51
|
Botchkarev VA, Paus R. Molecular biology of hair morphogenesis: development and cycling. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:164-80. [PMID: 12949776 DOI: 10.1002/jez.b.33] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, hair follicles produce hairs that fulfill a number of functions including thermoregulation, collecting sensory information, protection against environmental trauma, social communication, and mimicry. Hair follicles develop as a result of epithelial-mesenchymal interactions between epidermal keratinocytes committed to hair-specific differentiation and cluster of dermal fibroblasts that form follicular papilla. During postnatal life, hair follicles show patterns of cyclic activity with periods of active growth and hair production (anagen), apoptosis-driven involution (catagen), and relative resting (telogen). During last decade, substantial progress has been achieved in delineating molecular mechanisms that control hair follicle development and cyclic activity. In this review, we summarize the data demonstrating that regulation of hair follicle development in the embryo and control of hair follicle growth during postnatal life are highly conserved and both require involvement of similar molecular mechanisms. Since many of the molecules that control hair follicle development and cycling are also involved in regulating morphogenesis and postnatal biology of other ectodermal derivatives, such as teeth, feathers, and mammary glands, basic principles and molecular mechanisms that govern hair follicle development and growth may also be applicable for other developmental systems.
Collapse
|
52
|
Ozeki M, Tabata Y. In vivo promoted growth of mice hair follicles by the controlled release of growth factors. Biomaterials 2003; 24:2387-94. [PMID: 12699676 DOI: 10.1016/s0142-9612(03)00045-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study is an investigation to evaluate how the controlled release of different growth factors modifies the hair follicle growth of mice. For the controlled release, basic fibroblast growth factor or hepatocyte growth factor was incorporated into a biodegradable gelatin hydrogel, while vascular endothelial growth factor was incorporated into a biodegradable collagen hydrogel. After subcutaneous implantation of the two different hydrogels incorporating growth factors into the backs of mice, hair follicle growth was evaluated photometrically and histologically 10 days later. The darkness of the reverse side of skin implanted with every hydrogel incorporating growth factor was significantly higher than that of skin injected with the corresponding growth factor in the solution. Implantation of the hydrogel incorporating growth factor increased the area of the hair follicles to a significantly greater extent than other control groups, whereas no effect on the skin thickness was observed. The length of hair shaft elongated was significantly high by the hydrogel incorporating every growth factor. Neither empty gelatin nor collagen hydrogels affected hair follicle growth. These findings indicate that the controlled release enabled the growth factor to positively act on the hair growth cycle of mice.
Collapse
Affiliation(s)
- Makoto Ozeki
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
53
|
Kamimura A, Takahashi T. Procyanidin B-3, isolated from barley and identified as a hair-growth stimulant, has the potential to counteract inhibitory regulation by TGF-beta1. Exp Dermatol 2002; 11:532-41. [PMID: 12473061 DOI: 10.1034/j.1600-0625.2002.110606.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the aim of identifying natural products, which possess hair-growing activity, we examined more than 1000 plant extracts with respect to their growth-promoting effects on hair epithelial cells. We discovered intensive growth-promoting activity, about 140% relative to controls, in barley extract. Our strategy for identifying active compounds in barley extract involved subjecting it to column chromatography using HP-20 resin columns, an LH-20 resin column, and preparative high-performance liquid chromatography (HPLC) using an ODS column. The 60% (v/v) aqueous methanol eluted fraction from the HP-20 column and the 75% (v/v) aqueous methanol eluted fraction from the subsequent LH-20 column showed high hair-growing activity in vivo. We isolated two major substances from the LH-20 active fraction using preparative HPLC. By means of mass spectrometry, 1H-NMR, and 13C-NMR analyses, one substance was revealed to be procyanidin B-3 and the other substance was identified as (+)-catechin. Purified procyanidin B-3 showed high hair-growing activity in the form of in vitro hair epithelial cell growth-promoting activity and in vivo anagen-inducing activity; however (+)-catechin showed no hair-growing activity. For the purpose of examining the hair-growing mechanisms of procyanidin B-3, we examined its relationship to the TGF-beta signal pathway, which is known to be a regulator of catagen induction. Addition of TGF-beta1 to hair epithelial cell cultures dose-dependently decreased the cell growth, and addition of procyanidin B-3 to the culture neutralized the growth-inhibiting effect of TGF-beta1. From these results, it is concluded that procyanidin B-3 can directly promote hair epithelial cell growth in vitro, has the potential to counteract the growth-inhibiting effect caused by TGF-beta1 in vitro, and has potential to stimulate anagen induction in vivo.
Collapse
Affiliation(s)
- Ayako Kamimura
- Tsukuba Research Laboratories, Kyowa Hakko Kogyo Co, Tsukuba, Ibaraki, Japan.
| | | |
Collapse
|
54
|
Ozeki M, Tabata Y. Promoted growth of murine hair follicles through controlled release of basic fibroblast growth factor. TISSUE ENGINEERING 2002; 8:359-66. [PMID: 12167223 DOI: 10.1089/107632702760184637] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study is an investigation to evaluate how the controlled release of basic fibroblast growth factor (bFGF) affects the hair follicle growth of mice in different hair cycle stages: second anagen and second telogen. bFGF was incorporated into biodegradable gelatin hydrogels for its controlled release. After subcutaneous implantation of gelatin hydrogels incorporating 0, 0.7, 7, and 70 microg of bFGF or injection of 0 and 70 microg of free bFGF into the backs of mice, hair follicle growth was evaluated photometrically and histologically on the basis of three parameters: skin color of the reverse side of the implanted or injected site, skin thickness, and area occupied by hair follicle tissue. For mice in second anagen, the darkness of the reverse side of skin implanted with gelatin hydrogel incorporating 7 microg of bFGF was significantly higher than that of skin injected with 70 microg of bFGF 10 days after bFGF application. Implantation of gelatin hydrogel incorporating bFGF enabled the hair follicles to increase the area occupied in skin tissue to a significantly greater extent than in other groups, whereas no effect on skin thickness was observed. bFGF-free, empty gelatin hydrogels did not affect hair follicle growth. Moreover, hair shaft length was significantly elongated by gelatin hydrogel incorporating 7 microg of bFGF, in marked contrast to other agents. The skin of telogen mice receiving gelatin hydrogel incorporating 7 microg of bFGF did not show any change in darkness of reverse skin side or skin thickness, but a significant increase in the size of hair follicles 10 days later. These results indicate that the controlled release of bFGF positively affects the hair growth cycle of mice.
Collapse
Affiliation(s)
- Makoto Ozeki
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
55
|
List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W, Engelholm LH, Behrendt N, Bugge TH. Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 2002; 21:3765-79. [PMID: 12032844 DOI: 10.1038/sj.onc.1205502] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Revised: 03/15/2002] [Accepted: 03/19/2002] [Indexed: 12/11/2022]
Abstract
Matriptase/MT-SP1 is a novel tumor-associated type II transmembrane serine protease that is highly expressed in the epidermis, thymic stroma, and other epithelia. A null mutation was introduced into the Matriptase/MT-SP1 gene of mice to determine the role of Matriptase/MT-SP1 in epidermal development and neoplasia. Matriptase/MT-SP1-deficient mice developed to term but uniformly died within 48 h of birth. All epidermal surfaces of newborn mice were grossly abnormal with a dry, red, shiny, and wrinkled appearance. Matriptase/MT-SP1-deficiency caused striking malformations of the stratum corneum, characterized by dysmorphic and pleomorphic corneocytes and the absence of vesicular bodies in transitional layer cells. This aberrant skin development seriously compromised both inward and outward epidermal barrier function, leading to the rapid and fatal dehydration of Matriptase/MT-SP1-deficient pups. Loss of Matriptase/MT-SP1 also seriously affected hair follicle development resulting in generalized follicular hypoplasia, absence of erupted vibrissae, lack of vibrissal hair canal formation, ingrown vibrissae, and wholesale abortion of vibrissal follicles. Furthermore, Matriptase/MT-SP1-deficiency resulted in dramatically increased thymocyte apoptosis, and depletion of thymocytes. This study demonstrates that Matriptase/MT-SP1 has pleiotropic functions in the development of the epidermis, hair follicles, and cellular immune system.
Collapse
Affiliation(s)
- Karin List
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, Maryland, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
The length and size of hair are depend on the anagen term in its hair cycle. It has been reported that the some cell growth factors, such as VEGF, FGF-5S, IGF-1 and KGF, induce the proliferation of cells in the matrix, dermal papilla and dermal papillary vascular system and increase the amount of extra cellular matrix in dermal papilla and then maintain follicles in the anagen phase. On the other hand, negative factors, like FGF-5, thrombospondin, or still unknown ones, terminate the anagen phase. If the negative factors become dominant against cell proliferation factors according to fulfilling some time set by the biological clock for hair follicles, TGF beta induced in the matrix tissues evokes apoptosis of matrix cells and shifts the follicles from anagen to catagen. Androgenetic alopecia is caused by miniaturizing of hair follicles located in the frontal or crown part of scalp and are hereditarily more sensitive to androgen. In their hair cycles, the androgen shortens the anagen phase of follicles and shifts them to the catagen phase earlier than usual. The mode of action of hair growth effect of minoxidil is not completely elucidated, but the most plausible explanation proposed here is that minoxidil works as a sulfonylurea receptor (SUR) activator and prolongs the anagen phase of hair follicles in the following manner: minoxidil (1) induces cell growth factors such as VEGF, HGF, IGF-1 and potentiates HGF and IGF-1 actions by the activation of uncoupled SUR on the plasma membrane of dermal papilla cells, (2) inhibits of TGF beta induced apoptosis of hair matrix cells by opening the Kir 6.0 channel pore coupled with SUR on the mitochondrial inner membrane, and (3) dilates hair follicle arteries and increases blood flow in dermal papilla by opening the Kir 6.0 channel pore coupled with SUR on the plasma membrane of vascular smooth muscle cells.
Collapse
Affiliation(s)
- Susumu Otomo
- Pharmacological Evaluation Laboratory, Taisho Pharmaceutical Co., Ltd., 403, Yoshino-cho 1-chome, Saitama-shi, Saitama 330-8530, Japan
| |
Collapse
|
57
|
Kato M, Takeda K, Kawamoto Y, Tsuzuki T, Dai Y, Nakayama S, Toriyama K, Tamada Y, Takahashi M, Nakashima I. RET tyrosine kinase enhances hair growth in association with promotion of melanogenesis. Oncogene 2001; 20:7536-41. [PMID: 11709725 DOI: 10.1038/sj.onc.1204918] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2001] [Revised: 08/07/2001] [Accepted: 08/14/2001] [Indexed: 11/09/2022]
Abstract
We first demonstrated that c-Ret protein is transiently expressed mainly in the inner and outer root sheaths of hair follicles soon after birth in the skin of normal C57BL/6 and BALB/c mice. A longer-lasting expression of activated RET protein overlapped the c-Ret expression with some preferential expression in the outer root sheath in close association with increase in the number of S-100 protein-containing cells in the area and excess melanogenesis in and around hair bulbs in the skin of RFP-RET-transgenic mice on a C57BL/6 background (RFP-RET/B6). Hair follicles in the skin of the transgenic mice continuously showed histology of the anagen phase, and the recovery period for the hair of the transgenic mice after shaving was shortened. Such growth promotion was not observed in the case of white hairs of RFP-RET-transgenic mice on a BALB/c background. These results suggest that RET works to extend the anagen phase in association with upregulation of melanin production.
Collapse
Affiliation(s)
- M Kato
- Graduate Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Hashimoto T, Kazama T, Ito M, Urano K, Katakai Y, Yamaguchi N, Ueyama Y. Histologic study of the regeneration process of human hair follicles grafted onto SCID mice after bulb amputation. J Investig Dermatol Symp Proc 2001; 6:38-42. [PMID: 11764283 DOI: 10.1046/j.0022-202x.2001.00003.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study examines histologically the degeneration and subsequent regeneration processes of human hair follicles whose bulb is severely damaged. Human scalp hair follicles were isolated and grafted onto immunodeficient mice after their bulb was amputated. On day 14, thickening and corrugation of the vitreous membrane, apoptosis of follicular keratinocytes, and regression of the lower portion of the follicles were observed. By day 20, mesenchymal cells had accumulated around the lower end of the follicles. From day 14 through 50, the follicular regression and apoptosis continued, and between days 30 and 40 the follicles became maximally shortened, and the vitreous membrane disappeared. By day 50 the lower end of the follicles had become cup-shaped, and the cup surrounded an aggregate of mesenchymal cells that corresponded to the dermal papilla. By day 60, all the grafted follicles had developed into anagen VI follicles, and the apoptosis had ceased. These results indicate that human scalp hair follicles whose bulb is completely destroyed enter into dystrophic telogen after restoration of the dermal papilla, then into anagen, and that the duration of the dystrophic telogen is shorter than that of the normal hair cycle.
Collapse
Affiliation(s)
- T Hashimoto
- Department of Dermatology, Niigata University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
59
|
Lee YR, Yamazaki M, Mitsui S, Tsuboi R, Ogawa H. Hepatocyte growth factor (HGF) activator expressed in hair follicles is involved in in vitro HGF-dependent hair follicle elongation. J Dermatol Sci 2001; 25:156-63. [PMID: 11164712 DOI: 10.1016/s0923-1811(00)00124-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hepatocyte growth factor (HGF), a paracrine factor secreted by follicular papilla cells, acts on neighboring follicular epithelial cells to promote follicular growth, while HGF activator is a serine proteinase, which converts inactive single-chain HGF to the active heterodimeric form. In this study, using 3' rapid amplification of cDNA end/nested polymerase chain reaction (3' RACE/nested PCR) and immunoblotting, we confirmed the expression of HGF activator in both cultured human follicular papilla cells and outer root sheath cells. HGF activator mRNA was expressed in all of the isolated 15 anagen hair follicles taken from the scalps of seven individuals. In an organ culture system, single-chain HGF stimulated hair follicle elongation, which was partially inhibited by aprotinin, a serine proteinase inhibitor (P<0.01). These results suggest that single-chain HGF secreted from follicular papilla cells is converted to an active heterodimeric form by intrinsic HGF activator and that the resultant active form of HGF stimulates hair growth.
Collapse
Affiliation(s)
- Y R Lee
- Department of Dermatology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | |
Collapse
|
60
|
Abstract
Nearly 50 years ago, Chase published a review of hair cycling in which he detailed hair growth in the mouse and integrated hair biology with the biology of his day. In this review we have used Chase as our model and tried to put the adult hair follicle growth cycle in perspective. We have tried to sketch the adult hair follicle cycle, as we know it today and what needs to be known. Above all, we hope that this work will serve as an introduction to basic biologists who are looking for a defined biological system that illustrates many of the challenges of modern biology: cell differentiation, epithelial-mesenchymal interactions, stem cell biology, pattern formation, apoptosis, cell and organ growth cycles, and pigmentation. The most important theme in studying the cycling hair follicle is that the follicle is a regenerating system. By traversing the phases of the cycle (growth, regression, resting, shedding, then growth again), the follicle demonstrates the unusual ability to completely regenerate itself. The basis for this regeneration rests in the unique follicular epithelial and mesenchymal components and their interactions. Recently, some of the molecular signals making up these interactions have been defined. They involve gene families also found in other regenerating systems such as fibroblast growth factor, transforming growth factor-beta, Wnt pathway, Sonic hedgehog, neurotrophins, and homeobox. For the immediate future, our challenge is to define the molecular basis for hair follicle growth control, to regenerate a mature hair follicle in vitro from defined populations, and to offer real solutions to our patients' problems.
Collapse
Affiliation(s)
- K S Stenn
- Beauty Genome Sciences Inc., Skillman, New Jersey, USA.
| | | |
Collapse
|
61
|
Sleeman MA, Murison JG, Strachan L, Kumble K, Glenn MP, McGrath A, Grierson A, Havukkala I, Tan PL, Watson JD. Gene expression in rat dermal papilla cells: analysis of 2529 ESTs. Genomics 2000; 69:214-24. [PMID: 11031104 DOI: 10.1006/geno.2000.6300] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dermal papilla (DEPA) cells are resident at the base of hair follicles and are fundamental to hair growth and development. Cultured DEPA cells, in contrast to normal fibroblast cells, are capable of inducing de novo hair follicle growth in vivo. By differential screening of a DEPA cDNA library, we have demonstrated that dermal papilla cells are different from fibroblasts at the molecular level. We further studied these cells by random sequencing of 5130 clones from the DEPA cDNA library. Fifty percent had a BLASTX E value < or =1 x 10(-25). Twenty-one percent had similarity to proteins involved in cell structure/motility with 4 of the top 10 most abundant clones encoding extracellular matrix proteins. Clones encoding growth factor molecules were also abundant. The remaining 50.7% of clones had low similarity scores, demonstrating many novel molecules. For example, we identified a new CTGF family member, the rat homologue of Elm1.
Collapse
Affiliation(s)
- M A Sleeman
- Genesis Research and Development Corporation Limited, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Sachs M, Brohmann H, Zechner D, Müller T, Hülsken J, Walther I, Schaeper U, Birchmeier C, Birchmeier W. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 2000; 150:1375-84. [PMID: 10995442 PMCID: PMC2150711 DOI: 10.1083/jcb.150.6.1375] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The docking protein Gab1 binds phosphorylated c-Met receptor tyrosine kinase directly and mediates signals of c-Met in cell culture. Gab1 is phosphorylated by c-Met and by other receptor and nonreceptor tyrosine kinases. Here, we report the functional analysis of Gab1 by targeted mutagenesis in the mouse, and compare the phenotypes of the Gab1 and c-Met mutations. Gab1 is essential for several steps in development: migration of myogenic precursor cells into the limb anlage is impaired in Gab1-/- embryos. As a consequence, extensor muscle groups of the forelimbs are virtually absent, and the flexor muscles reach less far. Fewer hindlimb muscles exist, which are smaller and disorganized. Muscles in the diaphragm, which also originate from migratory precursors, are missing. Moreover, Gab1-/- embryos die in a broad time window between E13.5 and E18.5, and display reduced liver size and placental defects. The labyrinth layer, but not the spongiotrophoblast layer, of the placenta is severely reduced, resulting in impaired communication between maternal and fetal circulation. Thus, extensive similarities between the phenotypes of c-Met and HGF/SF mutant mice exist, and the muscle migration phenotype is even more pronounced in Gab1-/-:c-Met+/- embryos. This is genetic evidence that Gab1 is essential for c-Met signaling in vivo. Analogy exists to signal transmission by insulin receptors, which require IRS1 and IRS2 as specific docking proteins.
Collapse
Affiliation(s)
- M Sachs
- Department of Growth and Differentiation, Max-Delbrueck-Center for Molecular Medicine, 13092 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
van der Voort R, Taher TE, Derksen PW, Spaargaren M, van der Neut R, Pals ST. The hepatocyte growth factor/Met pathway in development, tumorigenesis, and B-cell differentiation. Adv Cancer Res 2000; 79:39-90. [PMID: 10818677 DOI: 10.1016/s0065-230x(00)79002-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This article summarizes the structure, signal transduction and physiologic functions of the HGF/Met pathway, as well as its role in tumor growth, invasion, and metastasis. Moreover, it highlights recent studies indicating a role for the HGF/Met pathway in antigen-specific B-cell development and B-cell neoplasia.
Collapse
Affiliation(s)
- R van der Voort
- Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
64
|
Lindner G, Menrad A, Gherardi E, Merlino G, Welker P, Handjiski B, Roloff B, Paus R. Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. FASEB J 2000; 14:319-32. [PMID: 10657988 DOI: 10.1096/fasebj.14.2.319] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HGF/SF and its receptor (Met) are principal mediators of mesenchymal-epithelial interactions in several different systems and have recently been implicated in the control of hair follicle (HF) growth. We have studied their expression patterns during HF morphogenesis and cycling in C57BL/6 mice, whereas functional hair growth effects of HGF/SF were assessed in vivo by analysis of transgenic mice and in skin organ culture. In normal mouse skin, follicular expression of HGF/SF and Met was strikingly localized: HGF/SF was found only in the HF mesenchyme (dermal papilla fibroblasts) and Met in the neighboring hair bulb keratinocytes. Both HGF/SF and Met expression peaked during the initial phases of HF morphogenesis, the stage of active hair growth (early and mid anagen), and during the apoptosis-driven HF regression (catagen). Met+ cells in the regressing epithelial strand appeared to be protected from undergoing apoptosis. Compared to wild-type controls, transgenic mice overexpressing HGF/SF under the control of the MT-1 promoter had twice as many developing HF and displayed accelerated HF development on postnatal day 3. They also showed significant catagen retardation on P17. In organ culture and in vivo, HGF/SF i.c. resulted in a significant catagen retardation. These results demonstrate an important role of HGF/SF and Met in murine hair growth control and suggest that Met-mediated signaling might be exploited for therapeutic manipulation of human hair growth disorders.-Lindner, G., Menrad, A., Gherardi, E., Merlino, G., Welker, P., Handjiski, B., Roloff, B., Paus, R. Involvement of hepatocyte growth factor/scatter factor and Met receptor signaling in hair follicle morphogenesis and cycling.
Collapse
Affiliation(s)
- G Lindner
- Department of Dermatology, Charité, Humboldt-University, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Botchkareva NV, Botchkarev VA, Chen LH, Lindner G, Paus R. A role for p75 neurotrophin receptor in the control of hair follicle morphogenesis. Dev Biol 1999; 216:135-53. [PMID: 10588868 DOI: 10.1006/dbio.1999.9464] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During hair follicle (HF) morphogenesis, p75 neurotrophin receptor (p75NTR) reportedly is the first growth factor receptor found to be expressed by those fibroblasts that later develop into the dermal papilla (DP) of the HF. However, the functional role of p75NTR in HF morphogenesis is still unknown. Studying HF development in fetal and neonatal C57BL/6 murine back skin, we show that p75NTR-immunoreactivity (IR) is prominently expressed by DP fibroblasts as well as by skin nerves during the early steps of HF development. In contrast, p75NTR-IR disappears from the DP in the fully developed HF and it is expressed only in the epithelial outer root sheath of the HF. Compared to age-matched wild-type animals, p75NTR knockout (-/-) mice show significant acceleration of HF morphogenesis, and DP fibroblasts of p75NTR knockout mice show reduced proliferative activity in situ, indicating alterations in their transition from proliferation to differentiation. Although no significant differences in the expression of adhesion molecules (NCAM), selected morphogens (TGFbeta-2, HGF/SF, FGF-2, KGF), or their receptors (TGFbetaR-II, m-met, FGFR-1) were seen between DP of p75NTR knockout and wild-type mice, p75NTR mutants showed a prominent upregulation of FGFR-2, a high-affinity receptor for KGF, in both follicular DP and epithelium. Furthermore, the administration of anti-KGF neutralizing antibody significantly inhibited acceleration of HF morphogenesis in p75NTR knockout mice in vivo. These observations suggest that p75NTR plays an important role during HF morphogenesis, functioning as a receptor that negatively controls HF development, most likely via alterations in DP fibroblast proliferation/differentiation and via downregulation of KGF/FGFR-2 signaling in the HF.
Collapse
Affiliation(s)
- N V Botchkareva
- Department of Dermatology, Charité, Humboldt University Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
66
|
Abstract
Despite more than a hundred years of professional hair research, and substantial recent progress in unravelling the molecular controls of hair follicle morphogenesis, the chronobiological control system that cyclically drives the hair follicle through dramatic remodelling processes between phases of growth (anagen), regression (catagen), and relative resting (telogen) have remained disappointingly obscure. In view of the vast literature that has become available over the past decades on numerous genetic, biochemical, cellular and pharmacological aspects of hair growth follicle control under physiological and pathological conditions, it is astounding how comparatively few researchers in the field have published theoretical concepts that explore how hair follicle cycling might be controlled. Since this question is at the very heart of basic and clinically applied hair biology, it deserves a much more systematic and serious public exploration, which the following contributions are designed to stimulate.
Collapse
Affiliation(s)
- K S Stenn
- Skin Biology Research Center, Johnson & Johnson Skillman, New Jersey, USA.
| | | |
Collapse
|