51
|
Takeuchi J, Nagamiya H, Moroi S, Ohnishi T, Todoroki Y. Design of potent ABA receptor antagonists based on a conformational restriction approach. Org Biomol Chem 2020; 18:4988-4996. [DOI: 10.1039/d0ob01017k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Conformationally restricted analogs of (+)-PAO4, an abscisic acid receptor antagonist, were synthesized to improve its potency.
Collapse
Affiliation(s)
- Jun Takeuchi
- Faculty of Agriculture
- Shizuoka University
- Shizuoka 422-8529
- Japan
| | - Hikaru Nagamiya
- Faculty of Agriculture
- Shizuoka University
- Shizuoka 422-8529
- Japan
| | - Sayaka Moroi
- Faculty of Agriculture
- Shizuoka University
- Shizuoka 422-8529
- Japan
| | - Toshiyuki Ohnishi
- Faculty of Agriculture
- Shizuoka University
- Shizuoka 422-8529
- Japan
- Research Institute of Green Science and Technology
| | - Yasushi Todoroki
- Faculty of Agriculture
- Shizuoka University
- Shizuoka 422-8529
- Japan
- Research Institute of Green Science and Technology
| |
Collapse
|
52
|
Kumar M, Kesawat MS, Ali A, Lee SC, Gill SS, Kim HU. Integration of Abscisic Acid Signaling with Other Signaling Pathways in Plant Stress Responses and Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E592. [PMID: 31835863 PMCID: PMC6963649 DOI: 10.3390/plants8120592] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022]
Abstract
Plants are immobile and, to overcome harsh environmental conditions such as drought, salt, and cold, they have evolved complex signaling pathways. Abscisic acid (ABA), an isoprenoid phytohormone, is a critical signaling mediator that regulates diverse biological processes in various organisms. Significant progress has been made in the determination and characterization of key ABA-mediated molecular factors involved in different stress responses, including stomatal closure and developmental processes, such as seed germination and bud dormancy. Since ABA signaling is a complex signaling network that integrates with other signaling pathways, the dissection of its intricate regulatory network is necessary to understand the function of essential regulatory genes involved in ABA signaling. In the present review, we focus on two aspects of ABA signaling. First, we examine the perception of the stress signal (abiotic and biotic) and the response network of ABA signaling components that transduce the signal to the downstream pathway to respond to stress tolerance, regulation of stomata, and ABA signaling component ubiquitination. Second, ABA signaling in plant development processes, such as lateral root growth regulation, seed germination, and flowering time regulation is investigated. Examining such diverse signal integration dynamics could enhance our understanding of the underlying genetic, biochemical, and molecular mechanisms of ABA signaling networks in plants.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| | | | - Asjad Ali
- Southern Cross Plant Science, Southern Cross University, East Lismore NSW 2480, Australia;
| | | | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak 124001, India;
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| |
Collapse
|
53
|
Han S, Lee JY, Lee Y, Kim TH, Lee S. Comprehensive survey of the VxGΦL motif of PP2Cs from Oryza sativa reveals the critical role of the fourth position in regulation of ABA responsiveness. PLANT MOLECULAR BIOLOGY 2019; 101:455-469. [PMID: 31541388 DOI: 10.1007/s11103-019-00916-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Regulation of abscisic acid (ABA) signaling is crucial in balancing responses to abiotic stresses and retaining growth in planta. An ABA receptor (PYL/RCAR) and a protein phosphatase (PP2C), a co-receptor, form a complex upon binding to ABA. Previously we reported that the second and fourth positions in the VxGΦL motif of PP2Cs from Oryza sativa are critical in the interaction of PP2Cs with PYL/RCARs. Considering substantial effects of the VxGΦL motif on ABA signaling outputs, further comprehensive characterization of residues in the second and fourth positions are required. Here we surveyed the second and fourth positions of the VxGΦL motif by combination of biochemical, structural and physiological analyses. We found that the fourth position of the VxGΦL motif, highly conserved to small hydrophobic residues, was a key determinant of the OsPP2C50:OsPYL/RCAR interactions across subfamilies. Large hydrophobic or any hydrophilic residues in the fourth position abrogated ABA responsiveness. Analysis of crystal structures of OsPP2C50 mutants, S265L/I267V ("LV"), I267L ("SL") and I267W ("SW"), in complex with ABA and OsPYL/RCAR3, along with energy calculation of the complexes, uncovered that a bulky hydrophobic residue in the fourth position of the VxGΦL motif pushed away side chains of nearby residues, conferring side-chain rotameric energy stress. Hydrophilic residues in this position imposed solvation energy stress to the PP2C:PYL/RCAR complex. Germination and gene expression analyses corroborated that OsPP2C50 AS and AK mutants modulated ABA responsiveness in Arabidopsis. Our results suggest that ABA responsiveness could be fine-tuned by the fourth position of the VxGΦL motif on PP2Cs. KEY MESSAGE: We comprehensively surveyed the VxGΦL motif to find that the fourth position, highly conserved to small hydrophobic residues, was critical in regulating ABA responsiveness.
Collapse
Affiliation(s)
- Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji-Young Lee
- Department of Prepharm-Med/Health Functional Biomaterials, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Yeongmok Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Tae-Houn Kim
- Department of Prepharm-Med/Health Functional Biomaterials, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
54
|
Papacek M, Christmann A, Grill E. Increased water use efficiency and water productivity of arabidopsis by abscisic acid receptors from Populus canescens. ANNALS OF BOTANY 2019; 124:581-590. [PMID: 30629104 PMCID: PMC6821255 DOI: 10.1093/aob/mcy225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/06/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Water deficit is the single most important factor limiting plant productivity in the field. Poplar is a crop used for second-generation bioenergy production that can be cultivated on marginal land without competing for land use in food production. Poplar has a high demand for water, which makes improving its water use efficiency (WUE) an attractive goal. Recently, we showed that enhanced expression of specific receptors of arabidopsis for the phytohormone abscisic acid (ABA) can improve WUE in arabidopsis and water productivity, i.e. more biomass is formed per unit of water over time. In this study, we examined whether ABA receptors from poplar can enhance WUE and water productivity in arabidopsis. METHODS ABA receptors from poplar were stably introduced into arabidopsis for analysis of their effect on water use efficiency. Physiological analysis included growth assessment and gas exchange measurements. KEY RESULTS The data presented here are in agreement with the functionality of poplar ABA receptors in arabidopsis, which led to ABA-hypersensitive seed germination and root growth. In addition, arabidopsis lines expressing poplar RCAR10, but not RCAR9, showed increased WUE by up to 26 % compared with the wild type with few trade-offs in growth that also resulted in higher water productivity during drought. The improved WUE was mediated by reduced stomatal conductance, a steeper CO2 gradient at the leaf boundary and sustained photosynthesis resulting in an increased intrinsic WUE (iWUE). CONCLUSIONS The analysis is a case study supporting the use of poplar ABA receptors for improving WUE and showing the feasibility of using a heterologous expression strategy for generating plants with improved water productivity.
Collapse
Affiliation(s)
- Michael Papacek
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße, Freising, Germany
| | - Alexander Christmann
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße, Freising, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße, Freising, Germany
- For correspondence. E-mail
| |
Collapse
|
55
|
Nguyen QTC, Lee SJ, Choi SW, Na YJ, Song MR, Hoang QTN, Sim SY, Kim MS, Kim JI, Soh MS, Kim SY. Arabidopsis Raf-Like Kinase Raf10 Is a Regulatory Component of Core ABA Signaling. Mol Cells 2019; 42:646-660. [PMID: 31480825 PMCID: PMC6776158 DOI: 10.14348/molcells.2019.0173] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 11/27/2022] Open
Abstract
Abscisic acid (ABA) is a phytohormone essential for seed development and seedling growth under unfavorable environmental conditions. The signaling pathway leading to ABA response has been established, but relatively little is known about the functional regulation of the constituent signaling components. Here, we present several lines of evidence that Arabidopsis Raf-like kinase Raf10 modulates the core ABA signaling downstream of signal perception step. In particular, Raf10 phosphorylates subclass III SnRK2s (SnRK2.2, SnRK2.3, and SnRK2.6), which are key positive regulators, and our study focused on SnRK2.3 indicates that Raf10 enhances its kinase activity and may facilitate its release from negative regulators. Raf10 also phosphorylates transcription factors (ABI5, ABF2, and ABI3) critical for ABAregulted gene expression. Furthermore, Raf10 was found to be essential for the in vivo functions of SnRK2s and ABI5. Collectively, our data demonstrate that Raf10 is a novel regulatory component of core ABA signaling.
Collapse
Affiliation(s)
- Quy Thi Cam Nguyen
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Sun-ji Lee
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Seo-wha Choi
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Yeon-ju Na
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Mi-ran Song
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Quyen Thi Ngoc Hoang
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Seo Young Sim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988,
Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988,
Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Moon-Soo Soh
- Department of Molecular Biology, Sejong University, Seoul 05006,
Korea
| | - Soo Young Kim
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
56
|
Righetto GL, Sriranganadane D, Halabelian L, Chiodi CG, Elkins JM, Massirer KB, Gileadi O, Menossi M, Couñago RM. The C-Terminal Domains SnRK2 Box and ABA Box Have a Role in Sugarcane SnRK2s Auto-Activation and Activity. FRONTIERS IN PLANT SCIENCE 2019; 10:1105. [PMID: 31620147 PMCID: PMC6759772 DOI: 10.3389/fpls.2019.01105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Resistance to drought stress is fundamental to plant survival and development. Abscisic acid (ABA) is one of the major hormones involved in different types of abiotic and biotic stress responses. ABA intracellular signaling has been extensively explored in Arabidopsis thaliana and occurs via a phosphorylation cascade mediated by three related protein kinases, denominated SnRK2s (SNF1-related protein kinases). However, the role of ABA signaling and the biochemistry of SnRK2 in crop plants remains underexplored. Considering the importance of the ABA hormone in abiotic stress tolerance, here we investigated the regulatory mechanism of sugarcane SnRK2s-known as stress/ABA-activated protein kinases (SAPKs). The crystal structure of ScSAPK10 revealed the characteristic SnRK2 family architecture, in which the regulatory SnRK2 box interacts with the kinase domain αC helix. To study sugarcane SnRK2 regulation, we produced a series of mutants for the protein regulatory domains SnRK2 box and ABA box. Mutations in ScSAPK8 SnRK2 box aimed at perturbing its interaction with the protein kinase domain reduced protein kinase activity in vitro. On the other hand, mutations to ScSAPK ABA box did not impact protein kinase activity but did alter the protein autophosphorylation pattern. Taken together, our results demonstrate that both SnRK2 and ABA boxes might play a role in sugarcane SnRK2 function.
Collapse
Affiliation(s)
- Germanna Lima Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution, and Bioagents, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Dev Sriranganadane
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Levon Halabelian
- Structural Genomics Consortium, MaRS Centre, Toronto, ON, Canada
| | - Carla G. Chiodi
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Jonathan M. Elkins
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, Brazil
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katlin B. Massirer
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Opher Gileadi
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution, and Bioagents, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, Brazil
| |
Collapse
|
57
|
Ruschhaupt M, Mergner J, Mucha S, Papacek M, Doch I, Tischer SV, Hemmler D, Chiasson D, Edel KH, Kudla J, Schmitt-Kopplin P, Kuster B, Grill E. Rebuilding core abscisic acid signaling pathways of Arabidopsis in yeast. EMBO J 2019; 38:e101859. [PMID: 31368592 PMCID: PMC6717914 DOI: 10.15252/embj.2019101859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
The phytohormone abscisic acid (ABA) regulates plant responses to abiotic stress, such as drought and high osmotic conditions. The multitude of functionally redundant components involved in ABA signaling poses a major challenge for elucidating individual contributions to the response selectivity and sensitivity of the pathway. Here, we reconstructed single ABA signaling pathways in yeast for combinatorial analysis of ABA receptors and coreceptors, downstream‐acting SnRK2 protein kinases, and transcription factors. The analysis shows that some ABA receptors stimulate the pathway even in the absence of ABA and that SnRK2s are major determinants of ABA responsiveness by differing in the ligand‐dependent control. Five SnRK2s, including SnRK2.4 known to be active under osmotic stress in plants, activated ABA‐responsive transcription factors and were regulated by ABA receptor complexes in yeast. In the plant tissue, SnRK2.4 and ABA receptors competed for coreceptor interaction in an ABA‐dependent manner consistent with a tight integration of SnRK2.4 into the ABA signaling pathway. The study establishes the suitability of the yeast system for the dissection of core signaling cascades and opens up future avenues of research on ligand‐receptor regulation.
Collapse
Affiliation(s)
- Moritz Ruschhaupt
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Stefanie Mucha
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Michael Papacek
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Isabel Doch
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Stefanie V Tischer
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Daniel Hemmler
- Research Unit Analytical BioGeoChemistry (BGC), German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Analytical Food Chemistry, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - David Chiasson
- Faculty of Biology, Institute of Genetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry (BGC), German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Analytical Food Chemistry, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University Munich, Freising, Germany
| | - Erwin Grill
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| |
Collapse
|
58
|
Yang G, Yu Z, Gao L, Zheng C. SnRK2s at the Crossroads of Growth and Stress Responses. TRENDS IN PLANT SCIENCE 2019; 24:672-676. [PMID: 31255544 DOI: 10.1016/j.tplants.2019.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 05/21/2023]
Abstract
Plant subclass III SnRK2 protein kinases are widely recognized as key regulators of abscisic acid signaling and downstream stress responses. Recent research has revealed that SnRK2s function in growth-promoting signaling pathways, suggesting that SnRK2s tightly control the yin-yang relationship between plant growth and stress responses.
Collapse
Affiliation(s)
- Guodong Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zipeng Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
59
|
Li H, Li Y, Zhao Q, Li T, Wei J, Li B, Shen W, Yang C, Zeng Y, Rodriguez PL, Zhao Y, Jiang L, Wang X, Gao C. The plant ESCRT component FREE1 shuttles to the nucleus to attenuate abscisic acid signalling. NATURE PLANTS 2019; 5:512-524. [PMID: 30962512 DOI: 10.1038/s41477-019-0400-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/05/2019] [Indexed: 05/21/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery has been well documented for its function in endosomal sorting in eukaryotes. Here, we demonstrate an up-to-now unknown and non-endosomal function of the ESCRT component in plants. We show that FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body biogenesis, plays additional functions in the nucleus in transcriptional inhibition of abscisic acid (ABA) signalling. Following ABA treatment, SNF1-related protein kinase 2 (SnRK2) kinases phosphorylate FREE1, a step requisite for ABA-induced FREE1 nuclear import. In the nucleus, FREE1 interacts with the basic leucine zipper transcription factors ABA-RESPONSIVE ELEMENTS BINDING FACTOR4 and ABA-INSENSITIVE5 to reduce their binding to the cis-regulatory sequences of downstream genes. Collectively, our study demonstrates the crosstalk between endomembrane trafficking and ABA signalling at the transcriptional level and highlights the moonlighting properties of the plant ESCRT subunit FREE1, which has evolved unique non-endosomal functions in the nucleus besides its roles in membrane trafficking in the cytoplasm.
Collapse
Affiliation(s)
- Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Yingzhu Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tingting Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Juan Wei
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China.
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China.
| |
Collapse
|
60
|
Li H, Li Y, Zhao Q, Li T, Wei J, Li B, Shen W, Yang C, Zeng Y, Rodriguez PL, Zhao Y, Jiang L, Wang X, Gao C. The plant ESCRT component FREE1 shuttles to the nucleus to attenuate abscisic acid signalling. NATURE PLANTS 2019; 5:512-524. [PMID: 30962512 DOI: 10.1038/s41477-019-0400-405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/05/2019] [Indexed: 05/28/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery has been well documented for its function in endosomal sorting in eukaryotes. Here, we demonstrate an up-to-now unknown and non-endosomal function of the ESCRT component in plants. We show that FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body biogenesis, plays additional functions in the nucleus in transcriptional inhibition of abscisic acid (ABA) signalling. Following ABA treatment, SNF1-related protein kinase 2 (SnRK2) kinases phosphorylate FREE1, a step requisite for ABA-induced FREE1 nuclear import. In the nucleus, FREE1 interacts with the basic leucine zipper transcription factors ABA-RESPONSIVE ELEMENTS BINDING FACTOR4 and ABA-INSENSITIVE5 to reduce their binding to the cis-regulatory sequences of downstream genes. Collectively, our study demonstrates the crosstalk between endomembrane trafficking and ABA signalling at the transcriptional level and highlights the moonlighting properties of the plant ESCRT subunit FREE1, which has evolved unique non-endosomal functions in the nucleus besides its roles in membrane trafficking in the cytoplasm.
Collapse
Affiliation(s)
- Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Yingzhu Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tingting Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Juan Wei
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China.
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China.
| |
Collapse
|
61
|
Biswal AK, McConnell EW, Werth EG, Lo SF, Yu SM, Hicks LM, Jones AM. The Nucleotide-Dependent Interactome of Rice Heterotrimeric G-Protein α -Subunit. Proteomics 2019; 19:e1800385. [PMID: 30866160 DOI: 10.1002/pmic.201800385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Indexed: 11/09/2022]
Abstract
The rice heterotrimeric G-protein complex, a guanine-nucleotide-dependent on-off switch, mediates vital cellular processes and responses to biotic and abiotic stress. Exchange of bound GDP (resting state) for GTP (active state) is spontaneous in plants including rice and thus there is no need for promoting guanine nucleotide exchange in vivo as a mechanism for regulating the active state of signaling as it is well known for animal G signaling. As such, a master regulator controlling the G-protein activation state is unknown in plants. Therefore, an ab initio approach is taken to discover candidate regulators. The rice Gα subunit (RGA1) is used as bait to screen for nucleotide-dependent protein partners. A total of 264 proteins are identified by tandem mass spectrometry of which 32 were specific to the GDP-bound inactive state and 22 specific to the transition state. Approximately, 10% are validated as previously identified G-protein interactors.
Collapse
Affiliation(s)
- Akshaya Kumar Biswal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan Wesley McConnell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily Grace Werth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, China
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, China
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
62
|
Jamsheer K M, Jindal S, Laxmi A. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2239-2259. [PMID: 30870564 DOI: 10.1093/jxb/erz107] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/26/2019] [Indexed: 05/07/2023]
Abstract
The target of rapamycin (TOR)-sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) signaling is an ancient regulatory mechanism that originated in eukaryotes to regulate nutrient-dependent growth. Although the TOR-SnRK1 signaling cascade shows highly conserved functions among eukaryotes, studies in the past two decades have identified many important plant-specific innovations in this pathway. Plants also possess SnRK2 and SnRK3 kinases, which originated from the ancient SnRK1-related kinases and have specialized roles in controlling growth, stress responses and nutrient homeostasis in plants. Recently, an integrative picture has started to emerge in which different SnRKs and TOR kinase are highly interconnected to control nutrient and stress responses of plants. Further, these kinases are intimately involved with phytohormone signaling networks that originated at different stages of plant evolution. In this review, we highlight the evolution and divergence of TOR-SnRK signaling components in plants and their communication with each other as well as phytohormone signaling to fine-tune growth and stress responses in plants.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Noida, India
| | - Sunita Jindal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
63
|
Duarte KE, de Souza WR, Santiago TR, Sampaio BL, Ribeiro AP, Cotta MG, da Cunha BADB, Marraccini PRR, Kobayashi AK, Molinari HBC. Identification and characterization of core abscisic acid (ABA) signaling components and their gene expression profile in response to abiotic stresses in Setaria viridis. Sci Rep 2019; 9:4028. [PMID: 30858491 PMCID: PMC6411973 DOI: 10.1038/s41598-019-40623-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Abscisic acid (ABA) is an essential phytohormone that regulates growth, development and adaptation of plants to environmental stresses. In Arabidopsis and other higher plants, ABA signal transduction involves three core components namely PYR/PYL/RCAR ABA receptors (PYLs), type 2C protein phosphatases (PP2Cs) and class III SNF-1-related protein kinase 2 (SnRK2s). In the present study, we reported the identification and characterization of the core ABA signaling components in Setaria viridis, an emerging model plant for cereals and feedstock crops presenting C4 metabolism, leading to the identification of eight PYL (SvPYL1 to 8), twelve PP2C (SvPP2C1 to 12) and eleven SnRK2 (SvSnRK2.1 through SvSnRK2.11) genes. In order to study the expression profiles of these genes, two different S. viridis accessions (A10.1 and Ast-1) were submitted to drought, salinity and cold stresses, in addition to application of exogenous ABA. Differential gene expression profiles were observed in each treatment and plant genotype, demonstrating variations of ABA stress responses within the same species. These differential responses to stresses were also assessed by physiological measurements such as photosynthesis, stomatal conductance and transpiration rate. This study allows a detailed analysis of gene expression of the core ABA signaling components in Setaria viridis submitted to different treatments and provides suitable targets for genetic engineering of C4 plants aiming tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Karoline Estefani Duarte
- Plant Biotechnology Program, Federal University of Lavras (UFLA), Lavras, MG, 37200-000, Brazil.,Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasilia, DF, 70770-901, Brazil
| | - Wagner Rodrigo de Souza
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasilia, DF, 70770-901, Brazil.,Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, Santo André, SP, 09606-045, Brazil
| | - Thaís Ribeiro Santiago
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasilia, DF, 70770-901, Brazil
| | - Bruno Leite Sampaio
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasilia, DF, 70770-901, Brazil
| | - Ana Paula Ribeiro
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasilia, DF, 70770-901, Brazil
| | - Michelle Guitton Cotta
- Department of Cell Biology, University of Brasília (UnB), Brasília, DF, 70910-900, Brazil
| | | | - Pierre Roger René Marraccini
- Plant Biotechnology Program, Federal University of Lavras (UFLA), Lavras, MG, 37200-000, Brazil.,CIRAD, UMR AGAP (University Montpellier, CIRAD, IRD, INRA), Montpellier, 34398, France.,CIRAD, UMR IPME (University Montpellier, CIRAD, IRD, Montpellier), Agricultural Genetics Institute, LMI RICE2, Hanoi, Vietnam
| | - Adilson Kenji Kobayashi
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasilia, DF, 70770-901, Brazil
| | | |
Collapse
|
64
|
Peres ALGL, Soares JS, Tavares RG, Righetto G, Zullo MAT, Mandava NB, Menossi M. Brassinosteroids, the Sixth Class of Phytohormones: A Molecular View from the Discovery to Hormonal Interactions in Plant Development and Stress Adaptation. Int J Mol Sci 2019; 20:ijms20020331. [PMID: 30650539 PMCID: PMC6359644 DOI: 10.3390/ijms20020331] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
Phytohormones are natural chemical messengers that play critical roles in the regulation of plant growth and development as well as responses to biotic and abiotic stress factors, maintaining plant homeostasis, and allowing adaptation to environmental changes. The discovery of a new class of phytohormones, the brassinosteroids (BRs), almost 40 years ago opened a new era for the studies of plant growth and development and introduced new perspectives in the regulation of agronomic traits through their use in agriculture. BRs are a group of hormones with significant growth regulatory activity that act independently and in conjunction with other phytohormones to control different BR-regulated activities. Genetic and molecular research has increased our understanding of how BRs and their cross-talk with other phytohormones control several physiological and developmental processes. The present article provides an overview of BRs' discovery as well as recent findings on their interactions with other phytohormones at the transcriptional and post-transcriptional levels, in addition to clarifying how their network works to modulate plant growth, development, and responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ana Laura G L Peres
- Functional Genome Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas 13083-970, Brazil.
| | - José Sérgio Soares
- Functional Genome Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas 13083-970, Brazil.
| | - Rafael G Tavares
- Center for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 400, Australia.
| | - Germanna Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas 13083-970, Brazil.
| | - Marco A T Zullo
- Laboratory of Phytochemistry, Agronomic Institute, Campinas 13020-902, Brazil.
| | - N Bhushan Mandava
- Mandava Associates, LLC, 1050 Connecticut Avenue, N.W. Suite 500, Washington, DC 20036, USA.
| | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas 13083-970, Brazil.
| |
Collapse
|
65
|
Baek D, Kim MC, Kumar D, Park B, Cheong MS, Choi W, Park HC, Chun HJ, Park HJ, Lee SY, Bressan RA, Kim JY, Yun DJ. AtPR5K2, a PR5-Like Receptor Kinase, Modulates Plant Responses to Drought Stress by Phosphorylating Protein Phosphatase 2Cs. FRONTIERS IN PLANT SCIENCE 2019; 10:1146. [PMID: 31708935 PMCID: PMC6822995 DOI: 10.3389/fpls.2019.01146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/22/2019] [Indexed: 05/21/2023]
Abstract
Cell surface receptors perceive signals from the environment and transfer them to the interior of the cell. The Arabidopsis thaliana PR5 receptor-like kinase (AtPR5K) subfamily consists of three members with extracellular domains that share sequence similarity with the PR5 proteins. In this study, we characterized the role of AtPR5K2 in plant drought-stress signaling. AtPR5K2 is predominantly expressed in leaves and localized to the plasma membrane. The atpr5k2-1 mutant showed tolerance to dehydration stress, while AtPR5K2-overexpressing plants was hypersensitive to drought. Bimolecular fluorescence complementation assays showed that AtPR5K2 physically interacted with the type 2C protein phosphatases ABA-insensitive 1 (ABI1) and ABI2 and the SNF1-related protein kinase 2 (SnRK2.6) proteins, all of which are involved in the initiation of abscisic acid (ABA) signaling; however, these interactions were inhibited by treatments of exogenous ABA. Moreover, AtPR5K2 was found to phosphorylate ABI1 and ABI2, but not SnRK2.6. Taken together, these results suggest that AtPR5K2 participates in ABA-dependent drought-stress signaling through the phosphorylation of ABI1 and ABI2.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Dhinesh Kumar
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Donald Danforth Plant Science Center, St Louis, MO, United States
| | - Bokyung Park
- Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, South Korea
| | - Mi Sun Cheong
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Wonkyun Choi
- Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology (NIE), Seocheon, South Korea
| | - Hyeong Cheol Park
- Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology (NIE), Seocheon, South Korea
| | - Hyun Jin Chun
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Ray A. Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Jae-Yean Kim, ; Dae-Jin Yun,
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- *Correspondence: Jae-Yean Kim, ; Dae-Jin Yun,
| |
Collapse
|
66
|
Song Y, Zhang H, You H, Liu Y, Chen C, Feng X, Yu X, Wu S, Wang L, Zhong S, Li Q, Zhu Y, Ding X. Identification of novel interactors and potential phosphorylation substrates of GsSnRK1 from wild soybean (Glycine soja). PLANT, CELL & ENVIRONMENT 2019; 42:145-157. [PMID: 29664126 DOI: 10.1111/pce.13217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The plant sucrose nonfermenting kinase 1 (SnRK1) kinases play the central roles in the processes of energy balance, hormone perception, stress resistance, metabolism, growth, and development. However, the functions of these kinases are still elusive. In this study, we used GsSnRK1 of wild soybean as bait to perform library-scale screens by the means of yeast two-hybrid to identify its interacting proteins. The putative interactions were verified by yeast retransformation and β-galactosidase assays, and the selected interactions were further confirmed in planta by bimolecular fluorescence complementation and biochemical Co-IP assays. Protein phosphorylation analyses were carried out by phos-tag assay and anti-phospho-(Ser/Thr) substrate antibodies. Finally, we obtained 24 GsSnRK1 interactors and several putative substrates that can be categorized into SnRK1 regulatory β subunit, protein modification, biotic and abiotic stress-related, hormone perception and signalling, gene expression regulation, water and nitrogen transport, metabolism, and unknown proteins. Intriguingly, we first discovered that GsSnRK1 interacted with and phosphorylated the components of soybean nodulation and symbiotic nitrogen fixation. The interactions and potential functions of GsSnRK1 and its associated proteins were extensively discussed and analysed. This work provides plausible clues to elucidate the novel functions of SnRK1 in response to variable environmental, metabolic, and physiological requirements.
Collapse
Affiliation(s)
- Yu Song
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hang Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongguang You
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Feng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xingyu Yu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shengyang Wu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Libo Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shihua Zhong
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
67
|
Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochem Biophys Res Commun 2018; 504:143-148. [PMID: 30170727 DOI: 10.1016/j.bbrc.2018.08.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
Proper regulation of stomatal movement in response to various environmental stresses or developmental status is critical for the adaptation of many plant species to land. In plants, abscisic acid (ABA)-induced stomatal closure is a well-adapted method of regulating water status. In addition to ABA, we previously showed that plant-specific steroidal hormone, brassinosteroid (BR), also induces stomatal closure; however, BR modulates ABA-induced stomatal closure negatively at high concentrations. In this study, we further investigated the cross-talk between ABA and BR in relation to stomatal movement. In contrast to previous reports that ABA-induced stomatal closure was inhibited by brassinolide (BL), the most active BR, we showed that BL-induced stomatal closure was enhanced by ABA, indicating that the sequence of ABA or BL treatments led to different results. We found that this phenomenon occurred because the guard cells still had the capacity to be closed further by ABA, as the degree of stomatal closure by BL was always less than that by ABA. We also found that BL-induced stomatal closure required Open Stomata 1 (OST1) activity and the induced expression of OST1 was indifferent to the sequence of ABA and/or BL treatments. In addition, we examined the underlying mechanism by which inhibition of ABA-induced stomatal closure by BL occurred. We revealed that the downregulation of ABA-biosynthetic genes by BL resulted in a lower accumulation of ABA. These results suggested that the regulation of stomatal movement is finely controlled by the combined effects of plant hormones, ABA and BR.
Collapse
|
68
|
Dejonghe W, Okamoto M, Cutler SR. Small Molecule Probes of ABA Biosynthesis and Signaling. PLANT & CELL PHYSIOLOGY 2018; 59:1490-1499. [PMID: 29986078 DOI: 10.1093/pcp/pcy126] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/26/2018] [Indexed: 05/07/2023]
Abstract
The phytohormone ABA mediates many physiological and developmental responses, and its key role in plant water relations has fueled efforts to improve crop water productivity by manipulating ABA responses. ABA's core signaling components are encoded by large gene families, which has hampered functional studies using classical genetic approaches due to redundancy. Chemical approaches can complement genetic approaches and have the advantage of delivering both biological probes and potential agrochemical leads; these benefits have spawned the discovery and design of new chemical modulators of ABA signaling and biosynthesis, which have contributed to the identification of ABA receptors and helped to define PYR1 and related subfamily III receptors as key cellular targets for chemically manipulating water productivity. In this review, we provide an overview of small molecules that have helped dissect both ABA signaling and metabolic pathways. We further discuss how the insights gleaned using ABA probe molecules might be translated to improvements in crop water productivity and future opportunities for development of small molecules that affect ABA metabolism and signaling.
Collapse
Affiliation(s)
- Wim Dejonghe
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Masanori Okamoto
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-cho, Utsunomiya, Tochigi, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Sean R Cutler
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
69
|
Kim TW, Youn JH, Park TK, Kim EJ, Park CH, Wang ZY, Kim SK, Kim TW. OST1 Activation by the Brassinosteroid-Regulated Kinase CDG1-LIKE1 in Stomatal Closure. THE PLANT CELL 2018; 30:1848-1863. [PMID: 30065046 PMCID: PMC6139680 DOI: 10.1105/tpc.18.00239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 07/30/2018] [Indexed: 05/03/2023]
Abstract
Crosstalk between signaling pathways is an important feature of complex regulatory networks. How signal crosstalk circuits are tailored to suit different needs of various cell types remains a mystery in biology. Brassinosteroid (BR) and abscisic acid (ABA) antagonistically regulate many aspects of plant growth and development through direct interactions between components of the two signaling pathways. Here, we show that BR and ABA synergistically regulate stomatal closure through crosstalk between the BR-activated kinase CDG1-LIKE1 (CDL1) and the OPEN STOMATA1 (OST1) of the ABA signaling pathway in Arabidopsis thaliana We demonstrate that the cdl1 mutant displayed reduced sensitivity to ABA in a stomatal closure assay, similar to the ost1 mutant. CDL1 and the BR receptor BR-INSENSITIVE1, but not other downstream components of the BR signaling pathway, were required for BR regulation of stomatal movement. Genetic and biochemical experiments demonstrated that CDL1 activates OST1 by phosphorylating it on residue Ser-7. BR increased phosphorylation of OST1, and the BR-induced OST1 activation was abolished in cdl1 mutants. Moreover, we found that ABA activates CDL1 in an OST1-dependent manner. Taken together, our findings illustrate a cell-type-specific BR signaling branch through which BR acts synergistically with ABA in regulating stomatal closure.
Collapse
Affiliation(s)
- Tae-Woo Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Ji-Hyun Youn
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, South Korea
| | - Tae-Ki Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Eun-Ji Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Chan-Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Seong-Ki Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, South Korea
| | - Tae-Wuk Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
70
|
Huang X, Hou L, Meng J, You H, Li Z, Gong Z, Yang S, Shi Y. The Antagonistic Action of Abscisic Acid and Cytokinin Signaling Mediates Drought Stress Response in Arabidopsis. MOLECULAR PLANT 2018; 11:970-982. [PMID: 29753021 DOI: 10.1016/j.molp.2018.05.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/01/2018] [Accepted: 05/03/2018] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants encounter a variety of environmental stresses and must optimize their growth for survival. Abscisic acid (ABA) and cytokinin antagonistically regulate many developmental processes and environmental stress responses in plants. However, the molecular mechanism underlying this antagonism remains poorly defined. In this study, we demonstrated that Sucrose nonfermenting1-related kinases SnRK2.2, SnRK2.3, and SnRK2.6, the key kinases of the ABA signaling pathway, directly interact with and phosphorylate type-A response regulator 5 (ARR5), a negative regulator of cytokinin signaling. The phosphorylation of ARR5 Ser residues by SnRK2s enhanced ARR5 protein stability. Accordingly, plants overexpressing ARR5 showed ABA hypersensitivity and drought tolerance, and these phenotypes could not be recapitulated by overexpressing a non-phosphorylated ARR5 mimic. Moreover, the type-B ARRs, ARR1, ARR11 and ARR12, physically interacted with SnRK2s and repressed the kinase activity of SnRK2.6. The arr1,11,12 triple mutant exhibited hypersensitivity to ABA. Genetic analysis demonstrated that SnRK2s act upstream of ARR5 but downstream of ARR1, ARR11 and ARR12 in mediating ABA response and drought tolerance. Taken together, this study unravels the antagonistic actions of several molecular components of the ABA and cytokinin signaling pathways in mediates drought stress response, providing significant insights into how plants coordinate growth and drought stress response by integrating multiple hormone pathways.
Collapse
Affiliation(s)
- Xiaozhen Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lingyan Hou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingjing Meng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huiwen You
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100020, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
71
|
Identifying differentially expressed proteins in sorghum cell cultures exposed to osmotic stress. Sci Rep 2018; 8:8671. [PMID: 29875393 PMCID: PMC5989219 DOI: 10.1038/s41598-018-27003-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/15/2018] [Indexed: 11/28/2022] Open
Abstract
Drought stress triggers remarkable physiological changes and growth impediments, which significantly diminish plant biomass and crop yield. However, certain plant species show notable resilience, maintaining nearly normal yields under severe water deficits. For example, sorghum is a naturally drought-tolerant crop, which is ideal for studying plant adaptive responses to drought. Here we used sorbitol treatments to simulate drought-induced osmotic stress in sorghum cell suspension cultures and analysed fractions enriched for extracellular matrix proteins using isobaric tags for relative and absolute quantification technology. Sorbitol induced an overall increase in protein secretion, with putative redox proteins, proteases, and glycosyl hydrolases featuring prominently among the responsive proteins. Gene expression analysis of selected candidates revealed regulation at the transcriptional level. There was a notable differential gene expression between drought-tolerant and drought-sensitive sorghum varieties for some of the candidates. This study shows that protein secretion is a major component of the sorghum response to osmotic stress. Additionally, our data provide candidate genes, which may have putative functions in sorghum drought tolerance, and offer a pool of genes that could be developed as potential biomarkers for rapid identification of drought tolerant lines in plant breeding programs.
Collapse
|
72
|
Wang H, Wang X. GSK3-like Kinases Are a Class of Positive Components in the Core ABA Signaling Pathway. MOLECULAR PLANT 2018; 11:761-763. [PMID: 29625191 DOI: 10.1016/j.molp.2018.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Haijiao Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuelu Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
73
|
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. THE NEW PHYTOLOGIST 2018; 218:414-431. [PMID: 29332310 DOI: 10.1111/nph.14966] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.
Collapse
Affiliation(s)
- Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354, Freising, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Martin Parniske
- Institute of Genetics, Biocenter University of Munich (LMU), Großhaderner Straße 4, 82152, Martinsried, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
74
|
Ma T, Yoo MJ, Zhang T, Liu L, Koh J, Song WY, Harmon AC, Sha W, Chen S. Characterization of thiol-based redox modifications of Brassica napusSNF1-related protein kinase 2.6-2C. FEBS Open Bio 2018; 8:628-645. [PMID: 29632815 PMCID: PMC5881534 DOI: 10.1002/2211-5463.12401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/09/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023] Open
Abstract
Sucrose nonfermenting 1‐related protein kinase 2.6 (SnRK2.6), also known as Open Stomata 1 (OST1) in Arabidopsis thaliana, plays a pivotal role in abscisic acid (ABA)‐mediated stomatal closure. Four SnRK2.6 paralogs were identified in the Brassica napus genome in our previous work. Here we studied one of the paralogs, BnSnRK2.6‐2C, which was transcriptionally induced by ABA in guard cells. Recombinant BnSnRK2.6‐2C exhibited autophosphorylation activity and its phosphorylation sites were mapped. The autophosphorylation activity was inhibited by S‐nitrosoglutathione (GSNO) and by oxidized glutathione (GSSG), and the inhibition was reversed by reductants. Using monobromobimane (mBBr) labeling, we demonstrated a dose‐dependent modification of BnSnRK2.6‐2C by GSNO. Furthermore, mass spectrometry analysis revealed previously uncharacterized thiol‐based modifications including glutathionylation and sulfonic acid formation. Of the six cysteine residues in BnSnRK2.6‐2C, C159 was found to have different types of thiol modifications, suggesting its high redox sensitivity and versatility. In addition, mBBr labeling on tyrosine residues was identified. Collectively, these data provide detailed biochemical characterization of redox‐induced modifications and changes of the BnSnRK2.6‐2C activity.
Collapse
Affiliation(s)
- Tianyi Ma
- College of Life Sciences Northeast Forestry University Harbin China.,Department of Biology Genetics Institute University of Florida Gainesville FL USA.,College of Life Sciences, Agriculture and Forestry Qiqihar University Heilongjiang China
| | - Mi-Jeong Yoo
- Department of Biology Genetics Institute University of Florida Gainesville FL USA
| | - Tong Zhang
- Department of Biology Genetics Institute University of Florida Gainesville FL USA
| | - Lihong Liu
- Department of Biology Genetics Institute University of Florida Gainesville FL USA
| | - Jin Koh
- Proteomics and Mass Spectrometry Interdisciplinary Center for Biotechnology Research University of Florida Gainesville FL USA
| | - Wen-Yuan Song
- Department of Plant Pathology University of Florida Gainesville FL USA.,Plant Molecular and Cellular Biology University of Florida Gainesville FL USA
| | - Alice C Harmon
- Department of Biology Genetics Institute University of Florida Gainesville FL USA.,Plant Molecular and Cellular Biology University of Florida Gainesville FL USA
| | - Wei Sha
- College of Life Sciences Northeast Forestry University Harbin China.,College of Life Sciences, Agriculture and Forestry Qiqihar University Heilongjiang China
| | - Sixue Chen
- Department of Biology Genetics Institute University of Florida Gainesville FL USA.,Proteomics and Mass Spectrometry Interdisciplinary Center for Biotechnology Research University of Florida Gainesville FL USA.,Plant Molecular and Cellular Biology University of Florida Gainesville FL USA
| |
Collapse
|
75
|
Zhang F, Xiang L, Yu Q, Zhang H, Zhang T, Zeng J, Geng C, Li L, Fu X, Shen Q, Yang C, Lan X, Chen M, Tang K, Liao Z. ARTEMISININ BIOSYNTHESIS PROMOTING KINASE 1 positively regulates artemisinin biosynthesis through phosphorylating AabZIP1. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1109-1123. [PMID: 29301032 PMCID: PMC6019033 DOI: 10.1093/jxb/erx444] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/23/2017] [Indexed: 05/03/2023]
Abstract
The plant Artemisia annua produces the anti-malarial compound artemisinin. Although the transcriptional regulation of artemisinin biosynthesis has been extensively studied, its post-translational regulatory mechanisms, especially that of protein phosphorylation, remain unknown. Here, we report that an ABA-responsive kinase (AaAPK1), a member of the SnRK2 family, is involved in regulating artemisinin biosynthesis. The physical interaction of AaAPK1 with AabZIP1 was confirmed by multiple assays, including yeast two-hybrid, bimolecular fluorescence complementation, and pull-down. AaAPK1, mainly expressed in flower buds and leaves, could be induced by ABA, drought, and NaCl treatments. Phos-tag mobility shift assays indicated that AaAPK1 phosphorylated both itself and AabZIP1. As a result, the phosphorylated AaAPK1 significantly enhanced the transactivational activity of AabZIP1 on the artemisinin biosynthesis genes. Substituting the Ser37 with Ala37 of AabZIP1 significantly suppressed its phosphorylation, which inhibited the transactivational activity of AabZIP1. Consistent overexpression of AaAPK1 significantly increased the production of artemisinin, as well as the expression levels of the artemisinin biosynthesis genes. Our study opens a window into the regulatory network underlying artemisinin biosynthesis at the post-translational level. Importantly, and for the first time, we provide evidence for why the kinase gene AaAPK1 is a key candidate for the metabolic engineering of artemisinin biosynthesis.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Lien Xiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Qin Yu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Haoxing Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Taixin Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Junlan Zeng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Chen Geng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxian Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibet Agricultural and Husbandry College, Nyingchi of Tibet, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Correspondence: ;
| | - Zhihua Liao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
- Correspondence: ;
| |
Collapse
|
76
|
Wang Y, Li T, John SJ, Chen M, Chang J, Yang G, He G. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:103-113. [PMID: 29227949 DOI: 10.1016/j.plaphy.2017.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 05/22/2023]
Abstract
Drought is one of the major environmental stresses to plants. The calcium sensor, calcineurin B-like (CBL) proteins, and their interacting protein kinases (CIPK) play important roles in responding to abiotic stresses. In this study, we functionally characterized a CIPK gene from Triticum aestivum designated TaCIPK27. The transcriptional levels of TaCIPK27 were increased both in roots and leaves after treatment with polyethylene glycol 8000, abscisic acid and H2O2. Besides, TaCIPK27 interacted with AtCBL1, AtCBL3, AtCBL4, AtCBL5 and AtCBL9 in yeast two-hybrid assays. Ectopic overexpression of TaCIPK27 positively regulates drought tolerance in transgenic Arabidopsis compared with controls, which was demonstrated by seed germination and survival rates experiments, as well as the detection of physiological indices including ion leakage, malonic dialdehyde and H2O2 contents and antioxidant enzyme activities under normal and drought conditions. Moreover, higher concentration of endogenous abscisic acid was detected under drought in TaCIPK27 transgenic plants. In addition, TaCIPK27 transgenic plants were more sensitive to exogenous abscisic acid treatment at seed germination and seedling stage. The expression levels of somedrought stress and abscisic acid related genes were up-regulated in TaCIPK27 transgenic plants. The results suggest that TaCIPK27 functions as a positive regulator under drought partly in an ABA-dependent pathway.
Collapse
Affiliation(s)
- Yan Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tingting Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shanita Judith John
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
77
|
Li C, Nong Q, Xie J, Wang Z, Liang Q, Solanki MK, Malviya MK, Liu X, Li Y, Htun R, Wei J, Li Y. Molecular Characterization and Co-expression Analysis of the SnRK2 Gene Family in Sugarcane (Saccharum officinarum L.). Sci Rep 2017; 7:17659. [PMID: 29247208 PMCID: PMC5732291 DOI: 10.1038/s41598-017-16152-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
In plants, both abscisic acid (ABA) dependent and independent pathways form the basis for the response to environmental stresses. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) plays a central role in plant stress signal transduction. However, complete annotation and specific expression patterns of SnRK2s in sugarcane remain unclear. For the present study, we performed a full-length cDNA library survey of sugarcane, thus identifying ten SoSnRK2 genes via phylogenetic, local BLAST methods, and various bioinformatics analyses. Phylogenetic analysis indicated division of SoSnRK2 genes into three subgroups, similar to other plant species. Gene structure comparison with Arabidopsis suggested a unique evolutionary imprint of the SnRK2 gene family in sugarcane. Both sequence alignment and structural annotation provided an overview of the conserved N-terminal and variations of the C-terminal, suggesting functional divergence. Transcript and transient expression assays revealed SoSnRK2s to be involved in the responses to diverse stress signals, and strong ABA induction of SoSnRK2s in subgroup III. Co-expression network analyses indicated the existence of both conserved and variable biological functions among different SoSnRK2s members. In summary, this comprehensive analysis will facilitate further studies of the SoSnRK2 family and provide useful information for the functional validation of SoSnRK2s.
Collapse
Affiliation(s)
- Changning Li
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Qian Nong
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Jinlan Xie
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Zeping Wang
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Qiang Liang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Manoj Kumar Solanki
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Xiaoyan Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Yijie Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Reemon Htun
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Jiguang Wei
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Yangrui Li
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China. .,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China.
| |
Collapse
|
78
|
Sussmilch FC, McAdam SAM. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity. PLANTS (BASEL, SWITZERLAND) 2017; 6:E54. [PMID: 29113039 PMCID: PMC5750630 DOI: 10.3390/plants6040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart TAS 7001, Australia.
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany.
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
79
|
Papacek M, Christmann A, Grill E. Interaction network of ABA receptors in grey poplar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:199-210. [PMID: 28746755 DOI: 10.1111/tpj.13646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
The plant hormone abscisic acid (ABA) is a key player in responses to abiotic stress. ABA regulates a plant's water status and mediates drought tolerance by controlling stomatal gas exchange, water conductance and differential gene expression. ABA is recognized and bound by the Regulatory Component of ABA Receptors (RCARs)/PYR1/PYL (Pyrabactin Resistance 1/PYR1-like). Ligand binding stabilizes the interaction of RCARs with type 2C protein phosphatases (PP2C), which are ABA co-receptors. While the core pathway of ABA signalling has been elucidated, the large number of different ABA receptors and co-receptors within a plant species generates a complexity of heteromeric receptor complexes that has not functionally been resolved in any plant species to date. In this study, we characterized ABA receptors and co-receptors of grey poplar (Populus x canescens [Ait.] Sm.) and their capacity to regulate ABA responses. We observed a high number of regulatory combinations of holo-receptor complexes, but also some preferential and selective RCAR-PP2C interactions. Poplar and Arabidopsis ABA receptor components revealed a strong structural and functional conservation. Heterologous receptor complexes of poplar and Arabidopsis components showed functionality in vitro and regulated ABA-responsive gene expression in cells of both species. ABA-responsive promoters of Arabidopsis were also active in poplar, which was explored to generate poplar reporter lines expressing green fluorescent protein in response to ABA. The study presents a detailed analysis of receptor complexes of a tree species and shows high conservation of ABA receptor components between an annual and a perennial plant.
Collapse
Affiliation(s)
- Michael Papacek
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße 4, D-85354, Freising, Germany
| | - Alexander Christmann
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße 4, D-85354, Freising, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße 4, D-85354, Freising, Germany
| |
Collapse
|
80
|
Han S, Min MK, Lee SY, Lim CW, Bhatnagar N, Lee Y, Shin D, Chung KY, Lee SC, Kim BG, Lee S. Modulation of ABA Signaling by Altering VxGΦL Motif of PP2Cs in Oryza sativa. MOLECULAR PLANT 2017; 10:1190-1205. [PMID: 28827170 DOI: 10.1016/j.molp.2017.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
The abscisic acid (ABA) signaling pathway is regulated by clade A type 2C protein phosphatases (PP2CAs) in plants. In the presence of ABA, PP2Cs release stress/ABA-activated protein kinases by binding to ABA-bound receptors (PYL/RCARs) for activation. Although the wedging tryptophan in PP2Cs is critical in the interaction with PYL/RCARs in Arabidopsis and rice, it remains elusive as to how other interface regions are involved in the interaction. Here, we report the identification of a conserved region on PP2Cs, termed the VxGΦL motif, which modulates the interaction with PYL/RCARs through its second and fourth residues. The effects of the second and fourth residues on the interaction of OsPP2C50 with several OsPYL/RCAR proteins were investigated by systematic mutagenesis. One OsPP2C50 mutant, VFGML ("FM") mutant, lowered the affinity to OsPYL/RCAR3 by ∼15-fold in comparison with the wild-type. Comparison of the crystal structures of wild-type OsPP2C50:ABA:OsPYL/RCAR3 with those composed of FM mutant revealed local conformational changes near the VxGΦL motif, further supported by hydrogen-deuterium exchange mass spectrometry. In rice protoplasts, ABA signaling was altered by mutations in the VxGΦL motif. Transgenic Arabidopsis plants overexpressing OsPP2C50 and OsPP2C50FM showed altered ABA sensitivity. Taken together, the VxGΦL motif of PP2Cs appears to modulate the affinity of PP2Cs with PYL/RCARs and thus likely to alter the ABA signaling, leading to the differential sensitivity to ABA in planta.
Collapse
Affiliation(s)
- Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myung Ki Min
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Su-Youn Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science, Chung-Ang University, Seoul 06911, Republic of Korea
| | - Nikita Bhatnagar
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Yeongmok Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science, Chung-Ang University, Seoul 06911, Republic of Korea
| | - Beom-Gi Kim
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea.
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
81
|
Cheng C, Wang Z, Ren Z, Zhi L, Yao B, Su C, Liu L, Li X. SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genet 2017; 13:e1006947. [PMID: 28787436 PMCID: PMC5560758 DOI: 10.1371/journal.pgen.1006947] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/17/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022] Open
Abstract
The phytohormone abscisic acid (ABA) is an essential part of the plant response to abiotic stressors such as drought. Upon the perception of ABA, pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) proteins interact with co-receptor protein phosphatase type 2Cs to permit activation Snf1-related protein kinase2 (SnRK2) kinases, which switch on ABA signaling by phosphorylating various target proteins. Thus, SnRK2 kinases are central regulators of ABA signaling. However, the mechanisms that regulate SnRK2 degradation remain elusive. Here, we show that SnRK2.3 is degradated by 26S proteasome system and ABA promotes its degradation. We found that SnRK2.3 interacts with AtPP2-B11 directly. AtPP2-B11 is an F-box protein that is part of a SKP1/Cullin/F-box E3 ubiquitin ligase complex that negatively regulates plant responses to ABA by specifically promoting the degradation of SnRK2.3. AtPP2-B11 was induced by ABA, and the knockdown of AtPP2-B11 expression markedly increased the ABA sensitivity of plants during seed germination and postgerminative development. Overexpression of AtPP2-B11 does not affect ABA sensitivity, but inhibits the ABA hypersensitive phenotypes of SnRK2.3 overexpression lines. These results reveal a novel mechanism through which AtPP2-B11 specifically degrades SnRK2.3 to attenuate ABA signaling and the abiotic stress response in Arabidopsis.
Collapse
Affiliation(s)
- Chunhong Cheng
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P.R., China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, P.R., China
- University of Chinese Academy of Sciences, Beijing, P.R., China
| | - Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P.R., China
| | - Ziyin Ren
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P.R., China
| | - Liya Zhi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, P.R., China
| | - Bin Yao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, P.R., China
| | - Chao Su
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, P.R., China
- University of Chinese Academy of Sciences, Beijing, P.R., China
| | - Liu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, P.R., China
- University of Chinese Academy of Sciences, Beijing, P.R., China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P.R., China
- * E-mail:
| |
Collapse
|
82
|
Dong B, Wu B, Hong W, Li X, Li Z, Xue L, Huang Y. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes. PLoS One 2017; 12:e0181835. [PMID: 28759610 PMCID: PMC5536306 DOI: 10.1371/journal.pone.0181835] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/08/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The tea-oil camellia (Camellia oleifera) is the most important oil plant in southern China, and has a strong resistance to drought and barren soil. Understanding the molecular mechanisms of drought tolerance would greatly promote its cultivation and molecular breeding. RESULTS In total, we obtained 76,585 unigenes with an average length of 810 bp and an N50 of 1,092 bp. We mapped all the unigenes to the NCBI 'nr' (non-redundant), SwissProt, KEGG, and clusters of orthologous groups (COG) databases, where 52,531 (68.6%) unigenes were functionally annotated. According to the annotation, 46,171 (60.8%) unigenes belong to 338 KEGG pathways. We identified a series of unigenes that are related to the synthesis and regulation of abscisic acid (ABA), the activity of protective enzymes, vitamin B6 metabolism, the metabolism of osmolytes, and pathways related to the biosynthesis of secondary metabolites. After exposed to drought for 12 hours, the number of differentially-expressed genes (DEGs) between treated plants and control plants increased in the G4 cultivar, while there was no significant increase in the drought-tolerant C3 cultivar. DEGs associated with drought stress responsive pathways were identified by KEGG pathway enrichment analysis. Moreover, we found 789 DEGs related to transcription factors. Finally, according to the results of qRT-PCR, the expression levels of the 20 unigenes tested were consistent with the results of next-generation sequencing. CONCLUSIONS In the present study, we identified a large set of cDNA unigenes from C. oleifera annotated using public databases. Further studies of DEGs involved in metabolic pathways related to drought stress and transcription will facilitate the discovery of novel genes involved in resistance to drought stress in this commercially important plant.
Collapse
Affiliation(s)
- Bin Dong
- South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, Guangdong, China
| | - Bin Wu
- DRIGEN Company Limited, Shenzhen, Guangdong, China
| | - Wenhong Hong
- South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiuping Li
- South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, Guangdong, China
| | - Zhuo Li
- The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Xue
- South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail: (YH); (LX)
| | - Yongfang Huang
- South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail: (YH); (LX)
| |
Collapse
|
83
|
Sussmilch FC, Brodribb TJ, McAdam SAM. Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2913-2918. [PMID: 28449122 PMCID: PMC5853609 DOI: 10.1093/jxb/erx124] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/27/2017] [Indexed: 05/20/2023]
Abstract
A major environmental signal influencing day-time stomatal aperture is the vapour pressure deficit between the leaf and atmosphere (VPD). In angiosperms, increased VPD triggers biosynthesis of abscisic acid (ABA), prompting rapid stomatal closure. Altered cell turgor has been proposed as the trigger for ABA biosynthesis, but the timing and nature of the genetic signals linking these processes have remained uncertain. We investigated this in Arabidopsis by examining changes induced by a decrease in leaf turgor, simulating a natural increase in VPD. We found that the rate-limiting gene within the de novo ABA biosynthesis pathway, 9-cis-epoxycarotenoid dioxygenase 3 (NCED3), was induced and ABA levels increased within just 5 min of decreased leaf turgor. This rapid induction matches the time-frame for initiation of stomatal closure in response to a doubling in VPD. We further examined Arabidopsis histidine kinase1 (AHK1) as the most likely candidate for the turgor-sensing receptor involved, but found no significant difference between wild-type and an ahk1 null mutant in the induction of ABA-biosynthetic genes, ABA production, or stomatal behaviour. We show that decreased leaf turgor triggers de novo ABA biosynthesis within the time-frame of the stomatal response to VPD, but that AHK1 does not fulfil a critical role as a turgor-sensing receptor within this pathway.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
84
|
Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T. Genomic Selection for Drought Tolerance Using Genome-Wide SNPs in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:550. [PMID: 28484471 PMCID: PMC5399777 DOI: 10.3389/fpls.2017.00550] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/27/2017] [Indexed: 05/05/2023]
Abstract
Traditional breeding strategies for selecting superior genotypes depending on phenotypic traits have proven to be of limited success, as this direct selection is hindered by low heritability, genetic interactions such as epistasis, environmental-genotype interactions, and polygenic effects. With the advent of new genomic tools, breeders have paved a way for selecting superior breeds. Genomic selection (GS) has emerged as one of the most important approaches for predicting genotype performance. Here, we tested the breeding values of 240 maize subtropical lines phenotyped for drought at different environments using 29,619 cured SNPs. Prediction accuracies of seven genomic selection models (ridge regression, LASSO, elastic net, random forest, reproducing kernel Hilbert space, Bayes A and Bayes B) were tested for their agronomic traits. Though prediction accuracies of Bayes B, Bayes A and RKHS were comparable, Bayes B outperformed the other models by predicting highest Pearson correlation coefficient in all three environments. From Bayes B, a set of the top 1053 significant SNPs with higher marker effects was selected across all datasets to validate the genes and QTLs. Out of these 1053 SNPs, 77 SNPs associated with 10 drought-responsive transcription factors. These transcription factors were associated with different physiological and molecular functions (stomatal closure, root development, hormonal signaling and photosynthesis). Of several models, Bayes B has been shown to have the highest level of prediction accuracy for our data sets. Our experiments also highlighted several SNPs based on their performance and relative importance to drought tolerance. The result of our experiments is important for the selection of superior genotypes and candidate genes for breeding drought-tolerant maize hybrids.
Collapse
Affiliation(s)
- Mittal Shikha
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Arora Kanika
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Atmakuri Ramakrishna Rao
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research InstituteNew Delhi, India
| | | | - Hari Shanker Gupta
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
- Office of Director General, Borlaug Institute for South AsiaNew Delhi, India
| | | |
Collapse
|
85
|
Sussmilch FC, Brodribb TJ, McAdam SAM. What are the evolutionary origins of stomatal responses to abscisic acid in land plants? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:240-260. [PMID: 28093875 DOI: 10.1111/jipb.12523] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/15/2017] [Indexed: 05/20/2023]
Abstract
The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA-mediated control of stomatal aperture, when these structures first appeared, prior to the divergence of bryophyte and vascular plant lineages. In contrast, a gradualistic model for stomatal control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
86
|
Han X, Jiang L, Che C, Wan C, Lu H, Xiao Y, Xu Y, Chen Z, Qin Z. Design and Functional Characterization of a Novel Abscisic Acid Analog. Sci Rep 2017; 7:43863. [PMID: 28272449 PMCID: PMC5341028 DOI: 10.1038/srep43863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/01/2017] [Indexed: 01/07/2023] Open
Abstract
The phytohormone abscisic acid (ABA) plays a crucial role in mediating plant growth and development by recruiting genetically redundant ABA receptors. To overcome its oxidation inactivation, we developed a novel ABA analog named 2',3'-benzo-iso-ABA (iso-PhABA) and studied its function and structural characterization with A. thaliana ABA receptors. The (+)-iso-PhABA form showed much higher ABA-like activities than (+)-ABA including inhibitory effects on the seed germination of lettuce and A. thaliana, wheat embryo germination and rice seedling elongation. The PP2C (protein phosphatases 2C) activity assay showed that (+)-iso-PhABA acted as a potent and selective ABA receptor agonist, which is preferred to PYL10. In some cases, (-)-iso-PhABA showed moderate to high activity for the PYL protein inhibiting PP2C activity, suggesting different mechanisms of action of iso-PhABA and ABA. The complex crystal structure of iso-PhABA with PYL10 was determined and elucidated successfully, revealing that (+)-iso-PhABA was better coordinated in the same binding pocket compared to (+)-ABA. Moreover, the detailed interaction network of iso-PhABA/PYL10 was disclosed and involves hydrogen bonds and multiple hydrophobic interactions that provide a robust framework for the design of novel ABA receptor agonists/antagonists.
Collapse
Affiliation(s)
- Xiaoqiang Han
- College of Science, China Agricultural University, Beijing, 100193, China
- College of Agricultural, Shihezi University, Shihezi, 832000, China
| | - Lun Jiang
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Chuanliang Che
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Chuan Wan
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Huizhe Lu
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Yumei Xiao
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Yanjun Xu
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Zhongzhou Chen
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
87
|
Holappa LD, Ronald PC, Kramer EM. Evolutionary Analysis of Snf1-Related Protein Kinase2 (SnRK2) and Calcium Sensor (SCS) Gene Lineages, and Dimerization of Rice Homologs, Suggest Deep Biochemical Conservation across Angiosperms. FRONTIERS IN PLANT SCIENCE 2017; 8:395. [PMID: 28424709 PMCID: PMC5381359 DOI: 10.3389/fpls.2017.00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/08/2017] [Indexed: 05/14/2023]
Abstract
Members of the sucrose non-fermenting related kinase Group2 (SnRK2) subclasses are implicated in both direct and indirect abscisic acid (ABA) response pathways. We have used phylogenetic, biochemical, and transient in vivo approaches to examine interactions between Triticum tauschii protein kinase 1 (TtPK1) and an interacting protein, Oryza sativa SnRK2-calcium sensor (OsSCS1). Given that TtPK1 has 100% identity with its rice ortholog, osmotic stress/ABA-activated protein kinase (OsSAPK2), we hypothesized that the SCS and TtPK1 interactions are present in both wheat and rice. Here, we show that SnRK2s are clearly divided into four pan-angiosperm clades with those in the traditionally defined Subclass II encompassing two distinct clades (OsSAPK1/2 and OsSAPK3), although OsSAPK3 lacks an Arabidopsis ortholog. We also show that SCSs are distinct from a second lineage, that we term SCSsister, and while both clades pre-date land plants, the SCSsister clade lacks Poales representatives. Our Y2H assays revealed that the removal of the OsSCS1 C-terminal region along with its N-terminal EF-hand abolished its interaction with the kinase. Using transient in planta bimolecular fluorescence complementation experiments, we demonstrate that TtPK1/OsSCS1 dimerization co-localizes with DAPI-stained nuclei and with FM4-64-stained membranes. Finally, OsSCS1- and OsSAPK2-hybridizing transcripts co-accumulate in shoots/coleoptile of drying seedlings, consistent with up-regulated kinase transcripts of PKABA1 and TtPK1. Our studies suggest that interactions between homologs of the SnRK2 and SCS lineages are broadly conserved across angiosperms and offer new directions for investigations of related proteins.
Collapse
Affiliation(s)
- Lynn D. Holappa
- Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
- Plant Pathology and the Genome Center, University of California DavisDavis, CA, USA
- *Correspondence: Lynn D. Holappa
| | - Pamela C. Ronald
- Plant Pathology and the Genome Center, University of California DavisDavis, CA, USA
| | - Elena M. Kramer
- Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
| |
Collapse
|
88
|
Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T. Genomic Selection for Drought Tolerance Using Genome-Wide SNPs in Maize. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28484471 DOI: 10.3385/fpls.2017.00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Traditional breeding strategies for selecting superior genotypes depending on phenotypic traits have proven to be of limited success, as this direct selection is hindered by low heritability, genetic interactions such as epistasis, environmental-genotype interactions, and polygenic effects. With the advent of new genomic tools, breeders have paved a way for selecting superior breeds. Genomic selection (GS) has emerged as one of the most important approaches for predicting genotype performance. Here, we tested the breeding values of 240 maize subtropical lines phenotyped for drought at different environments using 29,619 cured SNPs. Prediction accuracies of seven genomic selection models (ridge regression, LASSO, elastic net, random forest, reproducing kernel Hilbert space, Bayes A and Bayes B) were tested for their agronomic traits. Though prediction accuracies of Bayes B, Bayes A and RKHS were comparable, Bayes B outperformed the other models by predicting highest Pearson correlation coefficient in all three environments. From Bayes B, a set of the top 1053 significant SNPs with higher marker effects was selected across all datasets to validate the genes and QTLs. Out of these 1053 SNPs, 77 SNPs associated with 10 drought-responsive transcription factors. These transcription factors were associated with different physiological and molecular functions (stomatal closure, root development, hormonal signaling and photosynthesis). Of several models, Bayes B has been shown to have the highest level of prediction accuracy for our data sets. Our experiments also highlighted several SNPs based on their performance and relative importance to drought tolerance. The result of our experiments is important for the selection of superior genotypes and candidate genes for breeding drought-tolerant maize hybrids.
Collapse
Affiliation(s)
- Mittal Shikha
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Arora Kanika
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Atmakuri Ramakrishna Rao
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research InstituteNew Delhi, India
| | | | - Hari Shanker Gupta
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
- Office of Director General, Borlaug Institute for South AsiaNew Delhi, India
| | | |
Collapse
|
89
|
Yang W, Zhang W, Wang X. Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:4-14. [PMID: 27767245 PMCID: PMC5253474 DOI: 10.1111/pbi.12652] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 05/05/2023]
Abstract
The plant phytohormone abscisic acid (ABA) plays significant roles in integrating environmental signals with embryogenesis, germination, seedling establishment, the floral transition and the adaptation of plants to stressful environments by modulating stomatal movement and stress-responsive gene expression. ABA signalling consists of ABA perception, signal transduction and ABA-induced responses. ABA receptors such as members of the PYR/PYL family, group A type 2C protein phosphatases (as negative regulators), SnRK2 protein kinases (as positive regulators), bZIP transcription factors and ion channels are key components of ABA signalling. Post-translational modifications, including dephosphorylation, phosphorylation and ubiquitination, play important roles in regulating ABA signalling. In this review, we focus on the roles of post-translational modifications in ABA signalling. The studies presented provide a detailed picture of the ABA signalling network.
Collapse
Affiliation(s)
- Wenqi Yang
- Rice Research InstituteShenyang Agricultural UniversityShenyangChina
| | - Wei Zhang
- Rice Research InstituteShenyang Agricultural UniversityShenyangChina
| | - Xiaoxue Wang
- Rice Research InstituteShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
90
|
Expression, Purification, and Characterization of a Sucrose Nonfermenting 1-Related Protein Kinases 2 of Arabidopsis thaliana in E. coli-Based Cell-Free System. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9469356. [PMID: 27999818 PMCID: PMC5143698 DOI: 10.1155/2016/9469356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/23/2016] [Indexed: 11/17/2022]
Abstract
The plant-specific sucrose nonfermenting 1-related protein kinase 2 (SnRK2) family is considered an important regulator of plant responses to abiotic stresses such as drought, cold, salinity, and nutrition deficiency. However, little information is available on how SnRK2s regulate sulfur deprivation responses in Arabidopsis. Large-scale production of SnRK2 kinases in vitro can help to elucidate the biochemical properties and physiological functions of this protein family. However, heterogenous expression of SnRK2s usually leads to inactive proteins. In this study, we expressed a recombinant Arabidopsis SnRK2.1 in a modified E. coli cell-free system, which combined two kinds of extracts allowing for a convenient and affordable protein preparation. The recombinant SnRK2.1 was produced in large-scale and the autophosphorylation activity of purified SnRK2.1 was characterized, allowing for further biochemical and substrate binding analysis in sulfur signaling. The application of this improved E. coli cell-free system provides us a promising and convenient platform to enhance expression of the target proteins economically.
Collapse
|
91
|
Ha Y, Shang Y, Nam KH. Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6297-6308. [PMID: 27856707 PMCID: PMC5181576 DOI: 10.1093/jxb/erw385] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Stomatal movement in response to water availability is an important physiological process in the survival of land plants. The plant hormone abscisic acid (ABA) and brassinosteroids (BRs) regulate stomatal closure. The physiological functions of ABA and BRs, including germination, cell elongation and stomatal movement, are generally known to be antagonistic. Here, we investigated how BRs affect stomatal movement alone and in combination with ABA. We demonstrate that brassinoslide (BL), the most active BR, promotes stomatal closure in an ABA-independent manner. Interestingly, BL also inhibited ABA-induced stomatal closure when a high concentration of BL was added to ABA. Furthermore, we found that the induction of some genes for reactive oxygen species (ROS) generation by ABA (AtrbohD, NIA1 and NIA2) and subsequent ROS production were repressed by BL treatment. The BR signaling mutant bri1-301 failed to inhibit ABA-induced stomatal closure upon BL treatment. However, BRI1-overexpressing transgenic plants were hypersensitive to ABA during stomatal closure, and BL reversed ABA-induced stomatal closure more completely than in wild type plants. Taken together, these results suggest that BRs can positively and negatively modulate ABA-induced stomatal closure. Therefore, interactions between ABA and BR signaling are important for the regulation of stomatal closure.
Collapse
Affiliation(s)
- Yunmi Ha
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Yun Shang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Kyoung Hee Nam
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
92
|
Abscisic acid controlled sex before transpiration in vascular plants. Proc Natl Acad Sci U S A 2016; 113:12862-12867. [PMID: 27791082 DOI: 10.1073/pnas.1606614113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA-SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant-atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA-SnRK2 signaling pathway in plant evolution and vegetation function.
Collapse
|
93
|
Dey A, Samanta MK, Gayen S, Maiti MK. The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. BMC PLANT BIOLOGY 2016; 16:158. [PMID: 27411911 PMCID: PMC4944446 DOI: 10.1186/s12870-016-0845-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/05/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Family members of sucrose non-fermenting 1-related kinase 2 (SnRK2), being plant-specific serine/threonine protein kinases, constitute the central core of abscisic acid (ABA)-dependent and ABA-independent signaling pathways, and are key regulators of abiotic stress adaptation in plants. We report here the functional characterization of SAPK9 gene, one of the 10 SnRK2s of rice, through developing gain-of-function and loss-of-function phenotypes by transgenesis. RESULTS The gene expression profiling revealed that the abundance of single gene-derived SAPK9 transcript was significantly higher in drought-tolerant rice genotypes than the drought-sensitive ones, and its expression was comparatively greater in reproductive stage than the vegetative stage. The highest expression of SAPK9 gene in drought-tolerant Oryza rufipogon prompted us to clone and characterise the CDS of this allele in details. The SAPK9 transcript expression was found to be highest in leaf and upregulated during drought stress and ABA treatment. In silico homology modelling of SAPK9 with Arabidopsis OST1 protein showed the bilobal kinase fold structure of SAPK9, which upon bacterial expression was able to phosphorylate itself, histone III and OsbZIP23 as substrates in vitro. Transgenic overexpression (OE) of SAPK9 CDS from O. rufipogon in a drought-sensitive indica rice genotype exhibited significantly improved drought tolerance in comparison to transgenic silencing (RNAi) lines and non-transgenic (NT) plants. In contrast to RNAi and NT plants, the enhanced drought tolerance of OE lines was concurrently supported by the upgraded physiological indices with respect to water retention capacity, soluble sugar and proline content, stomatal closure, membrane stability, and cellular detoxification. Upregulated transcript expressions of six ABA-dependent stress-responsive genes and increased sensitivity to exogenous ABA of OE lines indicate that the SAPK9 is a positive regulator of ABA-mediated stress signaling pathways in rice. The yield-related traits of OE lines were augmented significantly, which resulted from the highest percentage of fertile pollens in OE lines when compared with RNAi and NT plants. CONCLUSION The present study establishes the functional role of SAPK9 as transactivating kinase and potential transcriptional activator in drought stress adaptation of rice plant. The SAPK9 gene has potential usefulness in transgenic breeding for improving drought tolerance and grain yield in crop plants.
Collapse
Affiliation(s)
- Avishek Dey
- />Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Milan Kumar Samanta
- />Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Srimonta Gayen
- />Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
- />Present address: Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Mrinal K. Maiti
- />Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
- />Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
94
|
Sierla M, Waszczak C, Vahisalu T, Kangasjärvi J. Reactive Oxygen Species in the Regulation of Stomatal Movements. PLANT PHYSIOLOGY 2016; 171:1569-80. [PMID: 27208297 PMCID: PMC4936562 DOI: 10.1104/pp.16.00328] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/20/2016] [Indexed: 05/19/2023]
Abstract
Guard cells form stomatal pores that optimize photosynthetic carbon dioxide uptake with minimal water loss. Stomatal movements are controlled by complex signaling networks that respond to environmental and endogenous signals. Regulation of stomatal aperture requires coordinated activity of reactive oxygen species (ROS)-generating enzymes, signaling proteins, and downstream executors such as ion pumps, transporters, and plasma membrane channels that control guard cell turgor pressure. Accumulation of ROS in the apoplast and chloroplasts is among the earliest hallmarks of stomatal closure. Subsequent increase in cytoplasmic Ca(2+) concentration governs the activity of multiple kinases that regulate the activity of ROS-producing enzymes and ion channels. In parallel, ROS directly regulate the activity of multiple proteins via oxidative posttranslational modifications to fine-tune guard cell signaling. In this review, we summarize recent advances in the role of ROS in stomatal closure and discuss the importance of ROS in regulation of signal amplification and specificity in guard cells.
Collapse
Affiliation(s)
- Maija Sierla
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland (M.S., C.W., T.V., J.K.); andDistinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia (J.K.)
| | - Cezary Waszczak
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland (M.S., C.W., T.V., J.K.); andDistinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia (J.K.)
| | - Triin Vahisalu
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland (M.S., C.W., T.V., J.K.); andDistinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia (J.K.)
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland (M.S., C.W., T.V., J.K.); andDistinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia (J.K.)
| |
Collapse
|
95
|
Krzywińska E, Bucholc M, Kulik A, Ciesielski A, Lichocka M, Dębski J, Ludwików A, Dadlez M, Rodriguez PL, Dobrowolska G. Phosphatase ABI1 and okadaic acid-sensitive phosphoprotein phosphatases inhibit salt stress-activated SnRK2.4 kinase. BMC PLANT BIOLOGY 2016; 16:136. [PMID: 27297076 PMCID: PMC4907068 DOI: 10.1186/s12870-016-0817-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/23/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND SNF1-related protein kinases 2 (SnRK2s) are key regulators of the plant response to osmotic stress. They are transiently activated in response to drought and salinity. Based on a phylogenetic analysis SnRK2s are divided into three groups. The classification correlates with their response to abscisic acid (ABA); group 1 consists SnRK2s non-activated in response to ABA, group 2, kinases non-activated or weakly activated (depending on the plant species) by ABA treatment, and group 3, ABA-activated kinases. The activity of all SnRK2s is regulated by phosphorylation. It is well established that clade A phosphoprotein phosphatases 2C (PP2Cs) are negative regulators of ABA-activated SnRK2s, whereas regulators of SnRK2s from group 1 remain unidentified. RESULTS Here, we show that ABI1, a PP2C clade A phosphatase, interacts with SnRK2.4, member of group 1 of the SnRK2 family, dephosphorylates Ser158, whose phosphorylation is needed for the kinase activity, and inhibits the kinase, both in vitro and in vivo. Our data indicate that ABI1 and the kinase regulate primary root growth in response to salinity; the phenotype of ABI1 knockout mutant (abi1td) exposed to salt stress is opposite to that of the snrk2.4 mutant. Moreover, we show that the activity of SnRK2s from group 1 is additionally regulated by okadaic acid-sensitive phosphatase(s) from the phosphoprotein phosphatase (PPP) family. CONCLUSIONS Phosphatase ABI1 and okadaic acid-sensitive phosphatases of the PPP family are negative regulators of salt stress-activated SnRK2.4. The results show that ABI1 inhibits not only the ABA-activated SnRK2s but also at least one ABA-non-activated SnRK2, suggesting that the phosphatase is involved in the cross talk between ABA-dependent and ABA-independent stress signaling pathways in plants.
Collapse
Affiliation(s)
- Ewa Krzywińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Present address: Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Arkadiusz Ciesielski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Present address: Department of Chemistry, Warsaw University, Pasteur 1, 02-093, Warsaw, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Agnieszka Ludwików
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022, Valencia, Spain
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
96
|
Shang Y, Dai C, Lee MM, Kwak JM, Nam KH. BRI1-Associated Receptor Kinase 1 Regulates Guard Cell ABA Signaling Mediated by Open Stomata 1 in Arabidopsis. MOLECULAR PLANT 2016; 9:447-460. [PMID: 26724418 DOI: 10.1016/j.molp.2015.12.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 05/08/2023]
Abstract
Stomatal movements are critical in regulating gas exchange for photosynthesis and water balance between plant tissues and the atmosphere. The plant hormone abscisic acid (ABA) plays key roles in regulating stomatal closure under various abiotic stresses. In this study, we revealed a novel role of BAK1 in guard cell ABA signaling. We found that the brassinosteroid (BR) signaling mutant bak1 lost more water than wild-type plants and showed ABA insensitivity in stomatal closure. ABA-induced OST1 expression and reactive oxygen species (ROS) production were also impaired in bak1. Unlike direct treatment with H2O2, overexpression of OST1 did not completely rescue the insensitivity of bak1 to ABA. We demonstrated that BAK1 forms a complex with OST1 near the plasma membrane and that the BAK1/OST1 complex is increased in response to ABA in planta. Brassinolide, the most active BR, exerted a negative effect on ABA-induced formation of the BAK1/OST1 complex and OST1 expression. Moreover, we found that BAK1 and ABI1 oppositely regulate OST1 phosphorylation in vitro, and that ABI1 interacts with BAK1 and inhibits the interaction of BAK1 and OST1. Taken together, our results suggest that BAK1 regulates ABA-induced stomatal closure in guard cells.
Collapse
Affiliation(s)
- Yun Shang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Changbo Dai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Myeong Min Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Republic of Korea
| | - June M Kwak
- Department of New Biology, Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea
| | - Kyoung Hee Nam
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| |
Collapse
|
97
|
Peirats-Llobet M, Han SK, Gonzalez-Guzman M, Jeong CW, Rodriguez L, Belda-Palazon B, Wagner D, Rodriguez PL. A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. MOLECULAR PLANT 2016; 9:136-147. [PMID: 26499068 DOI: 10.1016/j.molp.2015.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 05/04/2023]
Abstract
Optimal response to drought is critical for plant survival and will affect biodiversity and crop performance during climate change. Mitotically heritable epigenetic or dynamic chromatin state changes have been implicated in the plant response to the drought stress hormone abscisic acid (ABA). The Arabidopsis SWI/SNF chromatin-remodeling ATPase BRAHMA (BRM) modulates response to ABA by preventing premature activation of stress response pathways during germination. We show that core ABA signaling pathway components physically interact with BRM and post-translationally modify BRM by phosphorylation/dephosphorylation. Genetic evidence suggests that BRM acts downstream of SnRK2.2/2.3 kinases, and biochemical studies identified phosphorylation sites in the C-terminal region of BRM at SnRK2 target sites that are evolutionarily conserved. Finally, the phosphomimetic BRM(S1760D S1762D) mutant displays ABA hypersensitivity. Prior studies showed that BRM resides at target loci in the ABA pathway in the presence and absence of the stimulus, but is only active in the absence of ABA. Our data suggest that SnRK2-dependent phosphorylation of BRM leads to its inhibition, and PP2CA-mediated dephosphorylation of BRM restores the ability of BRM to repress ABA response. These findings point to the presence of a rapid phosphorylation-based switch to control BRM activity; this property could be potentially harnessed to improve drought tolerance in plants.
Collapse
Affiliation(s)
- Marta Peirats-Llobet
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Soon-Ki Han
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miguel Gonzalez-Guzman
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Cheol Woong Jeong
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Borja Belda-Palazon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain.
| |
Collapse
|
98
|
Wang J, Li Q, Mao X, Li A, Jing R. Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis. Int J Biol Sci 2016; 12:257-69. [PMID: 26884722 PMCID: PMC4737681 DOI: 10.7150/ijbs.13538] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 12/01/2022] Open
Abstract
AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis.
Collapse
Affiliation(s)
- Jingyi Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ang Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
99
|
Duan H, Lu X, Lian C, An Y, Xia X, Yin W. Genome-Wide Analysis of MicroRNA Responses to the Phytohormone Abscisic Acid in Populus euphratica. FRONTIERS IN PLANT SCIENCE 2016; 7:1184. [PMID: 27582743 PMCID: PMC4988358 DOI: 10.3389/fpls.2016.01184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/22/2016] [Indexed: 05/20/2023]
Abstract
MicroRNA (miRNA) is a type of non-coding small RNA with a regulatory function at the posttranscriptional level in plant growth development and in response to abiotic stress. Previous studies have not reported on miRNAs responses to the phytohormone abscisic acid (ABA) at a genome-wide level in Populus euphratica, a model tree for studying abiotic stress responses in woody plants. Here we analyzed the miRNA response to ABA at a genome-wide level in P. euphratica utilizing high-throughput sequencing. To systematically perform a genome-wide analysis of ABA-responsive miRNAs in P. euphratica, nine sRNA libraries derived from three groups (control, treated with ABA for 1 day and treated with ABA for 4 days) were constructed. Each group included three libraries from three individual plantlets as biological replicate. In total, 151 unique mature sequences belonging to 75 conserved miRNA families were identified, and 94 unique sequences were determined to be novel miRNAs, including 56 miRNAs with miRNA(*) sequences. In all, 31 conserved miRNAs and 31 novel miRNAs response to ABA significantly differed among the groups. In addition, 4132 target genes were predicted for the conserved and novel miRNAs. Confirmed by real-time qPCR, expression changes of miRNAs were inversely correlated with the expression profiles of their putative targets. The Populus special or novel miRNA-target interactions were predicted might be involved in some biological process related stress tolerance. Our analysis provides a comprehensive view of how P. euphratica miRNA respond to ABA, and moreover, different temporal dynamics were observed in different ABA-treated libraries.
Collapse
|
100
|
Wu ZG, Jiang W, Chen SL, Mantri N, Tao ZM, Jiang CX. Insights from the Cold Transcriptome and Metabolome of Dendrobium officinale: Global Reprogramming of Metabolic and Gene Regulation Networks during Cold Acclimation. FRONTIERS IN PLANT SCIENCE 2016; 7:1653. [PMID: 27877182 PMCID: PMC5099257 DOI: 10.3389/fpls.2016.01653] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/20/2016] [Indexed: 05/20/2023]
Abstract
Plant cold acclimation (CA) is a genetically complex phenomenon involving gene regulation and expression. Little is known about the cascading pattern of gene regulatroy network and the link between genes and metabolites during CA. Dendrobium officinale (DOKM) is an important medicinal and ornamental plant and hypersensitive to low temperature. Here, we used the large scale metabolomic and transcriptomic technologies to reveal the response to CA in DOKM seedlings based on the physiological profile analyses. Lowering temperature from 4 to -2°C resulted in significant increase (P < 0.01) in antioxidant activities and electrolyte leakage (EL) during 24 h. The fitness CA piont of 0°C and control (20°C) during 20 h were firstly obtained according to physiological analyses. Subsequently, massive transcriptome and metabolome reprogramming occurred during CA. The gene to metabolite network demonstrated that the CA associated processes are highly energy demanding through activating hydrolysis of sugars, amino acids catabolism and citrate cycle. The expression levels of 2,767 genes were significantly affected by CA, including 153-fold upregulation of CBF transcription factor, 56-fold upregulation of MAPKKK16 protein kinase. Moreover, the gene interaction and regulation network analysis revealed that the CA as an active process, was regulated at the transcriptional, post-transcriptional, translational and post-translational levels. Our findings highligted a comprehensive regulatory mechanism including cold signal transduction, transcriptional regulation, and gene expression, which contributes a deeper understanding of the highly complex regulatory program during CA in DOKM. Some marker genes identified in DOKM seedlings will allow us to understand the role of each individual during CA by further functional analyses.
Collapse
Affiliation(s)
- Zhi-Gang Wu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural SciencesWenzhou, China
- *Correspondence: Zhi-Gang Wu, Zheng-Ming Tao,
| | - Wu Jiang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural SciencesWenzhou, China
| | - Song-Lin Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural SciencesWenzhou, China
- School of Applied Sciences, Health Innovations Research Institute, Royal Melbourne Institute of Technology University, MelbourneVIC, Australia
| | - Nitin Mantri
- School of Applied Sciences, Health Innovations Research Institute, Royal Melbourne Institute of Technology University, MelbourneVIC, Australia
| | - Zheng-Ming Tao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural SciencesWenzhou, China
- *Correspondence: Zhi-Gang Wu, Zheng-Ming Tao,
| | - Cheng-Xi Jiang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural SciencesWenzhou, China
| |
Collapse
|