51
|
Lima SF, Pires S, Rupert A, Oguntunmibi S, Jin WB, Marderstein A, Funez-dePagnier G, Maldarelli G, Viladomiu M, Putzel G, Yang W, Tran N, Xiang G, Grier A, Guo CJ, Lukin D, Mandl LA, Scherl EJ, Longman RS. The gut microbiome regulates the clinical efficacy of sulfasalazine therapy for IBD-associated spondyloarthritis. Cell Rep Med 2024; 5:101431. [PMID: 38378002 PMCID: PMC10982976 DOI: 10.1016/j.xcrm.2024.101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Sulfasalazine is a prodrug known to be effective for the treatment of inflammatory bowel disease (IBD)-associated peripheral spondyloarthritis (pSpA), but the mechanistic role for the gut microbiome in regulating its clinical efficacy is not well understood. Here, treatment of 22 IBD-pSpA subjects with sulfasalazine identifies clinical responders with a gut microbiome enriched in Faecalibacterium prausnitzii and the capacity for butyrate production. Sulfapyridine promotes butyrate production and transcription of the butyrate synthesis gene but in F. prausnitzii in vitro, which is suppressed by excess folate. Sulfasalazine therapy enhances fecal butyrate production and limits colitis in wild-type and gnotobiotic mice colonized with responder, but not non-responder, microbiomes. F. prausnitzii is sufficient to restore sulfasalazine protection from colitis in gnotobiotic mice colonized with non-responder microbiomes. These findings reveal a mechanistic link between the efficacy of sulfasalazine therapy and the gut microbiome with the potential to guide diagnostic and therapeutic approaches for IBD-pSpA.
Collapse
Affiliation(s)
- Svetlana F Lima
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Silvia Pires
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Amanda Rupert
- Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA; Jill Roberts Center for IBD, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Seun Oguntunmibi
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew Marderstein
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gabriela Funez-dePagnier
- Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA; Jill Roberts Center for IBD, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Grace Maldarelli
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Monica Viladomiu
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Gregory Putzel
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA
| | - Wei Yang
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Nancy Tran
- Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA; Jill Roberts Center for IBD, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Grace Xiang
- Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA; Jill Roberts Center for IBD, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Alex Grier
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dana Lukin
- Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA; Jill Roberts Center for IBD, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Lisa A Mandl
- Division of Rheumatology, Hospital for Special Surgery and Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Ellen J Scherl
- Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA; Jill Roberts Center for IBD, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Randy S Longman
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA; Jill Roberts Center for IBD, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA.
| |
Collapse
|
52
|
Wang N, Wang H, Bai Y, Zhao Y, Zheng X, Gao X, Zhang Z, Yang L. Metagenomic Analysis Reveals Difference of Gut Microbiota in ADHD. J Atten Disord 2024; 28:872-879. [PMID: 38327077 DOI: 10.1177/10870547231225491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Although ADHD is highly heritable, some environmental factors contribute to its development. Given the growing evidence that gut microbiota was involved in psychiatric disorders, we aimed to identify the characteristic composition of the gut microbiota in ADHD. METHODS We recruited 47 medication-naive children and adolescents with ADHD, and 60 healthy controls (HCs). We used shotgun metagenomics to measure the structure of the gut microbiota and analyzed the difference in bacterial taxa between ADHD and HCs. RESULTS Significant differences were found between the ADHD and HC groups in both alpha diversity indices (Simpson index, p = .025 and Shannon index, p = .049) and beta diversity indices (Euclidean distance, Bray-Curtis distance, and JSD distance, p < 2.2e-16). Nine representative species best explain the difference. CONCLUSION Patients with ADHD showed significant differences in the composition of the gut microbiota compared with HCs. These results may help identify potential biomarkers of ADHD.
Collapse
Affiliation(s)
- Ning Wang
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Haibin Wang
- Yan'an Third People's Hospital, Shanxi Province, China
| | - Yu Bai
- Yan'an Third People's Hospital, Shanxi Province, China
| | - Yilu Zhao
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xiangyu Zheng
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xuping Gao
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Zifeng Zhang
- Yan'an Third People's Hospital, Shanxi Province, China
| | - Li Yang
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| |
Collapse
|
53
|
Liu M, Ma J, Xu J, Huangfu W, Zhang Y, Ali Q, Liu B, Li D, Cui Y, Wang Z, Sun H, Zhu X, Ma S, Shi Y. Fecal microbiota transplantation alleviates intestinal inflammatory diarrhea caused by oxidative stress and pyroptosis via reducing gut microbiota-derived lipopolysaccharides. Int J Biol Macromol 2024; 261:129696. [PMID: 38280701 DOI: 10.1016/j.ijbiomac.2024.129696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Infancy is a critical period in the maturation of the gut microbiota and a phase of susceptibility to gut microbiota dysbiosis. Early disturbances in the gut microbiota can have long-lasting effects on host physiology, including intestinal injury and diarrhea. Fecal microbiota transplantation (FMT) can remodel gut microbiota and may be an effective way to treat infant diarrhea. However, limited research has been conducted on the mechanisms of infant diarrhea and the regulation of gut microbiota balance through FMT, primarily due to ethical challenges in testing on human infants. Our study demonstrated that elevated Lipopolysaccharides (LPS) levels in piglets with diarrhea were associated with colon microbiota dysbiosis induced by early weaning. Additionally, LPS upregulated NLRP3 levels by activating TLR4 and inducing ROS production, resulting in pyroptosis, disruption of the intestinal barrier, bacterial translocation, and subsequent inflammation, ultimately leading to diarrhea in piglets. Through microbiota regulation, FMT modulated β-PBD-2 secretion in the colon by increasing butyric acid levels. This modulation alleviated gut microbiota dysbiosis, reduced LPS levels, attenuated oxidative stress and pyroptosis, inhibited the inflammatory response, maintained the integrity of the intestinal barrier, and ultimately reduced diarrhea in piglets caused by colitis. These findings present a novel perspective on the pathogenesis, pathophysiology, prevention, and treatment of diarrhea diseases, underscoring the significance of the interaction between FMT and the gut microbiota as a critical strategy for treating diarrhea and intestinal diseases in infants and farm animals.
Collapse
Affiliation(s)
- Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Junying Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qasim Ali
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China; Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China; Henan Forage Engineering Technology Research Center, Zhengzhou, Henan 450002, China.
| |
Collapse
|
54
|
Zeng X, Li J, Wang X, Liu L, Shen S, Li N, Wang Z, Yuan Y, Yue T. Regulation of Gut Microbiota and Microbial Metabolome of Kefir Supernatant against Fusobacterium nucleatum and DSS-Coinduced Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3536-3548. [PMID: 38346349 DOI: 10.1021/acs.jafc.3c08050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The aim of this study was to investigate the intervention effect of kefir supernatant (KS) on the initiation and progression of an ulcerative colitis (UC) murine model. We established an UC murine model by orally administrating with 109 CFUs of Fusobacterium nucleatum for 3 weeks and 3% dextran sulfate sodium (DSS) treatment in the third week. KS was used to intervene in this colitis model. Our results showed that KS supplementation ameliorated the symptoms, restrained the secretion of pro-inflammatory cytokines (TNF-α, IL-6, and IL-17F), promoted the release of anti-inflammatory cytokines (IL-4 and IL-10), and ameliorated oxidative stress. Furthermore, the increased number of goblet cells and upregulated expression of MUC2, occludin and claudin-1 indicated that the colon barrier was protected by KS. Additionally, KS supplementation mitigated gut microbiota dysbiosis in the UC murine model, leading to an increase in the abundance of Blautia and Akkermansia and a decrease in the level of Bacteroides. The altered gut microbiota also affected colon metabolism, with differential metabolites mainly associated with the biosynthesis of the l-arginine pathway. This study revealed that KS supplementation restored the community structure of gut microbiota, altered the biosynthesis of l-arginine, and thereby modulated the process of colonic inflammation.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Xin Wang
- College of Health Management, Shangluo University, Shangluo 726000, China
| | - Ling Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Shiqi Shen
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Nanyang Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| |
Collapse
|
55
|
Ren D, Ding M, Su J, Ye J, He X, Zhang Y, Shang X. Stachyose in combination with L. rhamnosus GG ameliorates acute hypobaric hypoxia-induced intestinal barrier dysfunction through alleviating inflammatory response and oxidative stress. Free Radic Biol Med 2024; 212:505-519. [PMID: 38211833 DOI: 10.1016/j.freeradbiomed.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
High altitude is closely related to intestinal mucosal damage and intestinal microbiota imbalance, and there is currently no effective prevention and treatment measures. In this study, the effects of stachyose (STA), L. rhamnosus GG (LGG) and their combination on inflammatory response, oxidatve stress and intestinal barrier function in mice exposed to acute hypobaric hypoxia were investigated. Our results indicated the combination of STA and LGG could more effectively regulate intestinal microbiota disorders caused by hypobaric hypoxia than STA or LGG alone. When mice were administered with STA + LGG, the content of short chain fatty acids (SCFAs) especially butyric acid significantly increased, which helped intestinal cells to form tight connections, improve the level of anti-inflammatory cytokine (TGF-β) and antioxidant enzymes (SOD, CAT, GSH-Px), and decrease the expression of pro-inlammatory cytokines and hypoxia-inducing factors (IFN-γ, IL-1β, IL-6, TNF-α and HIF-1α), thereby enhance the strong intestinal barrier function. Furthermore, the synbiotics significantly reduced the ratio of Firmicutes to Bacteroidetes, while significantly increased the relative abundance of Rikenella, Bacteroides, Odoribacter, Ruminiclostridium_5 and Gordonibacter, which were correlated with production of SCFAs and anti-inflammatory role. Correlation analysis showed that the protective effect of synbiotics on intestinal barrier function was associated with its anti-inflammatory activity and antioxidant capacity. It provided a strong foundation for further research on the role of STA and LGG in maintaining normal intestinal function at high altitude. Our study has identified and demonstrated a new synbiotic that may be one of the ideal intervention measures for preventing and treating intestinal dysfunction at high altitude.
Collapse
Affiliation(s)
- Dingxin Ren
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Mengying Ding
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Junqing Su
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Jianzhou Ye
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Xiaoqin He
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Yafeng Zhang
- No. 889, Xi'an Institute for Food and Drug, Cangtai West Road, Chang'an District, Xi'an, Shaanxi, 710700, PR China
| | - Xiaoya Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| |
Collapse
|
56
|
Singh A, Midha V, Chauhan NS, Sood A. Current perspectives on fecal microbiota transplantation in inflammatory bowel disease. Indian J Gastroenterol 2024; 43:129-144. [PMID: 38334893 DOI: 10.1007/s12664-023-01516-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic modality within the domain of inflammatory bowel disease (IBD). While FMT has secured approval and demonstrated efficacy in addressing recurrent and refractory Clostridioides difficile infection, its application in IBD remains an area of active exploration and research. The current status of FMT in IBD reflects a nuanced landscape, with ongoing investigations delving into its effectiveness, safety and optimal implementation. Early-stage clinical trials and observational studies have provided insights into the potential of FMT to modulate the dysbiotic gut microbiota associated with IBD, aiming to mitigate inflammation and promote mucosal healing. However, considerable complexities persist, including variations in donor selection, treatment protocols and outcome assessments. Challenges in standardizing FMT protocols for IBD treatment are compounded by the dynamic nature of the gut microbiome and the heterogeneity of IBD itself. Despite these challenges, enthusiasm for FMT in IBD emanates from its capacity to address gut microbial dysbiosis, signifying a paradigm shift towards more comprehensive approaches in IBD management. As ongoing research progresses, an enhanced understanding of FMT's role in IBD therapy is anticipated. This article synthesizes the current status of FMT in IBD, elucidating the attendant challenges and aspiring towards the refinement of its application for improved patient outcomes.
Collapse
Affiliation(s)
- Arshdeep Singh
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Vandana Midha
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124 001, India
| | - Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India.
| |
Collapse
|
57
|
Yang T, Qin N, Liu F, Zhao Y, Liu W, Fan D. Berberine regulates intestinal microbiome and metabolism homeostasis to treat ulcerative colitis. Life Sci 2024; 338:122385. [PMID: 38184271 DOI: 10.1016/j.lfs.2023.122385] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
AIMS This study aims to investigate the effects of berberine (BBR) on the intestinal microbiome (IM) and serum metabolome in ulcerative colitis (UC). Furthermore, the underlying molecular mechanisms of BBR in treating UC also will be explored systematically. MATERIALS AND METHODS A multi-omics approach that integrates the 16s rDNA, serum metabolome, transcriptomics and bioinformatics was profiled to investigate the potential effects of BBR on the IM, serum metabolites and metabolic pathways, and gene expression. In addition, BBR-induced fecal microbiota transplantation (BBR_FMT) was conducted in pseudo germ-free mice combined with the UC model to explore the effects of the IM on metabolic pathways and gene expression. The results of the transcriptomics and metabolic pathway-related genes were further examined by real-time PCR and western blot. KEY FINDINGS BBR ameliorated the community of IM and significantly promoted the abundance of f__Muribaculaceae, Bacteroides, Dubosiella, Allobaculum and Akkermansia. The metabolic profiles in UC mice were significantly modulated by BBR treatment. Furthermore, the inflammation-related metabolites and metabolic pathways in serum were negatively correlated with the abundance of Bacteroides and Akkermansia, which were induced by BBR treatment. BBR_FMT significantly inhibited the arachidonic acid (AA) metabolism pathway and its multiple markers with the mediation of the IM. SIGNIFICANCE BBR ameliorated serum metabolic homeostasis by regulating the IM. The inhibition of the AA metabolism pathway and its multiple markers was one of the mechanisms of BBR in the treatment of UC.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Niping Qin
- The First Clinical Medical College, Shanxi Medical University, Taiyuan 030600, China
| | - Fahui Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen 361003, China
| | - Yihan Zhao
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Xi'an 712046,China
| | - Wanning Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
58
|
Fang ZX, Chen WJ, Wu Z, Hou YY, Lan YZ, Wu HT, Liu J. Inflammatory response in gastrointestinal cancers: Overview of six transmembrane epithelial antigens of the prostate in pathophysiology and clinical implications. World J Clin Oncol 2024; 15:9-22. [PMID: 38292664 PMCID: PMC10823946 DOI: 10.5306/wjco.v15.i1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Chronic inflammation is known to increase the risk of gastrointestinal cancers (GICs), the common solid tumors worldwide. Precancerous lesions, such as chronic atrophic inflammation and ulcers, are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis. Unfortunately, due to the lack of effective therapeutic targets, the prognosis of patients with GICs is still unsatisfactory. Interestingly, it is found that six transmembrane epithelial antigens of the prostate (STEAPs), a group of metal reductases, are significantly associated with the progression of malignancies, playing a crucial role in systemic metabolic homeostasis and inflammatory responses. The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress, responding to inflammatory reactions. Under the imbalance status of abnormal oxidative stress, STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process. This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms, with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.
Collapse
Affiliation(s)
- Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
59
|
Arora U, Kedia S, Ahuja V. The practice of fecal microbiota transplantation in inflammatory bowel disease. Intest Res 2024; 22:44-64. [PMID: 37981746 PMCID: PMC10850701 DOI: 10.5217/ir.2023.00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/21/2023] Open
Abstract
Current evidence posits a central role for gut microbiota and the metabolome in the pathogenesis and progression of inflammatory bowel disease (IBD). Fecal microbiota transplantation (FMT) has been established as a means to manipulate this microbiome safely and sustainably. Several aspects of the technical improvement including pretreatment with antibiotics, use of frozen stool samples as well as short donor-to-recipient time are proposed to improve its response rates. Its efficacy in ulcerative colitis has been proven in clinical trials while data is emerging for Crohn's disease. This review describes briefly the biology behind FMT, the available evidence for its use in IBD, and the host, recipient and procedural factors which determine the clinical outcomes.
Collapse
Affiliation(s)
- Umang Arora
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
60
|
He Y, Qi A, Gu Y, Zhang C, Wang Y, Yang W, Bi L, Gong Y, Jiao L, Xu L. Clinical Efficacy and Gut Microbiota Regulating-Related Effect of Si-Jun-Zi Decoction in Postoperative Non-Small Cell Lung Cancer Patients: A Prospective Observational Study. Integr Cancer Ther 2024; 23:15347354241237973. [PMID: 38504436 PMCID: PMC10953039 DOI: 10.1177/15347354241237973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Postoperative non-small cell lung cancer (NSCLC) patients frequently encounter a deteriorated quality of life (QOL), disturbed immune response, and disordered homeostasis. Si-Jun-Zi Decoction (SJZD), a well-known traditional Chinese herbal formula, is frequently employed in clinical application for many years. Exploration is underway to investigate the potential therapeutic effect of SJZD for treating postoperative NSCLC. OBJECTIVE To assess the efficacy of SJZD on QOLs, hematological parameters, and regulations of gut microbiota in postoperative NSCLC patients. METHODS A prospective observational cohort study was conducted, enrolling 65 postoperative NSCLC patients between May 10, 2020 and March 15, 2021 in Yueyang Hospital, with 33 patients in SJZD group and 32 patients in control (CON) group. The SJZD group comprised of patients who received standard treatments and the SJZD decoction, while the CON group consisted of those only underwent standard treatments. The treatment period was 4 weeks. The primary outcome was QOL. The secondary outcomes involved serum immune cell and inflammation factor levels, safety, and alterations in gut microbiota. RESULTS SJZD group showed significant enhancements in cognitive functioning (P = .048) at week 1 and physical functioning (P = .019) at week 4. Lung cancer-specific symptoms included dyspnea (P = .001), coughing (P = .008), hemoptysis (P = .034), peripheral neuropathy (P = .019), and pain (arm or shoulder, P = .020, other parts, P = .019) eased significantly in the fourth week. Anemia indicators such as red blood cell count (P = .003 at week 1, P = .029 at week 4) and hemoglobin (P = .016 at week 1, P = .048 at week 4) were significantly elevated by SJZD. SJZD upregulated blood cell cluster differentiation (CD)3+ (P = .001 at week 1, P < .001 at week 4), CD3+CD4+ (P = .012 at week 1), CD3+CD8+ (P = .027 at week 1), CD19+ (P = .003 at week 4), increased anti-inflammatory interleukin (IL)-10 (P = .004 at week 1, P = .003 at week 4), and decreased pro-inflammatory IL-8 (P = .004 at week 1, p = .005 at week 4). Analysis of gut microbiota indicated that SJZD had a significant impact on increasing microbial abundance and diversity, enriching probiotic microbes, and regulating microbial biological functions. CONCLUSIONS SJZD appears to be an effective and safe treatment for postoperative NSCLC patients. As a preliminary observational study, this study provides a foundation for further research.
Collapse
Affiliation(s)
- Yiyun He
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Qi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Gu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Congmeng Zhang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
61
|
Yang Y, Li Q, Qiao Q, Zhao N, Huang H, Zhou Y, Guo C, Guo Y. Bacterial distribution and inflammatory cytokines associated with oral cancer with and without jawbone invasion-a pilot study. Clin Oral Investig 2023; 27:7285-7293. [PMID: 37874389 DOI: 10.1007/s00784-023-05319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE To explore the bacterial and inflammatory variations in oral cancer patients with and without jawbone invasion. MATERIALS AND METHODS A total of 20 specimens of fresh tumor tissue, including 10 from the tumor-invaded jawbone (JIOC group) and 10 without jawbone invasion (NJIOC group), were collected from oral cancer patients. Meanwhile, 10 specimens from normal oral mucosa were collected from healthy patients (control group). The microbiomic content of each sample was analyzed by 16S rRNA gene sequencing, while the expression of inflammatory cytokines was assessed using protein microarray analysis. RESULTS There was a significant difference in β diversity between JIOC and NJIOC groups (P < 0.05), but no difference between NJIOC and control groups. The average relative abundance of Fusobacteria and Spirochaetes was higher, while Firmicutes was lower in the JIOC group than in the NJIOC group (all P < 0.05). The expression of pro-inflammatory cytokines like interleukin (IL)-1α, IL-1β, IL-4, and IL-8 was upregulated in the JIOC group compared with the NJIOC group, while MCP-1 was decreased (all P < 0.05). Slackia spp. and Howardella spp. were positively correlated with IL-4; Odoribacter spp. and Acidaminococcaceae spp. were negatively correlated with IL-4, and Clostridium XIVa spp. was negatively correlated with IL-1α and IL-1β. CONCLUSION Bacterial and inflammatory differences were observed in oral cancer patients with and without jawbone invasion, where the relative abundance of the differential bacteria was associated with the expression of the inflammatory cytokines. CLINICAL RELEVANCE This study investigated the changes in the flora during jawbone invasion in oral cancer and its effect on inflammatory factors, elucidating the possible mechanisms of jawbone invasion caused by oral cancer, which may lead to new ideas for the clinical prevention and treatment of jawbone invasion in oral cancer.
Collapse
Affiliation(s)
- Yuanning Yang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Qingxiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Qiao Qiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Ning Zhao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Hongyuan Huang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Ying Zhou
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yuxing Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China.
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
62
|
Yang R, Chen Z, Cai J. Fecal microbiota transplantation: Emerging applications in autoimmune diseases. J Autoimmun 2023; 141:103038. [PMID: 37117118 DOI: 10.1016/j.jaut.2023.103038] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/12/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Both genetic susceptibility and environmental factors are important contributors to autoimmune disease pathogenesis. As an environmental factor, the gut microbiome plays a crucial role in the development and progression of autoimmune diseases. Thus, strategies targeting gut microbiome alterations can potentially be used to treat autoimmune disease. Microbiota-based interventions, such as prebiotics, probiotics, dietary interventions, and fecal microbiota transplantation (FMT), have attracted growing interest as novel treatment approaches. FMT is an effective method for treating recurrent Clostridioides difficile infections; moreover, it is emerging as a promising treatment for patients with inflammatory bowel disease and other autoimmune diseases. Although the mechanisms underpinning the interaction between the gut microbiome and host are not fully understood in patients with autoimmune disease, FMT has been shown to restore altered gut microbiota composition, rebuild the intestinal microecosystem, and mediate innate and adaptive immune responses to achieve a therapeutic effect. In this review, we provide an overview of FMT and discuss how FMT can be used as a novel treatment approach for autoimmune diseases. Furthermore, we discuss recent challenges and offer future research directions.
Collapse
Affiliation(s)
- Ruixue Yang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China
| | - Zhenzhen Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
63
|
Olm MR, Spencer SP, Silva EL, Sonnenburg JL. Metagenomic Immunoglobulin Sequencing (MIG-Seq) Exposes Patterns of IgA Antibody Binding in the Healthy Human Gut Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568153. [PMID: 38045399 PMCID: PMC10690254 DOI: 10.1101/2023.11.21.568153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
IgA, the most highly produced human antibody, is continually secreted into the gut to shape the intestinal microbiota. Methodological limitations have critically hindered defining which microbial strains are targeted by IgA and why. Here, we develop a new technique, Metagenomic Immunoglobulin Sequencing (MIG-Seq), and use it to determine IgA coating levels for thousands of gut microbiome strains in healthy humans. We find that microbes associated with both health and disease have higher levels of coating, and that microbial genes are highly predictive of IgA binding levels, with mucus degradation genes especially correlated with high binding. We find a significant reduction in replication rates among microbes bound by IgA, and demonstrate that IgA binding is more correlated with host immune status than traditional microbial abundance measures. This study introduces a powerful technique for assessing strain-level IgA binding in human stool, paving the way for deeper understanding of IgA-based host microbe interactions.
Collapse
Affiliation(s)
- Matthew R. Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean P. Spencer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Evelyn Lemus Silva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
64
|
Zhou J, Ho V. Role of Baseline Gut Microbiota on Response to Fiber Intervention in Individuals with Irritable Bowel Syndrome. Nutrients 2023; 15:4786. [PMID: 38004180 PMCID: PMC10674363 DOI: 10.3390/nu15224786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most prevalent functional gut disorders in the world. Partially hydrolyzed guar gum, a low-viscosity soluble fiber, has shown promise in the management of IBS-related symptoms. In this study, we aimed to determine if an individual's baseline gut microbiota impacted their response to a partially hydrolyzed guar gum intervention. Patients diagnosed with IBS undertook a 90-day intervention and follow-up. IBS symptom severity, tolerability, quality-of-life, and fecal microbiome composition were recorded during this study. Patients with normal microbiota diversity (Shannon index ≥ 3) showed significant improvements to IBS symptom scores, quality-of-life, and better tolerated the intervention compared to patients with low microbiota diversity (Shannon index < 3). Our findings suggest that an individual's baseline microbiome composition exerts a substantial influence on their response to fiber intervention. Future investigations should explore a symbiotic approach to the treatment of IBS.
Collapse
Affiliation(s)
- Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | | |
Collapse
|
65
|
Qian X, Jiang H, Wu Y, Shao H, He W, He Y, Bao X, He L, Jia Y, Xu Z. Fecal microbiota transplantation combined with prebiotics ameliorates ulcerative colitis in mice. Future Microbiol 2023; 18:1251-1263. [PMID: 37830929 DOI: 10.2217/fmb-2023-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/19/2023] [Indexed: 10/14/2023] Open
Abstract
Aim: To investigate the effect of treatment with fecal microbiota transplantation (FMT) and galacto- and fructo-oligosaccharides on ulcerative colitis (UC) in mice. Materials & methods: A total of 90 mice, divided into nine groups, were administered FMT or prebiotics or combined treatment. The disease activity index scores, gut microbiota and inflammation factors were evaluated. Results: The treatment using FMT combined with galacto- and fructo-oligosaccharides in a 9:1 ratio significantly reduced intestinal barrier damage and alleviated symptoms of UC. Lactobacillus and Bifidobacterium and short-chain fatty acids were significantly increased after the combined treatment. Conclusion: The results demonstrate that FMT with prebiotics is a new method for UC treatment.
Collapse
Affiliation(s)
- Xueyi Qian
- Precision Medicine Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, 241002, China
| | - Hua Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China
| | - Yao Wu
- Precision Medicine Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China
| | - Huimin Shao
- Precision Medicine Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China
| | - Weijie He
- Precision Medicine Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China
| | - Yinmei He
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, 241002, China
| | - Xin Bao
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, 241002, China
| | - Lianjun He
- Precision Medicine Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China
| | - Yuliang Jia
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China
| | - Zhenyu Xu
- Precision Medicine Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241001, China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, 241002, China
| |
Collapse
|
66
|
Wu S, Wu Z, Chen Y. Effect of Cordyceps militaris Powder Prophylactic Supplementation on Intestinal Mucosal Barrier Impairment and Microbiota-Metabolites Axis in DSS-Injured Mice. Nutrients 2023; 15:4378. [PMID: 37892453 PMCID: PMC10610503 DOI: 10.3390/nu15204378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease with an unknown pathogenesis and increasing incidence. The objective of this study is to investigate the impact of prophylactic treatment with Cordyceps militaris on UC. The findings demonstrate that prophylactic supplementation of C. militaris powder effectively mitigates disease symptoms in DSS-injured mice, while also reducing the secretion of pro-inflammatory cytokines. Furthermore, C. militaris powder enhances the integrity of the intestinal mucosal barrier by up-regulating MUC2 protein expression and improving tight junction proteins (ZO-1, occludin, and claudin 1) in DSS-injured mice. Multiomics integration analyses revealed that C. militaris powder not only reshaped gut microbiota composition, with an increase in Lactobacillus, Odoribacter, and Mucispirillum, but also exerted regulatory effects on various metabolic pathways including amino acid, glyoxylates, dicarboxylates, glycerophospholipids, and arachidonic acid. Subsequent analysis further elucidated the intricate interplay of gut microbiota, the intestinal mucosal barrier, and metabolites, suggesting that the microbiota-metabolite axis may involve the effect of C. militaris on intestinal mucosal barrier repair in UC. Moreover, in vitro experiments demonstrated that peptides and polysaccharides, derived from C. militaris, exerted an ability to change the gut microbiota structure of UC patients' feces, particularly by promoting the growth of Lactobacillus. These findings suggest that regulatory properties of C. militaris on gut microbiota may underlie the potential mechanism responsible for the protective effect of C. militaris in UC. Consequently, our study will provide support for the utilization of C. militaris as a whole food-based ingredient against the occurrence and development of UC.
Collapse
Affiliation(s)
- Shujian Wu
- Shenzhen Clinical Research Center for Digestive Disease, Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China;
| | - Zaoxuan Wu
- State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China;
| | - Ye Chen
- Shenzhen Clinical Research Center for Digestive Disease, Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China;
- State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China;
| |
Collapse
|
67
|
Zhang S, Han Y, Schofield W, Nicosia M, Karell PE, Newhall KP, Zhou JY, Musich RJ, Pan S, Valujskikh A, Sangwan N, Dwidar M, Lu Q, Stappenbeck TS. Select symbionts drive high IgA levels in the mouse intestine. Cell Host Microbe 2023; 31:1620-1638.e7. [PMID: 37776865 DOI: 10.1016/j.chom.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/14/2023] [Accepted: 09/01/2023] [Indexed: 10/02/2023]
Abstract
Immunoglobulin A (IgA) is an important factor in maintaining homeostasis at mucosal surfaces, yet luminal IgA levels vary widely. Total IgA levels are thought to be driven by individual immune responses to specific microbes. Here, we found that the prebiotic, pectin oligosaccharide (pec-oligo), induced high IgA levels in the small intestine in a T cell-dependent manner. Surprisingly, this IgA-high phenotype was retained after cessation of pec-oligo treatment, and microbiome transmission either horizontally or vertically was sufficient to retain high IgA levels in the absence of pec-oligo. Interestingly, the bacterial taxa enriched in the overall pec-oligo bacterial community differed from IgA-coated microbes in this same community. Rather, a group of ethanol-resistant microbes, highly enriched for Lachnospiraceae bacterium A2, drove the IgA-high phenotype. These findings support a model of intestinal adaptive immunity in which a limited number of microbes can promote durable changes in IgA directed to many symbionts.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250000, P.R. China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yi Han
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Michael Nicosia
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul E Karell
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kevin P Newhall
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Julie Y Zhou
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ryan J Musich
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohammed Dwidar
- Department of Cardiovascular and Metabolic Sciences, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Qiuhe Lu
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
68
|
Ni S, Yuan X, Cao Q, Chen Y, Peng X, Lin J, Li Y, Ma W, Gao S, Chen D. Gut microbiota regulate migration of lymphocytes from gut to lung. Microb Pathog 2023; 183:106311. [PMID: 37625662 DOI: 10.1016/j.micpath.2023.106311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The community of microorganisms known as gut microbiota that lives in the intestine confers significant health benefits on its host, primarily in the form of immunological homeostasis regulation. Gut microbiota not only can shape immune responses in the gut but also in other organs. This review focus on the gut-lung axis. Aberrant gut microbiota development is associated with greater lung disease susceptibility and respiratory disease induced by a variety of pathogenic bacteria. They are known to cause changes in gut microbiota. Recent research has found that immune cells in the intestine migrate to distant lung to exert anti-infective effects. Moreover, evidence indicates that the gut microbiota and their metabolites influence intestinal immune cells. Therefore, we suspect that intestine-derived immune cells may play a significant role against pulmonary pathogenic infections by receiving instructions from gut microbiota.
Collapse
Affiliation(s)
- Silu Ni
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiulei Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Qihang Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yiming Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xingyu Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jingyi Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yanyan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Shikong Gao
- Shenmu Animal Husbandry Development Center, Shenmu, 719399, Shaanxi, China.
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
69
|
Bosch B, Moutaharrik S, Gazzaniga A, Hiippala K, Santos HA, Maroni A, Satokari R. Development of a time-dependent oral colon delivery system of anaerobic Odoribacter splanchnicus for bacteriotherapy. Eur J Pharm Biopharm 2023; 190:73-80. [PMID: 37479064 DOI: 10.1016/j.ejpb.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Odoribacter (O.) splanchnicus is an anaerobic member of the human intestinal microbiota. Its decrease in abundance has been associated with inflammatory bowel disease (IBD), non-alcoholic fatty liver, and cystic fibrosis. Considering the anti-inflammatory properties of O. splanchnicus and its possible use for IBD, intestinal isolate O. splanchnicus 57 was here formulated for oral colonic release based on a time-dependent strategy. Freeze-drying protocol was determined to ensure O. splanchnicus 57 viability during the process. Disintegrating tablets, containing the freeze-dried O. splanchnicus 57, were manufactured by direct compression and coated by powder-layering technique with hydroxypropyl methylcellulose (Methocel™ E50) in a tangential-spray fluid bed. Eudragit® L was then applied by spray-coating in a top-spray fluid bed. Double-coated tablets were tested for release, showing gastric resistance properties and, as desired, lag phases of reproducible duration prior to release in phosphate buffer pH 6.8. The cell viability and anti-inflammatory activity of the strain were assessed after the main manufacturing steps. While freeze-drying did not affect bacterial viability, the tableting and coating processes were more stressful. Nonetheless, O. splanchnicus 57 cells survived manufacturing and the final formulations had 106-107 CFU/g of viable cells. The strain kept its anti-inflammatory properties after tableting and coating, reducing Escherichia coli lipopolysaccharide-induced interleukin-8 cytokine release from HT-29 cells. Overall, O. splanchnicus 57 strain was formulated successfully for oral colon delivery, opening new ways to formulate pure cultures of single anaerobic strains or mixtures for oral delivery.
Collapse
Affiliation(s)
- Berta Bosch
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Saliha Moutaharrik
- Sez. di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy.
| | - Andrea Gazzaniga
- Sez. di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Kaisa Hiippala
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen 9713 AV, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Alessandra Maroni
- Sez. di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
70
|
Wen X, Xie R, Wang HG, Zhang MN, He L, Zhang MH, Yang XZ. Fecal microbiota transplantation alleviates experimental colitis through the Toll-like receptor 4 signaling pathway. World J Gastroenterol 2023; 29:4657-4670. [PMID: 37662857 PMCID: PMC10472902 DOI: 10.3748/wjg.v29.i30.4657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has shown promising therapeutic effects on mice with experimental colitis and patients with ulcerative colitis (UC). FMT modulates the Toll-like receptor 4 (TLR4) signaling pathway to treat some other diseases. However, it remains unknown whether this modulation is also involved in the treatment of UC. AIM To clarify the necessity of TLR4 signaling pathway in FMT on dextran sodium sulphate (DSS)-induced mice and explain the mechanism of FMT on UC, through association analysis of gut microbiota with colon transcriptome in mice. METHODS A mouse colitis model was constructed with wild-type (WT) and TLR4-knockout (KO) mice. Fecal microbiota was transplanted by gavage. Colon inflammation severity was measured by disease activity index (DAI) scoring and hematoxylin and eosin staining. Gut microbiota structure was analyzed through 16S ribosomal RNA sequencing. Gene expression in the mouse colon was obtained by transcriptome sequencing. RESULTS The KO (DSS + Water) and KO (DSS + FMT) groups displayed indistinguishable body weight loss, colon length, DAI score, and histology score, which showed that FMT could not inhibit the disease in KO mice. In mice treated with FMT, the relative abundance of Akkermansia decreased, and Lactobacillus became dominant. In particular, compared with those in WT mice, the scores of DAI and colon histology were clearly decreased in the KO-DSS group. Microbiota structure showed a significant difference between KO and WT mice. Akkermansia were the dominant genus in healthy KO mice. The ineffectiveness of FMT in KO mice was related to the decreased abundance of Akkermansia. Gene Ontology enrichment analysis showed that differentially expressed genes between each group were mainly involved in cytoplasmic translation and cellular response to DNA damage stimulus. The top nine genes correlating with Akkermansia included Aqp4, Clca4a, Dpm3, Fau, Mcrip1, Meis3, Nupr1 L, Pank3, and Rps13 (|R| > 0.9, P < 0.01). CONCLUSION FMT may ameliorate DSS-induced colitis by regulating the TLR4 signaling pathway. TLR4 modulates the composition of gut microbiota and the expression of related genes to ameliorate colitis and maintain the stability of the intestinal environment. Akkermansia bear great therapeutic potential for colitis.
Collapse
Affiliation(s)
- Xin Wen
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Rui Xie
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Hong-Gang Wang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Min-Na Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Le He
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Meng-Hui Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Xiao-Zhong Yang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| |
Collapse
|
71
|
Long XQ, Liu MZ, Liu ZH, Xia LZ, Lu SP, Xu XP, Wu MH. Bile acids and their receptors: Potential therapeutic targets in inflammatory bowel disease. World J Gastroenterol 2023; 29:4252-4270. [PMID: 37545642 PMCID: PMC10401658 DOI: 10.3748/wjg.v29.i27.4252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease. As a result of the interaction between the liver and the gut microbiota, bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption. With the development of genomics and metabolomics, more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors. Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora, epithelial barrier function, and intestinal immunology. Inflammatory bowel disease can be treated in new ways by using these potential molecules. This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications. In addition, we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.
Collapse
Affiliation(s)
- Xiong-Quan Long
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Zhu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Zi-Hao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Lv-Zhou Xia
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Shi-Peng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Xiao-Ping Xu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| |
Collapse
|
72
|
Osawa M, Handa O, Fukushima S, Matsumoto H, Umegaki E, Inoue R, Naito Y, Shiotani A. Reduced abundance of butyric acid-producing bacteria in the ileal mucosa-associated microbiota of ulcerative colitis patients. J Clin Biochem Nutr 2023; 73:77-83. [PMID: 37534095 PMCID: PMC10390811 DOI: 10.3164/jcbn.22-86] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 08/04/2023] Open
Abstract
Compositional changes in the microbiota are associated with various inflammatory diseases, including ulcerative colitis (UC). Aim: This study aimed to investigate the mucosa-associated microbiota (MAM) in patients with UC and its difference related with disease activity and classification. Brush samples were collected from the terminal ileum and sigmoid colon during endoscopic procedures. The microbiota of samples was profiled using the Illumina MiSeq platform. The V3-V4 regions of the gene encoding 16S rRNA (460 bp) were amplified using PCR. Fifty UC patients and twenty healthy controls were enrolled. UC patients displayed significantly reduced α-diversity in both the ileum and sigmoid colon compared to controls. A difference in β-diversity in the unweighted analysis was observed between the two groups. The abundance of Lactobacillus and Veillonella was significantly higher and that of Butyricicoccus, Ruminococcus and Lachnospiraceae was significantly lower in the ileum of UC patients than in controls. The abundance of Odoribacter in the ileum was significantly lower in left-sided colitis and pancolitis patients than in proctitis patients and lower in patients with highly severe disease activity than with mild disease activity. The reduction in abundance of butyric acid-producing bacteria, especially Odoribacter, in ileal MAM may play an important role in the pathophysiology of UC.
Collapse
Affiliation(s)
- Motoyasu Osawa
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Osamu Handa
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Shinya Fukushima
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Hiroshi Matsumoto
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Eiji Umegaki
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Ryo Inoue
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji Agaru, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Akiko Shiotani
- Department of Internal Medicine, Division of Gastroenterology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
73
|
Liu T, Zhang M, Asif IM, Wu Y, Li B, Wang L. The regulatory effects of fucoidan and laminarin on functional dyspepsia mice induced by loperamide. Food Funct 2023. [PMID: 37377021 DOI: 10.1039/d3fo00936j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Gastrointestinal dysmotility is a common cause of functional dyspepsia. As two kinds of polysaccharides derived from brown algae, fucoidan and laminarin possess many physiological properties; however, their relative abilities in regulating gastrointestinal motility have not been illustrated yet. In this study, we aimed to investigate the regulatory effect of fucoidan and laminarin on functional dyspepsia mice induced by loperamide. Mice with gastrointestinal dysmotility were treated with fucoidan (100 and 200 mg per kg bw) and laminarin (50 and 100 mg per kg bw). As a result, fucoidan and laminarin reversed the dysfunction mainly through regulating gastrointestinal hormones (motilin and ghrelin), the cholinergic pathway, the total bile acid level, c-kit protein expression, and gastric smooth muscle contraction-related gene expression (ANO1 and RYR3). Moreover, fucoidan and laminarin intervention modulated the gut microbiota profile including the altered richness of Muribaculaceae, Lachnospiraceae, and Streptococcus. The results indicated that fucoidan and laminarin may restore the rhythm of the migrating motor complex and regulate gut microecology. In conclusion, we provided evidence to support that fucoidan and laminarin might have potential abilities to regulate gastrointestinal motility.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Mengting Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Yonglin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| |
Collapse
|
74
|
Chen Q, Fan Y, Zhang B, Yan C, Zhang Q, Ke Y, Chen Z, Wang L, Shi H, Hu Y, Huang Q, Su J, Xie C, Zhang X, Zhou L, Ren J, Xu H. Capsulized Fecal Microbiota Transplantation Induces Remission in Patients with Ulcerative Colitis by Gut Microbial Colonization and Metabolite Regulation. Microbiol Spectr 2023; 11:e0415222. [PMID: 37093057 PMCID: PMC10269780 DOI: 10.1128/spectrum.04152-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Fecal microbiota transplantation (FMT) can induce clinical remission in ulcerative colitis (UC) patients. Enemas, nasoduodenal tubes, and colonoscopies are the most common routes for FMT administration. However, there is a lack of definitive evidence regarding the effectiveness of capsulized FMT treatment in UC patients. In this study, we administered capsulized FMT to 22 patients with active UC to assess the efficiency of capsulized FMT and determine the specific bacteria and metabolite factors associated with the response to clinical remission. Our results showed that the use of capsulized FMT was successful in the treatment of UC patients. Capsulized FMT induced clinical remission and clinical response in 57.1% (12 of 21) and 76.2% (16 of 21) of UC patients, respectively. Gut bacterial richness was increased after FMT in patients who achieved remission. Patients in remission after FMT exhibited enrichment of Alistipes sp. and Odoribacter splanchnicus, along with increased levels of indolelactic acid. Patients who did not achieve remission exhibited enrichment of Escherichia coli and Klebsiella and increased levels of biosynthesis of 12,13-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid) and lipopolysaccharides. Furthermore, we identified a relationship between specific bacteria and metabolites and the induction of remission in patients. These findings may provide new insights into FMT in UC treatment and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects. (This study has been registered at ClinicalTrails.gov under registration no. NCT03426683). IMPORTANCE Fecal microbiota transplantation has been successfully used in patients. Recently, capsulized FMT was reported to induce a response in patients with UC. However, limited patients were enrolled in such studies, and the functional factors of capsulized FMT have not been reported in the remission of patients with UC. In this study, we prospectively recruited patients with UC to receive capsulized FMT. First, we found that capsulized FMT could induce clinical remission in 57.1% of patients and clinical response in 76.2% after 12 weeks, which was more acceptable. Second, we found a relationship between the decrease of opportunistic pathogen and lipopolysaccharide synthesis in patients in remission after capsulized FMT. We also identified an association between specific bacteria and metabolites and remission induction in patients after capsulized FMT. These findings put forward a possibility for patients to receive FMT at home and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects.
Collapse
Affiliation(s)
- Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhao Ke
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Wang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huaxiu Shi
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiqun Hu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingwen Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Xie
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xu Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lixiang Zhou
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
75
|
Li J, Feng S, Wang Z, He J, Zhang Z, Zou H, Wu Z, Liu X, Wei H, Tao S. Limosilactobacillus mucosae-derived extracellular vesicles modulates macrophage phenotype and orchestrates gut homeostasis in a diarrheal piglet model. NPJ Biofilms Microbiomes 2023; 9:33. [PMID: 37280255 DOI: 10.1038/s41522-023-00403-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
The diarrheal disease causes high mortality, especially in children and young animals. The gut microbiome is strongly associated with diarrheal disease, and some specific strains of bacteria have demonstrated antidiarrheal effects. However, the antidiarrheal mechanisms of probiotic strains have not been elucidated. Here, we used neonatal piglets as a translational model and found that gut microbiota dysbiosis observed in diarrheal piglets was mainly characterized by a deficiency of Lactobacillus, an abundance of Escherichia coli, and enriched lipopolysaccharide biosynthesis. Limosilactobacillus mucosae and Limosilactobacillus reuteri were a signature bacterium that differentiated healthy and diarrheal piglets. Germ-free (GF) mice transplanted with fecal microbiota from diarrheal piglets reproduced diarrheal disease symptoms. Administration of Limosilactobacillus mucosae but not Limosilactobacillus reuteri alleviated diarrheal disease symptoms induced by fecal microbiota of diarrheal piglets and by ETEC K88 challenge. Notably, Limosilactobacillus mucosae-derived extracellular vesicles alleviated diarrheal disease symptoms caused by ETEC K88 by regulating macrophage phenotypes. Macrophage elimination experiments demonstrated that the extracellular vesicles alleviated diarrheal disease symptoms in a macrophage-dependent manner. Our findings provide insights into the pathogenesis of diarrheal disease from the perspective of intestinal microbiota and the development of probiotic-based antidiarrheal therapeutic strategies.
Collapse
Affiliation(s)
- Jingjing Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuaifei Feng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jinhui He
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeyue Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huicong Zou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangdong Liu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
76
|
Hasselblatt P, Reindl W, Gauss A, Neeff H, Fusco S, Klaus J. Questions to consider when caring for patients with ulcerative colitis. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:690-700. [PMID: 36257329 DOI: 10.1055/a-1890-6015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although the management of patients with ulcerative colitis (UC) is well defined by national and international guidelines, there are many debates and open questions related to daily care of UC patients. Here, we aimed to review topics with high clinical relevance including therapy algorithms, potential biomarkers for disease prognosis and response to therapy, the role of interventions targeting the gut microbiota, insights from head-to-head trials, novel UC medications, exit strategies, the impact of COVID19 on UC, care of patients with acute severe disease, cancer screening, and the role of surgery.
Collapse
Affiliation(s)
- Peter Hasselblatt
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Wolfgang Reindl
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Annika Gauss
- University Hospital Heidelberg, Heidelberg, Germany
| | - Hannes Neeff
- Dept. of General and Visceral Surgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Stefano Fusco
- Department of Gastroenterology, Eberhard-Karls-Universität Tübingen Medizinische Fakultät, Tübingen, Germany
| | | |
Collapse
|
77
|
Li X, Yi Y, Wu T, Chen N, Gu X, Xiang L, Jiang Z, Li J, Jin H. Integrated microbiome and metabolome analysis reveals the interaction between intestinal flora and serum metabolites as potential biomarkers in hepatocellular carcinoma patients. Front Cell Infect Microbiol 2023; 13:1170748. [PMID: 37260707 PMCID: PMC10227431 DOI: 10.3389/fcimb.2023.1170748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Globally, liver cancer poses a serious threat to human health and quality of life. Despite numerous studies on the microbial composition of the gut in hepatocellular carcinoma (HCC), little is known about the interactions of the gut microbiota and metabolites and their role in HCC. This study examined the composition of the gut microbiota and serum metabolic profiles in 68 patients with HCC, 33 patients with liver cirrhosis (LC), and 34 healthy individuals (NC) using a combination of metagenome sequencing and liquid chromatography-mass spectrometry (LC-MS). The composition of the serum metabolites and the structure of the intestinal microbiota were found to be significantly altered in HCC patients compared to non-HCC patients. LEfSe and metabolic pathway enrichment analysis were used to identify two key species (Odoribacter splanchnicus and Ruminococcus bicirculans) and five key metabolites (ouabain, taurochenodeoxycholic acid, glycochenodeoxycholate, theophylline, and xanthine) associated with HCC, which then were combined to create panels for HCC diagnosis. The study discovered that the diagnostic performance of the metabolome was superior to that of the microbiome, and a panel comprised of key species and key metabolites outperformed alpha-fetoprotein (AFP) in terms of diagnostic value. Spearman's rank correlation test was used to determine the relationship between the intestinal flora and serum metabolites and their impact on hepatocarcinogenesis and progression. A random forest model was used to assess the diagnostic performance of the different histologies alone and in combination. In summary, this study describes the characteristics of HCC patients' intestinal flora and serum metabolism, demonstrates that HCC is caused by the interaction of intestinal flora and serum metabolites, and suggests that two key species and five key metabolites may be potential markers for the diagnosis of HCC.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongxiang Yi
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing, China
| | - Tongxin Wu
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Chen
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liangliang Xiang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaodi Jiang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junwei Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Heiying Jin
- Department of Colorectal Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
78
|
Yang Y, He J, Wang Y, Liang L, Zhang Z, Tan X, Tao S, Wu Z, Dong M, Zheng J, Zhang H, Feng S, Cheng W, Chen Q, Wei H. Whole intestinal microbiota transplantation is more effective than fecal microbiota transplantation in reducing the susceptibility of DSS-induced germ-free mice colitis. Front Immunol 2023; 14:1143526. [PMID: 37234168 PMCID: PMC10206398 DOI: 10.3389/fimmu.2023.1143526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is an emerging and effective therapy for the treatment of inflammatory bowel disease (IBD). Previous studies have reported that compared with FMT, whole intestinal microbiota transplantation (WIMT) can more precisely replicate the community structure and reduce the inflammatory response of the host. However, it remains unclear whether WIMT is more effective in alleviating IBD. To examine the efficacy of WIMT and FMT in the intervention of IBD, GF (Germ-free) BALB/c mice were pre-colonized with whole intestinal microbiota or fecal microbiota before being treated with dextran sodium sulfate (DSS). As expected, the symptoms of colitis were alleviated by both WIMT and FMT, as demonstrated by the prevention of body weight loss and decreased the Disease activity index and histological scores in mice. However, WIMT's anti-inflammatory effect was superior to that of FMT. In addition, the inflammatory markers myeloperoxidase (MPO) and eosinophil peroxidase were dramatically downregulated by WIMT and FMT. Furthermore, the use of two different types of donors facilitated the regulation of cytokine homeostasis in colitis mice; the level of the pro-inflammatory cytokine IL-1β in the WIMT group was significantly lower than that in the FMT group, while the level of the anti-inflammatory factor IL-10 was significantly higher than that in the FMT group. Both groups showed enhanced expression of occludin to protect the intestinal barrier in comparison with the DSS group, and the WIMT group demonstrated considerably increased levels of ZO-1. The sequencing results showed that the WIMT group was highly enriched in Bifidobacterium, whereas the FMT group was significantly enriched in Lactobacillus and Ochrobactrum. Correlation analysis revealed that Bifidobacterium was negatively correlated with TNF-α, whereas Ochrobactrum was positively correlated with MPO and negatively correlated with IL-10, which might be related to different efficacies. Functional prediction using PICRUSt2 revealed that the FMT group was considerably enriched in the L-arginine biosynthesis I and L-arginine biosynthesis IV pathway, whereas the WIMT group was enriched in the L-lysine fermentation to acetate and butanoate pathway. In conclusion, the symptoms of colitis were subsided to varying degrees by the two different types of donors, with the WIMT group being more effective than the FMT group. This study provides new information on clinical interventions for IBD.
Collapse
Affiliation(s)
- Yapeng Yang
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhui He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuqing Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lifeng Liang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zeyue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiang Tan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Tao
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhifeng Wu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Miaomiao Dong
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jixia Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuaifei Feng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Cheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiyi Chen
- Intestinal Microenvironment Treatment Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
79
|
Older EA, Zhang J, Ferris ZE, Xue D, Zhong Z, Mitchell MK, Madden M, Wang Y, Chen H, Nagarkatti P, Nagarkatti M, Fan D, Ellermann M, Li YX, Li J. Biosynthetic Enzyme-guided Disease Correlation Connects Gut Microbial Metabolites Sulfonolipids to Inflammatory Bowel Disease Involving TLR4 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533047. [PMID: 36993324 PMCID: PMC10055157 DOI: 10.1101/2023.03.16.533047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The trillions of microorganisms inhabiting the human gut are intricately linked to human health. At the species abundance level, correlational studies have connected specific bacterial taxa to various diseases. While the abundances of these bacteria in the gut serve as good indicators for disease progression, understanding the functional metabolites they produce is critical to decipher how these microbes influence human health. Here, we report a unique biosynthetic enzyme-guided disease correlation approach to uncover microbial functional metabolites as potential molecular mechanisms in human health. We directly connect the expression of gut microbial sulfonolipid (SoL) biosynthetic enzymes to inflammatory bowel disease (IBD) in patients, revealing a negative correlation. This correlation is then corroborated by targeted metabolomics, identifying that SoLs abundance is significantly decreased in IBD patient samples. We experimentally validate our analysis in a mouse model of IBD, showing that SoLs production is indeed decreased while inflammatory markers are increased in diseased mice. In support of this connection, we apply bioactive molecular networking to show that SoLs consistently contribute to the immunoregulatory activity of SoL-producing human microbes. We further reveal that sulfobacins A and B, two representative SoLs, primarily target Toll-like receptor 4 (TLR4) to mediate immunomodulatory activity through blocking TLR4's natural ligand lipopolysaccharide (LPS) binding to myeloid differentiation factor 2, leading to significant suppression of LPS-induced inflammation and macrophage M1 polarization. Together, these results suggest that SoLs mediate a protective effect against IBD through TLR4 signaling and showcase a widely applicable biosynthetic enzyme-guided disease correlation approach to directly link the biosynthesis of gut microbial functional metabolites to human health.
Collapse
|
80
|
Wan J, Yu X, Liu J, Li J, Ai T, Yin C, Liu H, Qin R. A special polysaccharide hydrogel coated on Brasenia schreberi: preventive effects against ulcerative colitis via modulation of gut microbiota. Food Funct 2023; 14:3564-3575. [PMID: 36946057 DOI: 10.1039/d2fo03207d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ulcerative colitis (UC) is a growing health concern in humans, but it can be prevented by using special dietary strategies. Young stems and leaves of Brasenia schreberi (BS) are coated with a special polysaccharide hydrogel (BS mucilage) which can be beneficial for colon health. The aim of this study was to investigate the preventive effects of BS mucilage against UC in a DSS-treated mouse model. Although containing only 0.3% solid content, our research showed that BS mucilage effectively attenuated the disease activity index (DAI) and the spleen index and downregulated IL-1β, IL-18, IL-6 and CAT mRNA levels in DSS-treated mice, which is a promising UC alleviation function. Additionally, BS mucilage also improved the propionate and butyrate levels in mouse feces and alleviated the imbalanced gut microbiota induced by DSS. The abundance of pro-inflammatory and colorectal cancer related bacteria, such as Prevotella, Ruminococcus, Acutalibacter and Christensenella, was decreased by BS mucilage feeding, whereas the abundance of anti-inflammatory and SCFA-producing bacteria including Alistipes and Odoribacter was increased. In conclusion, the current study shows that the daily consumption of BS mucilage could be an effective way to prevent UC in mice, via modulation of gut microbiota.
Collapse
Affiliation(s)
- Jiawei Wan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Xiujuan Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingyang Ai
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Cong Yin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| |
Collapse
|
81
|
Fei Y, Li S, Wang Z, Ma Y, Fang J, Liu G. IRW (Ile-Arg-Trp) Alleviates DSS-Induced Intestinal Injury by Remodeling Gut Microbiota and Regulating Fecal SCFA Levels. Nutrients 2023; 15:nu15040953. [PMID: 36839309 PMCID: PMC9963393 DOI: 10.3390/nu15040953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 02/17/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease of unknown etiology with a progressive and destructive course and an increasing incidence worldwide. Dietary peptides have a variety of biological functions and are effective anti-inflammatories and antioxidants, making them a prospective class of material for treating intestinal inflammation. Our study investigated the association between Ile-Arg-Trp (IRW), a dietary oligopeptide, and intestinal microbial changes during the relief of colitis using different concentrations of IRW. We found that IRW can significantly alleviate mouse colonic barrier damage caused by dextran sulphate sodium salt (DSS) and promote intestinal health. The results of microbial community composition showed that the relative abundance of Bacillota and Lactobacillus in the gut microbiota at different concentrations of IRW was significantly increased and that the abundance of Bacteroides was suppressed. Surprisingly, the relative abundance of Odoribacter also received regulation by IRW concentration and had a positive correlation with acetic acid. IRW at 0.02 mg/mL and 0.04 mg/mL significantly altered the abundance of Bacillota, Odoribacter, and Lactobacillus.
Collapse
|
82
|
Liu J, Lin H, Cao M, Lin T, Lin A, Xu W, Wang H, He J, Li Y, Tang H, Zhang B. Shifts and importance of viable bacteria in treatment of DSS-induced ulcerative colitis mice with FMT. Front Cell Infect Microbiol 2023; 13:1124256. [PMID: 36814445 PMCID: PMC9939747 DOI: 10.3389/fcimb.2023.1124256] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Background and Aims Ulcerative colitis (UC) has become a global public health concern, and is in urgent need of novel therapies. Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been applied to the treatment of UC. Despite its recent successes, it is still largely unknown how FMT functionally modulates the gut microbiota and improves the disease. Methods We prospectively collected fecal samples from the 40 mice (30 mice for dextran sulfate sodium (DSS)-induced, 10 for controls), followed by Propidium monoazide treatment for 16S rRNA gene sequencing. These 30 mice were divided equally into 3 groups, which were transplanted with original donor microbiota (DO), inactivated donor microbiota (DI) and saline, respectively. Subsequently, we used 16S rRNA gene sequencing to analyze the viable gut bacteria of ulcerative colitis (UC) mice and histological analysis to evaluate the effects of fecal microbiota transplantation (FMT) with viable microbiota. Results We demonstrated that the community structure of viable bacteria was significantly different from fecal bacteria based on total DNA. Furthermore, the intestinal viable microbiota and colonic mucosal structure of mice were significantly changed by DSS induction. The histological analysis showed that only the mice treated with original donor microbiota group (HF) achieved a significant improvement. Compared with inactivated donor microbiota group (IF) and saline (NF), Lactobacillus and Halomonas were significantly enriched in the HF group. Conclusion We inferred that only live bacteria from human donor reversed the histopathology and symptoms of UC in mice and altered the gut microbiota. The activity of gut microbiota in donor samples should be considered in FMT and that detailed analysis of viable microbiota is essential to understand the mechanisms by which FMT produces therapeutic effects in the future.
Collapse
Affiliation(s)
- Jinglong Liu
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hao Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Man Cao
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tan Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Aiqiang Lin
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Wei Xu
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Han Wang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jianquan He
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Yuantao Li
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Hailing Tang
- Division of Gastroenterology, Xi’an Central Hospital, Xi’an, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Bangzhou Zhang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| |
Collapse
|
83
|
Wang R, Lin F, Ye C, Aihemaitijiang S, Halimulati M, Huang X, Jiang Z, Li L, Zhang Z. Multi-omics analysis reveals therapeutic effects of Bacillus subtilis-fermented Astragalus membranaceus in hyperuricemia via modulation of gut microbiota. Food Chem 2023; 399:133993. [DOI: 10.1016/j.foodchem.2022.133993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/23/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
84
|
DuPont HL, Jiang ZD, Alexander AS, DuPont AW, Brown EL. Intestinal IgA-Coated Bacteria in Healthy- and Altered-Microbiomes (Dysbiosis) and Predictive Value in Successful Fecal Microbiota Transplantation. Microorganisms 2022; 11:microorganisms11010093. [PMID: 36677385 PMCID: PMC9862469 DOI: 10.3390/microorganisms11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
IgA-coated bacteria in the gut (IgA-biome) provide a homeostatic function in healthy people through inhibition of microbial invaders and by protecting the epithelial monolayer of the gut. The laboratory methods used to detect this group of bacteria require flow cytometry and DNA sequencing (IgA-Seq). With dysbiosis (reduced diversity of the microbiome), the IgA-biome also is impaired. In the presence of enteric infection, oral vaccines, or an intestinal inflammatory disorder, the IgA-biome focuses on the pathogenic bacteria or foreign antigens, while in other chronic diseases associated with dysbiosis, the IgA-biome is reduced in capacity. Fecal microbiota transplantation (FMT), the use of fecal product from well-screened, healthy donors administered to patients with dysbiosis, has been successful in engrafting the intestine with healthy microbiota and metabolites leading to improve health. Through FMT, IgA-coated bacteria have been transferred to recipients retaining their immune coating. The IgA-biome should be evaluated in FMT studies as these mucosal-associated bacteria are more likely to be associated with successful transplantation than free luminal organisms. Studies of the microbiome pre- and post-FMT should employ metagenomic methods that identify bacteria at least at the species level to better identify organisms of interest while allowing comparisons of microbiota data between studies.
Collapse
Affiliation(s)
- Herbert L. DuPont
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
- Kelsey Research Foundation, Houston, TX 77005, USA
- Correspondence: ; Tel.: +1-713-500-9366
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| | | | - Andrew W. DuPont
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Eric L. Brown
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| |
Collapse
|
85
|
Xiang H, Liu QP. Alterations of the gut microbiota in coronavirus disease 2019 and its therapeutic potential. World J Gastroenterol 2022; 28:6689-6701. [PMID: 36620345 PMCID: PMC9813939 DOI: 10.3748/wjg.v28.i47.6689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/19/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global health. SARS-CoV-2 infects host cells primarily by binding to angiotensin-converting enzyme 2, which is coexpressed in alveolar type 2 cells and gut epithelial cells. It is known that COVID-19 often presents with gastrointestinal symptoms and gut dysbiosis, mainly characterized by an increase in opportunistic pathogens and a decrease in beneficial commensal bacteria. In recent years, multiple studies have comprehensively explored gut microbiota alterations in COVID-19 and highlighted the clinical correlation between dysbiosis and COVID-19. SARS-CoV-2 causes gastrointestinal infections and dysbiosis mainly through fecal-oral transmission and the circulatory and immune pathways. Studies have shown that the gut microbiota and its metabolites can regulate the immune response and modulate antiviral effects. In addition, the gut microbiota is closely related to gastrointestinal symptoms, such as diarrhea, a common gastrointestinal symptom among COVID-19. Therefore, the contribution of the gut microbiota in COVID-19 should not be overlooked. Strategies targeting the gut microbiota via probiotics, prebiotics and fecal microbiota transplantation should be considered to treat this patient population in the future. However, the specific alterations and mechanisms as well as the contributions of gut microbiota in COVID-19 should be urgently further explored.
Collapse
Affiliation(s)
- Hui Xiang
- Department of Infectious Disease, Chongqing University Three Gorges Hospital, Chongqing 404100, China
| | - Qi-Ping Liu
- Department of Pulmonary and Critical Care Medicine, Chongqing University Three Gorges Hospital, Chongqing 404100, China
| |
Collapse
|
86
|
Jotereau F, Alameddine J, Teusan R, Pédron A, Jouand N, Altare F, Godefroy E. Human gut microbiota-reactive DP8α regulatory T cells, signature and related emerging functions. Front Immunol 2022; 13:1026994. [PMID: 36479125 PMCID: PMC9720269 DOI: 10.3389/fimmu.2022.1026994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
In mice, microbiota-induced Tregs both maintain intestinal homeostasis and provide resistance to immuno-pathologies in the adult. Identifying their human functional counterpart therefore represents an important goal. We discovered, in the human colonic lamina propria and blood, a FoxP3-negative IL-10-secreting Treg subset, which co-expresses CD4 and CD8α (hence named DP8α) and displays a TCR-reactivity against Faecalibacterium prausnitzii, indicating a role for this symbiotic bacterium in their induction. Moreover, supporting their role in intestinal homeostasis, we previously reported both their drastic decrease in IBD patients and their protective role in vivo against intestinal inflammation, in mice. Here, we aimed at identifying the genomic, phenotypic and functional signatures of these microbiota-induced Tregs, towards delineating their physiological role(s) and clinical potential. Human F. prausnitzii-reactive DP8α Treg clones were derived from both the colonic lamina propria and blood. RNA-sequencing, flow cytometry and functional assays were performed to characterize their response upon activation and compare them to donor- and tissue-matched FoxP3+ Treg clones. DP8α Tregs exhibited a unique mixed Tr1-like/cytotoxic CD4+ T cell-profile and shared the RORγt and MAF master genes with mouse gut microbiota-induced FoxP3+ Tregs. We revealed their potent cytotoxic, chemotactic and IgA-promoting abilities, which were confirmed using in vitro assays. Therefore, besides their induction by a Clostridium bacterium, DP8α Tregs also partake master genes with mouse microbiota-induced Tregs. The present identification of their complete signature and novel functional properties, should be key in delineating the in vivo roles and therapeutic applications of these unique human microbiota-induced Tregs through their study in pathological contexts, particularly in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Francine Jotereau
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France,*Correspondence: Emmanuelle Godefroy, ; Francine Jotereau, ; Frédéric Altare,
| | - Joudy Alameddine
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Raluca Teusan
- Nantes Université, CHU Nantes, INSERM, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Annabelle Pédron
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Nicolas Jouand
- Cytocell, BioCore, Nantes Université UMS 3556, Inserm US016, CNRS UAR 3556, CHU Nantes, SFR Santé François BONAMY, Nantes, France
| | - Frédéric Altare
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France,*Correspondence: Emmanuelle Godefroy, ; Francine Jotereau, ; Frédéric Altare,
| | - Emmanuelle Godefroy
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France,*Correspondence: Emmanuelle Godefroy, ; Francine Jotereau, ; Frédéric Altare,
| |
Collapse
|
87
|
Fu Q, Song T, Ma X, Cui J. Research progress on the relationship between intestinal microecology and intestinal bowel disease. Animal Model Exp Med 2022; 5:297-310. [PMID: 35962562 PMCID: PMC9434592 DOI: 10.1002/ame2.12262] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Intestinal microecology is the main component of human microecology. Intestinal microecology consists of intestinal microbiota, intestinal epithelial cells, and intestinal mucosal immune system. These components are interdependent and establish a complex interaction network that restricts each other. According to the impact on the human body, there are three categories of symbiotic bacteria, opportunistic pathogens, and pathogenic bacteria. The intestinal microecology participates in digestion and absorption, and material metabolism, and inhibits the growth of pathogenic microorganisms. It also acts as the body's natural immune barrier, regulates the innate immunity of the intestine, controls the mucosal barrier function, and also participates in the intestinal epithelial cells' physiological activities such as hyperplasia or apoptosis. When the steady‐state balance of the intestinal microecology is disturbed, the existing core intestinal microbiota network changes and leads to obesity, diabetes, and many other diseases, especially irritable bowel syndrome, inflammatory bowel disease (IBD), and colorectal malignancy. Intestinal diseases, including tumors, are particularly closely related to intestinal microecology. This article systematically discusses the research progress on the relationship between IBD and intestinal microecology from the pathogenesis, treatment methods of IBD, and the changes in intestinal microbiota.
Collapse
Affiliation(s)
- Qianhui Fu
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Tianyuan Song
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Xiaoqin Ma
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Jian Cui
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| |
Collapse
|
88
|
Wang J, Qie J, Zhu D, Zhang X, Zhang Q, Xu Y, Wang Y, Mi K, Pei Y, Liu Y, Ji G, Liu X. The landscape in the gut microbiome of long-lived families reveals new insights on longevity and aging - relevant neural and immune function. Gut Microbes 2022; 14:2107288. [PMID: 35939616 PMCID: PMC9361766 DOI: 10.1080/19490976.2022.2107288] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human longevity has a strong familial and genetic component. Dynamic characteristics of the gut microbiome during aging associated with longevity, neural, and immune function remained unknown. Here, we aim to reveal the synergistic changes in gut microbiome associated with decline in neural and immune system with aging and further obtain insights into the establishment of microbiome homeostasis that can benefit human longevity. Based on 16S rRNA and metagenomics sequencing data for 32 longevity families including three generations, centenarians, elderly, and young groups, we found centenarians showed increased diversity of gut microbiota, severely damaged connection among bacteria, depleted in microbial-associated essential amino acid function, and increased abundance of anti-inflammatory bacteria in comparison to young and elderly groups. Some potential probiotic species, such as Desulfovibrio piger, Gordonibacter pamelaeae, Odoribacter splanchnicus, and Ruminococcaceae bacterium D5 were enriched with aging, which might possibly support health maintenance. The level of Amyloid-β (Aβ) and brain-derived neurotrophic factor (BDNF) related to neural function showed increased and decreased with aging, respectively. The elevated level of inflammatory factors was observed in centenarians compared with young and elderly groups. The enriched Bacteroides fragilis in centenarians might promote longevity through up-regulating anti-inflammatory factor IL-10 expression to mediate the critical balance between health and disease. Impressively, the associated analysis for gut microbiota with the level of Aβ, BDNF, and inflammatory factors suggests Bifidobacterium pseudocatenulatum could be a particularly beneficial bacteria in the improvement of impaired neural and immune function. Our results provide a rationale for targeting the gut microbiome in future clinical applications of aging-related diseases and extending life span.Abbreviations: 16S rRNA: 16S ribosomal RNA; MAGs: Metagenome-assembled genomes; ASVs: Amplicon sequence variants; DNA: Deoxyribonucleic acid; FDR: False discovery rate: KEGG: Kyoto Encyclopedia of Genes and Genomes; PCoA: Principal coordinates analysis; PCR: Polymerase chain reaction; PICRUSt: Phylogenetic Investigation of Communities by Reconstruction of Unobserved States; Aβ: Amyloid-β (Aβ); BDNF: Brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Gastroenterology, Key Laboratory of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Jiangsu, China,Department of Pathogen Biology-Microbiology division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Jiangsu, China,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China,Jiangsu KeyLaboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Jiangsu, China
| | - Jinlong Qie
- Department of Pathogen Biology-Microbiology division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Jiangsu, China
| | - Danrong Zhu
- Department of Gastroenterology, Key Laboratory of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Xuemei Zhang
- Department of Pathogen Biology-Microbiology division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Jiangsu, China
| | - Qingqing Zhang
- Department of Pathogen Biology-Microbiology division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Jiangsu, China
| | - Yuyu Xu
- Department of Pathogen Biology-Microbiology division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Jiangsu, China
| | - Yipeng Wang
- Department of Pathogen Biology-Microbiology division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Jiangsu, China
| | - Kai Mi
- Department of Pathogen Biology-Microbiology division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Jiangsu, China
| | - Yang Pei
- Department of Pathogen Biology-Microbiology division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Jiangsu, China
| | - Yang Liu
- Department of Pathogen Biology-Microbiology division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Jiangsu, China
| | - Guozhong Ji
- Department of Gastroenterology, Key Laboratory of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Jiangsu, China,Jiangsu KeyLaboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Jiangsu, China,Guozhong Ji
| | - Xingyin Liu
- Department of Gastroenterology, Key Laboratory of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Jiangsu, China,Department of Pathogen Biology-Microbiology division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Jiangsu, China,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China,Jiangsu KeyLaboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Jiangsu, China,CONTACT Xingyin Liu Department of Gastroenterology, Key Laboratory of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing210011, China
| |
Collapse
|
89
|
Radka CD, Miller DJ, Frank MW, Rock CO. Biochemical characterization of the first step in sulfonolipid biosynthesis in Alistipes finegoldii. J Biol Chem 2022; 298:102195. [PMID: 35760102 PMCID: PMC9304779 DOI: 10.1016/j.jbc.2022.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022] Open
Abstract
Sulfonolipids are unusual lipids found in the outer membranes of Gram-negative bacteria in the phylum Bacteroidetes. Sulfonolipid and its deacylated derivative, capnine, are sulfur analogs of ceramide-1-phosphate and sphingosine-1-phosphate, respectively; thus, sulfonolipid biosynthesis is postulated to be similar to the sphingolipid biosynthetic pathway. Here, we identify the first enzyme in sulfonolipid synthesis in Alistipes finegoldii as the product of the alfi_1224 gene, cysteate acyl-acyl carrier protein (ACP) transferase (SulA). We show SulA catalyzes the condensation of acyl-ACP and cysteate (3-sulfo-alanine) to form 3-ketocapnine. Acyl-CoA is a poor substrate. We show SulA has a bound pyridoxal phosphate (PLP) cofactor that undergoes a spectral redshift in the presence of cysteate, consistent with the transition of the lysine-aldimine complex to a substrate-aldimine complex. Furthermore, the SulA crystal structure shows the same prototypical fold found in bacterial serine palmitoyltransferases (Spts), enveloping the PLP cofactor bound to Lys251. We observed the SulA and Spt active sites are identical except for Lys281 in SulA, which is an alanine in Spt. Additionally, SulA(K281A) is catalytically inactive but binds cysteate and forms the external aldimine normally, highlighting the structural role of the Lys281 side chain in walling off the active site from bulk solvent. Finally, the electropositive groove on the protein surface adjacent to the active site entrance provides a landing pad for the electronegative acyl-ACP surface. Taken together, these data identify the substrates, products, and mechanism of SulA, the PLP-dependent condensing enzyme that catalyzes the first step in sulfonolipid synthesis in a gut commensal bacterium.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
90
|
Xing C, Du Y, Duan T, Nim K, Chu J, Wang HY, Wang RF. Interaction between microbiota and immunity and its implication in colorectal cancer. Front Immunol 2022; 13:963819. [PMID: 35967333 PMCID: PMC9373904 DOI: 10.3389/fimmu.2022.963819] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the world. Besides genetic causes, colonic inflammation is one of the major risk factors for CRC development, which is synergistically regulated by multiple components, including innate and adaptive immune cells, cytokine signaling, and microbiota. The complex interaction between CRC and the gut microbiome has emerged as an important area of current CRC research. Metagenomic profiling has identified a number of prominent CRC-associated bacteria that are enriched in CRC patients, linking the microbiota composition to colitis and cancer development. Some microbiota species have been reported to promote colitis and CRC development in preclinical models, while a few others are identified as immune modulators to induce potent protective immunity against colitis and CRC. Mechanistically, microbiota regulates the activation of different immune cell populations, inflammation, and CRC via crosstalk between innate and adaptive immune signaling pathways, including nuclear factor kappa B (NF-κB), type I interferon, and inflammasome. In this review, we provide an overview of the potential interactions between gut microbiota and host immunity and how their crosstalk could synergistically regulate inflammation and CRC, thus highlighting the potential roles and mechanisms of gut microbiota in the development of microbiota-based therapies to prevent or alleviate colitis and CRC.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kelly Nim
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Junjun Chu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
91
|
Haifer C, Luu LDW, Paramsothy S, Borody TJ, Leong RW, Kaakoush NO. Microbial determinants of effective donors in faecal microbiota transplantation for UC. Gut 2022; 72:gutjnl-2022-327742. [PMID: 35879048 DOI: 10.1136/gutjnl-2022-327742] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Faecal microbiota transplantation (FMT) has variable efficacy in treating UC. Recently, oral lyophilised FMT was found to induce remission in patients with UC, with one donor having 100% efficacy compared with a second donor (36% efficacy). We characterised differences in the gut microbiota of these two donors with the aim of improving FMT donor selection. DESIGN Faecal samples from the two donors were collected over a period of 44 (donor 1) or 70 (donor 2) weeks. The microbiome and metabolome were profiled using shotgun metagenomics and untargeted metabolomics RESULTS: Gut microbiome long-term stability was highly evident in the effective donor. Donor microbiota species evenness was a robust feature associated with clinical efficacy across two clinical trials of FMT in UC, leading to increased donor species engraftment in patients. Alpha diversity and beta diversity of donor gut microbiotas significantly differed. 90 bacterial species and one archaeon were differentially abundant between donors, 44 of which were >0.1% in relative abundance. 17/44 species were enriched in the effective donor, 11 of which (64.7%) were assembled into high-quality genomes that were prevalent (≥75% samples) in that donor, and six showed evidence of engraftment in patients. Taxonomic differences between donors translated to substantial microbial functional differences that were validated using metabolomics. CONCLUSION Donor microbiota stability and species evenness were identified as novel metrics that were associated with therapeutic efficacy in UC, beyond individual microbial species or metabolites. These metrics may represent community resilience that translates to better engraftment in the host. TRIAL REGISTRATION NUMBER ACTRN12619000611123.
Collapse
Affiliation(s)
- Craig Haifer
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW, Australia
- Department of Gastroenterology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Laurence Don Wai Luu
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sudarshan Paramsothy
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | | | - Rupert W Leong
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
92
|
Gubatan J, Boye TL, Temby M, Sojwal RS, Holman DR, Sinha SR, Rogalla SR, Nielsen OH. Gut Microbiome in Inflammatory Bowel Disease: Role in Pathogenesis, Dietary Modulation, and Colitis-Associated Colon Cancer. Microorganisms 2022; 10:1371. [PMID: 35889090 PMCID: PMC9316834 DOI: 10.3390/microorganisms10071371] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/11/2022] Open
Abstract
The gut microbiome has increasingly been recognized as a critical and central factor in inflammatory bowel disease (IBD). Here, we review specific microorganisms that have been suggested to play a role in the pathogenesis of IBD and the current state of fecal microbial transplants as a therapeutic strategy in IBD. We discuss specific nutritional and dietary interventions in IBD and their effects on gut microbiota composition. Finally, we examine the role and mechanisms of the gut microbiome in mediating colitis-associated colon cancer.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Theresa Louise Boye
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Copenhagen, Denmark; (T.L.B.); or (O.H.N.)
| | - Michelle Temby
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Raoul S. Sojwal
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Derek R. Holman
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Sidhartha R. Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Stephan R. Rogalla
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Copenhagen, Denmark; (T.L.B.); or (O.H.N.)
| |
Collapse
|
93
|
Thu Thuy Nguyen V, Endres K. Targeting gut microbiota to alleviate neuroinflammation in Alzheimer's disease. Adv Drug Deliv Rev 2022; 188:114418. [PMID: 35787390 DOI: 10.1016/j.addr.2022.114418] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota came into focus within the last years regarding being associated with or even underlying neuropsychiatric diseases. The existence of the gut-brain-axis makes it highly plausible that bacterial metabolites or toxins that escape the intestinal environment or approach the vagal connections towards the brain, exert devastating effects on the central nervous system. In Alzheimer's disease (AD), growing evidence for dysbiotic changes in the gut microbiota is obtained, even though the question for cause or consequence remains open. Nevertheless, using modulation of microbiota to address inflammatory processes seems an attractive therapeutic approach as certain microbial products such as short chain fatty acids have been proven to exert beneficial cognitive effects. In this review, we summarize, contemporary knowledge on neuroinflammation and inflammatory processes within the brain and even more detailed in the gut in AD, try to conclude whom to target regarding human microbial commensals and report on current interventional trials.
Collapse
Affiliation(s)
- Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany.
| |
Collapse
|
94
|
León ED, Francino MP. Roles of Secretory Immunoglobulin A in Host-Microbiota Interactions in the Gut Ecosystem. Front Microbiol 2022; 13:880484. [PMID: 35722300 PMCID: PMC9203039 DOI: 10.3389/fmicb.2022.880484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
In the gastrointestinal tract (GIT), the immune system interacts with a variety of microorganisms, including pathogens as well as beneficial symbionts that perform important physiological functions for the host and are crucial to sustain intestinal homeostasis. In normal conditions, secretory immunoglobulin A (SIgA) is the principal antibody produced by B cells in the GIT mucosa. Polyreactivity provides certain SIgA molecules with the ability of binding different antigens in the bacterial surface, such as O-antigens and teichoic acids, while cross-species reactivity allows them to recognize and interact with different types of bacteria. These functions may be crucial in allowing SIgA to modulate the complex gut microbiota in an efficient manner. Several studies suggest that SIgA can help with the retention and proliferation of helpful members of the gut microbiota. Gut microbiota alterations in people with IgA deficiency include the lack of some species that are known to be normally coated by SIgA. Here, we discuss the different ways in which SIgA behaves in relation to pathogens and beneficial bacteria of the gut microbiota and how the immune system might protect and facilitate the establishment and maintenance of certain gut symbionts.
Collapse
Affiliation(s)
- E Daniel León
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - M Pilar Francino
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
95
|
Wang M, Liu Y, Zhao L, Zhang X. Modulating gut microbiota in autoimmune diseases: a cutting-edge strategy from prophylaxis to therapeutics. Sci Bull (Beijing) 2022; 67:771-773. [PMID: 36546226 DOI: 10.1016/j.scib.2021.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yudong Liu
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing 100730, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China.
| |
Collapse
|
96
|
Shang L, Tu J, Dai Z, Zeng X, Qiao S. Microbiota Transplantation in an Antibiotic-Induced Bacterial Depletion Mouse Model: Reproducible Establishment, Analysis, and Application. Microorganisms 2022; 10:902. [PMID: 35630347 PMCID: PMC9146686 DOI: 10.3390/microorganisms10050902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
The fecal bacteria transplantation (FMT) technique is indispensable when exploring the pathogenesis and potential treatments for microbiota-related diseases. For FMT clinical treatments, there are already systematic guidelines for donor selection, fecal bacterial separation, FMT frequency, and infusion methods. However, only a few studies have demonstrated the use of standardized FMT procedures for animal models used in theoretical research, creating difficulties for many new researchers in this field. In the present paper, we provide a brief overview of FMT and discuss its contribution to the current understanding of disease mechanisms that relate to microbiota. This protocol can be used to generate a commonly used FMT mouse model and provides a literature reference of customizable steps.
Collapse
Affiliation(s)
- Lijun Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Jiayu Tu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Ziqi Dai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| |
Collapse
|
97
|
Cai JR, Chen XW, He YJ, Wu B, Zhang M, Wu LH. Washed microbiota transplantation reduces serum uric acid levels in patients with hyperuricaemia. World J Clin Cases 2022; 10:3401-3413. [PMID: 35611199 PMCID: PMC9048544 DOI: 10.12998/wjcc.v10.i11.3401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/08/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have found that hyperuricaemia (HUA) is closely related to intestinal flora imbalance.
AIM The current study investigated the effects and safety of washed microbiota transplantation (WMT) on serum uric acid (SUA) levels in different populations.
METHODS A total of 144 patients who received WMT from July 2016 to April 2020 in the First Affiliated Hospital of Guangdong Pharmaceutical University and had SUA data before treatment were selected. Changes in SUA levels before and after treatment were retrospectively reviewed based on short-term and mid-term effects of WMT regimens. SUA levels measured in the last test within 3 mo after the first WMT represented the short-term effect, and SUA levels measured in the last test within 3-6 mo after the first WMT represented the mid-term effect. The patients were divided into an HUA group (SUA > 416 μM) and a normal uric acid (NUA) group (SUA ≥ 202 μM to ≤ 416 μM) based on pretreatment SUA levels.
RESULTS Average short-term SUA levels in the HUA group decreased after WMT (481.00 ± 99.85 vs 546.81 ± 109.64 μM, n = 32, P < 0.05) in 25/32 patients and returned to normal in 10/32 patients. The short-term level of SUA reduction after treatment moderately correlated with SUA levels before treatment (r = 0.549, R² = 0.300, P < 0.05). Average SUA levels decreased after the first and second courses of WMT (469.74 ± 97.68 vs 540.00 ± 107.16 μM, n = 35, and 465.57 ± 88.88 vs 513.19 ± 78.14 μM, n = 21, P < 0.05). Short-term and mid-term SUA levels after WMT and SUA levels after the first, second and third courses of WMT were similar to the levels before WMT in the NUA group (P > 0.05). Only 1/144 patients developed mild diarrhea after WMT.
CONCLUSION WMT reduces short-term SUA levels in patients with HUA with mild side effects but has no obvious effect on SUA levels in patients with NUA.
Collapse
Affiliation(s)
- Jin-Rong Cai
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510030, Guangdong Province, China
| | - Xin-Wen Chen
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510030, Guangdong Province, China
| | - Yu-Jian He
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510030, Guangdong Province, China
| | - Bin Wu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510030, Guangdong Province, China
| | - Min Zhang
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou 510220, Guangdong Province, China
| | - Li-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510030, Guangdong Province, China
- Research Center, Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou 510030, Guangdong Province, China
| |
Collapse
|
98
|
Gu W, Zhang L, Han T, Huang H, Chen J. Dynamic Changes in Gut Microbiome of Ulcerative Colitis: Initial Study from Animal Model. J Inflamm Res 2022; 15:2631-2647. [PMID: 35494313 PMCID: PMC9049869 DOI: 10.2147/jir.s358807] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background An animal model of DSS-induced UC has been widely used in basic research, and the dysbiosis of gut microbiome is one of the important pathogenetic mechanisms of DSS-induced UC, but its dynamic changes and correlation with inflammatory factors are not clear yet. Methods Clinical signs and tissue damage degree of C57BL/6 ulcerative colitis mice model induced by different concentrations of DSS were compared with that of normal mice, and finally the optimal concentration of DSS was determined. Then we analyzed the sequencing results of gut microbiome and inflammatory factors to determine the dynamic patterns of gut microbiome and their correlation with the inflammatory factors. Results DSS at 2.5% and 3.0% concentration could cause intestinal injury and induce colitis. However, 3.0% DSS resulted in higher mortality. In addition, there were dynamic changes of gut microbiome in DSS-induced UC model: the relative abundance of intestinal flora increased first and then decreased in Bacteroides, Parabacteroides, Romboutsia, Clostridium_sensu_stricto_1, Lachnospiraceae_NK4A136_group, norank_f_norank_o_Clostridia_UCG-014, Parasutterella, and decreased first and then increased in Lactobacillus, Muribaculum, norank_f_Muribaculaceae, in addition, Bifidobacterium, Coriobacteriaceae_UCG-002 and Enterorhabdus did not change in the first 14 days but increased significantly on day 21. Moreover, inflammatory cytokines were closely associated with the imbalance of the intestinal microbiota in mice with UC: most pathogenic bacteria in the intestinal tract of the UC animal model were positively correlated with pro-inflammatory factors and negatively correlated with anti-inflammatory factors, while beneficial bacteria were the opposite. Conclusion Intestinal microecology plays an important role in DSS-induced UC model, and the relative abundance of gut microbiome changes dynamically in the occurrence and development of ulcerative colitis.
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Liangkun Zhang
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Tao Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Hailiang Huang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
- Hailiang Huang, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Changqing District, Jinan, People’s Republic of China, Tel +86 15628987355, Email
| | - Jian Chen
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
- Correspondence: Jian Chen, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), No. 105 Jiefang Road, Lixia District, Jinan, People’s Republic of China, Tel +86 133 7058 7597, Email
| |
Collapse
|
99
|
Yang Y, Zheng X, Wang Y, Tan X, Zou H, Feng S, Zhang H, Zhang Z, He J, Cui B, Zhang X, Wu Z, Dong M, Cheng W, Tao S, Wei H. Human Fecal Microbiota Transplantation Reduces the Susceptibility to Dextran Sulfate Sodium-Induced Germ-Free Mouse Colitis. Front Immunol 2022; 13:836542. [PMID: 35237276 PMCID: PMC8882623 DOI: 10.3389/fimmu.2022.836542] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
In clinical practice, fecal microbiota transplantation (FMT) has been used to treat inflammatory bowel disease (IBD), and has shown certain effects. However, the selection of FMT donors and the mechanism underlying the effect of FMT intervention in IBD require further exploration. In this study, dextran sodium sulfate (DSS)-induced colitis mice were used to determine the differences in the protection of colitis symptoms, inflammation, and intestinal barrier, by FMT from two donors. Intriguingly, pre-administration of healthy bacterial fluid significantly relieved the symptoms of colitis compared to the ulcerative colitis (UC) bacteria. In addition, healthy donor (HD) bacteria significantly reduced the levels of inflammatory markers Myeloperoxidase (MPO) and Eosinophil peroxidase (EPO), and various pro-inflammatory factors, in colitis mice, and increased the secretion of the anti-inflammatory factor IL-10. Metagenomic sequencing indicated higher species diversity and higher abundance of anti-inflammatory bacteria in the HD intervention group, including Alistipes putredinis, Akkermansia muciniphila, Bifidobacterium adolescentis, short-chain fatty acids (SCFAs)-producing bacterium Christensenella minuta, and secondary bile acids (SBAs)-producing bacterium Clostridium leptum. In the UC intervention group, the SCFA-producing bacterium Bacteroides stercoris, IBD-related bacterium Ruminococcus gnavus, Enterococcus faecalis, and the conditional pathogen Bacteroides caccae, were more abundant. Metabolomics analysis showed that the two types of FMT significantly modulated the metabolism of DSS-induced mice. Moreover, compared with the UC intervention group, indoleacetic acid and unsaturated fatty acids (DHA, DPA, and EPA) with anti-inflammatory effects were significantly enriched in the HD intervention group. In summary, these results indicate that FMT can alleviate the symptoms of colitis, and the effect of HD intervention is better than that of UC intervention. This study offers new insights into the mechanisms of FMT clinical intervention in IBD.
Collapse
Affiliation(s)
- Yapeng Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuqing Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang Tan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huicong Zou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuaifei Feng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hang Zhang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zeyue Zhang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinhui He
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bota Cui
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueying Zhang
- Intestinal Microenvironment Treatment Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Zhifeng Wu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Miaomiao Dong
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Cheng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiyu Tao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong Wei
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|