMID: 32500033 PMCID: PMC7243120 DOI: 10.3389/fonc.2020.00776] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer cells show a formidable capacity to survive under stringent conditions, to elude mechanisms of control, such as apoptosis, and to resist therapy. Cancer cells reprogram their metabolism to support uncontrolled proliferation and metastatic progression. Phenotypic and functional heterogeneity are hallmarks of cancer cells, which endow them with aggressiveness, metastatic capacity, and resistance to therapy. This heterogeneity is regulated by a variety of intrinsic and extrinsic stimuli including those from the tumor microenvironment. Increasing evidence points to a key role for the metabolism of non-essential amino acids in this complex scenario. Here we discuss the impact of proline metabolism in cancer development and progression, with particular emphasis on the enzymes involved in proline synthesis and catabolism, which are linked to pathways of energy, redox, and anaplerosis. In particular, we emphasize how proline availability influences collagen synthesis and maturation and the acquisition of cancer cell plasticity and heterogeneity. Specifically, we propose a model whereby proline availability generates a cycle based on collagen synthesis and degradation, which, in turn, influences the epigenetic landscape and tumor heterogeneity. Therapeutic strategies targeting this metabolic-epigenetic axis hold great promise for the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Cristina D'Aniello
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, Naples, Italy
| | - Eduardo J. Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, Naples, Italy
| | - James M. Phang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, United States
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, Naples, Italy
| |
Collapse
|
84
|
Quantitative analysis of amino acid metabolism in liver cancer links glutamate excretion to nucleotide synthesis. Proc Natl Acad Sci U S A 2020; 117:10294-10304. [PMID: 32341162 PMCID: PMC7229649 DOI: 10.1073/pnas.1919250117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We used a combination of experimental measurements and computer simulations to understand how liver cancer cells rewire their metabolism to grow faster. We observed that glutamate is excreted by the cells, and our simulations suggest that this occurs because glutamate is formed in excess in the cytoplasm, when cells rapidly synthesize nucleotides, which are required for growth. Meanwhile, glutamate that is formed in the mitochondria is, on the other hand, not excreted. Treating glutamate as two distinct pools, a cytosolic and a mitochondrial, is useful to better understand why many cancer cells rapidly consume glutamine, the precursor of glutamate. The results point toward potential drug targets that could be used to reduce growth of liver cancer cells. Many cancer cells consume glutamine at high rates; counterintuitively, they simultaneously excrete glutamate, the first intermediate in glutamine metabolism. Glutamine consumption has been linked to replenishment of tricarboxylic acid cycle (TCA) intermediates and synthesis of adenosine triphosphate (ATP), but the reason for glutamate excretion is unclear. Here, we dynamically profile the uptake and excretion fluxes of a liver cancer cell line (HepG2) and use genome-scale metabolic modeling for in-depth analysis. We find that up to 30% of the glutamine is metabolized in the cytosol, primarily for nucleotide synthesis, producing cytosolic glutamate. We hypothesize that excreting glutamate helps the cell to increase the nucleotide synthesis rate to sustain growth. Indeed, we show experimentally that partial inhibition of glutamate excretion reduces cell growth. Our integrative approach thus links glutamine addiction to glutamate excretion in cancer and points toward potential drug targets.
Collapse
|
85
|
Hamanaka RB, O'Leary EM, Witt LJ, Tian Y, Gökalp GA, Meliton AY, Dulin NO, Mutlu GM. Glutamine Metabolism Is Required for Collagen Protein Synthesis in Lung Fibroblasts. Am J Respir Cell Mol Biol 2020; 61:597-606. [PMID: 30973753 DOI: 10.1165/rcmb.2019-0008oc] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the transforming growth factor (TGF)-β-dependent differentiation of lung fibroblasts into myofibroblasts, leading to excessive deposition of extracellular matrix proteins, which distort lung architecture and function. Metabolic reprogramming in myofibroblasts is emerging as an important mechanism in the pathogenesis of IPF, and recent evidence suggests that glutamine metabolism is required in myofibroblasts, although the exact role of glutamine in myofibroblasts is unclear. In the present study, we demonstrate that glutamine and its conversion to glutamate by glutaminase are required for TGF-β-induced collagen protein production in lung fibroblasts. We found that metabolism of glutamate to α-ketoglutarate by glutamate dehydrogenase or the glutamate-pyruvate or glutamate-oxaloacetate transaminases is not required for collagen protein production. Instead, we discovered that the glutamate-consuming enzymes phosphoserine aminotransferase 1 (PSAT1) and aldehyde dehydrogenase 18A1 (ALDH18A1)/Δ1-pyrroline-5-carboxylate synthetase (P5CS) are required for collagen protein production by lung fibroblasts. PSAT1 is required for de novo glycine production, whereas ALDH18A1/P5CS is required for de novo proline production. Consistent with this, we found that TGF-β treatment increased cellular concentrations of glycine and proline in lung fibroblasts. Our results suggest that glutamine metabolism is required to promote amino acid biosynthesis and not to provide intermediates such as α-ketoglutarate for oxidation in mitochondria. In support of this, we found that inhibition of glutaminolysis has no effect on cellular oxygen consumption and that knockdown of oxoglutarate dehydrogenase has no effect on the ability of fibroblasts to produce collagen protein. Our results suggest that amino acid biosynthesis pathways may represent novel therapeutic targets for treatment of fibrotic diseases, including IPF.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Erin M O'Leary
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Leah J Witt
- Division of Geriatrics and.,Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, California
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Gizem A Gökalp
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Angelo Y Meliton
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Nickolai O Dulin
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| |
Collapse
|
86
|
Non-Coding RNAs as Key Regulators of Glutaminolysis in Cancer. Int J Mol Sci 2020; 21:ijms21082872. [PMID: 32326003 PMCID: PMC7216265 DOI: 10.3390/ijms21082872] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer cells exhibit exacerbated metabolic activity to maintain their accelerated proliferation and microenvironmental adaptation in order to survive under nutrient-deficient conditions. Tumors display an increase in glycolysis, glutaminolysis and fatty acid biosynthesis, which provide their energy source. Glutamine is critical for fundamental cellular processes, where intermediate metabolites produced through glutaminolysis are necessary for the maintenance of mitochondrial metabolism. These include antioxidants to remove reactive oxygen species, and the generation of the nonessential amino acids, purines, pyrimidines and fatty acids required for cellular replication and the activation of cell signaling. Some cancer cells are highly dependent on glutamine consumption since its catabolism provides an anaplerotic pathway to feed the Krebs cycle. Intermediate members of the glutaminolysis pathway have been found to be deregulated in several types of cancers and have been proposed as therapeutic targets and prognostic biomarkers. This review summarizes the main players in the glutaminolysis pathway, how they have been found to be deregulated in cancer and their implications for cancer maintenance. Furthermore, non-coding RNAs are now recognized as new participants in the regulation of glutaminolysis; therefore, their involvement in glutamine metabolism in cancer is discussed in detail.
Collapse
|
87
|
Choi UY, Lee JJ, Park A, Zhu W, Lee HR, Choi YJ, Yoo JS, Yu C, Feng P, Gao SJ, Chen S, Eoh H, Jung JU. Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis. Proc Natl Acad Sci U S A 2020; 117:8083-8093. [PMID: 32213586 PMCID: PMC7149499 DOI: 10.1073/pnas.1918607117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Three-dimensional (3D) cell culture is well documented to regain intrinsic metabolic properties and to better mimic the in vivo situation than two-dimensional (2D) cell culture. Particularly, proline metabolism is critical for tumorigenesis since pyrroline-5-carboxylate (P5C) reductase (PYCR/P5CR) is highly expressed in various tumors and its enzymatic activity is essential for in vitro 3D tumor cell growth and in vivo tumorigenesis. PYCR converts the P5C intermediate to proline as a biosynthesis pathway, whereas proline dehydrogenase (PRODH) breaks down proline to P5C as a degradation pathway. Intriguingly, expressions of proline biosynthesis PYCR gene and proline degradation PRODH gene are up-regulated directly by c-Myc oncoprotein and p53 tumor suppressor, respectively, suggesting that the proline-P5C metabolic axis is a key checkpoint for tumor cell growth. Here, we report a metabolic reprogramming of 3D tumor cell growth by oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent of Kaposi's sarcoma and primary effusion lymphoma. Metabolomic analyses revealed that KSHV infection increased nonessential amino acid metabolites, specifically proline, in 3D culture, not in 2D culture. Strikingly, the KSHV K1 oncoprotein interacted with and activated PYCR enzyme, increasing intracellular proline concentration. Consequently, the K1-PYCR interaction promoted tumor cell growth in 3D spheroid culture and tumorigenesis in nude mice. In contrast, depletion of PYCR expression markedly abrogated K1-induced tumor cell growth in 3D culture, not in 2D culture. This study demonstrates that an increase of proline biosynthesis induced by K1-PYCR interaction is critical for KSHV-mediated transformation in in vitro 3D culture condition and in vivo tumorigenesis.
Collapse
Affiliation(s)
- Un Yung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Jae Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Wei Zhu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, 30019 Sejong, South Korea
| | - Youn Jung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ji-Seung Yoo
- Department of Immunology, Faculty of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
| | - Claire Yu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- University of Pittsburgh Medical Center (UPMC), Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219
- Laboratory of Human Virology and Oncology, Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
| |
Collapse
|
88
|
Keeratichamroen S, Subhasitanont P, Chokchaichamnankit D, Weeraphan C, Saharat K, Sritana N, Kantathavorn N, Wiriyaukaradecha K, Sricharunrat T, Paricharttanakul NM, Auewarakul C, Svasti J, Srisomsap C. Identification of potential cervical cancer serum biomarkers in Thai patients. Oncol Lett 2020; 19:3815-3826. [PMID: 32391095 PMCID: PMC7204490 DOI: 10.3892/ol.2020.11519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is one of the most common causes of cancer-associated mortality in females worldwide. Serum biomarkers are important tools for diagnosis, disease staging, monitoring treatment and detecting recurrence in different types of cancer. However, only a small number of established biomarkers have been used for clinical diagnosis of cervical cancer. Therefore, the identification of minimally invasive, sensitive and highly specific biomarkers for detection of cervical cancer may improve outcomes. In the present pilot study, changes in disease-relevant proteins in 31 patients with cervical cancer were compared with 16 healthy controls. The Human 14 Multiple Affinity Removal system was used to deplete the 14 most abundant serum proteins to decrease sample complexity and to enrich proteins that exhibited decreased levels of abundance in the serum samples. Immunoaffinity-depleted serum samples were analyzed by in-gel digestion, followed by liquid chromatography mass spectrometry analysis and data processing. Automated quantitative western blot assays and receiver operating characteristic (ROC) curves were used to evaluate the differential protein expression levels between the two groups. Capillary electrophoresis-based western blot analysis was performed to quantitatively determine serum levels of the candidate biomarkers. Significantly increased levels of α-1-antitrypsin (A1AT) and pyrroline-5-carboxylate reductase 2 (PYCR2) were detected, whereas the levels of transthyretin (TTR), apolipoprotein A-I (ApoA-I), vitamin D binding protein (VDBP) and multimerin-1 (MMRN1) were significantly decreased in patients with cervical cancer compared with the healthy controls. ROC curve analysis indicated that the sensitivity and specificity was improved through the combination of the 6 candidate biomarkers. In summary, the results demonstrated that 6 candidate biomarkers (A1AT, PYCR2, TTR, ApoA-I, VDBP and MMRN1) exhibited significantly different expression between serum samples from healthy controls and patients with cervical cancer. These proteins may represent potential biomarkers for distinguishing patients with cervical cancer from healthy controls and for differentiation of patient subgroups.
Collapse
Affiliation(s)
| | | | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, Songkhla 90110, Thailand
| | - Kittirat Saharat
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Narongrit Sritana
- Molecular and Genomic Research Laboratory, Research and International Relations Division, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nuttavut Kantathavorn
- Gynecologic Oncology Unit, Women's Health Center, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Kriangpol Wiriyaukaradecha
- Molecular and Genomic Research Laboratory, Research and International Relations Division, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Thaniya Sricharunrat
- Pathology Laboratory Unit, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | | | - Chirayu Auewarakul
- Research and International Relations Division, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand.,Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
89
|
Flavokawain A inhibits prostate cancer cells by inducing cell cycle arrest and cell apoptosis and regulating the glutamine metabolism pathway. J Pharm Biomed Anal 2020; 186:113288. [PMID: 32361091 DOI: 10.1016/j.jpba.2020.113288] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022]
Abstract
Flavokawain A (FKA), a major chalcone in kava extracts, has exhibited anti-proliferative and apoptotic effects in the prostate cancer. However, the molecular mechanism of FKA remains unclear. In this study, FKA induces cell apoptosis and cell cycle arrest in a G2M phase to prostate cancer cells. FKA interferes with tubulin polymerization and inhibits survivin expression in PC3 cells. Molecular docking simulation experiment finds that FKA can bind to colchicine binding sites that inhibit tubulin polymerization. FKA treatment regulates the glutamine metabolism pathway in PC3 cells by reducing intracellular glutamine, glutamic and proline. FKA treatment also decreases the GSH content by decreasing the activity of GSH synthetase (GSS) and increasing the activity of glutathione thiol transferase (GSTP1), which subsequently induces ROS production and PC3 cell apoptosis.
Collapse
|
90
|
Ding Z, Ericksen RE, Escande-Beillard N, Lee QY, Loh A, Denil S, Steckel M, Haegebarth A, Wai Ho TS, Chow P, Toh HC, Reversade B, Gruenewald S, Han W. Metabolic pathway analyses identify proline biosynthesis pathway as a promoter of liver tumorigenesis. J Hepatol 2020; 72:725-735. [PMID: 31726117 DOI: 10.1016/j.jhep.2019.10.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIM Under the regulation of various oncogenic pathways, cancer cells undergo adaptive metabolic programming to maintain specific metabolic states that support their uncontrolled proliferation. As it has been difficult to directly and effectively inhibit oncogenic signaling cascades with pharmaceutical compounds, focusing on the downstream metabolic pathways that enable indefinite growth may provide therapeutic opportunities. Thus, we sought to characterize metabolic changes in hepatocellular carcinoma (HCC) development and identify metabolic targets required for tumorigenesis. METHODS We compared gene expression profiles of Morris Hepatoma (MH3924a) and DEN (diethylnitrosamine)-induced HCC models to those of liver tissues from normal and rapidly regenerating liver models, and performed gain- and loss-of-function studies of the identified gene targets for their roles in cancer cell proliferation in vitro and in vivo. RESULTS The proline biosynthetic enzyme PYCR1 (pyrroline-5-carboxylate reductase 1) was identified as one of the most upregulated genes in the HCC models. Knockdown of PYCR1 potently reduced cell proliferation of multiple HCC cell lines in vitro and tumor growth in vivo. Conversely, overexpression of PYCR1 enhanced the proliferation of the HCC cell lines. Importantly, PYCR1 expression was not elevated in the regenerating liver, and KD or overexpression of PYCR1 had no effect on proliferation of non-cancerous cells. Besides PYCR1, we found that additional proline biosynthetic enzymes, such as ALDH18A1, were upregulated in HCC models and also regulated HCC cell proliferation. Clinical data demonstrated that PYCR1 expression was increased in HCC, correlated with tumor grade, and was an independent predictor of clinical outcome. CONCLUSION Enhanced expression of proline biosynthetic enzymes promotes HCC cell proliferation. Inhibition of PYCR1 or ALDH18A1 may be a novel therapeutic strategy to target HCC. LAY SUMMARY Even with the recently approved immunotherapies against liver cancer, currently available medications show limited clinical benefits or efficacy in the majority of patients. As such, it remains a top priority to discover new targets for effective liver cancer treatment. Here, we identify a critical role for the proline biosynthetic pathway in liver cancer development, and demonstrate that targeting key proteins in the pathway, namely PYCR1 and ALDH18A1, may be a novel therapeutic strategy for liver cancer.
Collapse
MESH Headings
- Aldehyde Dehydrogenase/deficiency
- Aldehyde Dehydrogenase/genetics
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation/genetics
- Diethylnitrosamine/adverse effects
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- HEK293 Cells
- HaCaT Cells
- Hep G2 Cells
- Humans
- Liver Neoplasms/chemically induced
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Mice, SCID
- Proline/biosynthesis
- Pyrroline Carboxylate Reductases/deficiency
- Pyrroline Carboxylate Reductases/genetics
- Rats
- Signal Transduction/genetics
- Transcriptome
- Transfection
- Tumor Burden/genetics
- Xenograft Model Antitumor Assays
- delta-1-Pyrroline-5-Carboxylate Reductase
Collapse
Affiliation(s)
- Zhaobing Ding
- Singapore Bioimaging Consortium, A*STAR, Singapore 138667, Singapore
| | | | | | - Qian Yi Lee
- Singapore Bioimaging Consortium, A*STAR, Singapore 138667, Singapore
| | - Abigail Loh
- Institute of Medical Biology, A*STAR, Singapore 138648, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Simon Denil
- Institute of Medical Biology, A*STAR, Singapore 138648, Singapore
| | - Michael Steckel
- Bayer AG, Preclinical Research, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Andrea Haegebarth
- Bayer AG, Preclinical Research, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Timothy Shen Wai Ho
- National Cancer Center and Singapore General Hospital, Singapore 169610, Singapore
| | - Pierce Chow
- National Cancer Center and Singapore General Hospital, Singapore 169610, Singapore
| | - Han Chong Toh
- National Cancer Center and Singapore General Hospital, Singapore 169610, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore 138648, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Sylvia Gruenewald
- Bayer AG, Preclinical Research, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Weiping Han
- Singapore Bioimaging Consortium, A*STAR, Singapore 138667, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.
| |
Collapse
|
91
|
Schwörer S, Berisa M, Violante S, Qin W, Zhu J, Hendrickson RC, Cross JR, Thompson CB. Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress. EMBO J 2020; 39:e103334. [PMID: 32134147 DOI: 10.15252/embj.2019103334] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022] Open
Abstract
The production and secretion of matrix proteins upon stimulation of fibroblasts by transforming growth factor-beta (TGFβ) play a critical role in wound healing. How TGFβ supports the bioenergetic cost of matrix protein synthesis is not fully understood. Here, we show that TGFβ promotes protein translation at least in part by increasing the mitochondrial oxidation of glucose and glutamine carbons to support the bioenergetic demand of translation. Surprisingly, we found that in addition to stimulating the entry of glucose and glutamine carbon into the TCA cycle, TGFβ induced the biosynthesis of proline from glutamine in a Smad4-dependent fashion. Metabolic manipulations that increased mitochondrial redox generation promoted proline biosynthesis, while reducing mitochondrial redox potential and/or ATP synthesis impaired proline biosynthesis. Thus, proline biosynthesis acts as a redox vent, preventing the TGFβ-induced increase in mitochondrial glucose and glutamine catabolism from generating damaging reactive oxygen species (ROS) when TCA cycle activity exceeds the ability of oxidative phosphorylation to convert mitochondrial redox potential into ATP. In turn, the enhanced synthesis of proline supports TGFβ-induced production of matrix proteins.
Collapse
Affiliation(s)
- Simon Schwörer
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mirela Berisa
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Violante
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Weige Qin
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiajun Zhu
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
92
|
Li Q, Parikh H, Butterworth MD, Lernmark Å, Hagopian W, Rewers M, She JX, Toppari J, Ziegler AG, Akolkar B, Fiehn O, Fan S, Krischer JP. Longitudinal Metabolome-Wide Signals Prior to the Appearance of a First Islet Autoantibody in Children Participating in the TEDDY Study. Diabetes 2020; 69:465-476. [PMID: 32029481 PMCID: PMC7034190 DOI: 10.2337/db19-0756] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
Abstract
Children at increased genetic risk for type 1 diabetes (T1D) after environmental exposures may develop pancreatic islet autoantibodies (IA) at a very young age. Metabolic profile changes over time may imply responses to exposures and signal development of the first IA. Our present research in The Environmental Determinants of Diabetes in the Young (TEDDY) study aimed to identify metabolome-wide signals preceding the first IA against GAD (GADA-first) or against insulin (IAA-first). We profiled metabolomes by mass spectrometry from children's plasma at 3-month intervals after birth until appearance of the first IA. A trajectory analysis discovered each first IA preceded by reduced amino acid proline and branched-chain amino acids (BCAAs), respectively. With independent time point analysis following birth, we discovered dehydroascorbic acid (DHAA) contributing to the risk of each first IA, and γ-aminobutyric acid (GABAs) associated with the first autoantibody against insulin (IAA-first). Methionine and alanine, compounds produced in BCAA metabolism and fatty acids, also preceded IA at different time points. Unsaturated triglycerides and phosphatidylethanolamines decreased in abundance before appearance of either autoantibody. Our findings suggest that IAA-first and GADA-first are heralded by different patterns of DHAA, GABA, multiple amino acids, and fatty acids, which may be important to primary prevention of T1D.
Collapse
Affiliation(s)
- Qian Li
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Hemang Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Martha D Butterworth
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmo, Sweden
| | | | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany
- Forschergruppe Diabetes, Technical University of Munich, Klinikum Rechts der Isar, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Oliver Fiehn
- Genome Center, University of California, Davis, Davis, CA
| | - Sili Fan
- Genome Center, University of California, Davis, Davis, CA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
93
|
Cancer progression is mediated by proline catabolism in non-small cell lung cancer. Oncogene 2020; 39:2358-2376. [PMID: 31911619 DOI: 10.1038/s41388-019-1151-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Dysregulated metabolism contributes to cancer initiation and progression, but the key drivers of these pathways are just being discovered. Here, we report a critical role for proline catabolism in non-small cell lung cancer (NSCLC). Proline dehydrogenase (PRODH) is activated to reduce proline levels by the chromatin remodeling factor lymphoid-specific helicase (LSH), an epigenetic driver of NSCLC. PRODH promotes NSCLC tumorigenesis by inducing epithelial to mesenchymal transition (EMT) and IKKα-dependent inflammatory genes, including CXCL1, LCN2, and IL17C. Consistently, proline addition promotes the expression of these inflammatory genes, as well as EMT, tumor cell proliferation, and migration in vitro and tumor growth in vivo, while the depletion or inhibition of PRODH blocks these phenotypes. In summary, we reveal an essential metabolic pathway amenable to targeting in NSCLC.
Collapse
|
94
|
Tołoczko-Iwaniuk N, Dziemiańczyk-Pakieła D, Celińska-Janowicz K, Zaręba I, Klupczyńska A, Kokot ZJ, Nowaszewska BK, Reszeć J, Borys J, Miltyk W. Proline-Dependent Induction of Apoptosis in Oral Squamous Cell Carcinoma (OSCC)-The Effect of Celecoxib. Cancers (Basel) 2020; 12:cancers12010136. [PMID: 31935820 PMCID: PMC7016823 DOI: 10.3390/cancers12010136] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023] Open
Abstract
Background: Oral squamous cell carcinoma remains a significant worldwide public health challenge, associated with high morbidity and mortality. Treatment of this type of cancer lacks effective medication. Moreover, there are very few specific biomarkers that are useful in early diagnosis or treatment optimisation. Proline metabolism may prove to be of importance in the search for new treatment modalities. Methods: To evaluate the significance of proline metabolism in the development of oral cancer, proline concentration was assessed in oral cancer tissue and normal oral mucosa. The results were compared to the clinical stage and histological grade of the tumours. Moreover, the expression of proteins involved in proline metabolism via proline dehydrogenase/oxidase (PRODH/POX, PPARγ, HIF1-α) was determined. In the next stage of the study, conducted on cell lines of tongue cancer treated with celecoxib, the aforementioned factors involved in proline metabolism were evaluated. Cellular viability and cell proliferation, as well as apoptosis, were also assessed. Results: Our research results indicate that a high intracellular proline concentration and expression of factors involved in its metabolism correlate with the clinical stage and histological grade of oral cancer. Moreover, we are the first researchers to demonstrate that celecoxib can affect proline metabolism, causing an increase in pro-apoptotic factors (PRODH/POX, PPARγ), reducing the expression of HIF-1α and activating apoptosis. Conclusions: Proline metabolism, due to its involvement in the process of apoptosis, can be of great importance in anticancer therapy. It appears that celecoxib, which influences the PRODH/POX pathway, may be a promising therapeutic compound in oral cancer treatment.
Collapse
Affiliation(s)
- Natalia Tołoczko-Iwaniuk
- Department of Maxillofacial and Plastic Surgery, Medical University of Bialystok, Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; (B.K.N.); (J.B.)
- Correspondence: ; Tel.: +48-667-564-188; Fax: +48-857-468-379
| | - Dorota Dziemiańczyk-Pakieła
- Department of Otolaryngology, Provincial Hospital in Bialystok, Sklodowskiej-Curie 26, 15-278 Bialystok, Poland;
| | - Katarzyna Celińska-Janowicz
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Mickiewicza 2D, 15-522 Białystok, Poland; (K.C.-J.); (W.M.)
| | - Ilona Zaręba
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-522 Białystok, Poland;
| | - Agnieszka Klupczyńska
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (A.K.); (Z.J.K.)
| | - Zenon J. Kokot
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (A.K.); (Z.J.K.)
| | - Beata Klaudia Nowaszewska
- Department of Maxillofacial and Plastic Surgery, Medical University of Bialystok, Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; (B.K.N.); (J.B.)
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland;
| | - Jan Borys
- Department of Maxillofacial and Plastic Surgery, Medical University of Bialystok, Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; (B.K.N.); (J.B.)
| | - Wojciech Miltyk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Mickiewicza 2D, 15-522 Białystok, Poland; (K.C.-J.); (W.M.)
| |
Collapse
|
95
|
Liu W, Wang Q, Chang J. Global metabolomic profiling of trastuzumab resistant gastric cancer cells reveals major metabolic pathways and metabolic signatures based on UHPLC-Q exactive-MS/MS. RSC Adv 2019; 9:41192-41208. [PMID: 35540060 PMCID: PMC9076425 DOI: 10.1039/c9ra06607a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Resistance mechanism exploration has become an urgent need owing to the widespread trastuzumab resistance in gastric cancer. In this study, UHPLC-Q exactive MS/MS was carried out to characterize the metabolic profiles of human gastric cancer cell lines NCI N87, MKN45 (trastuzumab-sensitive) and NCI N87/R, MKN45/R (trastuzumab-resistant), respectively. Metabolic signatures and different metabolites were identified using multivariate in combination with univariate analysis. Integrated pathway enrichment analysis was executed using MetaboAnalyst and KEGG metabolic libraries to analyze the altered metabolic pathways in trastuzumab resistant cells. A total of 79 and 75 different metabolites were positively identified by utilizing authentic standards in NCI N87/R and MKN45/R cells, respectively. Furthermore, enrichment analysis demonstrated that seven metabolic pathways in NCI N87/R cells and five in MKN45/R cells were significantly changed. These pathways are involved in amino acid, nucleotide, carbohydrate, cofactor and vitamin metabolism, of which alanine, aspartate and glutamate metabolism displayed the highest pathway impact and lower P value both in NCI N87/R and MKN45/R cells. Moreover, we constructed a metabolomics-proteomics network between substantially altered metabolites and target genes which revealed citrate being regulated by citrate synthase and ACLY, while proline regulation was due to EPRS, PYCRL and PYCR1/2, respectively. Overall, our findings disclose prominent alterations of metabolic signatures in NCI N87/R and MKN45/R cells when compared with the parent cells which are crucial for understanding of underlying mechanisms of resistance and for developing strategies to overcome trastuzumab resistance.
Collapse
Affiliation(s)
- Wenhu Liu
- School of Basic Medical Sciences, North Sichuan Medical College Nanchong 637100 China
- School of Pharmacy, North Sichuan Medical College Nanchong 637100 China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Faculty of Laboratory Medicine, Center for Translational Medicine, North Sichuan Medical College Nanchong 637000 China
| | - Jinxia Chang
- School of Basic Medical Sciences, North Sichuan Medical College Nanchong 637100 China
| |
Collapse
|
96
|
Schömel N, Hancock SE, Gruber L, Olzomer EM, Byrne FL, Shah D, Hoehn KL, Turner N, Grösch S, Geisslinger G, Wegner MS. UGCG influences glutamine metabolism of breast cancer cells. Sci Rep 2019; 9:15665. [PMID: 31666638 PMCID: PMC6821892 DOI: 10.1038/s41598-019-52169-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
UDP-glucose ceramide glucosyltransferase (UGCG) is the key enzyme in glycosphingolipid (GSL) metabolism by being the only enzyme that generates glucosylceramide (GlcCer) de novo. Increased UGCG synthesis is associated with pro-cancerous processes such as increased proliferation and multidrug resistance in several cancer types. We investigated the influence of UGCG overexpression on glutamine metabolism in breast cancer cells. We observed adapted glucose and glutamine uptake in a limited energy supply environment following UGCG overexpression. Glutamine is used for reinforced oxidative stress response shown by increased mRNA expression of glutamine metabolizing proteins such as glutathione-disulfide reductase (GSR) resulting in increased reduced glutathione (GSH) level. Augmented glutamine uptake is also used for fueling the tricarboxylic acid (TCA) cycle to maintain the proliferative advantage of UGCG overexpressing cells. Our data reveal a link between GSL and glutamine metabolism in breast cancer cells, which is to our knowledge a novel correlation in the field of sphingolipid research.
Collapse
Affiliation(s)
- Nina Schömel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sarah E Hancock
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lisa Gruber
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Divya Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Nigel Turner
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
97
|
Zhuang J, Song Y, Ye Y, He S, Ma X, Zhang M, Ni J, Wang J, Xia W. PYCR1 interference inhibits cell growth and survival via c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathway in hepatocellular cancer. J Transl Med 2019; 17:343. [PMID: 31619254 PMCID: PMC6796468 DOI: 10.1186/s12967-019-2091-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/05/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Liver cancer is the second leading causes of cancer-related death globally. Pyrroline-5-carboxylate reductase 1 (PYCR1) plays a critical role in metabolic profiles of tumors. Therefore, it is necessary to explore the mechanisms of PYCR1 on cell growth and survival in hepatocellular carcinoma (HCC). METHODS Protein and mRNA expression levels of PYCR1 in 140 pairs of tumor and adjacent normal liver tissues of HCC patients were analyzed by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Expressions of PYCR1 were inhibited in BEL-7404 cells and SMMC-7721 cells using gene interference technology. The cell proliferation was detected by Celigo and MTT assay. The colony formation assay was also performed. The cell apoptosis was measured by flow cytometric assay. The effect of PYCR1 interference on tumor growth was observed by xenograft nude mice assay in vivo. The downstream pathway of PYCR1 interference was searched by microarray and bioinformatics analysis, and validated by qRT-PCR and western blot. RESULTS PYCR1 levels were significantly up-regulated in HCC tumor tissues than adjacent normal liver tissues in both protein and mRNA levels (P < 0.01). In vitro, the cell proliferation was significantly slower in shPYCR1 group than shCtrl group in BEL-7404 and SMMC-7721 cells (P < 0.001). The colony number was significantly smaller after PYCR1 interference (P < 0.01). The percentage of apoptosis cells significantly increased in shPYCR1 group (P < 0.01). In vivo, PYCR1 interference could obviously suppress tumor growth in xenograft nude mice. The volume and weight of tumors were significantly smaller via PYCR1 interference. The c-Jun N-terminal kinase (JNK) signaling pathway significantly altered, and insulin receptor substrate 1 (IRS1) were significantly down-regulated by PYCR1 interference in both mRNA and protein levels (P < 0.001). CONCLUSION PYCR1 interference could inhibit cell proliferation and promote cell apoptosis in HCC through regluting JNK/IRS1 pathway. Our study will provide a drug target for HCC therapy and a potential biomarker for its diagnosis or prognosis.
Collapse
Affiliation(s)
- Juhua Zhuang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, People's Republic of China
| | - Yanan Song
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, People's Republic of China
| | - Ying Ye
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, People's Republic of China
| | - Saifei He
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, People's Republic of China
| | - Xing Ma
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, People's Republic of China
| | - Miao Zhang
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, People's Republic of China
| | - Jing Ni
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, People's Republic of China
| | - Jiening Wang
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, People's Republic of China.
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, People's Republic of China.
| |
Collapse
|
98
|
Li C, Li Z, Zhang T, Wei P, Li N, Zhang W, Ding X, Li J. 1H NMR-Based Metabolomics Reveals the Antitumor Mechanisms of Triptolide in BALB/c Mice Bearing CT26 Tumors. Front Pharmacol 2019; 10:1175. [PMID: 31680959 PMCID: PMC6798008 DOI: 10.3389/fphar.2019.01175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
Triptolide, the main active ingredient in Tripterygium wilfordii Hook. f. (Celastraceae), has shown promising effects against a variety of tumors. However, the molecular pharmacological mechanisms explaining the action of triptolide remain unknown. In this study, the CT26 colon tumor cell line was inoculated subcutaneously into BALB/c mice, and plasma samples were subjected to 1H NMR metabolomics analysis. The metabolic signature identified five metabolites whose levels were lower and 15 whose levels were higher in CT26 tumor-bearing mice than in normal control mice. Triptolide treatment significantly reversed the levels of nine of these metabolites, including isoleucine, glutamine, methionine, proline, 3-hydroxybutyric acid, 2-hydroxyisovalerate, 2-hydroxyisobutyrate, and low-density lipoprotein/very low-density lipoprotein. Based on the identities of these potential biomarkers, we conclude that the antitumor mechanism of triptolide might rely on correcting perturbations in branched-chain amino acid metabolism, serine/glycine/methionine biosynthesis, and ketone bodies metabolism.
Collapse
Affiliation(s)
- Cheng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, Beijing, China
| | | | - Peihuang Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nuo Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
99
|
Dai Z, Yang S, Xu L, Hu H, Liao K, Wang J, Wang Q, Gao S, Li B, Lai L. Identification of Cancer-associated metabolic vulnerabilities by modeling multi-objective optimality in metabolism. Cell Commun Signal 2019; 17:124. [PMID: 31601242 PMCID: PMC6785927 DOI: 10.1186/s12964-019-0439-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer cells undergo global reprogramming of cellular metabolism to satisfy demands of energy and biomass during proliferation and metastasis. Computational modeling of genome-scale metabolic models is an effective approach for designing new therapeutics targeting dysregulated cancer metabolism by identifying metabolic enzymes crucial for satisfying metabolic goals of cancer cells, but nearly all previous studies neglect the existence of metabolic demands other than biomass synthesis and trade-offs between these contradicting metabolic demands. It is thus necessary to develop computational models covering multiple metabolic objectives to study cancer metabolism and identify novel metabolic targets. METHODS We developed a multi-objective optimization model for cancer cell metabolism at genome-scale and an integrated, data-driven workflow for analyzing the Pareto optimality of this model in achieving multiple metabolic goals and identifying metabolic enzymes crucial for maintaining cancer-associated metabolic phenotypes. Using this workflow, we constructed cell line-specific models for a panel of cancer cell lines and identified lists of metabolic targets promoting or suppressing cancer cell proliferation or the Warburg Effect. The targets were then validated using knockdown and over-expression experiments in cultured cancer cell lines. RESULTS We found that the multi-objective optimization model correctly predicted phenotypes including cell growth rates, essentiality of metabolic genes and cell line specific sensitivities to metabolic perturbations. To our surprise, metabolic enzymes promoting proliferation substantially overlapped with those suppressing the Warburg Effect, suggesting that simply targeting the overlapping enzymes may lead to complicated outcomes. We also identified lists of metabolic enzymes important for maintaining rapid proliferation or high Warburg Effect while having little effect on the other. The importance of these enzymes in cancer metabolism predicted by the model was validated by their association with cancer patient survival and knockdown and overexpression experiments in a variety of cancer cell lines. CONCLUSIONS These results confirm this multi-objective optimization model as a novel and effective approach for studying trade-off between metabolic demands of cancer cells and identifying cancer-associated metabolic vulnerabilities, and suggest novel metabolic targets for cancer treatment.
Collapse
Affiliation(s)
- Ziwei Dai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shiyu Yang
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liyan Xu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongrong Hu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kun Liao
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jianghuang Wang
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qian Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shuaishi Gao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Bo Li
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China. .,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
100
|
Wang QL, Liu L. PYCR1 is Associated with Papillary Renal Cell Carcinoma Progression. Open Med (Wars) 2019; 14:586-592. [PMID: 31428683 PMCID: PMC6698050 DOI: 10.1515/med-2019-0066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/23/2019] [Indexed: 01/06/2023] Open
Abstract
Objective We aimed to determine the function of pyrroline-5-carboxylate reductase 1 (PYCR1) on progression of papillary renal cell carcinoma (PRCC) and related mechanism. Methods The TCGA database provided us expression profiles of PYCR1 and overall survival rates. Small interfering RNA (siRNA) was used to knockdown PYCR1; quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were conducted to identify the expression levels of mRNA and protein. The cell counting kit-8 (CCK-8) and colony formation assays were used to explore cell viability in Ketr-3 cells. The migration and invasion of Ketr-3 cells were investigated by transwell assays. Results We found that PYCR1 was over-expressed in PRCC tissues and cells, causing poor outcomes. Moreover, reduction of PYCR1 played a negative role on cell proliferation, migration and invasion in tumor cells. The important Akt/mTOR pathway proteins, phosphorylated Akt (p-Akt) and phosphorylated mTOR (p-mTOR), also showed lower levels compared with control groups. Conclusion These findings showed that disordered expression of PYCR1 could modulate PRCC progression through the Akt/mTOR pathway, implying a theoretical basis for PYCR1 as a potential therapeutic target in future clinical PRCC treatment.
Collapse
Affiliation(s)
- Qiu-Li Wang
- Department of Nephrology, Jining NO.1 People's Hospital, Jining, 272100, Shandong, China
| | - Ling Liu
- Department of Nephrology, Jining NO.1 People's Hospital , No.6 Jiankang Road, Jining, 272100, Shandong, China
| |
Collapse
|