51
|
Cantwell-Jones A, Tylianakis JM, Larson K, Gill RJ. Using individual-based trait frequency distributions to forecast plant-pollinator network responses to environmental change. Ecol Lett 2024; 27:e14368. [PMID: 38247047 DOI: 10.1111/ele.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Determining how and why organisms interact is fundamental to understanding ecosystem responses to future environmental change. To assess the impact on plant-pollinator interactions, recent studies have examined how the effects of environmental change on individual interactions accumulate to generate species-level responses. Here, we review recent developments in using plant-pollinator networks of interacting individuals along with their functional traits, where individuals are nested within species nodes. We highlight how these individual-level, trait-based networks connect intraspecific trait variation (as frequency distributions of multiple traits) with dynamic responses within plant-pollinator communities. This approach can better explain interaction plasticity, and changes to interaction probabilities and network structure over spatiotemporal or other environmental gradients. We argue that only through appreciating such trait-based interaction plasticity can we accurately forecast the potential vulnerability of interactions to future environmental change. We follow this with general guidance on how future studies can collect and analyse high-resolution interaction and trait data, with the hope of improving predictions of future plant-pollinator network responses for targeted and effective conservation.
Collapse
Affiliation(s)
- Aoife Cantwell-Jones
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - Jason M Tylianakis
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
- Bioprotection Aotearoa, School of Biological Sciences, Private Bag 4800, University of Canterbury, Christchurch, New Zealand
| | - Keith Larson
- Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Richard J Gill
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| |
Collapse
|
52
|
Guo J, Wang X, Cao X, Qi W, Peng J, Liu H, Qu J. The influence of wet-to-dry season shifts on the microbial community stability and nitrogen cycle in the Poyang Lake sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166036. [PMID: 37544457 DOI: 10.1016/j.scitotenv.2023.166036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
In lake environments, seasonal changes can cause exposure of the lake sediment, leading to soil formation. Although previous studies have explored how environmental changes influence microbial functioning in the water-level-fluctuating zone, few studies have investigated how wholescale habitat changes affect microbial composition, community stability and ecological functions in lake environments. To address this issue, our study investigated the effects of sediment-to-soil conversion on microbial composition, community stability and subsequent ecological functioning in Poyang Lake, China. Our results revealed that, during sediment-to-soil conversion, the number of total and unique operational taxonomic units (OTUs) decreased by 40 % and 55 %, respectively. Moreover, sediment-to-soil conversion decreased the microbial community connectivity and complexity while significantly increasing its stability, as evidenced by increased absolute values of negative/positive cohesion. In sediment and soil, the abundance of dominant bacteria, and bacterial diversity strongly affected microbial community stability, although this phenomenon was not true in water. Furthermore, the specific microbial phyla and genes involved in the nitrogen cycle changed significantly following sediment-to-soil conversion, with the major nitrogen cycling processes altering from denitrification and dissimilatory nitrate reduction to ammonium to nitrification and assimilatory nitrate reduction to ammonia. Moreover, a compensation mechanism was observed in the functional genes related to the nitrogen cycle, such that all the processes in the nitrogen cycle were maintained following sediment-to-soil conversion. The oxidation-reduction potential strongly affected network complexity, microbial stability, and nitrogen cycling in the sediment and soil. These results aid in the understanding of responses of microorganisms to climate change and extreme drought. Our findings have considerable implications for predicting the ecological consequences of habitat conversion and for ecosystem management.
Collapse
Affiliation(s)
- Jiaxun Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xu Wang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
53
|
Salido A, Veiga J, Reyes-López JL, Valera F. Context-dependent insect predation pressure on an avian ectoparasite. INSECT SCIENCE 2023; 30:1784-1797. [PMID: 36932947 DOI: 10.1111/1744-7917.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023]
Abstract
Context dependence arises when ecological relationships vary with the conditions under which they are observed. Context dependence of interactions involving parasites is poorly known, even if it is key to understanding host-parasite relationships and food web dynamics. This paper investigates to which extent predation pressure on an avian ectoparasite (Carnus hemapterus) is context-dependent. Based on a predator-exclusion experiment, predation pressure on C. hemapterus pupae in the host's nest for 3 years, and its variation between habitat types are quantified. Variation in precipitation and normalized difference vegetation index (NDVI) is also explored as a likely cause of context dependency. We hypothesize that predation pressure should fluctuate with such surrogates of food availability, so that inter-annual and intra-annual differences may emerge. The number of nests with significant reduction of pupae varied widely among years ranging from 24% to 75%. However, average pupae reduction in nests where a significant reduction occurred did not vary between years. No differences in predation rates between habitat types were detected. Precipitation and NDVI varied widely between years and NDVI was consistently lower around nests on cliffs than around nests on trees and farmhouses. Parallels were found between variation in predation pressure and precipitation/NDVI at a wide scale (highest predation the driest year, and much lower the 2 rainier ones), but not at the nest scale. This paper shows clear context-dependent insect predation pressure on an ectoparasite under natural conditions, and that such interaction changes in signs rather than magnitude between years. The causes for these variations require longer-term studies and/or well-designed, large-scale experiments.
Collapse
Affiliation(s)
- Angela Salido
- Department of Botany, Ecology and Plant Physiology, University of Córdoba, Córdoba, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | - Jesús Veiga
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
- Department of Parasitology, University of Granada, Granada, Spain
- MEMEG, Department of Biology, Lund University, Lund, Sweden
| | | | - Francisco Valera
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| |
Collapse
|
54
|
Wang L, Lian C, Wan W, Qiu Z, Luo X, Huang Q, Deng Y, Zhang T, Yu K. Salinity-triggered homogeneous selection constrains the microbial function and stability in lakes. Appl Microbiol Biotechnol 2023; 107:6591-6605. [PMID: 37688597 DOI: 10.1007/s00253-023-12696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 09/11/2023]
Abstract
Climate change and anthropogenic exploitation have led to the gradual salinization of inland waters worldwide. However, the impacts of this process on the prokaryotic plankton communities and their role in biogeochemical cycles in the inland lake are poorly known. Here, we take a space-for-time substitution approach, using 16S rRNA gene amplicon sequencing and metagenomic sequencing. We analyzed the prokaryotic plankton communities of 11 lakes in northwest China, with average water salinities ranging from 0.002 to 14.370%. The results demonstrated that, among the various environmental parameters, salinity was the most important driver of prokaryotic plankton β-diversity (Mantel test, r = 0.53, P < 0.001). (1) Under low salinity, prokaryotic planktons were assembled by stochastic processes and employed diverse halotolerant strategies, including the synthesis and uptake of compatible solutes and extrusion of Na+ or Li+ in exchange for H+. Under elevated salinity pressure, strong homogeneous selection meant that only planktonic prokaryotes showing an energetically favorable halotolerant strategy employing an Mnh-type Na+/H+ antiporter remained. (2) The decreasing taxonomic diversity caused by intense environmental filtering in high-salinity lakes impaired functional diversity related to substance metabolism. The prokaryotes enhanced the TCA cycle, carbon fixation, and low-energy-consumption amino acid biosynthesis in high-salinity lakes. (3) Elevated salinity pressure decreased the negative:positive cohesion and the modularity of the molecular ecology networks for the planktonic prokaryotes, indicating a precarious microbial network. Our findings provide new insights into plankton ecology and are helpful for the protecting of the biodiversity and function of inland lakes against the background of salinization. KEY POINTS: • Increased salinity enhances homogeneous selection in the microbial assembly. • Elevated salinity decreases the microbial co-occurrence networks stability. • High salinity damages the microbial function diversity.
Collapse
Affiliation(s)
- Li Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chunang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of ·Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of ·Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
55
|
Shi J, Yang L, Liao Y, Li J, Jiao S, Shangguan Z, Deng L. Soil labile organic carbon fractions mediate microbial community assembly processes during long-term vegetation succession in a semiarid region. IMETA 2023; 2:e142. [PMID: 38868232 PMCID: PMC10989986 DOI: 10.1002/imt2.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 06/14/2024]
Abstract
Conceptual diagram for the labile organic carbon (OC) fractions mediating microbial assembly processes during long-term vegetation succession.
Collapse
Affiliation(s)
- Jingwei Shi
- State Key Laboratory for Soil Erosion and Dryland Farming on the Loes PlateauInstitute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water ResourcesYanglingShaanxiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lin Yang
- State Key Laboratory for Soil Erosion and Dryland Farming on the Loes PlateauInstitute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water ResourcesYanglingShaanxiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Liao
- State Key Laboratory for Soil Erosion and Dryland Farming on the Loes PlateauInstitute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water ResourcesYanglingShaanxiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiwei Li
- College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation)Northwest A&F UniversityYanglingShaanxiChina
| | - Shuo Jiao
- College of Life SciencesNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhouping Shangguan
- State Key Laboratory for Soil Erosion and Dryland Farming on the Loes PlateauInstitute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water ResourcesYanglingShaanxiChina
- University of Chinese Academy of SciencesBeijingChina
- College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation)Northwest A&F UniversityYanglingShaanxiChina
| | - Lei Deng
- State Key Laboratory for Soil Erosion and Dryland Farming on the Loes PlateauInstitute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water ResourcesYanglingShaanxiChina
- University of Chinese Academy of SciencesBeijingChina
- College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation)Northwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
56
|
Jackson JA, Bajer A, Behnke-Borowczyk J, Gilbert FS, Grzybek M, Alsarraf M, Behnke JM. Remotely sensed localised primary production anomalies predict the burden and community structure of infection in long-term rodent datasets. GLOBAL CHANGE BIOLOGY 2023; 29:5568-5581. [PMID: 37548403 DOI: 10.1111/gcb.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
The increasing frequency and cost of zoonotic disease emergence due to global change have led to calls for the primary surveillance of wildlife. This should be facilitated by the ready availability of remotely sensed environmental data, given the importance of the environment in determining infectious disease dynamics. However, there has been little evaluation of the temporal predictiveness of remotely sensed environmental data for infection reservoirs in vertebrate hosts due to a deficit of corresponding high-quality long-term infection datasets. Here we employ two unique decade-spanning datasets for assemblages of infectious agents, including zoonotic agents, in rodents in stable habitats. Such stable habitats are important, as they provide the baseline sets of pathogens for the interactions within degrading habitats that have been identified as hotspots for zoonotic emergence. We focus on the enhanced vegetation index (EVI), a measure of vegetation greening that equates to primary productivity, reasoning that this would modulate infectious agent populations via trophic cascades determining host population density or immunocompetence. We found that EVI, in analyses with data standardised by site, inversely predicted more than one-third of the variation in an index of infectious agent total abundance. Moreover, in bipartite host occupancy networks, weighted network statistics (connectance and modularity) were linked to total abundance and were also predicted by EVI. Infectious agent abundance and, perhaps, community structure are likely to influence infection risk and, in turn, the probability of transboundary emergence. Thus, the present results, which were consistent in disparate forest and desert systems, provide proof-of-principle that within-site fluctuations in satellite-derived greenness indices can furnish useful forecasting that could focus primary surveillance. In relation to the well-documented global greening trend of recent decades, the present results predict declining infection burden in wild vertebrates in stable habitats; but if greening trends were to be reversed, this might magnify the already upwards trend in zoonotic emergence.
Collapse
Affiliation(s)
- Joseph A Jackson
- School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jolanta Behnke-Borowczyk
- Department of Forest Pathology, Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | - Francis S Gilbert
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdynia, Poland
| | - Mohammed Alsarraf
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
57
|
Ji N, Liang D, Clark LV, Sacks EJ, Kent AD. Host genetic variation drives the differentiation in the ecological role of the native Miscanthus root-associated microbiome. MICROBIOME 2023; 11:216. [PMID: 37777794 PMCID: PMC10541700 DOI: 10.1186/s40168-023-01646-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/09/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Microbiome recruitment is influenced by plant host, but how host plant impacts the assembly, functions, and interactions of perennial plant root microbiomes is poorly understood. Here we examined prokaryotic and fungal communities between rhizosphere soils and the root endophytic compartment in two native Miscanthus species (Miscanthus sinensis and Miscanthus floridulus) of Taiwan and further explored the roles of host plant on root-associated microbiomes. RESULTS Our results suggest that host plant genetic variation, edaphic factors, and site had effects on the root endophytic and rhizosphere soil microbial community compositions in both Miscanthus sinensis and Miscanthus floridulus, with a greater effect of plant genetic variation observed for the root endophytic communities. Host plant genetic variation also exerted a stronger effect on core prokaryotic communities than on non-core prokaryotic communities in each microhabitat of two Miscanthus species. From rhizosphere soils to root endophytes, prokaryotic co-occurrence network stability increased, but fungal co-occurrence network stability decreased. Furthermore, we found root endophytic microbial communities in two Miscanthus species were more strongly driven by deterministic processes rather than stochastic processes. Root-enriched prokaryotic OTUs belong to Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Sphingobacteriia, and [Saprospirae] both in two Miscanthus species, while prokaryotic taxa enriched in the rhizosphere soil are widely distributed among different phyla. CONCLUSIONS We provide empirical evidence that host genetic variation plays important roles in root-associated microbiome in Miscanthus. The results of this study have implications for future bioenergy crop management by providing baseline data to inform translational research to harness the plant microbiome to sustainably increase agriculture productivity. Video Abstract.
Collapse
Affiliation(s)
- Niuniu Ji
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Sustainability, Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Di Liang
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Sustainability, Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lindsay V Clark
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik J Sacks
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Angela D Kent
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Sustainability, Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
58
|
Banville F, Gravel D, Poisot T. What constrains food webs? A maximum entropy framework for predicting their structure with minimal biases. PLoS Comput Biol 2023; 19:e1011458. [PMID: 37669314 PMCID: PMC10503755 DOI: 10.1371/journal.pcbi.1011458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/15/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Food webs are complex ecological networks whose structure is both ecologically and statistically constrained, with many network properties being correlated with each other. Despite the recognition of these invariable relationships in food webs, the use of the principle of maximum entropy (MaxEnt) in network ecology is still rare. This is surprising considering that MaxEnt is a statistical tool precisely designed for understanding and predicting many types of constrained systems. This principle asserts that the least-biased probability distribution of a system's property, constrained by prior knowledge about that system, is the one with maximum information entropy. MaxEnt has been proven useful in many ecological modeling problems, but its application in food webs and other ecological networks is limited. Here we show how MaxEnt can be used to derive many food-web properties both analytically and heuristically. First, we show how the joint degree distribution (the joint probability distribution of the numbers of prey and predators for each species in the network) can be derived analytically using the number of species and the number of interactions in food webs. Second, we present a heuristic and flexible approach of finding a network's adjacency matrix (the network's representation in matrix format) based on simulated annealing and SVD entropy. We built two heuristic models using the connectance and the joint degree sequence as statistical constraints, respectively. We compared both models' predictions against corresponding null and neutral models commonly used in network ecology using open access data of terrestrial and aquatic food webs sampled globally (N = 257). We found that the heuristic model constrained by the joint degree sequence was a good predictor of many measures of food-web structure, especially the nestedness and motifs distribution. Specifically, our results suggest that the structure of terrestrial and aquatic food webs is mainly driven by their joint degree distribution.
Collapse
Affiliation(s)
- Francis Banville
- Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Quebec Centre for Biodiversity Science, Quebec, Canada
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Quebec Centre for Biodiversity Science, Quebec, Canada
| | - Timothée Poisot
- Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
- Quebec Centre for Biodiversity Science, Quebec, Canada
| |
Collapse
|
59
|
Suzuki SS, Baba YG, Toju H. Dynamics of species-rich predator-prey networks and seasonal alternations of core species. Nat Ecol Evol 2023; 7:1432-1443. [PMID: 37460838 DOI: 10.1038/s41559-023-02130-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 06/16/2023] [Indexed: 09/08/2023]
Abstract
In nature, entangled webs of predator-prey interactions constitute the backbones of ecosystems. Uncovering the network architecture of such trophic interactions has been recognized as the essential step for exploring species with great impacts on ecosystem-level phenomena and functions. However, it has remained a major challenge to reveal how species-rich networks of predator-prey interactions are continually reshaped through time in the wild. Here, we show that dynamics of species-rich predator-prey interactions can be characterized by remarkable network structural changes and alternations of species with greatest impacts on community processes. On the basis of high-throughput detection of prey DNA from 1,556 spider individuals collected in a grassland ecosystem, we reconstructed dynamics of interaction networks involving, in total, 50 spider species and 974 prey species and strains through 8 months. The networks were compartmentalized into modules (groups) of closely interacting predators and prey in each month. Those modules differed in detritus/grazing food chain properties, forming complex fission-fusion dynamics of belowground and aboveground energy channels across the seasons. The substantial shifts of network structure entailed alternations of spider species located at the core positions within the entangled webs of interactions. These results indicate that knowledge of dynamically shifting food webs is crucial for understanding temporally varying roles of 'core species' in ecosystem processes.
Collapse
Affiliation(s)
- Sayaka S Suzuki
- Center for Ecological Research, Kyoto University, Otsu, Japan.
| | - Yuki G Baba
- Institute for Agro-Environmental Sciences, NARO, Tsukuba, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Japan.
| |
Collapse
|
60
|
Adejoro DO, Jones EE, Ridgway HJ, Mundy DC, Vanga BR, Bulman SR. Grapevines escaping trunk diseases in New Zealand vineyards have a distinct microbiome structure. Front Microbiol 2023; 14:1231832. [PMID: 37680529 PMCID: PMC10482235 DOI: 10.3389/fmicb.2023.1231832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
Grapevine trunk diseases (GTDs) are a substantial challenge to viticulture, especially with a lack of available control measures. The lack of approved fungicides necessitates the exploration of alternative controls. One promising approach is the investigation of disease escape plants, which remain healthy under high disease pressure, likely due to their microbiome function. This study explored the microbiome of grapevines with the disease escape phenotype. DNA metabarcoding of the ribosomal internal transcribed spacer 1 (ITS1) and 16S ribosomal RNA gene was applied to trunk tissues of GTD escape and adjacent diseased vines. Our findings showed that the GTD escape vines had a significantly different microbiome compared with diseased vines. The GTD escape vines consistently harbored a higher relative abundance of the bacterial taxa Pseudomonas and Hymenobacter. Among fungi, Aureobasidium and Rhodotorula were differentially associated with GTD escape vines, while the GTD pathogen, Eutypa, was associated with the diseased vines. This is the first report of the link between the GTD escape phenotype and the grapevine microbiome.
Collapse
Affiliation(s)
- Damola O. Adejoro
- Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - E. Eirian Jones
- Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Hayley J. Ridgway
- Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, Canterbury, New Zealand
| | - Dion C. Mundy
- The New Zealand Institute for Plant and Food Research Limited, Blenheim, Marlborough, New Zealand
| | - Bhanupratap R. Vanga
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, Canterbury, New Zealand
- Grapevine Improvement Laboratory, Bragato Research Institute, Lincoln, Canterbury, New Zealand
| | - Simon R. Bulman
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, Canterbury, New Zealand
| |
Collapse
|
61
|
Fabbrini M, Scicchitano D, Candela M, Turroni S, Rampelli S. Connect the dots: sketching out microbiome interactions through networking approaches. MICROBIOME RESEARCH REPORTS 2023; 2:25. [PMID: 38058764 PMCID: PMC10696587 DOI: 10.20517/mrr.2023.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 12/08/2023]
Abstract
Microbiome networking analysis has emerged as a powerful tool for studying the complex interactions among microorganisms in various ecological niches, including the human body and several environments. This analysis has been used extensively in both human and environmental studies, revealing key taxa and functional units peculiar to the ecosystem considered. In particular, it has been mainly used to investigate the effects of environmental stressors, such as pollution, climate change or therapies, on host-associated microbial communities and ecosystem function. In this review, we discuss the latest advances in microbiome networking analysis, including methods for constructing and analyzing microbiome networks, and provide a case study on how to use these tools. These analyses typically involve constructing a network that represents interactions among microbial taxa or functional units, such as genes or metabolic pathways. Such networks can be based on a variety of data sources, including 16S rRNA sequencing, metagenomic sequencing, and metabolomics data. Once constructed, these networks can be analyzed to identify key nodes or modules important for the stability and function of the microbiome. By providing insights into essential ecological features of microbial communities, microbiome networking analysis has the potential to transform our understanding of the microbial world and its impact on human health and the environment.
Collapse
Affiliation(s)
- Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
- Authors contributed equally
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
- Authors contributed equally
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
62
|
Eisenhauer N, Angst G, Asato AEB, Beugnon R, Bönisch E, Cesarz S, Dietrich P, Jurburg SD, Madaj AM, Reuben RC, Ristok C, Sünnemann M, Yi H, Guerra CA, Hines J. The heterogeneity-diversity-system performance nexus. Natl Sci Rev 2023; 10:nwad109. [PMID: 37575691 PMCID: PMC10423029 DOI: 10.1093/nsr/nwad109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/24/2023] [Accepted: 04/16/2023] [Indexed: 08/15/2023] Open
Abstract
Ever-growing human population and nutritional demands, supply chain disruptions, and advancing climate change have led to the realization that changes in diversity and system performance are intimately linked. Moreover, diversity and system performance depend on heterogeneity. Mitigating changes in system performance and promoting sustainable living conditions requires transformative decisions. Here, we introduce the heterogeneity-diversity-system performance (HDP) nexus as the conceptual basis upon which to formulate transformative decisions. We suggest that managing the heterogeneity of systems will best allow diversity to provide multiple benefits to people. Based on ecological theory, we pose that the HDP nexus is broadly applicable across systems, disciplines, and sectors, and should thus be considered in future decision making as a way to have a more sustainable global future.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Gerrit Angst
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 37005, České Budějovice, Czech Republic
| | - Ana E B Asato
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Stephanstraße 3, Leipzig 04103, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919, route de Mende, F-34293 Montpellier, Cedex 5, France
| | - Elisabeth Bönisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Peter Dietrich
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig 04318, Germany
| | - Anna-Maria Madaj
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Rine C Reuben
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Christian Ristok
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Huimin Yi
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| |
Collapse
|
63
|
Sun P, Wang M, Zheng W, Li S, Zhu X, Chai X, Zhao S. Unbalanced diets enhance the complexity of gut microbial network but destabilize its stability and resistance. STRESS BIOLOGY 2023; 3:20. [PMID: 37676325 PMCID: PMC10441997 DOI: 10.1007/s44154-023-00098-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Stability is a fundamental ecological property of the gut microbiota and is associated with host health. Numerous studies have shown that unbalanced dietary components disturb the gut microbial composition and thereby contribute to the onset and progression of disease. However, the impact of unbalanced diets on the stability of the gut microbiota is poorly understood. In the present study, four-week-old mice were fed a plant-based diet high in refined carbohydrates or a high-fat diet for four weeks to simulate a persistent unbalanced diet. We found that persistent unbalanced diets significantly reduced the gut bacterial richness and increased the complexity of bacterial co-occurrence networks. Furthermore, the gut bacterial response to unbalanced diets was phylogenetically conserved, which reduced network modularity and enhanced the proportion of positive associations between community taxon, thereby amplifying the co-oscillation of perturbations among community species to destabilize gut microbial communities. The disturbance test revealed that the gut microbiota of mice fed with unbalanced diets was less resistant to antibiotic perturbation and pathogenic bacteria invasion. This study may fill a gap in the mechanistic understanding of the gut microbiota stability in response to diet and provide new insights into the gut microbial ecology.
Collapse
Affiliation(s)
- Penghao Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mengli Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wei Zheng
- College of Resources and Environment Sciences, Northwest A&F University, Yangling, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
64
|
In 't Zandt D, Kolaříková Z, Cajthaml T, Münzbergová Z. Plant community stability is associated with a decoupling of prokaryote and fungal soil networks. Nat Commun 2023; 14:3736. [PMID: 37349286 PMCID: PMC10287681 DOI: 10.1038/s41467-023-39464-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Soil microbial networks play a crucial role in plant community stability. However, we lack knowledge on the network topologies associated with stability and the pathways shaping these networks. In a 13-year mesocosm experiment, we determined links between plant community stability and soil microbial networks. We found that plant communities on soil abandoned from agricultural practices 60 years prior to the experiment promoted destabilising properties and were associated with coupled prokaryote and fungal soil networks. This coupling was mediated by strong interactions of plants and microbiota with soil resource cycling. Conversely, plant communities on natural grassland soil exhibited a high stability, which was associated with decoupled prokaryote and fungal soil networks. This decoupling was mediated by a large variety of past plant community pathways shaping especially fungal networks. We conclude that plant community stability is associated with a decoupling of prokaryote and fungal soil networks and mediated by plant-soil interactions.
Collapse
Affiliation(s)
- Dina In 't Zandt
- Institute of Botany, Czech Academy of Sciences, 252 43, Průhonice, Czech Republic.
| | - Zuzana Kolaříková
- Institute of Botany, Czech Academy of Sciences, 252 43, Průhonice, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Praha 2, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, Prague, CZ-14220, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Praha 2, Czech Republic
| |
Collapse
|
65
|
Xu M, Cheng K, Xiao B, Tong M, Cai Z, Jong MC, Chen G, Zhou J. Bacterial Communities Vary from Different Scleractinian Coral Species and between Bleached and Non-Bleached Corals. Microbiol Spectr 2023; 11:e0491022. [PMID: 37191552 PMCID: PMC10269541 DOI: 10.1128/spectrum.04910-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Bleaching is one of the most relevant factors implicated in the integrity of coral reef ecosystems, with the increasing frequency and intensity of damaging events representing a serious threat to reef biodiversity. Here, we analyzed changes in coral-associated bacteria from three types of non-bleached and bleached scleractinian corals (Acropora digitifera, Galaxea fascicularis, and Porites pukoensis) in Hainan Luhuitou peninsula coastal areas. The community structure of symbiotic bacteria differed significantly among the three apparently healthy corals. The bleached corals had higher bacterial alpha diversity and some specific bacteria genera, including Ruegeria, Methyloceanibacter, Filomicrobium, Halioglobus, Rubripirellula, Rhodopirellula, Silicimonas, Blastopirellula, Sva0996 marine group, Woeseia, and unclassified_c_Gammaproteobacteria, were consistently increased in bleached groups. Network analysis revealed significantly different degrees of modularity between bleached and non-bleached groups at the bacterial genus level, and a higher proportion of links was dominated by positive co-occurrences. Functional prediction analysis illustrated that coral-associated bacteria remained relatively consistent in the bleached and non-bleached groups. Structure equation modeling revealed that the bacterial community diversity and function were directly influenced by host and environment factors. These findings suggested that coral-associated bacterial responses to bleaching occur in a host-dependent manner, informing novel strategies for restoring coral and aiding adaption to bleaching stress. IMPORTANCE Accumulating evidence indicates that coral-associated bacteria play an important role in the health of holobionts. However, the variability of the symbiotic bacterial community structure among coral species with different coral health statuses remains largely unknown. Here, we investigated three apparent non-bleached (healthy) and bleached coral species (sampled in situ), involving related symbiotic bacterial profiles, including composition, alpha diversity, network relationship, and potential function. Structural equation modeling analysis was used to analyze the relationship between coral status and abiotic and biotic factors. The bacterial community structure of different groups was shown to exhibit host-specific traits. Both host and environmental impacts had primary effects on coral-associated microbial communities. Future studies are needed to identify the mechanisms that mediate divergent microbial consortia.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People’s Republic of China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, People’s Republic of China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| |
Collapse
|
66
|
Zhao K, Yang Y, Hou J, Liu H, Zhang Y, Wang Q, Christie P, Qi P, Liu W. Depth and contaminant-shaped bacterial community structure and assembly at an aged chlorinated aliphatic hydrocarbon-contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131220. [PMID: 37003001 DOI: 10.1016/j.jhazmat.2023.131220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) are potentially toxic substances that have been detected in various contaminated environments. Biological elimination is the main technique of detoxifying CAHs in the contaminated sites, but the soil bacterial community at CAH-contaminated sites have been little investigated. Here, high-throughput sequencing analysis of soil samples from different depths (to 6 m depth) at an aged CAH-contaminated site has been conducted to investigate the community composition, function, and assembly of soil bacteria. The alpha diversity of the bacterial community significantly increased with increasing depth and bacterial community also became more convergent with increasing depth. Organohalide-respiring bacteria (OHRB) is considered keystone taxa to reduce the environmental stress of CAHs by reductive dechlorinate CAHs into nontoxic products, increases the alpha diversity of bacterial community and improves the stability of bacterial co-occurrence network. The high concentration of CAHs in deep soil and the stable anaerobic environment make deterministic processes dominate bacterial community assembly, while the topsoil is dominated by dispersal limitation. In general, CAHs at contaminated sites have a great impact on bacterial community, but the CAHs metabolic community acclimated in deep soil can reduce the environmental stress of CAHs, which provides foundation for the monitored natural attenuation technology in CAHs-contaminated sites.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Yuying Yang
- Jiangsu Chengran Environmental Restoration Engineering Co., Ltd, Nantong 226000, China
| | - Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Haozhe Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Yun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Qingling Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Peishi Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China.
| |
Collapse
|
67
|
Paula Lula Costa A, Bascompte J, Andrian Padial A. Modularity in host-parasite mixed networks: interaction configuration shifts based on human perturbation and parasitism form. Int J Parasitol 2023:S0020-7519(23)00146-7. [PMID: 37328044 DOI: 10.1016/j.ijpara.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 06/18/2023]
Abstract
Parasitism is an association based on host individual traits and environmental factors. The complexity of this type of interaction is often lost when studying species-by-species interaction networks. Here we analyze changes in modularity - a metric describing groups of nodes interacting much more frequently among themselves than they do with nodes of other modules, considering the host individual variation and the different forms of parasitism: ecto- and endo-parasitism. For this, we studied mixed networks: bipartite networks comprising host individuals and parasite species as two sets of nodes interacting with each other. We used a fish-parasite mixed network from a highly perturbed coastal river to understand how an anthropogenic perturbation gradient influences the modular structure of host-parasite networks. In addition, we tested how host individual traits drove module configuration within host-parasite mixed networks. Our results showed that different forms of parasitism respond differently to the environment: modularity in fish-ectoparasite networks increased with human perturbation, but modularity was not related to human perturbation in fish-endoparasite networks. In addition, mixed network modules were intrinsically related to individual variation, with host intensity of infection being the most important trait, regardless of the parasite's life form. The effect of total abundance over network structure indicates signs of changes in community equilibrium, with an increase in species with opportunistic behaviors. Module composition was also related to host fitness and body size, which were most predictive in more preserved and diverse river sections. Overall, our results indicate that host-parasite networks are sensitive to ecological gradients marked by human perturbation and that host individual fitness helps to determine network structure.
Collapse
Affiliation(s)
- Ana Paula Lula Costa
- Federal University of Paraná - Graduate Program in Ecology and Conservation; Department of Botany, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 100 - Paraná, Brazil, 81530-000.
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Andre Andrian Padial
- Department of Botany, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 100 - Paraná, Brazil, 81530-000.
| |
Collapse
|
68
|
Ma Q, Su M. Herbivore-induced pollinator limitation increases community stability of mutualism-antagonism continuum. Biosystems 2023; 229:104929. [PMID: 37217159 DOI: 10.1016/j.biosystems.2023.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Plants connect both pollinators and herbivores, and motivate the exploration of community structure in ecological networks merging antagonistic and mutualistic interactions. Evidence has shown that the two opposite plant-animal interactions are not independent from each other, in particular, herbivores can affect plant-pollinator pairwise interactions. Here, we explored effects of herbivore-induced pollinator limitation on community stability (including temporal stability and composition stability) of the mutualism-antagonism continuum. Our model demonstrated that pollinator limitation can boost up both temporal stability (i.e., the proportion of stable communities) and composition stability (i.e., species persistence), while the positive effects also depend on the strength of antagonistic and mutualistic interactions. Specifically, a community with higher temporal stability has a higher composition stability. Meanwhile, the correlations between network architecture and composition stability are also affected by pollinator limitation. Therefore, our results highlight that pollinator limitation can enhance community stability and may alter network architecture-composition stability relationship, and further advance the interplay between multiple types of species interactions within ecological networks.
Collapse
Affiliation(s)
- Qi Ma
- School of Mathematics, Hefei University of Technology, Hefei, 230009, China
| | - Min Su
- School of Mathematics, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
69
|
Li F, Zhang Y, Altermatt F, Yang J, Zhang X. Destabilizing Effects of Environmental Stressors on Aquatic Communities and Interaction Networks across a Major River Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7828-7839. [PMID: 37155929 DOI: 10.1021/acs.est.3c00456] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human-driven environmental stressors are increasingly threatening species survival and diversity of river systems worldwide. However, it remains unclear how the stressors affect the stability changes across aquatic multiple communities. Here, we used environmental DNA (eDNA) data sets from a human-dominated river in China over 3 years and analyzed the stability changes in multiple communities under persistent anthropogenic stressors, including land use and pollutants. First, we found that persistent stressors significantly reduced multifaceted species diversity (e.g., species richness, Shannon's diversity, and Simpson's diversity) and species stability but increased species synchrony across multiple communities. Second, the structures of interaction networks inferred from an empirical meta-food web were significantly changed under persistent stressors, for example, resulting in decreased network modularity and negative/positive cohesion. Third, piecewise structural equation modeling proved that the persistent stress-induced decline in the stability of multiple communities mainly depended upon diversity-mediated pathways rather than the direct effects of stress per se; specifically, the increase of species synchrony and the decline of interaction network modularity were the main biotic drivers of stability variation. Overall, our study highlights the destabilizing effects of persistent stressors on multiple communities as well as the mechanistic dependencies, mainly through reducing species diversity, increasing species synchrony, and changing interaction networks.
Collapse
Affiliation(s)
- Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
70
|
Deb S, Bhandary S, Dutta PS. Evading tipping points in socio-mutualistic networks via structure mediated optimal strategy. J Theor Biol 2023; 567:111494. [PMID: 37075828 DOI: 10.1016/j.jtbi.2023.111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
The threat of large-scale pollinator decline is increasing globally under stress from multiple anthropogenic pressures. Traditional approaches have focused on managing endangered species at an individual level, in which the effect of complex interactions such as mutualism and competition are amiss. Here, we develop a coupled socio-mutualistic network model that captures the change in pollinator dynamics with human conservation opinion in a deteriorating environment. We show that the application of social norm (or conservation) at the pollinator nodes is fit to prevent sudden community collapse in representative networks of varied topology. Whilst primitive strategies have focused on regulating abundance as a mitigation strategy, the role of network structure has been largely overlooked. Here, we develop a novel network structure-mediated conservation strategy to find the optimal set of nodes on which norm implementation successfully prevents community collapse. We find that networks of intermediate nestedness require conservation at a minimum number of nodes to prevent a community collapse. We claim the robustness of the optimal conservation strategy (OCS) after validation on several simulated and empirical networks of varied complexity against a broad range of system parameters. Dynamical analysis of the reduced model shows that incorporating social norms allows the pollinator abundance to grow that would have otherwise crossed a tipping point and undergo extinction. Together, this novel means OCS provides a potential plan of action for conserving plant-pollinator networks bridging the gap between research in mutualistic networks and conservation ecology.
Collapse
Affiliation(s)
- Smita Deb
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India
| | - Subhendu Bhandary
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India
| | - Partha Sharathi Dutta
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India.
| |
Collapse
|
71
|
Liu J, Sun X, Zuo Y, Hu Q, He X. Plant species shape the bacterial communities on the phyllosphere in a hyper-arid desert. Microbiol Res 2023; 269:127314. [PMID: 36724560 DOI: 10.1016/j.micres.2023.127314] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Microorganisms are an important component of global biodiversity. However, they are vulnerable to hyper-arid climates in desert regions. Xerophytes are desert vegetation with unique biodiversity. However, little is known about the identities and communities of phyllosphere epiphytic microorganisms inhabiting the xerophyte leaf surface in the hot and dry environment. The diversity and community composition of phyllosphere epiphytes on different desert plants in Gansu, China, was investigated using the next-generation sequencing technique, revealing the diversity and community composition of the phyllosphere epiphytic bacteria associated with desert xerophytes. In addition, the ecological functions of the bacterial communities were investigated by combining the sequence classification information and prokaryotic taxonomic function annotation (FAPROTAX). This study determined the phyllosphere bacterial community composition, microbial interactions, and their functions. Despite harsh environments in the arid desert, we found that there are still diverse epiphytic bacteria on the leaves of desert plants. The bacterial communities mainly included Actinobacteria (52.79%), Firmicutes (31.62%), and Proteobacteria (12.20%). Further comparisons revealed different microbial communities, including Firmicutes at the phylum and Paenibacillaceae at the family level, in the phyllosphere among different plants, suggesting that the host plants had strong filter effects on bacteria. Co-occurrence network analysis revealed positive relationships were dominant among different bacterial taxa. The abundance of Actinobacteria and Proteobacteria was positively correlated, demonstrating their mutual relationship. On the other hand, the abundance of Firmicutes was negatively correlated, which suggested that they inhibit the growth of other bacterial taxa. FAPROTAX prediction revealed that chemoheterotrophy (accounting for 39.02% of the community) and aerobic chemoheterotrophy (37.01%) were the main functions of the leaf epiphytic bacteria on desert plants. This study improves our understanding of the community composition and ecological functions of plant-associated microbial communities inhabiting scattered niches in the desert ecosystem. In addition, the study provides insight into the biodiversity assessment in the desert region.
Collapse
Affiliation(s)
- Jiaqiang Liu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiang Sun
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Yiling Zuo
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Qiannan Hu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xueli He
- School of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
72
|
García-Callejas D, Godoy O, Buche L, Hurtado M, Lanuza JB, Allen-Perkins A, Bartomeus I. Non-random interactions within and across guilds shape the potential to coexist in multi-trophic ecological communities. Ecol Lett 2023; 26:831-842. [PMID: 36972904 DOI: 10.1111/ele.14206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 03/29/2023]
Abstract
Theory posits that the persistence of species in ecological communities is shaped by their interactions within and across trophic guilds. However, we lack empirical evaluations of how the structure, strength and sign of biotic interactions drive the potential to coexist in diverse multi-trophic communities. Here, we model community feasibility domains, a theoretically informed measure of multi-species coexistence probability, from grassland communities comprising more than 45 species on average from three trophic guilds (plants, pollinators and herbivores). Contrary to our hypothesis, increasing community complexity, measured either as the number of guilds or community richness, did not decrease community feasibility. Rather, we observed that high degrees of species self-regulation and niche partitioning allow for maintaining larger levels of community feasibility and higher species persistence in more diverse communities. Our results show that biotic interactions within and across guilds are not random in nature and both structures significantly contribute to maintaining multi-trophic diversity.
Collapse
Affiliation(s)
- David García-Callejas
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
- School of Biological Sciences, University of Canterbury, 8140, Christchurch, Private Bag 4800, New Zealand
| | - Oscar Godoy
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - Lisa Buche
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - María Hurtado
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - Jose B Lanuza
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Alfonso Allen-Perkins
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, ETSIDI, Technical University of Madrid, 28040, Madrid, Spain
| | | |
Collapse
|
73
|
Zhu C, Lin Y, Wang Z, Luo W, Zhang Y, Chu C. Community assembly and network structure of epiphytic and endophytic phyllosphere fungi in a subtropical mangrove ecosystem. Front Microbiol 2023; 14:1147285. [PMID: 37007520 PMCID: PMC10064055 DOI: 10.3389/fmicb.2023.1147285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Microorganisms can influence plant growth and health, ecosystem functioning, and stability. Community and network structures of mangrove phyllosphere fungi have rarely been studied although mangroves have very important ecological and economical values. Here, we used high throughput sequencing of the internal transcribed spacer 2 (ITS2) to assess epiphytic and endophytic phyllosphere fungal communities of six true mangrove species and five mangrove associates. Totally, we obtained 1,391 fungal operational taxonomic units (OTUs), including 596 specific epiphytic fungi, 600 specific endophytic fungi, and 195 shared fungi. The richness and community composition differed significantly for epiphytes and endophytes. Phylogeny of the host plant had a significant constraint on epiphytes but not endophytes. Network analyses showed that plant–epiphyte and plant–endophyte networks exhibited strong specialization and modularity but low connectance and anti-nestedness. Compared to plant–endophyte network, plant–epiphyte network showed stronger specialization, modularity, and robustness but lower connectance and anti-nestedness. These differences in community and network structures of epiphytes and endophytes may be caused by spatial niche partitioning, indicating their underlying ecological and environmental drivers are inconsistent. We highlight the important role of plant phylogeny in the assembly of epiphytic but not endophytic fungal communities in mangrove ecosystems.
Collapse
Affiliation(s)
- Chunchao Zhu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- *Correspondence: Chunchao Zhu,
| | | | - Zihui Wang
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Wenqi Luo
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yonghua Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
74
|
Terrestrial food web of the Malpelo Fauna and Flora Sanctuary, Colombia: An analysis from a topological approach. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
75
|
Lu Q, Cheng C, Xiao L, Li J, Li X, Zhao X, Lu Z, Zhao J, Yao M. Food webs reveal coexistence mechanisms and community organization in carnivores. Curr Biol 2023; 33:647-659.e5. [PMID: 36669497 DOI: 10.1016/j.cub.2022.12.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023]
Abstract
Globally, massive carnivore guild extirpations have led to trophic downgrading and compromised ecosystem services. However, the complexity of multi-carnivore food webs complicates accurate identification of species interactions and community organization. Here, we used fecal DNA metabarcoding to investigate three communities that together encompass eight large- and meso-carnivore species and their 44 prey taxa of the Qinghai-Tibet Plateau (QTP), one of the last places on Earth that still harbors intact carnivore assemblages. Quantitative food-web analyses revealed pronounced interspecific variations in the carnivores' prey compositions and dietary partitioning both between and within guilds. Additionally, body masses of the carnivores and their prey exhibited consistent hump-shaped correlations across communities. Overall, differences in prey diversity, size category, and proportional utilization among the carnivore species result in trophic niche segregation that likely promotes carnivore coexistence in the harsh QTP environment. Network structure analyses detected significant modularity in all food webs but nestedness in only one. Furthermore, network characterization identified pikas (Ochotona spp.), bharal (Pseudois nayaur), and domestic yak (Bos grunniens) as potential keystone prey across the areas. Our results paint a holistic and detailed picture of the QTP carnivore assemblages' trophic networks and demonstrate that the combined use of the molecular dietary approach and network analysis can generate structural insights into carnivore coexistence and can identify functionally important species in complex communities. Such knowledge can help safeguard carnivore guild integrity and enhance community resilience to environmental perturbations in the sensitive QTP ecosystems.
Collapse
Affiliation(s)
- Qi Lu
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chen Cheng
- Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China; Shan Shui Conservation Center, Beijing 100871, China
| | - Lingyun Xiao
- School of Life Sciences, Peking University, Beijing 100871, China; Department of Health and Environmental Sciences, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu 215123, China
| | - Juan Li
- School of Life Sciences, Peking University, Beijing 100871, China; Department of Health and Environmental Sciences, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xueyang Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiang Zhao
- Shan Shui Conservation Center, Beijing 100871, China
| | - Zhi Lu
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China; Shan Shui Conservation Center, Beijing 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
76
|
Abstract
Symbiosis is a major engine of evolutionary innovation underlying many extant complex organisms. Lichens are a paradigmatic example that offers a unique perspective on the role of symbiosis in ecological success and evolutionary diversification. Lichen studies have produced a wealth of information regarding the importance of symbiosis, but they frequently focus on a few species, limiting our understanding of large-scale phenomena such as guilds. Guilds are groupings of lichens that assist each other's proliferation and are intimately linked by a shared set of photobionts, constituting an extensive network of relationships. To characterize the network of lichen symbionts, we used a large data set ([Formula: see text] publications) of natural photobiont-mycobiont associations. The entire lichen network was found to be modular, but this organization does not directly match taxonomic information in the data set, prompting a reconsideration of lichen guild structure and composition. The multiscale nature of this network reveals that the major lichen guilds are better represented as clusters with several substructures rather than as monolithic communities. Heterogeneous guild structure fosters robustness, with keystone species functioning as bridges between guilds and whose extinction would endanger global stability.
Collapse
|
77
|
Huang Y, Chen ZQ, Roopnarine PD, Benton MJ, Zhao L, Feng X, Li Z. The stability and collapse of marine ecosystems during the Permian-Triassic mass extinction. Curr Biol 2023; 33:1059-1070.e4. [PMID: 36841237 DOI: 10.1016/j.cub.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/20/2022] [Accepted: 02/01/2023] [Indexed: 02/27/2023]
Abstract
The history of Earth's biodiversity is punctuated episodically by mass extinctions. These are characterized by major declines of taxon richness, but the accompanying ecological collapse has rarely been evaluated quantitatively. The Permian-Triassic mass extinction (PTME; ∼252 mya), as the greatest known extinction, permanently altered marine ecosystems and paved the way for the transition from Paleozoic to Mesozoic evolutionary faunas. Thus, the PTME offers a window into the relationship between taxon richness and ecological dynamics of ecosystems during a severe extinction. However, the accompanying ecological collapse through the PTME has not been evaluated in detail. Here, using food-web models and a marine paleocommunity dataset spanning the PTME, we show that after the first extinction phase, community stability decreased only slightly despite the loss of more than half of taxonomic diversity, while community stability significantly decreased in the second phase. Thus, taxonomic and ecological changes were unequivocally decoupled, with species richness declining severely ∼61 ka earlier than the collapse of marine ecosystem stability, implying that in major catastrophes, a biodiversity crash may be the harbinger of a more devastating ecosystem collapse.
Collapse
Affiliation(s)
- Yuangeng Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China; Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Zhong-Qiang Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China.
| | - Peter D Roopnarine
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China; Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Queens Road, Bristol BS8 1RJ, UK
| | - Laishi Zhao
- State Key Laboratory of Geological Processes and Resource Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China
| | - Xueqian Feng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China
| | - Zhenhua Li
- School of Computer Science, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China
| |
Collapse
|
78
|
Silva GG, Pizo MA, Green AJ, Sebastián‐González E, Bugoni L, Maltchik L. A waterfowl seed‐dispersal network from the Neotropical region is nested and modular. Biotropica 2023. [DOI: 10.1111/btp.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Giliandro G. Silva
- Graduate Program in Biology of Continental Aquatic Environments Universidade Federal do Rio Grande – FURG Rio Grande Brazil
| | - Marco Aurélio Pizo
- Department of Biodiversity, Institute of Biosciences Universidade Estadual Paulista Rio Claro Brazil
| | - Andy J. Green
- Department of Wetland Ecology Estación Biológica de Doñana (EBD‐CSIC) Sevilla Spain
| | | | - Leandro Bugoni
- Graduate Program in Biology of Continental Aquatic Environments Universidade Federal do Rio Grande – FURG Rio Grande Brazil
| | - Leonardo Maltchik
- Graduate Program in Biology of Continental Aquatic Environments Universidade Federal do Rio Grande – FURG Rio Grande Brazil
| |
Collapse
|
79
|
Yu X, Gao X, Shang L, Wang X, Jiao Y, Zhang XH, Shi X. Spatial and temporal change determined co-occurrence networks stability and community assembly processes of epipelagic seawater microbial community in the Nordic Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160321. [PMID: 36414066 DOI: 10.1016/j.scitotenv.2022.160321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The Nordic Sea has a vital impact on the global climate change, occupies a significant status in the physical oceanography research, on account of its intersection of complex ocean currents. To explore the influence of seasonal and spatial heterogeneity in its epipelagic seawater on the microbial community structure, a total of 54 seawater samples from 18 stations and 3 water layers (0 m, 50 m, 100 m) were collected in the summer of 2017 and the autumn of 2018 from the Norwegian Sea, the Greenland Sea and the vicinity of Jan Mayen Island in the Nordic Sea. Alpha- and Beta- diversity analysis showed that significant differences were found between characteristic bacterial groups in detached or mixed currents of corresponding seasons, as endemic OTUs with seasonal and ocean current characteristics which revealed the existence of spatiotemporal patterns of microbial communities in the Nordic Sea. Moreover, co-occurrence networks were conducted to show different degree of complexity and stability of microbial community response to spatiotemporal dynamic changes. Furthermore, the flow and collision between ocean currents do have an impact on the community assembly processes by affecting the migration and dispersal of microbial communities. This study reflects the response of microbial communities to the spatiotemporal dynamics and reveals the microbial community assembly mechanisms under complex hydrological condition represented in the Nordic Sea.
Collapse
Affiliation(s)
- Xiaowen Yu
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Xueyu Gao
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Li Shang
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoyu Wang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Physical Oceanography Laboratory, Ocean University of China, Qingdao 266071, PR China
| | - Yutian Jiao
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Physical Oceanography Laboratory, Ocean University of China, Qingdao 266071, PR China
| | - Xiao-Hua Zhang
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Xiaochong Shi
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
80
|
Liu Q, Li Y, Wang H, Yang G, Kan J, Yang M, Yu X, Guo C, Wang M, Wang W, Zhang Q, Zhu J, Zhao X, Jiang Y. Assembly and Network Stability of Planktonic Microorganisms under the Influence of Salinity Gradient: an Arctic Case Study from the Lena River Estuary to the Laptev Sea. Microbiol Spectr 2023; 11:e0211522. [PMID: 36744927 PMCID: PMC10100684 DOI: 10.1128/spectrum.02115-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
The diversity and primary productivity in the Arctic ecosystem are rapidly changing due to global warming. Microorganisms play a vital role in biogeochemical cycling. However, the diversity of planktonic microorganism communities in the Laptev Sea, one of the most important marginal seas of the Western Arctic Ocean, have not been studied sufficiently in depth. The diversity and community structure of the planktonic microorganisms in the surface water were investigated at 20 stations on the Lena River flowing into the Laptev Sea. Multivariate statistical analyses demonstrated clear spatial patterns in the α diversity and community structure for microorganisms under different salinity levels. Co-occurrence networks of microbial communities revealed that spatial variation promoted differentiation of the characteristics and stability of microbial networks in the Laptev Sea. Contrary to expectations, abundant taxa were found to not have a large influence on the stability and resilience of microbial interactions in the region. On the contrary, less-abundant taxa were found to have far greater influence. The stability and resilience of the prokaryotic and microeukaryotic networks in the Lena River estuary and the continental shelf provided valuable insights into the impact of freshwater and land inflow disturbances on microbial assemblage. Overall, these results enhance our understanding of the composition of microbial communities and provide insights into how spatial changes of abundant versus rare species alter the nature and stability of microbial networks from the Lena River estuary to the Laptev Sea. In addition, this study explored microbial interactions and their ability to resist future disturbances. IMPORTANCE The regime of the Laptev Sea depends closely on the runoff of the Lena River. Microorganisms are essential components of aquatic food webs and play a significant role in polar ecosystems. In this study, we provided a basic microbial data set as well as new insights into the microbial networks from the Lena River estuary to the Laptev Sea, while exploring their potential to resist future disturbances. A comprehensive and systematic study of the community structure and function of the planktonic microorganisms in the Laptev Sea would greatly enhance our understanding of how polar microbial communities respond to the salinity gradient under climate warming.
Collapse
Affiliation(s)
- Qian Liu
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yan Li
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hualong Wang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Guipeng Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jinjun Kan
- Microbiology Division, Stroud Water Research Center, Avondale, Pennsylvania, USA
| | - Mengyao Yang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaowen Yu
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Cui Guo
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
| | - Wei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jiancheng Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xianyong Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yong Jiang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
| |
Collapse
|
81
|
González C. Evolution of the concept of ecological integrity and its study through networks. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
82
|
Ai YY, Liu Q, Hu HX, Shen T, Mo YX, Wu XF, Li JL, Dossa GG, Song L. Terrestrial and epiphytic orchids exhibit different diversity and distribution patterns along an elevation gradient of Mt. Victoria, Myanmar. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
83
|
Abstract
There is growing awareness of pollinator declines worldwide. Conservation efforts have mainly focused on finding the direct causes, while paying less attention to building a systemic understanding of the fragility of these communities of pollinators. To fill this gap, we need operational measures of network resilience that integrate two different approaches in theoretical ecology. First, we should consider the range of conditions compatible with the stable coexistence of all of the species in a community. Second, we should address the rate and shape of network collapse once this safe operational space is exited. In this review, we describe this integrative approach and consider several mechanisms that may enhance the resilience of pollinator communities, chiefly rewiring the network of interactions, increasing heterogeneity, allowing variance, and enhancing coevolution. The most pressing need is to develop ways to reduce the gap between these theoretical recommendations and practical applications. This perspective shifts the emphasis from traditional approaches focusing on the equilibrium states to strategies that allow pollination networks to cope with global environmental change.
Collapse
Affiliation(s)
- Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland;
| | - Marten Scheffer
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
84
|
Zhang H, Yang Y, Liu X, Huang T, Ma B, Li N, Yang W, Li H, Zhao K. Novel insights in seasonal dynamics and co-existence patterns of phytoplankton and micro-eukaryotes in drinking water reservoir, Northwest China: DNA data and ecological model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159160. [PMID: 36195142 DOI: 10.1016/j.scitotenv.2022.159160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Although associations between phytoplankton and micro-eukaryotes have been studied in aquatic ecosystems, there are still knowledge gaps in comprehending their dynamics and interactions in drinking water reservoirs. Here, the seasonal dynamics of phytoplankton and micro-eukaryotic diversities and their co-existence patterns were studied in a drinking water reservoir, Northwest China. The highest phytoplankton diversity was observed in summer, and Chlorella sp. that belongs to Chlorophyta was the most abundant genus. The highest eukaryotic diversity was also detected in summer, and Rimostrombidium sp. that belongs to Ciliophora was the most dominant genus. Mantel test showed that the phytoplankton diversity was significantly correlated with ammonia nitrogen (r = 0.561, p = 0.001) and dissolved organic carbon (r = 0.267, p = 0.017), while the eukaryotic diversity was significantly associated with ammonia nitrogen (r = 0.265, p = 0.034) and temperature (r = 0.208, p = 0.046). PLS-PM (Partial Least Squares Path Modeling) further revealed that nutrients (P < 0.01) significantly affected the phytoplankton diversity, while nutrients (P < 0.01) and temperature (P < 0.01) significantly influenced the eukaryotic diversity. Co-occurrence network displayed the primarily positive interactions (77.66% positive and 22.34% negative) between phytoplankton and micro-eukaryotes. These findings could deepen our understanding of interactions between phytoplankton and micro-eukaryotes and their driving factors under changing aquatic environments of drinking water reservoirs.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
85
|
Luboeinski J, Claro L, Pomi A, Mizraji E. Stabilization through self-coupling in networks of small-world and scale-free topology. Sci Rep 2023; 13:1089. [PMID: 36658183 PMCID: PMC9851597 DOI: 10.1038/s41598-023-27809-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Mechanisms that ensure the stability of dynamical systems are of vital importance, in particular in our globalized and increasingly interconnected world. The so-called connectivity-stability dilemma denotes the theoretical finding that increased connectivity between the components of a large dynamical system drastically reduces its stability. This result has promoted controversies within ecology and other fields of biology, especially, because organisms as well as ecosystems constitute systems that are both highly connected and stable. Hence, it has been a major challenge to find ways to stabilize complex systems while preserving high connectivity at the same time. Investigating the stability of networks that exhibit small-world or scale-free topology is of particular interest, since these topologies have been found in many different types of real-world networks. Here, we use an approach to stabilize recurrent networks of small-world and scale-free topology by increasing the average self-coupling strength of the units of a network. For both topologies, we find that there is a sharp transition from instability to asymptotic stability. Then, most importantly, we find that the average self-coupling strength needed to stabilize a system increases much slower than its size. It appears that the qualitative shape of this relationship is the same for small-world and scale-free networks, while scale-free networks can require higher magnitudes of self-coupling. We further explore the stabilization of networks with Kronecker-Leskovec topology. Finally, we argue that our findings, in particular the stabilization of large recurrent networks through small increases in the unit self-regulation, are of practical importance for the stabilization of diverse types of complex systems.
Collapse
Affiliation(s)
- Jannik Luboeinski
- grid.7450.60000 0001 2364 4210Department of Computational Neuroscience, III. Institute of Physics – Biophysics, University of Göttingen, Göttingen, Germany ,grid.11630.350000000121657640Biophysics and Systems Biology Section, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Luis Claro
- grid.11630.350000000121657640Biophysics and Systems Biology Section, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrés Pomi
- grid.11630.350000000121657640Biophysics and Systems Biology Section, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Mizraji
- grid.11630.350000000121657640Biophysics and Systems Biology Section, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
86
|
Pereyra PER, Hallwass G, Begossi A, Giacomin LL, Silvano RAM. Fishers' Knowledge Reveals Ecological Interactions Between Fish and Plants in High Diverse Tropical Rivers. Ecosystems 2023. [DOI: 10.1007/s10021-023-00818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
87
|
Li F, Guo F, Gao W, Cai Y, Zhang Y, Yang Z. Environmental DNA Biomonitoring Reveals the Interactive Effects of Dams and Nutrient Enrichment on Aquatic Multitrophic Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16952-16963. [PMID: 36383447 DOI: 10.1021/acs.est.2c06919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dam construction and nutrient enrichment are two pervasive stressors in rivers worldwide, which trigger a sharp decline in biodiversity and ecosystem services. However, the interactive effects of both stressors on multitrophic taxonomic groups remain largely unclear. Here, we used the multitrophic datasets captured by the environmental DNA (eDNA) approach to reveal the interactions between dams and nutrient enrichment on aquatic communities from the aspects of taxonomic α diversity, β diversity, and food webs. First, our data showed that dams and nutrient enrichment jointly shaped a unique spatial pattern of aquatic communities across the four river systems, and the dissimilarity of community structure significantly declined (i.e., structural homogenization) under both stressors. Second, dams and nutrients together explained 40-50% of the variations in aquatic communities, and dams had a stronger impact on fish, aquatic insects, and bacteria, yet nutrients had a stronger power to drive protozoa, fungi, and eukaryotic algae. Finally, we found that additive, synergistic, and antagonistic interactions of dams and nutrient enrichment were common and coexisted in river systems and led to significantly simplified aquatic food webs, with decreases in modularity (synergistic) and robustness (additive) and an increase in coherence (synergistic). Overall, our study highlights that eDNA-based datasets can provide multitrophic perspectives for fostering the understanding of the interactive effects of multiple stressors on rivers.
Collapse
Affiliation(s)
- Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| |
Collapse
|
88
|
Yang T, Tedersoo L, Soltis PS, Soltis DE, Sun M, Ma Y, Ni Y, Liu X, Fu X, Shi Y, Lin HY, Zhao YP, Fu C, Dai CC, Gilbert JA, Chu H. Plant and fungal species interactions differ between aboveground and belowground habitats in mountain forests of eastern China. SCIENCE CHINA LIFE SCIENCES 2022; 66:1134-1150. [PMID: 36462107 DOI: 10.1007/s11427-022-2174-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022]
Abstract
Plant and fungal species interactions drive many essential ecosystem properties and processes; however, how these interactions differ between aboveground and belowground habitats remains unclear at large spatial scales. Here, we surveyed 494 pairwise fungal communities in leaves and soils by Illumina sequencing, which were associated with 55 woody plant species across more than 2,000-km span of mountain forests in eastern China. The relative contributions of plant, climate, soil and space to the variation of fungal communities were assessed, and the plant-fungus network topologies were inferred. Plant phylogeny was the strongest predictor for fungal community composition in leaves, accounting for 19.1% of the variation. In soils, plant phylogeny, climatic factors and soil properties explained 9.2%, 9.0% and 8.7% of the variation in soil fungal community, respectively. The plant-fungus networks in leaves exhibited significantly higher specialization, modularity and robustness (resistance to node loss), but less complicated topology (e.g., significantly lower linkage density and mean number of links) than those in soils. In addition, host/fungus preference combinations and key species, such as hubs and connectors, in bipartite networks differed strikingly between aboveground and belowground samples. The findings provide novel insights into cross-kingdom (plant-fungus) species co-occurrence at large spatial scales. The data further suggest that community shifts of trees due to climate change or human activities will impair aboveground and belowground forest fungal diversity in different ways.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, 50409, Estonia
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611, USA
| | - Miao Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuying Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yingying Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Han-Yang Lin
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Peng Zhao
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengxin Fu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210003, China
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
89
|
Fish-parasite interaction networks reveal latitudinal and taxonomic trends in the structure of host-parasite associations. Parasitology 2022; 149:1815-1821. [PMID: 35768403 PMCID: PMC10090588 DOI: 10.1017/s0031182022000944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, treating host–parasite associations as bipartite interaction networks has proven a powerful tool to identify structural patterns and their likely causes in communities of fish and their parasites. Network analysis allows for both community-level properties to be computed and investigated, and species-level roles to be determined. Here, using data from 31 host–parasite interaction networks from local fish communities around the world, we test for latitudinal trends at whole-network level, and taxonomic patterns at individual parasite species level. We found that while controlling for network size (number of species per network), network modularity, or the tendency for the network to be subdivided into groups of species that interact mostly with each other, decreased with increasing latitude. This suggests that tropical fish–parasite networks may be more stable than those from temperate regions in the event of community perturbations, such as species extinction. At the species level, after accounting for the effect of host specificity, we observed no difference in the centrality of parasite species within networks between parasites with different transmission modes. However, species in some taxa, namely branchiurans, acanthocephalans and larval trematodes, generally had higher centrality values than other parasite taxa. Because species with a central position often serve as module connectors, these 3 taxa may play a key role in whole-network cohesion. Our results highlight the usefulness of network analysis to reveal the aspects of fish–parasite community interactions that would otherwise remain hidden and advance our understanding of their evolution.
Collapse
|
90
|
Camacho LA, de Andreazzi CS, Medeiros LP, Birskis‐Barros I, Emer C, Reigada C, Guimarães PR. Cheating interactions favor modularity in mutualistic networks. OIKOS 2022. [DOI: 10.1111/oik.09176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Lucas A. Camacho
- Programa de Pós‐graduação em Ecologia, Depto de Ecologia – Inst. de Biociências, USP São Paulo SP Brasil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Inst. Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos Rio de Janeiro RJ Brasil
| | | | | | - Carine Emer
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Rua Pacheco Leão, 915. Jardim Botânico Rio de Janeiro CEP 22460‐000 RJ Brasil
| | - Carolina Reigada
- Centro de Ciências Biológicas e da Saúde, Depto de Ecologia e Biologia Evolutiva, Univ. Federal de São Carlos, UFSCAR São Carlos SP Brasil
| | - Paulo R. Guimarães
- Depto de Ecologia – Inst. de Biociências, USP, Rua do Matão São Paulo SP Brasil
| |
Collapse
|
91
|
Hernández-Salinas U, Ramírez-Bautista A, Cruz-Elizalde R, Torres-Hernández LA. Feeding Niche and Predator–Prey Size Relationship in the Whiptail Lizard Aspidoscelis lineattissima (Squamata: Teiidae) in Insular and Continental Populations of the Mexican Pacific. ICHTHYOLOGY & HERPETOLOGY 2022. [DOI: 10.1643/h2021062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Uriel Hernández-Salinas
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Durango, Calle Sigma 119 Fraccionamiento 20 de Noviembre II Durango, Durango 34220, México;
| | - Aurelio Ramírez-Bautista
- Laboratorio de Ecología de Poblaciones, Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Km 4.5 carretera Pachuca-Tulancingo, 42184, Mineral de La Reforma, Hidalgo, México
| | - Raciel Cruz-Elizalde
- Laboratorio de Ecología y Diversidad Faunística, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Santa Fe Juriquilla, C. P. 76230, Querétaro, Querétaro, México;
| | - Lizzeth A. Torres-Hernández
- Laboratorio de Ecología de Poblaciones, Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Km 4.5 carretera Pachuca-Tulancingo, 42184, Mineral de La Reforma, Hidalgo, México
| |
Collapse
|
92
|
Martins LP, Stouffer DB, Blendinger PG, Böhning-Gaese K, Buitrón-Jurado G, Correia M, Costa JM, Dehling DM, Donatti CI, Emer C, Galetti M, Heleno R, Jordano P, Menezes Í, Morante-Filho JC, Muñoz MC, Neuschulz EL, Pizo MA, Quitián M, Ruggera RA, Saavedra F, Santillán V, Sanz D'Angelo V, Schleuning M, da Silva LP, Ribeiro da Silva F, Timóteo S, Traveset A, Vollstädt MGR, Tylianakis JM. Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions. Nat Commun 2022; 13:6943. [PMID: 36376314 PMCID: PMC9663448 DOI: 10.1038/s41467-022-34355-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Species interactions can propagate disturbances across space via direct and indirect effects, potentially connecting species at a global scale. However, ecological and biogeographic boundaries may mitigate this spread by demarcating the limits of ecological networks. We tested whether large-scale ecological boundaries (ecoregions and biomes) and human disturbance gradients increase dissimilarity among plant-frugivore networks, while accounting for background spatial and elevational gradients and differences in network sampling. We assessed network dissimilarity patterns over a broad spatial scale, using 196 quantitative avian frugivory networks (encompassing 1496 plant and 1004 bird species) distributed across 67 ecoregions, 11 biomes, and 6 continents. We show that dissimilarities in species and interaction composition, but not network structure, are greater across ecoregion and biome boundaries and along different levels of human disturbance. Our findings indicate that biogeographic boundaries delineate the world's biodiversity of interactions and likely contribute to mitigating the propagation of disturbances at large spatial scales.
Collapse
Affiliation(s)
- Lucas P Martins
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch, 8140, Aotearoa New Zealand.
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch, 8140, Aotearoa New Zealand
| | - Pedro G Blendinger
- Instituto de Ecología Regional, Universidad Nacional de Tucumán and CONICET; CC 34, 4107, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 2005, 4000, Tucumán, Argentina
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main, 60439, Germany
| | - Galo Buitrón-Jurado
- Laboratorio de Biología de Organismos, Centro de Ecología, Instituto Venezolano de Investigaciones Científicas (IVIC), Carretera Panamericana, km 11, Altos de Pipe, Edo, Miranda, Venezuela
- Universidad Estatal Amazónica-Sede Zamora Chinchipe; Calle Luis Imaicela entre Azuay y Rene Ulloa, El Pangui, Zamora Chinchipe, Ecuador
| | - Marta Correia
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - José Miguel Costa
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - D Matthias Dehling
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Camila I Donatti
- Conservation International, 2011 Crystal Dr. Suite 600, Arlington, VA, 22202, USA
- Department of Biological Sciences, Northern Arizona University, 617S. Beaver St., Flagstaff, AZ, 86011-5640, USA
| | - Carine Emer
- Rio de Janeiro Botanical Garden Research Institute, Rua Pacheco Leão 915, Jardim Botânico, Rio de Janeiro, RJ, CEP 22460-030, Brazil
- Department of Biodiversity, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mauro Galetti
- Department of Biodiversity, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Ruben Heleno
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Pedro Jordano
- Estación Biológica de Doñana, CSIC, av. Americo Vespucio 26, 41092, Sevilla, Spain
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Ícaro Menezes
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, Bahia, 45662-000, Brazil
| | - José Carlos Morante-Filho
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, Bahia, 45662-000, Brazil
| | - Marcia C Muñoz
- Programa de Biología, Universidad de La Salle, Carrera 2 # 10-70, Bogotá, Colombia
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Marco Aurélio Pizo
- Department of Biodiversity, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Marta Quitián
- Systematic Zoology Laboratory, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, Mallorca, Balearic Islands, 07190, Esporles, Spain
| | - Roman A Ruggera
- Instituto de Ecorregiones Andinas (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Jujuy), Canónigo Gorriti 237, Y4600 San Salvador de Jujuy, Jujuy, Argentina
| | - Francisco Saavedra
- Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Vinicio Santillán
- Centro de Investigación, Innovación y Transferencia de Tecnología (CIITT), Unidad Académica de Posgrado, Universidad Católica de Cuenca, Av. de las Américas, Cuenca, Ecuador
| | - Virginia Sanz D'Angelo
- Laboratorio de Biología de Organismos, Centro de Ecología, Instituto Venezolano de Investigaciones Científicas (IVIC), Carretera Panamericana, km 11, Altos de Pipe, Edo, Miranda, Venezuela
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Luís Pascoal da Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Fernanda Ribeiro da Silva
- Laboratory of Human Ecology and Ethnobotany, Department of Ecology and Zoology, Federal University of Santa Catarina, UFSC, Campus Trindade, s/n, Florianópolis, SC, 88010-970, Brazil
| | - Sérgio Timóteo
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Anna Traveset
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, Mallorca, Balearic Islands, 07190, Esporles, Spain
| | - Maximilian G R Vollstädt
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Oester Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Jason M Tylianakis
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch, 8140, Aotearoa New Zealand.
| |
Collapse
|
93
|
Gaiarsa MP, Bascompte J. Hidden effects of habitat restoration on the persistence of pollination networks. Ecol Lett 2022; 25:2132-2141. [PMID: 36006740 PMCID: PMC9804604 DOI: 10.1111/ele.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/23/2022] [Indexed: 01/05/2023]
Abstract
Past and recent studies have focused on the effects of global change drivers such as species invasions on species extinction. However, as we enter the United Nations Decade of Ecosystem Restoration the aim must switch to understanding how invasive-species management affects the persistence of the remaining species in a community. Focusing on plant-pollinator interactions, we test how species persistence is affected by restoration via the removal of invasive plant species. Restoration had a clear positive effect on plant persistence, whereas there was no difference between across treatments for pollinator persistence in the early season, but a clear effect in late season, with higher persistence in unrestored sites. Network structure affected only pollinator persistence, while centrality had a strong positive effect on both plants and pollinators. Our results suggest a hidden effect of invasive plants-although they may compete with native plant species, invasive plants may provide important resources for pollinators, at least in the short term.
Collapse
Affiliation(s)
- Marilia P. Gaiarsa
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- School of Natural SciencesUniversity of California, MercedMercedCaliforniaUSA
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
94
|
Russo L, Casella V, Marabotti A, Jordán F, Congestri R, D'Alelio D. Trophic hierarchy in a marine community revealed by network analysis on co-occurrence data. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
95
|
Hao B, Zhang Z, Bao Z, Hao L, Diao F, Li FY, Guo W. Claroideoglomus etunicatum affects the structural and functional genes of the rhizosphere microbial community to help maize resist Cd and La stresses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119559. [PMID: 35654253 DOI: 10.1016/j.envpol.2022.119559] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and plant rhizosphere microbes reportedly enhance plant tolerance to abiotic stresses and promote plant growth in contaminated soils. The co-contamination of soil by heavy metals (e.g., Cd) and rare earth elements (e.g., La) represents a severe environmental problem. Although the influence of AMF in the phytoremediation of contaminated soils is well documented, the underlying interactive mechanisms between AMF and rhizosphere microbes are still unclear. We conducted a greenhouse pot experiment to evaluate the effects of AMF (Claroideoglomus etunicatum) on maize growth, nutrient and metal uptake, rhizosphere microbial community, and functional genes in soils with separate and combined applications of Cd and La. The purpose of this experiment was to explore the mechanism of AMF affecting plant growth and metal uptake via interactions with rhizosphere microbes. We found that C. etunicatum (i) significantly enhanced plant nutritional level and biomass and decreased metal concentration in the co-contaminated soil; (ii) significantly altered the structure of maize rhizosphere bacterial and fungal communities; (iii) strongly enriched the abundance of carbohydrate metabolism genes, ammonia and nitrate production genes, IAA (indole-3-acetic acid) and ACC deaminase (1-aminocyclopropane-1-carboxylate) genes, and slightly altered the abundance of P-related functional genes; (iv) regulated the abundance of microbial quorum sensing system and metal membrane transporter genes, thereby improving the stability and adaptability of the rhizosphere microbial community. This study provides evidence of AMF improving plant growth and resistance to Cd and La stresses by regulating plant rhizosphere microbial communities and aids our understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Lijun Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Frank Yonghong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
96
|
Kéfi S, Saade C, Berlow EL, Cabral JS, Fronhofer EA. Scaling up our understanding of tipping points. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210386. [PMID: 35757874 PMCID: PMC9234815 DOI: 10.1098/rstb.2021.0386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic activities are increasingly affecting ecosystems across the globe. Meanwhile, empirical and theoretical evidence suggest that natural systems can exhibit abrupt collapses in response to incremental increases in the stressors, sometimes with dramatic ecological and economic consequences. These catastrophic shifts are faster and larger than expected from the changes in the stressors and happen once a tipping point is crossed. The primary mechanisms that drive ecosystem responses to perturbations lie in their architecture of relationships, i.e. how species interact with each other and with the physical environment and the spatial structure of the environment. Nonetheless, existing theoretical work on catastrophic shifts has so far largely focused on relatively simple systems that have either few species and/or no spatial structure. This work has laid a critical foundation for understanding how abrupt responses to incremental stressors are possible, but it remains difficult to predict (let alone manage) where or when they are most likely to occur in more complex real-world settings. Here, we discuss how scaling up our investigations of catastrophic shifts from simple to more complex-species rich and spatially structured-systems could contribute to expanding our understanding of how nature works and improve our ability to anticipate the effects of global change on ecological systems. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.
Collapse
Affiliation(s)
- Sonia Kéfi
- ISEM, CNRS, University of Montpellier, IRD, EPHE, Montpellier, France
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Camille Saade
- ISEM, CNRS, University of Montpellier, IRD, EPHE, Montpellier, France
| | | | - Juliano S. Cabral
- Ecosystem Modeling Group, Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
97
|
Allen WJ, Bufford JL, Barnes AD, Barratt BIP, Deslippe JR, Dickie IA, Goldson SL, Howlett BG, Hulme PE, Lavorel S, O'Brien SA, Waller LP, Tylianakis JM. A network perspective for sustainable agroecosystems. TRENDS IN PLANT SCIENCE 2022; 27:769-780. [PMID: 35501260 DOI: 10.1016/j.tplants.2022.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Nature-based management aims to improve sustainable agroecosystem production, but its efficacy has been variable. We argue that nature-based agroecosystem management could be significantly improved by explicitly considering and manipulating the underlying networks of species interactions. A network perspective can link species interactions to ecosystem functioning and stability, identify influential species and interactions, and suggest optimal management approaches. Recent advances in predicting the network roles of species from their functional traits could allow direct manipulation of network architecture through additions or removals of species with targeted traits. Combined with improved understanding of the structure and dynamics of networks across spatial and temporal scales and interaction types, including social-ecological, applying these tools to nature-based management can contribute to sustainable agroecosystems.
Collapse
Affiliation(s)
- Warwick J Allen
- Bio-Protection Research Centre/Bioprotection Aotearoa, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Jennifer L Bufford
- Bio-Protection Research Centre/Bioprotection Aotearoa, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Andrew D Barnes
- Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3204, New Zealand
| | - Barbara I P Barratt
- AgResearch, Invermay Research Centre, Mosgiel 9053, New Zealand; Department of Botany, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Julie R Deslippe
- Centre for Biodiversity and Restoration Ecology and School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Ian A Dickie
- Bio-Protection Research Centre/Bioprotection Aotearoa, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Stephen L Goldson
- Bio-Protection Research Centre/Bioprotection Aotearoa, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand; AgResearch, Private Bag 4749, Christchurch 8140, New Zealand
| | - Brad G Howlett
- The New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Philip E Hulme
- Bio-Protection Research Centre/Bioprotection Aotearoa, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Sandra Lavorel
- Manaaki Whenua Landcare Research, Lincoln, New Zealand; Laboratoire d'Ecologie Alpine, Université Grenoble Alpes CNRS, Université Savoie Mont-Blanc, 38000 Grenoble, France
| | - Sophie A O'Brien
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Lauren P Waller
- Bio-Protection Research Centre/Bioprotection Aotearoa, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Jason M Tylianakis
- Bio-Protection Research Centre/Bioprotection Aotearoa, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
98
|
Fang W, Lin M, Shi J, Liang Z, Tu X, He Z, Qiu R, Wang S. Organic carbon and eukaryotic predation synergistically change resistance and resilience of aquatic microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154386. [PMID: 35331758 DOI: 10.1016/j.scitotenv.2022.154386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
With rapid global urbanization, anthropogenic activities alter aquatic biota in urban rivers through inputs of dissolved organic carbon (DOC) and nutrients. Microorganisms-mediated global element cycles provide functions in maintaining microbial ecology stability. The DOC (bottom-up control) and microbial predation (top-down control) may synergistically drive the competition and evolution of aquatic microbial communities, as well as their resistance and resilience, for which experimental evidences remain scarce. In this study, laboratory sediment-water column experiments were employed to mimic the organic carbon-driven water blackening and odorization process in urban rivers and to elucidate the impact of DOC on microbial ecology stability. Results showed that low (25-75 mg/L) and high DOC (100-150 mg/L) changed the aquatic microbial community assemblies in different patterns: (1) the low DOC enriched K-selection microorganisms (e.g., C39, Tolumonas and CR08G) with low biomass and low resilience, as well as high resistance to perturbations in changing microbial community assemblies; (2) the high DOC was associated with r-selection microorganisms (e.g., PSB-M-3 and Clostridium) with high biomass and improved resilience, together with low resistance detrimental to microbial ecology stability. Overall, this study provided new insight into the impact of DOC on aquatic microbial community stability, which may help guide sustainable urban river management.
Collapse
Affiliation(s)
- Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China; Zhongshan Municipal Ecology and Environment Bureau, Zhongshan, Guangdong 528403, China
| | - Muxing Lin
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jiangjian Shi
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Xiang Tu
- State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Rongliang Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China.
| |
Collapse
|
99
|
Merging theory and experiments to predict and understand coextinctions. Trends Ecol Evol 2022; 37:886-898. [DOI: 10.1016/j.tree.2022.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
|
100
|
Sun N, Gu Y, Jiang G, Wang Y, Wang P, Song W, Ma P, Duan Y, Jiao Z. Bacterial Communities in the Endophyte and Rhizosphere of White Radish ( Raphanus sativus) in Different Compartments and Growth Conditions. Front Microbiol 2022; 13:900779. [PMID: 35847086 PMCID: PMC9277120 DOI: 10.3389/fmicb.2022.900779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Endophyte resources have important research value in multiresistance breeding, ecological protection, germicide development, and other fields. In this study, high-throughput sequencing (Illumina-MiSeq) technology was employed to analyse the diversity and community composition of white radish (Raphanus sativus) endophytes and rhizosphere bacteria in different compartments and cultivation conditions, including greenhouse and open field cultivation, at both the phylum and genus levels. Alpha diversity index analysis showed that the bacterial richness and diversity values of rhizosphere bacteria were higher than those of endophytes in different compartments. NMDS analysis and microbial co-occurrence network analysis showed that apart from the similarity in the endophytic bacterial composition of the leaf and root endosphere, the endophytic bacterial composition in flesh and epidermis of radish were also more similar. The dominant endophytic bacteria in white radish were Proteobacteria, Bacteroidetes, and Actinomycetes at the phylum level. We analyzed the effects of different ecological compartments and two cultivation environments on radish microorganisms, and found that ecological compartments played an important role, which was related to the mechanism of microbial assembly in plants. The same facility cultivation can also improve the diversity of radish microorganisms in different ecological compartments, and change the biomarkers that play a major role in rhizosphere microorganisms and endophytes of radish. Bacteria plays an important role in the process of plant growth, and the study of endophytes enriches the understanding of microbial diversity in white radish, which helps to provide insight into the ecological function and interaction mechanisms of plants and microorganisms.
Collapse
Affiliation(s)
- Nan Sun
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | - Yizhu Gu
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | - Guoxia Jiang
- Henan Pingdingshan Academy of Agricultural Sciences, Pingdingshan, China
| | - Yuxin Wang
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | - Pingzhi Wang
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | - Weitang Song
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | - Peifang Ma
- Henan Pingdingshan Academy of Agricultural Sciences, Pingdingshan, China
| | - Yabin Duan
- Henan Pingdingshan Academy of Agricultural Sciences, Pingdingshan, China
| | - Ziyuan Jiao
- Henan Pingdingshan Academy of Agricultural Sciences, Pingdingshan, China
| |
Collapse
|