51
|
Wei W, Zhang W, Wu S, Duan W, Wang Z. Advances in tuft cells, a chemosensory cell in sequential diseases of the pancreas. Biochim Biophys Acta Rev Cancer 2023; 1878:188911. [PMID: 37182665 DOI: 10.1016/j.bbcan.2023.188911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Tuft cells are solitary chemosensory cells distributed mainly in hollow organs and detected in human and mouse pancreas precursor lesions of pancreatic cancer. Induced by inflammation and KRAS mutation, pancreatic acinar cell-derived tuft cells play a protective role in epithelium injury. The tumour suppression of tuft cells has been indicated in some studies. However, the function of tuft cells in pancreatic cancer remains unclear. In this review, we first introduce the definition of tuft cells and then review the relationship between tuft cells and pancreatic inflammation. In addition, we emphasized the role of tuft cells in the genesis and development of pancreatic cancers, especially the part of markers for tuft cell's doublecortin-like kinase 1 (DCLK1). Finally, we turn to the microscopic perspective and review the interactions between tuft cells and the microbiome in the pancreatic microenvironment. Overall, we describe the role of tuft cells in response to tissue damage and tumour progression in the pancreas. Nevertheless, the specific formation principle and the more detailed mechanism of action of tuft cells in the pancreas remain to be further explored.
Collapse
Affiliation(s)
- Wanzhen Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Weifan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Shuai Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
52
|
Di Vincenzo F, Nicoletti A, Negri M, Vitale F, Zileri Dal Verme L, Gasbarrini A, Ponziani FR, Cerrito L. Gut Microbiota and Antibiotic Treatments for the Main Non-Oncologic Hepato-Biliary-Pancreatic Disorders. Antibiotics (Basel) 2023; 12:1068. [PMID: 37370387 DOI: 10.3390/antibiotics12061068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The gut microbiota is a pivotal actor in the maintenance of the balance in the complex interconnections of hepato-biliary-pancreatic system. It has both metabolic and immunologic functions, with an influence on the homeostasis of the whole organism and on the pathogenesis of a wide range of diseases, from non-neoplastic ones to tumorigenesis. The continuous bidirectional metabolic communication between gut and hepato-pancreatic district, through bile ducts and portal vein, leads to a continuous interaction with translocated bacteria and their products. Chronic liver disease and pancreatic disorders can lead to reduced intestinal motility, decreased bile acid synthesis and intestinal immune dysfunction, determining a compositional and functional imbalance in gut microbiota (dysbiosis), with potentially harmful consequences on the host's health. The modulation of the gut microbiota by antibiotics represents a pioneering challenge with striking future therapeutic opportunities, even in non-infectious diseases. In this setting, antibiotics are aimed at harmonizing gut microbial function and, sometimes, composition. A more targeted and specific approach should be the goal to pursue in the future, tailoring the treatment according to the type of microbiota modulation to be achieved and using combined strategies.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alberto Nicoletti
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marcantonio Negri
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Federica Vitale
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lucia Cerrito
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
53
|
Marstrand-Daucé L, Lorenzo D, Chassac A, Nicole P, Couvelard A, Haumaitre C. Acinar-to-Ductal Metaplasia (ADM): On the Road to Pancreatic Intraepithelial Neoplasia (PanIN) and Pancreatic Cancer. Int J Mol Sci 2023; 24:9946. [PMID: 37373094 PMCID: PMC10298625 DOI: 10.3390/ijms24129946] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Adult pancreatic acinar cells show high plasticity allowing them to change in their differentiation commitment. Pancreatic acinar-to-ductal metaplasia (ADM) is a cellular process in which the differentiated pancreatic acinar cells transform into duct-like cells. This process can occur as a result of cellular injury or inflammation in the pancreas. While ADM is a reversible process allowing pancreatic acinar regeneration, persistent inflammation or injury can lead to the development of pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic ductal adenocarcinoma (PDAC). Several factors can contribute to the development of ADM and PanIN, including environmental factors such as obesity, chronic inflammation and genetic mutations. ADM is driven by extrinsic and intrinsic signaling. Here, we review the current knowledge on the cellular and molecular biology of ADM. Understanding the cellular and molecular mechanisms underlying ADM is critical for the development of new therapeutic strategies for pancreatitis and PDAC. Identifying the intermediate states and key molecules that regulate ADM initiation, maintenance and progression may help the development of novel preventive strategies for PDAC.
Collapse
Affiliation(s)
- Louis Marstrand-Daucé
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Diane Lorenzo
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anaïs Chassac
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Pascal Nicole
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anne Couvelard
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Cécile Haumaitre
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| |
Collapse
|
54
|
Miller P, Akama-Garren EH, Owen RP, Demetriou C, Carroll TM, Slee E, Al Moussawi K, Ellis M, Goldin R, O'Neill E, Lu X. p53 inhibitor iASPP is an unexpected suppressor of KRAS and inflammation-driven pancreatic cancer. Cell Death Differ 2023:10.1038/s41418-023-01168-3. [PMID: 37270580 DOI: 10.1038/s41418-023-01168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 06/05/2023] Open
Abstract
Oncogenic KRAS activation, inflammation and p53 mutation are key drivers of pancreatic cancer (PC) development. Here we report iASPP, an inhibitor of p53, as a paradoxical suppressor of inflammation and oncogenic KRASG12D-driven PC tumorigenesis. iASPP suppresses PC onset driven by KRASG12D alone or KRASG12D in combination with mutant p53R172H. iASPP deletion limits acinar-to-ductal metaplasia (ADM) in vitro but accelerates inflammation and KRASG12D-induced ADM, pancreatitis and PC tumorigenesis in vivo. KRASG12D/iASPPΔ8/Δ8 tumours are well-differentiated classical PCs and their derivative cell lines form subcutaneous tumours in syngeneic and nude mice. Transcriptomically, either iASPP deletion or p53 mutation in the KRASG12D background altered the expression of an extensively overlapping gene set, comprised primarily of NF-κB and AP1-regulated inflammatory genes. All these identify iASPP as a suppressor of inflammation and a p53-independent oncosuppressor of PC tumorigenesis.
Collapse
Affiliation(s)
- Paul Miller
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Elliot H Akama-Garren
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Richard P Owen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Thomas M Carroll
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Khatoun Al Moussawi
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Ellis
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Robert Goldin
- Centre for Pathology, Department of Medicine, Imperial College London, London, W2 1NY, UK
| | - Eric O'Neill
- Centre for Pathology, Department of Medicine, Imperial College London, London, W2 1NY, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
55
|
Conti Bellocchi MC, Crinò SF, De Marchi G, De Pretis N, Ofosu A, Caldart F, Ciccocioppo R, Frulloni L. A Clinical and Pathophysiological Overview of Intestinal and Systemic Diseases Associated with Pancreatic Disorders: Causality or Casualty? Biomedicines 2023; 11:biomedicines11051393. [PMID: 37239064 DOI: 10.3390/biomedicines11051393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between chronic intestinal disease, including inflammatory bowel disease (IBD) and celiac disease (CelD), and pancreatic disorders has been little investigated. Although an increased risk of acute pancreatitis (AP), exocrine pancreatic insufficiency with or without chronic pancreatitis, and chronic asymptomatic pancreatic hyperenzymemia have been described in these patients, the pathogenetic link remains unclear. It may potentially involve drugs, altered microcirculation, gut permeability/motility with disruption of enteric-mediated hormone secretion, bacterial translocation, and activation of the gut-associated lymphoid tissue related to chronic inflammation. In addition, the risk of pancreatic cancer seems to be increased in both IBD and CelD patients with unknown pathogenesis. Finally, other systemic conditions (e.g., IgG4-related disease, sarcoidosis, vasculitides) might affect pancreatic gland and the intestinal tract with various clinical manifestations. This review includes the current understandings of this enigmatic association, reporting a clinical and pathophysiological overview about this topic.
Collapse
Affiliation(s)
| | - Stefano Francesco Crinò
- Diagnostic and Interventional Endoscopy of Pancreas, Pancreas Institute, University of Verona, 37134 Verona, Italy
| | - Giulia De Marchi
- Gastroenterology Unit, Department of Medicine, Pancreas Institute, University of Verona, 37134 Verona, Italy
| | - Nicolò De Pretis
- Gastroenterology Unit, Department of Medicine, Pancreas Institute, University of Verona, 37134 Verona, Italy
| | - Andrew Ofosu
- Division of Gastroenterology and Hepatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Federico Caldart
- Gastroenterology Unit, Department of Medicine, Pancreas Institute, University of Verona, 37134 Verona, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Pancreas Institute, University of Verona, 37134 Verona, Italy
| | - Luca Frulloni
- Gastroenterology Unit, Department of Medicine, Pancreas Institute, University of Verona, 37134 Verona, Italy
| |
Collapse
|
56
|
Tomaszewska E, Świątkiewicz M, Muszyński S, Donaldson J, Ropka-Molik K, Arciszewski MB, Murawski M, Schwarz T, Dobrowolski P, Szymańczyk S, Dresler S, Bonior J. Repetitive Cerulein-Induced Chronic Pancreatitis in Growing Pigs-A Pilot Study. Int J Mol Sci 2023; 24:ijms24097715. [PMID: 37175426 PMCID: PMC10177971 DOI: 10.3390/ijms24097715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic pancreatitis (CP) is an irreversible and progressive inflammatory disease. Knowledge on the development and progression of CP is limited. The goal of the study was to define the serum profile of pro-inflammatory cytokines and the cell antioxidant defense system (superoxidase dismutase-SOD, and reduced glutathione-GSH) over time in a cerulein-induced CP model and explore the impact of these changes on selected cytokines in the intestinal mucosa and pancreatic tissue, as well as on selected serum biochemical parameters. The mRNA expression of CLDN1 and CDH1 genes, and levels of Claudin-1 and E-cadherin, proteins of gut barrier, in the intestinal mucosa were determined via western blot analysis. The study showed moderate pathomorphological changes in the pigs' pancreas 43 days after the last cerulein injection. Blood serum levels of interleukin (IL)-1-beta, IL-6, tumor necrosis factor alpha (TNF-alpha), C-reactive protein (CRP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGTP), SOD and GSH were increased following cerulein injections. IL-1-beta, IL-6, TNF-alpha and GSH were also increased in jejunal mucosa and pancreatic tissue. In duodenum, decreased mRNA expression of CDH1 and level of E-cadherin and increased D-lactate, an indicator of leaky gut, indicating an inflammatory state, were observed. Based on the current results, we can conclude that repetitive cerulein injections in growing pigs not only led to CP over time, but also induced inflammation in the intestine. As a result of the inflammation, the intestinal barrier was impaired.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Marcin B Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Maciej Murawski
- Department of Animal Nutrition, Biotechnology and Fisheries, Faculty of Animal Science, University of Agriculture in Kraków, 30-059 Kraków, Poland
| | - Tomasz Schwarz
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Science, University of Agriculture in Kraków, 30-059 Kraków, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-059 Lublin, Poland
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland
| |
Collapse
|
57
|
Garcia Borobia F, Flores Clotet R, Bejarano Gonzalez N, Gonzalez Martinez S, Garcia Monforte N, Romaguera Monzonis A, Gonzalez Abos C, Gonzalez Abos S, Lucas Guerrero V, Perez Perarnau A, Mota Villaplana F. Predictive Value of Antithrombin III and d -Dimer in the Development of Moderate-To-Severe Acute Pancreatitis : A Prospective, Observational Study (AT-PROPANC). Pancreas 2023; 52:e241-e248. [PMID: 37801622 DOI: 10.1097/mpa.0000000000002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
OBJECTIVES To analyze if antithrombin III (AT-III) and d -dimer levels at admission and at 24 hours can predict acute pancreatitis (AP) progression to moderately severe AP (MSAP) to severe AP (SAP) and to determine their predictive value on the development of necrosis, infected necrosis, organ failure, and mortality. METHODS Prospective observational study conducted in patients with mild AP in 2 tertiary hospitals (2015-2017). RESULTS Three hundred forty-six patients with mild AP were included. Forty-four patients (12.7%) evolved to MSAP/SAP. Necrosis was detected in 36 patients (10.4%); in 10 (2.9%), infection was confirmed. Organ failure was recorded in 9 patients (2.6%), all of whom died. Those who progressed to MSAP/SAP showed lower AT-III levels; d -dimer and C-reactive protein (CRP) levels increased. The best individual marker for MSAP/SAP at 24 hours is CRP (area under the curve [AUC], 0.839). Antithrombin III (AUC, 0.641), d -dimer (AUC, 0.783), and creatinine added no benefit compared with CRP alone. Similar results were observed for patients who progressed to necrosis, infected necrosis, and organ failure/death. CONCLUSION Low AT-III and high d -dimer plasma levels at 24 hours after admission were significantly associated with MSAP/SAP, although their predictive ability was low. C-reactive protein was the best marker tested. CLINICAL STUDY IDENTIFIER ClinicalTrials.gov NCT02373293.
Collapse
Affiliation(s)
- Francisco Garcia Borobia
- From the Department of General Surgery, Hepatobiliopancreatic Surgical Unit, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Sabadell
| | - Roser Flores Clotet
- From the Department of General Surgery, Hepatobiliopancreatic Surgical Unit, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Sabadell
| | - Natalia Bejarano Gonzalez
- From the Department of General Surgery, Hepatobiliopancreatic Surgical Unit, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Sabadell
| | | | - Neus Garcia Monforte
- From the Department of General Surgery, Hepatobiliopancreatic Surgical Unit, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Sabadell
| | - Andreu Romaguera Monzonis
- From the Department of General Surgery, Hepatobiliopancreatic Surgical Unit, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Sabadell
| | | | - Sandra Gonzalez Abos
- Department of General Surgery, Consorci Sanitari Integral, L'Hospitalet de Llobregat
| | - Victoria Lucas Guerrero
- From the Department of General Surgery, Hepatobiliopancreatic Surgical Unit, Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Sabadell
| | | | | |
Collapse
|
58
|
TWEAK/Fn14 Signalling Regulates the Tissue Microenvironment in Chronic Pancreatitis. Cancers (Basel) 2023; 15:cancers15061807. [PMID: 36980694 PMCID: PMC10046490 DOI: 10.3390/cancers15061807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic pancreatitis increases the risk of developing pancreatic cancer through the upregulation of pathways favouring proliferation, fibrosis, and sustained inflammation. We established in previous studies that the ligand tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) signals through its cognate receptor fibroblast growth factor-inducible 14 (Fn14) to regulate these underlying cellular processes in the chronic liver injury niche. However, the role of the TWEAK/Fn14 signalling pathway in pancreatic disease is entirely unknown. An analysis of publicly available datasets demonstrated that the TWEAK receptor Fn14 is upregulated in pancreatitis and pancreatic adenocarcinoma, with single cell RNA sequencing revealing pancreatic ductal cells as the main Fn14 producers. We then used choline-deficient, ethionine-supplemented (CDE) diet feeding of wildtype C57BL/6J and Fn14 knockout littermates to (a) confirm CDE treatment as a suitable model of chronic pancreatitis and (b) to investigate the role of the TWEAK/Fn14 signalling pathway in pancreatic ductal proliferation, as well as fibrotic and inflammatory cell dynamics. Our time course data obtained at three days, three months, and six months of CDE treatment reveal that a lack of TWEAK/Fn14 signalling significantly inhibits the establishment and progression of the tissue microenvironment in CDE-induced chronic pancreatitis, thus proposing the TWEAK/Fn14 pathway as a novel therapeutic target.
Collapse
|
59
|
Huangfu Y, Yu X, Wan C, Zhu Y, Wei Z, Li F, Wang Y, Zhang K, Li S, Dong Y, Li Y, Niu H, Xin G, Huang W. Xanthohumol alleviates oxidative stress and impaired autophagy in experimental severe acute pancreatitis through inhibition of AKT/mTOR. Front Pharmacol 2023; 14:1105726. [PMID: 36744265 PMCID: PMC9890064 DOI: 10.3389/fphar.2023.1105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a lethal gastrointestinal disorder, yet no specific and effective treatment is available. Its pathogenesis involves inflammatory cascade, oxidative stress, and autophagy dysfunction. Xanthohumol (Xn) displays various medicinal properties, including anti-inflammation, antioxidative, and enhancing autophagic flux. However, it is unclear whether Xn inhibits SAP. This study investigated the efficacy of Xn on sodium taurocholate (NaT)-induced SAP (NaT-SAP) in vitro and in vivo. First, Xn attenuated biochemical and histopathological responses in NaT-SAP mice. And Xn reduced NaT-induced necrosis, inflammation, oxidative stress, and autophagy impairment. The mTOR activator MHY1485 and the AKT activator SC79 partly reversed the treatment effect of Xn. Overall, this is an innovative study to identify that Xn improved pancreatic injury by enhancing autophagic flux via inhibition of AKT/mTOR. Xn is expected to become a novel SAP therapeutic agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Guang Xin
- *Correspondence: Wen Huang, ; Guang Xin,
| | - Wen Huang
- *Correspondence: Wen Huang, ; Guang Xin,
| |
Collapse
|
60
|
O'Brien BJ, Faraoni EY, Strickland LN, Ma Z, Mota V, Mota S, Chen X, Mills T, Eltzschig HK, DelGiorno KE, Bailey‐Lundberg JM. CD73-generated extracellular adenosine promotes resolution of neutrophil-mediated tissue injury and restrains metaplasia in pancreatitis. FASEB J 2023; 37:e22684. [PMID: 36468677 PMCID: PMC9753971 DOI: 10.1096/fj.202201537r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Pancreatitis is currently the leading cause of gastrointestinal hospitalizations in the US. This condition occurs in response to abdominal injury, gallstones, chronic alcohol consumption or, less frequently, the cause remains idiopathic. CD73 is a cell surface ecto-5'-nucleotidase that generates extracellular adenosine, which can contribute to resolution of inflammation by binding adenosine receptors on infiltrating immune cells. We hypothesized genetic deletion of CD73 would result in more severe pancreatitis due to decreased generation of extracellular adenosine. CD73 knockout (CD73-/- ) and C57BL/6 (wild type, WT) mice were used to evaluate the progression and response of caerulein-induced acute and chronic pancreatitis. In response to caerulein-mediated chronic or acute pancreatitis, WT mice display resolution of pancreatitis at earlier timepoints than CD73-/- mice. Using immunohistochemistry and analysis of single-cell RNA-seq (scRNA-seq) data, we determined CD73 localization in chronic pancreatitis is primarily observed in mucin/ductal cell populations and immune cells. In murine pancreata challenged with caerulein to induce acute pancreatitis, we compared CD73-/- to WT mice and observed a significant infiltration of Ly6G+, MPO+, and Granzyme B+ cells in CD73-/- compared to WT pancreata and we quantified a significant increase in acinar-to-ductal metaplasia demonstrating sustained metaplasia and inflammation in CD73-/- mice. Using neutrophil depletion in CD73-/- mice, we show neutrophil depletion significantly reduces metaplasia defined by CK19+ cells per field and significantly reduces acute pancreatitis. These data identify CD73 enhancers as a potential therapeutic strategy for patients with acute and chronic pancreatitis as adenosine generation and activation of adenosine receptors is critical to resolve persistent inflammation in the pancreas.
Collapse
Affiliation(s)
- Baylee J. O'Brien
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Erika Y. Faraoni
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Lincoln N. Strickland
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Zhibo Ma
- Gene Expression LaboratoryThe Salk Institute for Biological SciencesSan DiegoCaliforniaUSA
| | - Victoria Mota
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Samantha Mota
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- The Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Xuebo Chen
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Holger K. Eltzschig
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Kathleen E. DelGiorno
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Jennifer M. Bailey‐Lundberg
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- The Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
61
|
Kotan R, Peto K, Deak A, Szentkereszty Z, Nemeth N. Hemorheological and Microcirculatory Relations of Acute Pancreatitis. Metabolites 2022; 13:metabo13010004. [PMID: 36676930 PMCID: PMC9863893 DOI: 10.3390/metabo13010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute pancreatitis still means a serious challenge in clinical practice. Its pathomechanism is complex and has yet to be fully elucidated. Rheological properties of blood play an important role in tissue perfusion and show non-specific changes in acute pancreatitis. An increase in blood and plasma viscosity, impairment of red blood cell deformability, and enhanced red blood cell aggregation caused by metabolic, inflammatory, free radical-related changes and mechanical stress contribute to the deterioration of the blood flow in the large vessels and also in the microcirculation. Revealing the significance of these changes in acute pancreatitis may better explain the pathogenesis and optimize the therapy. In this review, we give an overview of the role of impaired microcirculation by changes in hemorheological properties in acute pancreatitis.
Collapse
Affiliation(s)
- Robert Kotan
- Endocrine Surgery Unit, Linköping University Hospital, Universitetssjukhuset, 581 85 Linköping, Sweden
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Zsolt Szentkereszty
- Department of Surgery, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-416-915
| |
Collapse
|
62
|
Lv H, Liu X, Zhou H. USP25 UPREGULATION BOOSTS GSDMD -MEDIATED PYROPTOSIS OF ACINAR CELLS IN ACUTE PANCREATITIS. Shock 2022; 58:408-416. [PMID: 36155610 DOI: 10.1097/shk.0000000000001992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT Acute pancreatitis (AP) is an inflammation-associated disorder in the digestive system. Ubiquitin-specific peptidase 25 ( USP25 ) can modulate inflammation in diseases. This study expounded on the role of USP25 in pyroptosis of acinar cells in AP. Acinar cells were treated with lipopolysaccharide (LPS) and caerulein (CRE) to induce AP. Afterward, the expression patterns of USP25 , microRNA (miR)-10a-5p, and Krüppel-like factor 4 ( KLF4 ) in acinar cells were examined. Then, acinar cell viability and levels of NLR family pyrin-domain containing 3 (NLRP3), cleaved caspase-1, cleaved N -terminal gasdermin D ( GSDMD - N ), interleukin (IL)-1β, and IL-18 were determined. We observed that USP25 was highly expressed in AP models, and silencing USP25 increased cell viability and inhibited pyroptosis of AP acinar cells. The bindings of USP25 to KLF4 and miR-10a-5p to KLF4 and the GSDMD 3'UTR sequence were validated. We found that USP25 binding to KLF4 inhibited ubiquitination degradation of KLF4 , KLF4 transcriptionally decreased miR-10a-5p expression, and miR-10a-5p targeted GSDMD expression. Finally, rescue experiments proved that KLF4 overexpression or miR-10a-5p suppression enhanced pyroptosis of AP acinar cells. Overall, USP25 stabilized KLF4 expression through deubiquitination, limited miR-10a-5p expression, and increased GSDMD expression, finally promoting pyroptosis of acinar cells in AP.
Collapse
Affiliation(s)
- Hui Lv
- Department of Gastroenterology, The Central Hospital of Zhoukou, Zhoukou, China
| | | | | |
Collapse
|
63
|
Ramakrishnan G, Parajuli P, Singh P, Friend C, Hurwitz E, Prunier C, Razzaque MS, Xu K, Atfi A. NF1 loss of function as an alternative initiating event in pancreatic ductal adenocarcinoma. Cell Rep 2022; 41:111623. [DOI: 10.1016/j.celrep.2022.111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/21/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
|
64
|
Wang F, Deng Y, Yu L, Zhou A, Wang J, Jia J, Li N, Ding F, Lian W, Liu Q, Yang Y, Lin X. A Macrophage Membrane-Polymer Hybrid Biomimetic Nanoplatform for Therapeutic Delivery of Somatostatin Peptide to Chronic Pancreatitis. Pharmaceutics 2022; 14:pharmaceutics14112341. [PMID: 36365160 PMCID: PMC9698601 DOI: 10.3390/pharmaceutics14112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The clinical translation of therapeutic peptides is generally challenged by multiple issues involving absorption, distribution, metabolism and excretion. In this study, a macrophage membrane-coated poly(lactic-co-glycolic acid) (PLGA) nanodelivery system was developed to enhance the bioavailability of the somatostatin (SST) peptide, which faces the hurdles of short half-life and potential side effects in the treatment of chronic pancreatitis. Using a facile nanoprecipitation strategy, SST was loaded in the nanoparticles with an encapsulation efficiency (EE) and a loading efficiency (LE) of 73.68 ± 3.56% and 1.47 ± 0.07%, respectively. The final formulation of SST-loaded nanoparticles with the camouflage of macrophage membrane (MP-SST) showed a mean diameter of 151 ± 4 nm and an average zeta potential of −29.6 ± 0.3 mV, which were stable long term during storage. With an above 90% cell viability, a hemolysis level of about 2% (<5%) and a preference for being ingested by activated endothelial cells compared to macrophages, the membrane−polymer hybrid nanoparticle showed biocompatibility and targeting capability in vitro. After being intravenously administered to mice with chronic pancreatitis, the MP-SST increased the content of SST in the serum (123.6 ± 13.6 pg/mL) and pancreas (1144.9 ± 206.2 pg/g) compared to the treatment of (Dulbecco’s phosphate-buffered saline) DPBS (61.7 ± 6.0 pg/mL in serum and 740.2 ± 172.4 pg/g in the pancreas). The recovery of SST by MP-SST downregulated the expressions of chronic pancreatitis-related factors and alleviated the histologic severity of the pancreas to the greatest extent compared to other treatment groups. This augmentation of SST therapeutic effects demonstrated the superiority of integrating the synthetic polymer with biological membranes in the design of nanoplatforms for advanced and smart peptide delivery. Other peptides like SST can also be delivered via the membrane−polymer hybrid nanosystem for the treatment of diseases, broadening and promoting the potential clinical applications of peptides as therapeutics.
Collapse
Affiliation(s)
- Fang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yu Deng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Luying Yu
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ao Zhou
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jieting Wang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jingyan Jia
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ning Li
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Fadian Ding
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Wei Lian
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Qicai Liu
- Center for Reproductive Medicine, 1st Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Yu Yang
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Juqian Road 185, Changzhou 213000, China
- Correspondence: (Y.Y.); (X.L.)
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Correspondence: (Y.Y.); (X.L.)
| |
Collapse
|
65
|
Yang J, Tang X, Li B, Shi J. Sphingosine 1-phosphate receptor 2 mediated early stages of pancreatic and systemic inflammatory responses via NF-kappa B activation in acute pancreatitis. Cell Commun Signal 2022; 20:157. [PMID: 36229875 PMCID: PMC9564071 DOI: 10.1186/s12964-022-00971-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022] Open
Abstract
In acute pancreatitis, activation of inflammatory signaling, including the nuclear factor-kappa B (NF-κB) pathway, within acinar cells is known to be an early intracellular event occurring in parallel with pathologic trypsinogen activation. Sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in endothelial inflammation, and our previous studies reported that S1PR2 deficiency significantly reduced the inflammatory response in liver injury under cholestasis conditions. However, the role of S1PR2 in inflammatory signaling activation within acinar cells and inflammatory responses during acute pancreatitis has not been elucidated. Here we report that S1PR2 was upregulated in the whole pancreas during acute pancreatitis. Blockade of S1PR2 by pharmacologic inhibition of S1PR2 by JTE-013 or AAV-mediated knockdown of S1PR2 improved the severity of pancreatic injury, as indicated by a significant reduction in inflammation and acinar cells death in acute pancreatitis mice. Moreover, S1PR2 is the predominant S1PRs expressed in pancreatic acinar cells and mediates NF-κB activation and the early inflammatory response within acinar cells under acute pancreatitis conditions via ROCK signaling pathways, not extracellular signal-regulated kinase pathways or p38 mitogen-activated protein kinase pathways. In addition, S1PR2 mediated macrophage NF-κB activation, migration and polarization toward the M1 phenotype. Therefore, these results demonstrated that the S1PR2-mediated early inflammatory response in acinar cells promotes the progression of acute pancreatitis, successfully linking local events to the systematic inflammatory response and leading to a novel therapeutic target for acute pancreatitis aimed at halting the progression of the inflammatory response.
Video Abstract
Collapse
Affiliation(s)
- Jing Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, China.
| | - Xujiao Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Baiqiang Li
- Department of Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jinsong Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
66
|
Jiang W, Jin L, Ju D, Lu Z, Wang C, Guo X, Zhao H, Shen S, Cheng Z, Shen J, Zong G, Chen J, Li K, Yang L, Zhang Z, Feng Y, Shen JZ, Zhang EE, Wan R. The pancreatic clock is a key determinant of pancreatic fibrosis progression and exocrine dysfunction. Sci Transl Med 2022; 14:eabn3586. [PMID: 36170444 DOI: 10.1126/scitranslmed.abn3586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chronic pancreatitis (CP) is characterized by progressive fibrosis and exocrine dysregulation, which have long been considered irreversible. As a peripheral oscillator, the pancreas harbors autonomous and self-sustained timekeeping systems in both its endocrine and exocrine compartments, although the role of the latter remains poorly understood. By using different models of CP established in mice with dysfunctional pancreatic clocks, we found that the local clock played an important role in CP pathology, and genetic or external disruption of the pancreatic clock exacerbated fibrogenesis and exocrine insufficiency. Mechanistically, an impaired retinoic acid receptor-related orphan receptor A (Rora)/nuclear receptor subfamily 1, group D, member 1 (Nr1d1)/aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) loop, called the circadian stabilizing loop, resulted in the deficiency of pancreatic Bmal1, which was responsible for controlling the fibrogenic properties of pancreatic stellate cells (PSCs) and for rewiring the function of acinar cells in a clock-TGF signaling-IL-11/IL-11RA axis-dependent manner. During PSC activation, the antagonistic interaction between Nr1d1 and Rora was unbalanced in response to the loss of cytoplasmic retinoid-containing lipid droplets. Patients with CP also exhibited reduced production of endogenous melatonin. Enhancing the clock through pharmacological restoration of the circadian stabilizing loop using a combination of melatonin and the Rora agonist SR1078 attenuated intrapancreatic pathological changes in mouse models of CP. Collectively, this study identified a protective role of the pancreatic clock against pancreatic fibrosis and exocrine dysfunction. Pancreatic clock-targeted therapy may represent a potential strategy to treat CP.
Collapse
Affiliation(s)
- Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Linzi Jin
- Department of Emergency, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200434, China
| | - Dapeng Ju
- National Institute of Biological Sciences, Beijing 102206, China.,Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 401336, China
| | - Zhanjun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Chuanyang Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xingya Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Haijiao Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shien Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhiyuan Cheng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jie Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Guanzhao Zong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jiahui Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Kai Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Lijuan Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhijian Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yun Feng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jia Z Shen
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
67
|
Jia A, Yang ZW, Shi JY, Liu JM, Zhang K, Cui YF. MiR-325-3p Alleviates Acute Pancreatitis via Targeting RIPK3. Dig Dis Sci 2022; 67:4471-4483. [PMID: 35094251 DOI: 10.1007/s10620-021-07322-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Acute pancreatitis (AP) is an acute inflammatory disease that can lead to death. Mir-325-3p is strongly and abnormally expressed in many diseases, necessitating exploration of its function and mechanism in AP. METHODS Blood samples from AP patients and mice were analyzed. The expression levels of miR-325-3p in AP patients and mouse were detected. Whether miR-325-3p targets RIPK3 gene was predicted by TargetScan online database and dual luciferase reporter assay. In vitro experiments verified the effect of miR-325-3p overexpression on caerulein-induced MPC83 pancreatic acinar cancer cell line. In vivo experiments verified the effect of overexpression of miR-325-3p on the disease degree of pancreatic tissues in AP mice. RESULTS Analysis of blood samples from AP patients and experiments in mice demonstrated that expression of miR-325-3p was significantly reduced during the process of AP in humans and mice. Predicted using the TargetScan online database and through dual luciferase reporter assay detection, miR-325-3p directly targets the RIPK3 gene. In vitro experiments revealed that overexpression of miR-325-3p reversed caerulein-induced apoptosis and necroptosis in MPC83 pancreatic acinar cancer cell line. We used Z-VAD-FMK to assess necroptosis and demonstrated that miR-325-3p targets necroptosis to reduce cell damage. In subsequent experiments in mice, we verified that overexpression of miR-325-3p reduces inflammation, edema, hemorrhage, and necrosis in acute pancreatitis. Characteristic western blot, immunohistochemistry, and transmission electron microscopy results revealed that overexpression of miR-325-3p reduces the severity of acute pancreatitis by inhibiting pancreatic necroptosis in AP mice. CONCLUSIONS The current research results indicate that miR-325-3p directly targets RIPK3 and exerts a protective role in mouse AP. Necroptosis is still the primary mechanism of RIPK3 regulation. MiR-325-3p inhibits acute pancreatitis by targeting RIPK3-dependent necroptosis, which may represent a novel treatment method for acute pancreatitis.
Collapse
Affiliation(s)
- Ao Jia
- Tianjin Medical University, Tianjin, 300070, China
| | | | - Ji-Yu Shi
- Tianjin Medical University, Tianjin, 300070, China
| | - Jia-Ming Liu
- Tianjin Medical University, Tianjin, 300070, China
| | - Kun Zhang
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, 122 Sanwei Road, Nankai District, Tianjin, 300110, China
| | - Yun-Feng Cui
- Tianjin Medical University, Tianjin, 300070, China. .,Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, 122 Sanwei Road, Nankai District, Tianjin, 300110, China.
| |
Collapse
|
68
|
Han X, Li B, Bao J, Wu Z, Chen C, Ni J, Shen J, Song P, Peng Q, Wan R, Wang X, Wu J, Hu G. Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation. Front Immunol 2022; 13:968639. [PMID: 36059491 PMCID: PMC9438943 DOI: 10.3389/fimmu.2022.968639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
Acinar cell death and inflammatory response are two important events which determine the severity of acute pancreatitis (AP). Endoplasmic reticulum (ER) stress and necroptosis are involved in this process, but the relationships between them remain unknown. Here, we analyzed the interaction between ER stress and necroptosis and the underlying mechanisms during AP. Experimental pancreatitis was induced in Balb/C mice by caerulein (Cae) and lipopolysaccharide (LPS) or L-arginine (L-Arg) in vivo, and pancreatic acinar cells were also used to follow cellular mechanisms during cholecystokinin (CCK) stimulation in vitro. AP severity was assessed by serum amylase, lipase levels and histological examination. Changes in ER stress, trypsinogen activation and necroptosis levels were analyzed by western blotting, enzyme-linked immunosorbent assay (ELISA), adenosine triphosphate (ATP) analysis or lactate dehydrogenase (LDH) assay. The protein kinase C (PKC)α -mitogen-activated protein kinase (MAPK) -cJun pathway and cathepsin B (CTSB) activation were evaluated by western blotting. Activating protein 1 (AP-1) binding activity was detected by electrophoretic mobility shift assay (EMSA). We found that ER stress is initiated before necroptosis in CCK-stimulated acinar cells in vitro. Inhibition of ER stress by 4-phenylbutyrate (4-PBA) can significantly alleviate AP severity both in two AP models in vivo. 4-PBA markedly inhibited ER stress and necroptosis of pancreatic acinar cells both in vitro and in vivo. Mechanistically, we found that 4-PBA significantly reduced CTSB maturation and PKCα-JNK-cJun pathway -mediated AP-1 activation during AP. Besides, CTSB inhibitor CA074Me markedly blocked PKCα-JNK-cJun pathway -mediated AP-1 activation and necroptosis in AP. However, pharmacologic inhibition of trypsin activity with benzamidine hydrochloride had no effect on PKCα-JNK-cJun pathway and necroptosis in CCK-stimulated pancreatic acinar cells. Furthermore, SR11302, the inhibitor of AP-1, significantly lowered tumor necrosis factor (TNF) α levels, and its subsequent receptor interacting protein kinases (RIP)3 and phosphorylated mixed lineagekinase domain-like (pMLKL) levels, ATP depletion and LDH release rate in CCK-stimulated pancreatic acinar cells. To sum up, all the results indicated that during AP, ER stress promoted pancreatic acinar cell necroptosis through CTSB maturation, thus induced AP-1 activation and TNFα secretion via PKCα-JNK-cJun pathway, not related with trypsin activity. These findings provided potential therapeutic target and treatment strategies for AP or other cell death-related diseases.
Collapse
Affiliation(s)
- Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengli Song
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Peng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianghong Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Guoyong Hu, ; Jianghong Wu,
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Guoyong Hu, ; Jianghong Wu,
| |
Collapse
|
69
|
Li M, Yuan Y, Han X, Liu X, Zhang W, Hao J. Antioxidant Mitoquinone Alleviates Chronic Pancreatitis via Anti-Fibrotic and Antioxidant Effects. J Inflamm Res 2022; 15:4409-4420. [PMID: 35945990 PMCID: PMC9357395 DOI: 10.2147/jir.s357394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/04/2022] [Indexed: 12/06/2022] Open
Abstract
Background Chronic pancreatitis (CP) is a long-term inflammatory disease of the pancreas that can be caused by various pathogenic factors. Oxidative stress (OS), which is associated with several pancreatic diseases, can induce pancreatic stellate cell (PSC) activation, leading to pancreatic fibrosis. Given the inefficacy of existing treatments for CP, in this study, our objective was to evaluate the therapeutic effect of the antioxidant, mitoquinone (MitoQ). Methods First, in vivo, we established a CP mouse model via the repeated injection of cerulein. Mice in the MitoQ group simultaneously received MitoQ daily. After 4 weeks of cerulein injection, pancreatic tissues from mice were evaluated by morphological changes and the expression of fibrosis markers. Further, OS in the collected pancreatic tissue samples was evaluated by determining the level of malondialdehyde (MDA) as well as the expression levels and activities of antioxidants. Furthermore, in vitro, the effect of MitoQ on human PSCs (hPSCs) was evaluated based on PSC activation markers and fibrotic phenotypes, and OS in these treated hPSCs was evaluated by measuring reactive oxygen species (ROS), MDA, and antioxidant levels. Results In vivo, MitoQ alleviated pancreatic fibrosis and inhibited OS in the cerulein-induced murine CP model. In vitro, it inhibited PSC activation as well as the subsequent development of the profibrogenic phenotypes by balancing out the levels of free radicals and the intracellular antioxidant system. Conclusion MitoQ is a potential candidate for CP treatment.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yue Yuan
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xue Han
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China
- Weizhen Zhang, Department of Physiology and Pathophysiology, Peking University Health Science Center, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, Email
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Jianyu Hao, Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Road of Workers Stadium, Chaoyang District, Beijing, 100020, Email
| |
Collapse
|
70
|
Zhang D, Li W, Wang M, Yin H, Xia C, Li K, Huang H. Methods of a New Chronic Pancreatitis and Spontaneous Pancreatic Cancer Mouse Model Using Retrograde Pancreatic Duct Injection of Dibutyltin Dichloride. Front Oncol 2022; 12:947133. [PMID: 35875076 PMCID: PMC9299365 DOI: 10.3389/fonc.2022.947133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current study aimed to develop a new chronic pancreatitis and spontaneous pancreatic cancer model on C57/BL6 mouse through retrograde pancreatic duct injection of dibutyltin dichloride (DBTC) and explore its basic pathological changes as compared to the previous published chronic pancreatitis model through tail vein injection of DBTC with alcohol drinking. C57/BL6 mice were randomly divided into 3 groups: CG (control group; n = 15), VG (tail vein injection of DBTC (8 mg/kg) with 10% alcohol drinking group; n = 20), and PG (retrograde pancreatic duct injection of DBTC group (1 mg/kg); n = 30). Five mice in each group were sacrificed at a specific time point after the first treatment. The pathological section was observed. The activities of amylase, bilirubin, and hyaluronic acid in serum were determined. The expression of fibronectin, COL1A1, α-SMA, MMP-1, and TIMP-1 in the pancreas was assayed. Severe fibrosis of the pancreas with inflammatory cell infiltration could be observed on day 21 in the PG. In the VG, slight fibrosis of the pancreas with inflammatory cell infiltration was observed on day 28. There were significant differences in serum amylase, bilirubin, and hyaluronic acid levels between the PG and VG. The protein level of COL1A1 and α-SMA significantly increased in the PG. The mRNA expression of TIMP-1 is upregulated and the MMP-1 mRNA level is downregulated in the PG. Finally, typical neoplastic pathological change is significantly obvious in the PG. In conclusion, we established and validated a new chronic pancreatitis (CP) and spontaneous pancreatic cancer mouse model through retrograde injection of DBTC into the pancreatic duct. Previously reported mouse model through tail vein injection of DBTC with alcohol drinking could not cause obvious CP and neoplastic pathological change in mice.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Wanshun Li
- Department of Gastroenterology, First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Meiqi Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hua Yin
- Department of Gastroenterology, First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Chuanchao Xia
- Department of Gastroenterology, First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Keliang Li
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haojie Huang
- Department of Gastroenterology, First Affiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
71
|
Yang JM, Yang XY, Wan JH. Multiple roles for cholinergic signaling in pancreatic diseases. World J Gastroenterol 2022; 28:2910-2919. [PMID: 35978870 PMCID: PMC9280742 DOI: 10.3748/wjg.v28.i25.2910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cholinergic nerves are widely distributed throughout the human body and participate in various physiological activities, including sensory, motor, and visceral activities, through cholinergic signaling. Cholinergic signaling plays an important role in pancreatic exocrine secretion. A large number of studies have found that cholinergic signaling overstimulates pancreatic acinar cells through muscarinic receptors, participates in the onset of pancreatic diseases such as acute pancreatitis and chronic pancreatitis, and can also inhibit the progression of pancreatic cancer. However, cholinergic signaling plays a role in reducing pain and inflammation through nicotinic receptors, but enhances the proliferation and invasion of pancreatic tumor cells. This review focuses on the progression of cholinergic signaling and pancreatic diseases in recent years and reveals the role of cholinergic signaling in pancreatic diseases.
Collapse
Affiliation(s)
- Jun-Min Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
72
|
Zhuang Q, Huang L, Zeng Y, Wu X, Qiao G, Liu M, Wang L, Zhou Y, Xiong Y. Dynamic Monitoring of Immunoinflammatory Response Identifies Immunoswitching Characteristics of Severe Acute Pancreatitis in Rats. Front Immunol 2022; 13:876168. [PMID: 35663952 PMCID: PMC9160235 DOI: 10.3389/fimmu.2022.876168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background Immune dysfunction is the main characteristic of severe acute pancreatitis (SAP), and the timing of immune regulation has become a major challenge for SAP treatment. Previous reports about the time point at which the immune status of SAP changed from excessive inflammatory response to immunosuppression (hypo-inflammatory response) are conflicting. Purposes The aims of this study are to explore the immunological dynamic changes in SAP rats from the perspective of intestinal mucosal immune function, and to determine the immunoswitching point from excessive inflammatory response to immunosuppression. Methods Retrograde injection of sodium taurocholate into the pancreaticobiliary duct was applied to establish a SAP model in rats. The survival rate and the activities of serum amylase and pancreatic lipase in SAP rats were measured at different time points after model construction. The pathological changes in the pancreas and small intestines were analyzed, and the levels of intestinal pro- and anti-inflammatory cytokines and the numbers of intestinal macrophages, dendritic cells, Th1, Th2, and T regulatory cells were assessed. Meanwhile, the SAP rats were challenged with Pseudomonas aeruginosa (PA) strains to simulate a second hit, and the levels of intestinal inflammatory cytokines and the numbers of immune cells were analyzed to confirm the immunoswitching point. Results The time periods of 12–24 h and 48–72 h were the two death peaks in SAP rats. The pancreas of SAP rats showed self-limiting pathological changes, and the switching period of intestinal cytokines, and innate and adaptive immunity indexes occurred at 24–48 h. It was further confirmed that 48 h after SAP model construction was the immunoswitching point from excessive inflammatory response to immunosuppression. Conclusion The SAP rats showed characteristics of intestinal mucosal immune dysfunction after model construction, and the 48th h was identified as the immunoswitching point from excessive inflammatory response to immunosuppression. The results are of great significance for optimizing the timing of SAP immune regulation.
Collapse
Affiliation(s)
- Qian Zhuang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liqiang Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Institute for Clinical Trials of Drugs, Second People's Hospital of Yibin, Yibin, China
| | - Yue Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lulu Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
73
|
Mao X, Mao S, Wang L, Jiang H, Deng S, Wang Y, Ye J, Li Z, Zou W, Liao Z. Single-Cell Transcriptomic Analysis of the Mouse Pancreas: Characteristic Features of Pancreatic Ductal Cells in Chronic Pancreatitis. Genes (Basel) 2022; 13:genes13061015. [PMID: 35741777 PMCID: PMC9222509 DOI: 10.3390/genes13061015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 02/08/2023] Open
Abstract
Chronic pancreatitis (CP) is a fibroinflammatory disorder of the pancreas. Our understanding of CP pathogenesis is partly limited by the incomplete characterization of pancreatic cell types. Here, we performed single-cell RNA sequencing on 3825 cells from the pancreas of one control mouse and mice with caerulein-induced CP. An analysis of the single-cell transcriptomes revealed 16 unique clusters and cell type-specific gene expression patterns in the mouse pancreas. Sub-clustering of the pancreatic mesenchymal cells from the control mouse revealed four clusters of cells with specific gene expression profiles (combinatorial expressions of Smoc2, Cxcl14, Tnfaip6, and Fn1). We observed that immune cells in the pancreas of the CP mice were abundant and diverse in cellular type. Compared to the control, 547 upregulated genes (including Mmp7, Ttr, Rgs5, Adh1, and Cldn2) and 257 downregulated genes were identified in ductal cells from the CP group. The elevated expression levels of MMP7 and TTR were further verified in the pancreatic ducts of CP patients. This study provides a preliminary description of the single-cell transcriptome profiles of mouse pancreata and accurately demonstrates the characteristics of pancreatic ductal cells in CP. The findings provide insight into novel disease-specific biomarkers and potential therapeutic targets of CP.
Collapse
Affiliation(s)
- Xiaotong Mao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
| | - Shenghan Mao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
| | - Lei Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China;
| | - Shunjiang Deng
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
| | - Yuanchen Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
| | - Jun Ye
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
| | - Wenbin Zou
- Shanghai Institute of Pancreatic Diseases, Shanghai 200433, China
- Correspondence: (W.Z.); (Z.L.)
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China; (X.M.); (S.M.); (L.W.); (S.D.); (Y.W.); (J.Y.); (Z.L.)
- Correspondence: (W.Z.); (Z.L.)
| |
Collapse
|
74
|
Wu X, Yao J, Hu Q, Kang H, Miao Y, Zhu L, Li C, Zhao X, Li J, Wan M, Tang W. Emodin Ameliorates Acute Pancreatitis-Associated Lung Injury Through Inhibiting the Alveolar Macrophages Pyroptosis. Front Pharmacol 2022; 13:873053. [PMID: 35721108 PMCID: PMC9201345 DOI: 10.3389/fphar.2022.873053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Objective: To investigate the protective effect of emodin in acute pancreatitis (AP)-associated lung injury and the underlying mechanisms. Methods: NaT-AP model in rats was constructed using 3.5% sodium taurocholate, and CER+LPS-AP model in mice was constructed using caerulein combined with Lipopolysaccharide. Animals were divided randomly into four groups: sham, AP, Ac-YVAD-CMK (caspase-1 specific inhibitor, AYC), and emodin groups. AP-associated lung injury was assessed with H&E staining, inflammatory cytokine levels, and myeloperoxidase activity. Alveolar macrophages (AMs) pyroptosis was evaluated by flow cytometry. In bronchoalveolar lavage fluid, the levels of lactate dehydrogenase and inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Pyroptosis-related protein expressions were detected by Western Blot. Results: Emodin, similar to the positive control AYC, significantly alleviated pancreas and lung damage in rats and mice. Additionally, emodin mitigated the pyroptotic process of AMs by decreasing the level of inflammatory cytokines and lactate dehydrogenase. More importantly, the protein expressions of NLRP3, ASC, Caspase1 p10, GSDMD, and GSDMD-NT in AMs were significantly downregulated after emodin intervention. Conclusion: Emodin has a therapeutic effect on AP-associated lung injury, which may result from the inhibition of NLRP3/Caspase1/GSDMD-mediated AMs pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Xiajia Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxin Kang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yifan Miao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lv Zhu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Cong Li
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Xianlin Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
75
|
Huang Y, Wen Y, Wang R, Hu L, Yang J, Yang J, Pu Q, Han C, Cai W, Peng Y, Wang Y, Jiang H, Hong J, Phillips AR, Fu X, Huang W, Xia Q, Du D. Temporal metabolic trajectory analyzed by LC-MS/MS based targeted metabolomics in acute pancreatitis pathogenesis and Chaiqin Chengqi decoction therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153996. [PMID: 35231826 DOI: 10.1016/j.phymed.2022.153996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/23/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disorder of pancreas that lacks effective specific drugs as well as gold standard laboratory tests for diagnosis and severity assessment. Chaiqin chengqi decoction (CQCQD) has been proven to alleviate the severity and mortality of AP, but its underlying mechanisms remain incompletely understood. PURPOSE To investigate the correlation between metabolic trajectories of the serum and pancreas, the metabolic pathways with respect to the onset and progression of AP, and investigate the effect of CQCQD in modulating the dysregulated pancreatic metabolism of AP. METHODS Serum and pancreas samples from cerulein-induced AP mice were collected for pathology, biochemical index assessment, LC-MS/MS based metabolomics and functional validation over the course of 1 - 24 h. The temporal trends of pancreatic and serum metabolites in AP were analyzed using Mfuzz clustering algorithm, and their associations were revealed by Pearson correlation analysis. The metabolic trajectories and pathways across multi-timepoints were analyzed by univariate and multivariate statistical analyses, and the AP-related metabolic pathways were further screened by metabolite correlation and network interaction analyses. Finally, the changes in metabolite levels and metabolic trajectory after CQCQD therapy were identified, and the altered expression of related metabolic enzymes was verified by RT-qPCR, western blotting, and immunohistochemistry. RESULTS Amino acid metabolism was significantly altered in the pancreas and serum of AP, but with different trends. The unsynchronized "open" and "closed" metabolic trajectories in pancreas and serumrevealed that metabolic processes occur earlier in peripheral rather than local tissue, with the most obvious changes occuring at 12 h in the pancreas which were also consistent with the inflammation score results. Several amino acid intermediates showed strong positive correlation between serum and pancreas, and therein serum cystathionine was positively correlated to 33 pancreatic metabolites. In particular, the correlations between the levels of pancreatic cystathionine and methionine, serine, and glutathione (GSH) emphasized the importance of trans-sulfuration to GSH metabolism for AP progression. CQCQD treatment reversed the metabolic trajectory of the pancreas, and also restored the levels of cystathionine and glutathione synthase. CONCLUSION Our results have defined a unique time-course metabolic trajectory for AP progression in both the serum and pancreas; it has also revealed a key role of CQCQD in reversing AP-associated metabolic alterations, thus providing new metabolic targets for the treatment and prognosis of AP.
Collapse
Affiliation(s)
- Yan Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongjian Wen
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Rui Wang
- West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liqiang Hu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinxi Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Juqin Yang
- Biobank, Clinical Research Management Department, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianlun Pu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenxia Han
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wenhao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Yang Peng
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yiqin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongli Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Jiwon Hong
- School of Biological Sciences, and Surgical and Translational Research Centre, The University of Auckland, Auckland 1023, New Zealand
| | - Anthony R Phillips
- School of Biological Sciences, and Surgical and Translational Research Centre, The University of Auckland, Auckland 1023, New Zealand
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; Biobank, Clinical Research Management Department, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
76
|
Beneficial Effect of Kidney Bean Resistant Starch on Hyperlipidemia-Induced Acute Pancreatitis and Related Intestinal Barrier Damage in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092783. [PMID: 35566136 PMCID: PMC9100041 DOI: 10.3390/molecules27092783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Accumulating attention has been focused on resistant starch (RS) due to its blood-lipid-lowering activities. However, reports on the potential bioactivities of RS for preventing hyperlipidemia acute pancreatitis (HLAP) are limited. Therefore, in this study, an acute pancreatitis model was set up by feeding a hyperlipidemia diet to rats, and subsequently evaluating the anti-HLAP effect of RS in kidney beans. The results show that the IL-6, IL-1β, and TNF-α of serum in each RS group were decreased by 18.67-50.00%, 7.92-22.89%, and 8.06-34.04%, respectively, compared with the model group (MOD). In addition, the mRNA expression of tight junction protein ZO-1, occludin, and antibacterial peptides CRAMP and DEFB1 of rats in each RS group increased by 26.43-60.07%, 229.98-279.90%, 75.80-111.20%, and 77.86-109.07%, respectively. The height of the villi in the small intestine and the thickness of the muscle layer of rats were also increased, while the depth of the crypt decreased. The present study indicates that RS relieves intestinal inflammation, inhibits oxidative stress, and prevents related intestinal barrier damage. These results support the supplementation of RS as an effective nutritional intervention for HLAP and associated intestinal injury.
Collapse
|
77
|
Jia W, Xu L, Xu W, Yang M, Zhang Y. Application of nanotechnology in the diagnosis and treatment of acute pancreatitis. NANOSCALE ADVANCES 2022; 4:1949-1961. [PMID: 36133408 PMCID: PMC9419146 DOI: 10.1039/d2na00020b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/16/2022] [Indexed: 06/16/2023]
Abstract
Acute pancreatitis (AP) is a common digestive system disease. The severity of AP ranges from mild edema in the pancreas to severe systemic inflammatory responses leading to peripancreatic/pancreatic necrosis, multi-organ failure and death. Improving the sensitivity of AP diagnosis and developing alternatives to traditional methods to treat AP have gained the attention of researchers. With the continuous rise of nanotechnology, it is being widely used in daily life, biomedicine, chemical energy and many other fields. Studies have demonstrated the effectiveness of nanotechnology in the diagnosis and treatment of AP. Nanotechnology has the advantages of simplicity, rapidity and sensitivity in detecting biomarkers of AP, as well as enhancing imaging, which helps in the early diagnosis of AP. On the other hand, nanoparticles (NPs) have oxidative stress inhibiting and anti-inflammatory effects, and can also be loaded with drugs as well as being used in anti-infection therapy, providing a new approach for the treatment of AP. In this article, we elaborate and summarize on the potential of nanoparticles for diagnostic and therapeutic applications in AP from the current reported literature and experimental results to provide useful guidelines for further research on the application of nanotechnology.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - LinFeng Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100730 China
| | - YeWei Zhang
- Medical School, Southeast University Nanjing 210009 China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
78
|
Yang X, Geng H, You L, Yuan L, Meng J, Ma Y, Gu X, Lei M. Rhein Protects Against Severe Acute Pancreatitis In vitro and In vivo by Regulating the JAK2/STAT3 Pathway. Front Pharmacol 2022; 13:778221. [PMID: 35370748 PMCID: PMC8969574 DOI: 10.3389/fphar.2022.778221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/28/2022] [Indexed: 01/30/2023] Open
Abstract
Rhein is widely used in inflammation treatment in China, but its effects on severe acute pancreatitis (SAP) have not been studied closely. This study investigated rhein’s protective effects against SAP using in vitro and in vivo models to determine whether its protective mechanism regulated the Janus kinase two and signal transducer and activator of transcription 3 (JAK2/STAT3) signalling pathway. Thirty-six male Sprague–Dawley rats were randomised into sham operation, SAP and rhein groups. The SAP model was induced by retrograde pancreatic bile duct injection of sodium taurocholate. Serum TNF-α and interleukin (IL)-6 levels were determined by ELISA, whereas serum amylase and lipase concentrations were measured using test kits. Western blot and/or immunohistochemistry quantified JAK2 and STAT3 expression. Furthermore, histopathological pancreatic changes were detected by haematoxylin and eosin staining. AR42J cells were randomly divided into the control, cerulein and rhein groups. Amylase activity was assessed using an amylase test kit; the tumour necrosis factor-α (TNF-α) expression was determined by enzyme-linked immunosorbent assay (ELISA). JAK2 and STAT3 protein expression were evaluated by western blot. SAP was concomitant with increased JAK2 and STAT3 expressions in vivo. Pre-treatment with rhein attenuated serum TNF–α and IL-6 levels effectively, and notably reduced p-JAK2, p-STAT3, JAK2 and STAT3 protein expression. Rhein significantly alleviated pancreatic histopathology. Compared to untreated groups, rhein significantly reduced amylase activity in supernatants of AR42J cells induced by cerulein in vitro. Furthermore, rhein altered JAK2 and STAT3 protein levels in AR42J cells after cerulein induction. Overall, rhein exerted protective effect on SAP in vitro and in vivo, possibly through the JAK2/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Xiaofang Yang
- Department of Critical Care Medicine, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Geng
- Department of Critical Care Medicine, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijiao You
- Department of Critical Care Medicine, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Yuan
- Department of Critical Care Medicine, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialei Meng
- Department of Critical Care Medicine, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhui Ma
- Department of Critical Care Medicine, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuelian Gu
- Department of Critical Care Medicine, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Lei
- Department of Critical Care Medicine, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
79
|
Peng C, Tu G, Yu L, Wu P, Zhang X, Li Z, Li Z, Yu X. Murine Chronic Pancreatitis Model Induced by Partial Ligation of the Pancreatic Duct Encapsulates the Profile of Macrophage in Human Chronic Pancreatitis. Front Immunol 2022; 13:840887. [PMID: 35432336 PMCID: PMC9011002 DOI: 10.3389/fimmu.2022.840887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are an integral part of the pathogenesis of pancreatitis. Studies applying the mouse model of pancreatitis induced by partial ligation of the pancreatic duct to explore the pancreatic immune microenvironment are still lacking. The aim of the present study is to explore the macrophage profile and associated regulatory mechanisms in mouse pancreatitis, as well as the correlation with human chronic pancreatitis (CP). In the present study, the mouse model of pancreatitis was induced by partial ligation of the pancreatic duct. Mice in the acute phase were sacrificed at 0, 4, 8, 16, 32, 72 h after ligation, while mice in the chronic phase were sacrificed at 7, 14, 21, 28 days after ligation. We found that the pancreatic pathological score, expression of TNF-α and IL-6 were elevated over time and peaked at 72h in the acute phase, while in the chronic phase, the degree of pancreatic fibrosis peaked at day 21 after ligation. Pancreatic M1 macrophages and pyroptotic macrophages showed a decreasing trend over time, whereas M2 macrophages gradually rose and peaked at day 21. IL-4 is involved in the development of CP and is mainly derived from pancreatic stellate cells (PSCs). The murine pancreatitis model constructed by partial ligation of the pancreatic duct, especially the CP model, can ideally simulate human CP caused by obstructive etiologies in terms of morphological alterations and immune microenvironment characteristics.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guangping Tu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Yu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Wu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianlin Zhang
- Department of General Surgery, Renhe Hospital, Three Gorges University, Yichang, China
| | - Zheng Li
- Department of General Surgery, Renhe Hospital, Three Gorges University, Yichang, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao Yu, ; Zhiqiang Li,
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao Yu, ; Zhiqiang Li,
| |
Collapse
|
80
|
Wang L, Xu T, Wang R, Wang X, Wu D. Hypertriglyceridemia Acute Pancreatitis: Animal Experiment Research. Dig Dis Sci 2022; 67:761-772. [PMID: 33939144 DOI: 10.1007/s10620-021-06928-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/26/2021] [Indexed: 12/09/2022]
Abstract
In recent years, the number of acute pancreatitis cases caused by hypertriglyceridemia has increased gradually, which has caught the attention of the medical community. However, because the exact mechanism of hypertriglyceridemic acute pancreatitis (HTG-AP) is not clear, treatment and prevention in clinical practice face enormous challenges. Animal models are useful for elucidating the pathogenesis of diseases and developing and testing novel interventions. Therefore, animal experiments have become the key research means for us to understand and treat this disease. We searched almost all HTG-AP animal models by collecting many studies and finally collated common animals such as rats, mice and included some rare animals that are not commonly used, summarizing the methods to model spontaneous pancreatitis and induce pancreatitis. We sorted them on the basis of three aspects, including the selection of different animals, analyzed the characteristics of different animals, different approaches to establish hypertriglyceridemic pancreatitis and their relative advantages and disadvantages, and introduced the applications of these models in studies of pathogenesis and drug therapy. We hope this review can provide relevant comparisons and analyses for researchers who intend to carry out animal experiments and will help researchers to select and establish more suitable animal experimental models according to their own experimental design.
Collapse
Affiliation(s)
- Lu Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ting Xu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruifeng Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xiaobing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
81
|
Moore M, Avula N, Wong A, Beetch M, Jo S, Alejandro EU. Reduction in O-GlcNAcylation Mitigates the Severity of Inflammatory Response in Cerulein-Induced Acute Pancreatitis in a Mouse Model. BIOLOGY 2022; 11:biology11030347. [PMID: 35336721 PMCID: PMC8945657 DOI: 10.3390/biology11030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Acute pancreatitis (AP) involves premature trypsinogen activation, which mediates a cascade of pro-inflammatory signaling that causes early stages of pancreatic injury. Activation of the transcription factor κB (NF-κB) and secretion of pro-inflammatory mediators are major events in AP. O-GlcNAc transferase (OGT), a stress-sensitive enzyme, was recently implicated to regulate NF-κB activation and inflammation in AP in vitro. This study aims to determine whether a pancreas-specific transgenic reduction in OGT in a mouse model affects the severity of AP in vivo. Mice with reduced pancreatic OGT (OGTPanc+/-) at 8 weeks of age were randomized to cerulein, which induces pancreatitis, or saline injections. AP was confirmed by elevated amylase levels and on histological analysis. The histological scoring demonstrated that OGTPanc+/- mice had decreased severity of AP. Additionally, serum lipase, LDH, and TNF-α in OGTPanc+/- did not significantly increase in response to cerulein treatment as compared to controls, suggesting attenuated AP induction in this model. Our study reveals the effect of reducing pancreatic OGT levels on the severity of pancreatitis, warranting further investigation on the role of OGT in the pathology of AP.
Collapse
Affiliation(s)
- Mackenzie Moore
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Nandini Avula
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
| | - Alicia Wong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Megan Beetch
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (M.M.); (N.A.); (M.B.); (S.J.)
- Correspondence: ; Tel.: +1-612-301-7685
| |
Collapse
|
82
|
Alcohol Aggravates Acute Pancreatitis by Impairing Autophagic Flux Through Activation of AMPK Signaling Pathway. Dig Dis Sci 2022; 67:524-535. [PMID: 33555515 DOI: 10.1007/s10620-021-06870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/20/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Alcohol consumption is always the main cause of acute pancreatitis (AP). It has been reported that alcohol exerts direct damage to the pancreas. However, the specific role of alcohol during AP needs to be investigated. This study aims to examine the effects of alcohol in cerulein-induced AP and the role of the AMPK pathway. METHODS Human subjects from operations, cerulein-induced AP rat, and cerulein-stimulated AR42J cell line were enrolled in this study. Electron microscopy was employed for observation of cell morphology, immunohistochemistry for identification of cells, ELISA for detection of inflammation factors, Annexin V/PI double staining for evaluation of cell apoptosis, immunofluorescence for assessment of autophagic flux, oil red O staining for examination of lipid droplet accumulation, and Western blot for measurement of expressions of proteins related to autophagy, apoptosis, and AMPK signal pathway. PI3K inhibitor 3-MA and AMPK inhibitor BML-275 were utilized for investigation of the relationship between impaired autophagic flux and the AMPK pathway by inhibiting or stimulating the formation of autophagosome. RESULTS Alcohol consumption caused lipid droplet accumulation in the pancreas, and it also activated AMPK signaling pathway, thus aggravating the autophagic flux during AP. Alcohol up-regulated the expressions of anti-apoptotic proteins during the induction of AP to inhibit cell apoptosis and enhance cell necrosis. Inhibition of autophagosome formation by AMPK inhibitor BML-275 ameliorated the decreased cell viability caused by alcohol and cerulein in vitro. CONCLUSION Alcohol aggravates AP progression by impairing autophagic flux and enhancing cell autophagy through the AMPK signaling pathway.
Collapse
|
83
|
Gitto SB, Nakkina SP, Beardsley JM, Parikh JG, Altomare DA. Induction of pancreatitis in mice with susceptibility to pancreatic cancer. Methods Cell Biol 2022; 168:139-159. [PMID: 35366980 DOI: 10.1016/bs.mcb.2021.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic inflammation is known to be associated with pancreatic cancer, however a complete picture regarding how these pathologies intersect is still being characterized. In vivo model systems are critical for the study of mechanisms underlying how inflammation accelerates neoplasia. Repeat injection of cerulein, a cholecystokinin (CCK) analog, is widely used to experimentally induce acute and chronic pancreatitis in vivo. Chronic cerulein administration into genetically engineered mouse models (GEMMs) with predisposition to pancreatic cancer can induce a pro-inflammatory immune response, pancreatic acinar cell damage, pancreatic stellate cell activation, and accelerate the onset of neoplasia. Here we provide a detailed protocol and insights into using cerulein to induce pancreatitis in GEMMs, and methods to experimentally assess inflammation and pancreatic neoplasia.
Collapse
Affiliation(s)
- Sarah B Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jordan M Beardsley
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jignesh G Parikh
- Department of Pathology, Orlando VA Medical Center, Orlando, FL, United States
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
84
|
Doi S, Yamada T, Kito Y, Obara S, Fujii Y, Nishimura T, Kato T, Nakayama H, Tsutsumi M, Okamura R. Adult-Onset Focal Nesidioblastosis With Nodular Formation Mimicking Insulinoma. J Endocr Soc 2022; 6:bvab185. [PMID: 35024540 PMCID: PMC8743044 DOI: 10.1210/jendso/bvab185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Nesidioblastosis is defined as the neoformation of the islets of Langerhans from the pancreatic ductal epithelium and is recognized as the most common cause of hyperinsulinemic hypoglycemia in infants. We herein report an extremely rare case of adult-onset focal nesidioblastosis with the unusual feature of hyperplastic nodular formation. A 55-year-old woman was admitted to our hospital for a tumor detected in the body of the pancreas by magnetic resonance imaging screening. Laboratory examinations showed a high insulin level in the blood. Contrast-enhanced computed tomography and the selective arterial calcium injection test suggested the presence of multiple insulinomas in the body and tail of the pancreas, and, thus, the patient underwent distal pancreatectomy. A histopathological examination of the tumor in the body of the pancreas showed the nodular hyperplasia of islet-like cell clusters. In addition, many small intralobular ductules and islet cells appeared to be budding from the proliferating ductal epithelium, forming “ductuloinsular complexes”. No other abnormal lesion was detected in the remainder of the pancreas. The histopathological diagnosis was focal nesidioblastosis. The patient has remained free of the recurrence of hypoglycemic episodes for more than 31 months. The present case of rare adult-onset focal nesidioblastosis with hyperplastic nodular formation was preoperatively identified as an apparent pancreatic tumor mimicking insulinoma. Nesidioblastosis and insulinoma need to be considered in cases of hyperinsulinemic hypoglycemia, even in adult patients.
Collapse
Affiliation(s)
- Shunsuke Doi
- Department of Surgery, Yamatotakada Municipal Hospital, Nara 635-8501, Japan
| | - Takatsugu Yamada
- Department of Surgery, Yamatotakada Municipal Hospital, Nara 635-8501, Japan
| | - Yoshinori Kito
- Department of Surgery, Yamatotakada Municipal Hospital, Nara 635-8501, Japan
| | - Shinsaku Obara
- Department of Surgery, Yamatotakada Municipal Hospital, Nara 635-8501, Japan
| | - Yusuke Fujii
- Department of Surgery, Yamatotakada Municipal Hospital, Nara 635-8501, Japan
| | - Takao Nishimura
- Department of Surgery, Yamatotakada Municipal Hospital, Nara 635-8501, Japan
| | - Tatsushi Kato
- Department of Surgery, Yamatotakada Municipal Hospital, Nara 635-8501, Japan
| | - Hiroyuki Nakayama
- Department of Surgery, Yamatotakada Municipal Hospital, Nara 635-8501, Japan
| | - Masahiro Tsutsumi
- Department of Pathology, Saiseikai Chuwa Hospital, Nara 633-0054, Japan
| | - Ryuji Okamura
- Department of Surgery, Yamatotakada Municipal Hospital, Nara 635-8501, Japan
| |
Collapse
|
85
|
Zhang S, Liang Z, Xiang X, Liu L, Yang H, Tang G. Identification and Validation of Hub Genes in Acute Pancreatitis and Hypertriglyceridemia. Diabetes Metab Syndr Obes 2022; 15:559-577. [PMID: 35237056 PMCID: PMC8885164 DOI: 10.2147/dmso.s349528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The pathogenesis of acute pancreatitis (AP) and the relationship between acute pancreatitis and hypertriglyceridemia are complex and not fully understood. The purpose of this study was to identify the hub genes along with common differentially expressed genes (DEGs) between acute pancreatitis and hypertriglyceridemia. METHODS We downloaded three gene expression profiles of AP and one gene expression profile of hypertriglyceridemia from the Gene Expression Omnibus (GEO) database and filtered the DEGs based on the above four datasets. Next, we identified the hub genes by performing the Gene Ontology (GO) term analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) construction. We also constructed the miRNA-hub gene network and established mouse models with hypertriglyceridemia and AP using a high-fat diet and injection of caerulein (CAE), respectively. Finally, the immunohistochemical analysis was used to verify the differential expressions of hub genes in AP, hypertriglyceridemia, and normal pancreatic tissue. RESULTS A total of 105 DEGs associated with AP and 149 DEGs associated with hypertriglyceridemia were identified. Additionally, we identified six hub genes of AP, all of which were closely related to the cytoskeleton while two DEGs genes were common in both AP and hypertriglyceridemia. We also verified their expression in mouse models. Finally, a network of miRNA-mRNA was also constructed, and the top seven interactive miRNAs (hsa-mir-1-3p, hsa-mir-5195-3p, hsa-mir-145-5p, hsa-let-7b-5p, hsa-mir-10b-5p, hsa-mir-206, and hsa-mir-613) targeting the most hub genes were identified. CONCLUSION Overall, we identified six hub genes associated with AP and two common DEGs associated with AP and hypertriglyceridemia along with seven miRNAs that may regulate AP. This study could provide new ideas for further elucidation of the pathogenesis of hypertriglyceridemia-induced acute pancreatitis in the future.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Province, People’s Republic of China
| | - Zhihai Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Province, People’s Republic of China
| | - Xuelian Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Province, People’s Republic of China
| | - Li Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Province, People’s Republic of China
| | - Huiying Yang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Province, People’s Republic of China
| | - Guodu Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Province, People’s Republic of China
- Correspondence: Guodu Tang, Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning City, Guangxi Province, People’s Republic of China, Tel +86 13739139408, Email
| |
Collapse
|
86
|
Borrello MT, Martin MB, Pin CL. The unfolded protein response: An emerging therapeutic target for pancreatitis and pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:148-159. [PMID: 34774415 DOI: 10.1016/j.pan.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatitis is a debilitating disease involving inflammation and fibrosis of the exocrine pancreas. Recurrent or chronic forms of pancreatitis are a significant risk factor for pancreatic ductal adenocarcinoma. While genetic factors have been identified for both pathologies, environmental stresses play a large role in their etiology. All cells have adapted mechanisms to handle acute environmental stress that alters energy demands. A common pathway involved in the stress response involves endoplasmic reticulum stress and the unfolded protein response (UPR). While rapidly activated by many external stressors, in the pancreas the UPR plays a fundamental biological role, likely due to the high protein demands in acinar cells. Despite this, increased UPR activity is observed in response to acute injury or following exposure to risk factors associated with pancreatitis and pancreatic cancer. Studies in animal and cell cultures models show the importance of affecting the UPR in the context of both diseases, and inhibitors have been developed for several specific mediators of the UPR. Given the importance of the UPR to normal acinar cell function, efforts to affect the UPR in the context of disease must be able to specifically target pathology vs. physiology. In this review, we highlight the importance of the UPR to normal and pathological conditions of the exocrine pancreas. We discuss recent studies suggesting the UPR may be involved in the initiation and progression of pancreatitis and PDAC, as well as contributing to chemoresistance that occurs in pancreatic cancer. Finally, we discuss the potential of targeting the UPR for treatment.
Collapse
Affiliation(s)
- M Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Mickenzie B Martin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher L Pin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
87
|
Ren S, Pan L, Yang L, Niu Z, Wang L, Gao Y, Liu J, Liu Z, Pei H. Interfering hsa_circ_0073748 alleviates caerulein-induced ductal cell injury in acute pancreatitis by inhibiting miR-132-3p/TRAF3/NF-κB pathway. Cell Cycle 2022; 21:172-186. [PMID: 34882521 PMCID: PMC8837254 DOI: 10.1080/15384101.2021.2014653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023] Open
Abstract
Circular RNA hsa_circ_0073748 (circ_0073748) is upregulated in patients with acute pancreatitis (AP), a clinically common sudden inflammatory response. MicroRNA (miR)-132-3p is a stress-induced factor with high conservation between species. Herein, expression and role of circ_0073748 and miR-132-3p in caerulein-induced pancreatitis were studied. Expression levels of circ_0073748, miR-132-3p, TNF receptor associated factor 3 (TRAF3), Bcl-2 and Bcl-2-associated X protein (Bax) were examined by reverse transcription-quantitative PCR and Western blotting. Cell proliferation was measured by MTS and EdU assays. Flow cytometry and assay kits detected apoptosis, inflammatory, and oxidative responses. Western blotting detected nuclear factor (NF)-κB signaling pathway. Circ_0073748 was upregulated and miR-132-3p was downregulated in AP patients' plasma and human pancreatic ductal HPDE6-C7 cells with caerulein induction. Interfering circ_0073748 and reinforcing miR-132-3p improved cell viability, EdU incorporation, and superoxide dismutase (SOD) activity of caerulein-treated HPDE6-C7 cells but suppressed malonaldehyde (MDA), IL-6 and TNF-α levels and apoptosis rate. Moreover, TRAF3 downregulation was allied with circ_0073748 silencing and miR-132-3p overexpression in caerulein-induced HPDE6-C7 cells. Mechanically, circ_0073748 was identified as a sponge for miR-132-3p to modulate TRAF3 expression, thus establishing a competitive endogenous RNA (ceRNA) regulation model. Notably, circ_0073748 blockage could suppress expressions of phosphorylated P65 (p-P65) and p-IκB in caerulein-induced HPDE6-C7 cells by promoting miR-132-3p and inhibiting TRAF3. Silencing circ_0073748 and upregulating miR-132-3p could alleviate caerulein-induced HPDE6-C7 injury and inactivate canonical NF-κB signal by inhibiting TRAF3. Circ_0073748/miR-132-3p/TRAF3 ceRNA pathway might be one underlying mechanism and therapeutic target of caerulein-induced AP.
Collapse
Affiliation(s)
- Song Ren
- Department of Geriatric Digestive Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Linqing Yang
- Department of Nursing, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zequn Niu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanxia Gao
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhong Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Honghong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
88
|
Xu F, Yang C, Tang M, Wang M, Cheng Z, Chen D, Chen X, Liu K. The Role of Gut Microbiota and Genetic Susceptibility in the Pathogenesis of Pancreatitis. Gut Liver 2021; 16:686-696. [PMID: 34911043 PMCID: PMC9474482 DOI: 10.5009/gnl210362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Pancreatitis is one of the most common inflammatory diseases of the pancreas caused by autodigestion induced by excessive premature protease activation. However, recognition of novel pathophysiological mechanisms remains a still challenge. Both genetic and environmental factors contribute to the pathogenesis of pancreatitis, and the gut microbiota is a potential source of an environmental effect. In recent years, several new frontiers in gut microbiota and genetic risk assessment research have emerged and improved the understanding of the disease. These investigations showed that the disease progression of pancreatitis could be regulated by the gut microbiome, either through a translocation influence or in a host immune response manner. Meanwhile, the onset of the disease is also associated with the heritage of a pathogenic mutation, and the disease progression could be modified by genetic risk factors. In this review, we focused on the recent advances in the role of gut microbiota in the pathogenesis of pancreatitis, and the genetic susceptibility in pancreatitis.
Collapse
Affiliation(s)
- Fumin Xu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chunmei Yang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingcheng Tang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ming Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhao Cheng
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
89
|
Wen H, Li Q, Lu N, Su YY, Ma PH, Zhang MX. Intestinal flora and pancreatitis: Present and future. Shijie Huaren Xiaohua Zazhi 2021; 29:1269-1275. [DOI: 10.11569/wcjd.v29.i22.1269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of intestinal flora in human health and diseases has attracted more and more attention. At present, there have been some reports on the relationship between intestinal flora and pancreatitis. These reports reveal that intestinal flora plays some important roles in the occurrence and development of pancreatitis. The specific mechanisms of action are unclear, but there is preliminary consensus that intestinal microbiome dysregulation promotes inflammatory changes in the pancreas. This paper summarizes the correlation between intestinal flora and pancreatitis, in order to provide some references and ideas for further research.
Collapse
Affiliation(s)
- Hua Wen
- Xi'an Medical University, Xi'an 710000, Shaanxi Province, China,Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Qian Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Ning Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Yuan-Yuan Su
- Xi'an Medical University, Xi'an 710000, Shaanxi Province, China,Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Pei-Han Ma
- The Second Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ming-Xin Zhang
- The Second Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| |
Collapse
|
90
|
Nalisa M, Nweke EE, Smith MD, Omoshoro-Jones J, Devar JWS, Metzger R, Augustine TN, Fru PN. Chemokine receptor 8 expression may be linked to disease severity and elevated interleukin 6 secretion in acute pancreatitis. World J Gastrointest Pathophysiol 2021; 12:115-133. [PMID: 34877026 PMCID: PMC8611186 DOI: 10.4291/wjgp.v12.i6.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disease, which presents with epigastric pain and is clinically diagnosed by amylase and lipase three times the upper limit of normal. The 2012 Atlanta classification stratifies the severity of AP as one of three risk categories namely, mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP). Challenges in stratifying AP upon diagnosis suggest that a better understanding of the underlying complex pathophysiology may be beneficial. AIM To identify the role of the chemokine receptor 8 (CCR8), expressed by T-helper type-2 Lymphocytes and peritoneal macrophages, and its possible association to Interleukin (IL)-6 and AP stratification. METHODS This study was a prospective case-control study. A total of 40 patients were recruited from the Chris Hani Baragwanath Academic Hospital and the Charlotte Maxeke Johannesburg Academic Hospital. Bioassays were performed on 29 patients (14 MAP, 11 MSAP, and 4 SAP) and 6 healthy controls as part of a preliminary study. A total of 12 mL of blood samples were collected at Day (D) 1, 3, 5, and 7 post epigastric pain. Using multiplex immunoassay panels, real-time polymerase chain reaction (qRT-PCR) arrays, and multicolour flow cytometry analysis, immune response-related proteins, genes, and cells were profiled respectively. GraphPad Prism™ software and fold change (FC) analysis was used to determine differences between the groups. P<0.05 was considered significant. RESULTS The concentration of IL-6 was significantly different at D3 post epigastric pain in both the MAP group and MSAP group with P = 0.001 and P = 0.013 respectively, in a multiplex assay. When a FC of 2 was applied to identify differentially expressed genes using RT2 Profiler, CCR8 was shown to increase steadily with disease severity from MAP (1.33), MSAP (38.28) to SAP (1172.45) median FC. Further verification studies using RT-PCR showed fold change increases of CCR8 in MSAP and SAP ranging from 1000 to 1000000 times when represented as Log10, compared to healthy control respectively at D3. The findings also showed differing lymphocyte and monocyte cell frequency between the groups. With monocyte population frequency as high as 70% in MSAP at D3. CONCLUSION The higher levels of CCR8 and IL-6 in the severe patients and immune cell differences compared to MAP and controls provide an avenue for exploring AP stratification to improve management.
Collapse
Affiliation(s)
- Mwangala Nalisa
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| | - Martin D Smith
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
- Department of Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg 1864, Gauteng, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
- Department of Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg 1864, Gauteng, South Africa
| | - John WS Devar
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
- Department of Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg 1864, Gauteng, South Africa
| | - Rebecca Metzger
- Institut für Immunologie, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Tanya N Augustine
- School of Anatomical Sciences, Faculty of Health Science, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| | - Pascaline N Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| |
Collapse
|
91
|
A Novel Cellular Therapy to Treat Pancreatic Pain in Experimental Chronic Pancreatitis Using Human Alpha-1 Antitrypsin Overexpressing Mesenchymal Stromal Cells. Biomedicines 2021; 9:biomedicines9111695. [PMID: 34829924 PMCID: PMC8615652 DOI: 10.3390/biomedicines9111695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic pancreatitis (CP) is characterized by pancreatic inflammation, fibrosis, and abdominal pain that is challenging to treat. Mesenchymal stromal cells (MSCs) overexpressing human alpha-1 antitrypsin (hAAT-MSCs) showed improved mobility and protective functions over native MSCs in nonobese diabetic mice. We investigated whether hAAT-MSCs could mitigate CP and its associated pain using trinitrobenzene sulfonic acid (TNBS)-induced CP mouse models. CP mice were given native human MSCs or hAAT-MSCs (0.5 × 106 cells/mouse, i.v., n = 6–8/group). The index of visceral pain was measured by graduated von Frey filaments. Pancreatic morphology and pancreatic mast cell count were analyzed by morphological stains. Nociceptor transient receptor potential vanilloid 1 (TRPV1) expression in dorsal root ganglia (DRG) was determined by immunohistochemistry. hAAT-MSC-treated CP mice best preserved pancreatic morphology and histology. MSC or hAAT-MSC infusion reduced abdominal pain sensitivities. hAAT-MSC therapy also suppressed TRPV1 expression in DRG and reduced pancreatic mast cell density induced by TNBS. Overall, hAAT-MSCs reduced pain and mitigated pancreatic inflammation in CP equal to MSCs with a trend toward a higher pancreatic weight and better pain relief in the hAAT-MSC group compared to the MSC group. Both MSCs and hAAT-MSCs might be used as a novel therapeutic tool for CP-related pain.
Collapse
|
92
|
In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021; 9:biomedicines9101415. [PMID: 34680532 PMCID: PMC8533367 DOI: 10.3390/biomedicines9101415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.
Collapse
|
93
|
Glyoxalase-I Is Upregulated in Acute Cerulein-Induced Pancreatitis: A New Mechanism in Pancreatic Inflammation? Antioxidants (Basel) 2021; 10:antiox10101574. [PMID: 34679710 PMCID: PMC8533479 DOI: 10.3390/antiox10101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/13/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation caused by oxidative stress (ROS) demonstrates an essential mechanism in the pathogenesis of acute pancreatitis (AP). Important sources for ROS comprise the reactive compound methylglyoxal (MGO) itself and the MGO-derived formation of advanced glycation end-products (AGEs). AGEs bind to the transmembrane receptor RAGE and activate NF-κB, and lead to the production of pro-inflammatory cytokines. MGO is detoxified by glyoxalase-I (Glo-I). The importance of Glo-I was shown in different models of inflammation and carcinogenesis. Nevertheless, the role of Glo-I and MGO in AP has not been evaluated so far. This study analyzed Glo-I in cerulein-(CN)-induced AP and determined the effects of Glo-I knockdown, overexpression and pharmacological modulation. Methods: AP was induced in C57BL6/J mice by i.p. injection of CN. Glo-I was analyzed in explanted pancreata by Western Blot, qRT-PCR and immunohistochemistry. AR42J cells were differentiated by dexamethasone and stimulated with 100 nM of CN. Cells were simultaneously treated with ethyl pyruvate (EP) or S-p-bromobenzylglutathione-cyclopentyl-diester (BrBz), two Glo-I modulators. Knockdown and overexpression of Glo-I was achieved by transient transfection with Glo-I siRNA and pEGFP-N1-Glo-I-Vector. Amylase secretion, TNF-α production (ELISA) and expression of Glo-I, RAGE and NF-κB were measured. Results: Glo-I was significantly upregulated on protein and mRNA levels in CN-treated mice and AR42J cells. Dexamethasone-induced differentiation of AR42J cells increased the expression of Glo-I and RAGE. Treatment of AR42J cells with CN and EP or BrBz resulted in a significant reduction of CN-induced amylase secretion, NF-κB, RAGE and TNF-α. Overexpression of Glo-I led to a significant reduction of CN-induced amylase levels, NF-κB expression and TNF-α, whereas Glo-I knockdown revealed only slight alterations. Measurements of specific Glo-I activity and MGO levels indicated a complex regulation in the model of CN-induced AP. Conclusion: Glo-I is overexpressed in a model of CN-induced AP. Pharmacological modulation and overexpression of Glo-I reduced amylase secretion and the release of pro-inflammatory cytokines in AP in vitro. Targeting Glo-I in AP seems to be an interesting approach for future in vivo studies of AP.
Collapse
|
94
|
Mareninova OA, Dillon DL, Wightman CJM, Yakubov I, Takahashi T, Gaisano HY, Munson K, Ohmuraya M, Dawson D, Gukovsky I, Gukovskaya AS. Rab9 Mediates Pancreatic Autophagy Switch From Canonical to Noncanonical, Aggravating Experimental Pancreatitis. Cell Mol Gastroenterol Hepatol 2021; 13:599-622. [PMID: 34610499 PMCID: PMC8715155 DOI: 10.1016/j.jcmgh.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autophagosome, the central organelle in autophagy process, can assemble via canonical pathway mediated by LC3-II, the lipidated form of autophagy-related protein LC3/ATG8, or noncanonical pathway mediated by the small GTPase Rab9. Canonical autophagy is essential for exocrine pancreas homeostasis, and its disordering initiates and drives pancreatitis. The involvement of noncanonical autophagy has not been explored. We examine the role of Rab9 in pancreatic autophagy and pancreatitis severity. METHODS We measured the effect of Rab9 on parameters of autophagy and pancreatitis responses using transgenic mice overexpressing Rab9 (Rab9TG) and adenoviral transduction of acinar cells. Effect of canonical autophagy on Rab9 was assessed in ATG5-deficient acinar cells. RESULTS Pancreatic levels of Rab9 and its membrane-bound (active) form decreased in rodent pancreatitis models and in human disease. Rab9 overexpression stimulated noncanonical and inhibited canonical/LC3-mediated autophagosome formation in acinar cells through up-regulation of ATG4B, the cysteine protease that delipidates LC3-II. Conversely, ATG5 deficiency caused Rab9 increase in acinar cells. Inhibition of canonical autophagy in Rab9TG pancreas was associated with accumulation of Rab9-positive vacuoles containing markers of mitochondria, protein aggregates, and trans-Golgi. The shift to the noncanonical pathway caused pancreatitis-like damage in acinar cells and aggravated experimental pancreatitis. CONCLUSIONS The results show that Rab9 regulates pancreatic autophagy and indicate a mutually antagonistic relationship between the canonical/LC3-mediated and noncanonical/Rab9-mediated autophagy pathways in pancreatitis. Noncanonical autophagy fails to substitute for its canonical counterpart in protecting against pancreatitis. Thus, Rab9 decrease in experimental and human pancreatitis is a protective response to sustain canonical autophagy and alleviate disease severity.
Collapse
Affiliation(s)
- Olga A Mareninova
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Dustin L Dillon
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Carli J M Wightman
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | | | | | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Keith Munson
- Department of Physiology, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - David Dawson
- Department of Pathology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Ilya Gukovsky
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Anna S Gukovskaya
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California.
| |
Collapse
|
95
|
Wan J, Wang J, Wagner LE, Wang OH, Gui F, Chen J, Zhu X, Haddock AN, Edenfield BH, Haight B, Mukhopadhyay D, Wang Y, Yule DI, Bi Y, Ji B. Pancreas-specific CHRM3 activation causes pancreatitis in mice. JCI Insight 2021; 6:132585. [PMID: 34314386 PMCID: PMC8492327 DOI: 10.1172/jci.insight.132585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Hyperstimulation of the cholecystokinin 1 receptor (CCK1R), a G protein-coupled receptor (GPCR), in pancreatic acinar cells is commonly used to induce pancreatitis in rodents. Human pancreatic acinar cells lack CCK1R but express cholinergic receptor muscarinic 3 (M3R), another GPCR. To test whether M3R activation is involved in pancreatitis, a mutant M3R was conditionally expressed in pancreatic acinar cells in mice. This mutant receptor loses responsiveness to its native ligand, acetylcholine, but can be activated by an inert small molecule, clozapine-N-oxide (CNO). Intracellular calcium and amylase were elicited by CNO in pancreatic acinar cells isolated from mutant M3R mice but not WT mice. Similarly, acute pancreatitis (AP) could be induced by a single injection of CNO in the transgenic mice but not WT mice. Compared with the cerulein-induced AP, CNO caused more widespread acinar cell death and inflammation. Furthermore, chronic pancreatitis developed at 4 weeks after 3 episodes of CNO-induced AP. In contrast, in mice with 3 recurrent episodes of cerulein-included AP, pancreas histology was restored in 4 weeks. Furthermore, the M3R antagonist ameliorated the severity of cerulein-induced AP in WT mice. We conclude that M3R activation can cause the pathogenesis of pancreatitis. This model may provide an alternative approach for pancreatitis research.
Collapse
Affiliation(s)
- Jianhua Wan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jiale Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Oliver H. Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Fu Gui
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Xiaohui Zhu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ashley N. Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Brian Haight
- Prodo Laboratories Inc., Aliso Viejo, California, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
96
|
Mareninova OA, Vegh ET, Shalbueva N, Wightman CJ, Dillon DL, Malla S, Xie Y, Takahashi T, Rakonczay Z, French SW, Gaisano HY, Gorelick FS, Pandol SJ, Bensinger SJ, Davidson NO, Dawson DW, Gukovsky I, Gukovskaya AS. Dysregulation of mannose-6-phosphate-dependent cholesterol homeostasis in acinar cells mediates pancreatitis. J Clin Invest 2021; 131:146870. [PMID: 34128834 PMCID: PMC8321573 DOI: 10.1172/jci146870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/11/2021] [Indexed: 01/18/2023] Open
Abstract
Disordered lysosomal/autophagy pathways initiate and drive pancreatitis, but the underlying mechanisms and links to disease pathology are poorly understood. Here, we show that the mannose-6-phosphate (M6P) pathway of hydrolase delivery to lysosomes critically regulates pancreatic acinar cell cholesterol metabolism. Ablation of the Gnptab gene encoding a key enzyme in the M6P pathway disrupted acinar cell cholesterol turnover, causing accumulation of nonesterified cholesterol in lysosomes/autolysosomes, its depletion in the plasma membrane, and upregulation of cholesterol synthesis and uptake. We found similar dysregulation of acinar cell cholesterol, and a decrease in GNPTAB levels, in both WT experimental pancreatitis and human disease. The mechanisms mediating pancreatic cholesterol dyshomeostasis in Gnptab-/- and experimental models involve a disordered endolysosomal system, resulting in impaired cholesterol transport through lysosomes and blockage of autophagic flux. By contrast, in Gnptab-/- liver the endolysosomal system and cholesterol homeostasis were largely unaffected. Gnptab-/- mice developed spontaneous pancreatitis. Normalization of cholesterol metabolism by pharmacologic means alleviated responses of experimental pancreatitis, particularly trypsinogen activation, the disease hallmark. The results reveal the essential role of the M6P pathway in maintaining exocrine pancreas homeostasis and function, and implicate cholesterol disordering in the pathogenesis of pancreatitis.
Collapse
Affiliation(s)
- Olga A. Mareninova
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Eszter T. Vegh
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Natalia Shalbueva
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Carli J.M. Wightman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Dustin L. Dillon
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Sudarshan Malla
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yan Xie
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Samuel W. French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California, USA
| | | | - Fred S. Gorelick
- Departments of Cell Biology and Internal Medicine, Yale University School of Medicine and VA West Haven, West Haven, Connecticut, USA
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Nicholas O. Davidson
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Anna S. Gukovskaya
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
97
|
Yi Y, Sun X, Liang B, He N, Gibson-Corley KN, Norris AW, Engelhardt JF, Uc A. Acute pancreatitis-induced islet dysfunction in ferrets. Pancreatology 2021; 21:839-847. [PMID: 33994067 PMCID: PMC8355067 DOI: 10.1016/j.pan.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND /Objectives: The pathogenesis of hyperglycemia during acute pancreatitis (AP) remains unknown due to inaccessibility of human tissues and lack of animal models. We aimed to develop an animal model to study the mechanisms of hyperglycemia and impaired glucose tolerance in AP. METHODS We injected ferrets with intraperitoneal cerulein (50 μg/kg, 9 hourly injections) or saline. Blood samples were collected for glucose (0, 4, 8, 12, 24h); TNF-α, IL-6 (6h); amylase, lipase, insulin, glucagon, pancreatic polypeptide (PP), glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP) (24h). Animals underwent oral glucose tolerance test (OGTT), mixed meal tolerance test (MMTT) at 24h or 3 months, followed by harvesting pancreas for histopathology and immunostaining. RESULTS Cerulein-injected ferrets exhibited mild pancreatic edema, neutrophil infiltration, and elevations in serum amylase, lipase, TNF-α, IL-6, consistent with AP. Plasma glucose was significantly higher in ferrets with AP at all time points. Plasma glucagon, GLP-1 and PP were significantly higher in cerulein-injected animals, while plasma insulin was significantly lower compared to controls. OGTT and MMTT showed abnormal glycemic responses with higher area under the curve. The hypoglycemic response to insulin injection was completely lost, suggestive of insulin resistance. OGTT showed low plasma insulin; MMTT confirmed low insulin and GIP; abnormal OGTT and MMTT responses returned to normal 3 months after cerulein injection. CONCLUSIONS Acute cerulein injection causes mild acute pancreatitis in ferrets and hyperglycemia related to transient islet cell dysfunction and insulin resistance. The ferret cerulein model may contribute to the understanding of hyperglycemia in acute pancreatitis.
Collapse
Affiliation(s)
- Yaling Yi
- Department of Anatomy and Cell Biology, Iowa City, IA, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, Iowa City, IA, USA
| | - Bo Liang
- Department of Anatomy and Cell Biology, Iowa City, IA, USA
| | - Nan He
- Department of Anatomy and Cell Biology, Iowa City, IA, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew W Norris
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA; Department of Pediatrics, lowa City, IA, USA; Department of Biochemistry, Iowa City, IA, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA
| | - Aliye Uc
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA; Department of Pediatrics, lowa City, IA, USA; Department of Radiation Oncology; University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
98
|
Lodestijn SC, van den Bosch T, Nijman LE, Moreno LF, Schlingemann S, Sheraton VM, van Neerven SM, Koning JJ, Vieira Braga FA, Paauw NJ, Lecca MC, Lenos KJ, Morrissey E, Miedema DM, Winton DJ, Bijlsma MF, Vermeulen L. Continuous clonal labeling reveals uniform progenitor potential in the adult exocrine pancreas. Cell Stem Cell 2021; 28:2009-2019.e4. [PMID: 34358441 PMCID: PMC8577826 DOI: 10.1016/j.stem.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/23/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
The tissue dynamics that govern maintenance and regeneration of the pancreas remain largely unknown. In particular, the presence and nature of a cellular hierarchy remains a topic of debate. Previous lineage tracing strategies in the pancreas relied on specific marker genes for clonal labeling, which left other populations untested and failed to account for potential widespread phenotypical plasticity. Here we employed a tracing system that depends on replication-induced clonal marks. We found that, in homeostasis, steady acinar replacement events characterize tissue dynamics, to which all acinar cells have an equal ability to contribute. Similarly, regeneration following pancreatitis was best characterized by an acinar self-replication model because no evidence of a cellular hierarchy was detected. In particular, rapid regeneration in the pancreas was found to be driven by an accelerated rate of acinar fission-like events. These results provide a comprehensive and quantitative model of cell dynamics in the exocrine pancreas.
Collapse
Affiliation(s)
- Sophie C Lodestijn
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tom van den Bosch
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Lisanne E Nijman
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Leandro F Moreno
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Sophie Schlingemann
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Vivek M Sheraton
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Oude Turfmarkt 147, 1012 GC Amsterdam, the Netherlands
| | - Sanne M van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HV Amsterdam, the Netherlands
| | - Felipe A Vieira Braga
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Nanne J Paauw
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HV Amsterdam, the Netherlands
| | - Maria C Lecca
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Kristiaan J Lenos
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Edward Morrissey
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Daniël M Miedema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Douglas J Winton
- Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
99
|
Bruce JIE, Sánchez-Alvarez R, Sans MD, Sugden SA, Qi N, James AD, Williams JA. Insulin protects acinar cells during pancreatitis by preserving glycolytic ATP supply to calcium pumps. Nat Commun 2021; 12:4386. [PMID: 34282152 PMCID: PMC8289871 DOI: 10.1038/s41467-021-24506-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is serious inflammatory disease of the pancreas. Accumulating evidence links diabetes with severity of AP, suggesting that endogenous insulin may be protective. We investigated this putative protective effect of insulin during cellular and in vivo models of AP in diabetic mice (Ins2Akita) and Pancreatic Acinar cell-specific Conditional Insulin Receptor Knock Out mice (PACIRKO). Caerulein and palmitoleic acid (POA)/ethanol-induced pancreatitis was more severe in both Ins2Akita and PACIRKO vs control mice, suggesting that endogenous insulin directly protects acinar cells in vivo. In isolated pancreatic acinar cells, insulin induced Akt-mediated phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2) which upregulated glycolysis thereby preventing POA-induced ATP depletion, inhibition of the ATP-dependent plasma membrane Ca2+ ATPase (PMCA) and cytotoxic Ca2+ overload. These data provide the first mechanistic link between diabetes and severity of AP and suggest that phosphorylation of PFKFB2 may represent a potential therapeutic strategy for treatment of AP.
Collapse
Affiliation(s)
- Jason I. E. Bruce
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK ,grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Rosa Sánchez-Alvarez
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Maria Dolors Sans
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Sarah A. Sugden
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Nathan Qi
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Andrew D. James
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK ,grid.5685.e0000 0004 1936 9668Present Address: Division of Cancer Sciences, Department of Biology, University of York, Heslington, York, UK
| | - John A. Williams
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
100
|
Lin Y, Chen Y, Feng W, Zhang J, Hua R, Yin B, Yang X. STAT5 promotes chronic pancreatitis by enhancing GM-CSF-dependent neutrophil augmentation. J Leukoc Biol 2021; 110:293-300. [PMID: 34184320 DOI: 10.1002/jlb.3ma1020-647r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pancreatitis (CP) is a continuing or relapsing inflammatory disease of the pancreas, characterized by fibrosis of the whole tissue. The regulatory mechanisms of the immune microenvironment in the pathogenesis of CP are still not clear. Immune cells, especially myeloid cells, play an important role in the pathogenesis of pancreatitis. Understanding the regulatory mechanisms of immune infiltration has a significant impact on CP intervention. Here, we demonstrated that transcription factor STAT5 was involved in and critical for the progression of CP. Inflammatory stress could significantly increase the expression and activation of STAT5 during CP. STAT5 deficiency or inhibition contributed to alleviating pancreatic inflammation and fibrosis in CP mice. The increased neutrophil infiltration, mediated by up-regulated GM-CSF, was responsible for the pancreatitis-promoting activity of STAT5. Our investigation highlighted the importance of STAT5 in regulating the immune microenvironment of CP. Targeting STAT5 may hold distinct promise for clinical treatment to alleviate CP.
Collapse
Affiliation(s)
- Yuli Lin
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Department of Oncology, Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wenxue Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Junfeng Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuguang Yang
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|