51
|
Wong GCL, Antani JD, Lele PP, Chen J, Nan B, Kühn MJ, Persat A, Bru JL, Høyland-Kroghsbo NM, Siryaporn A, Conrad JC, Carrara F, Yawata Y, Stocker R, Brun YV, Whitfield GB, Lee CK, de Anda J, Schmidt WC, Golestanian R, O’Toole GA, Floyd KA, Yildiz FH, Yang S, Jin F, Toyofuku M, Eberl L, Nomura N, Zacharoff LA, El-Naggar MY, Yalcin SE, Malvankar NS, Rojas-Andrade MD, Hochbaum AI, Yan J, Stone HA, Wingreen NS, Bassler BL, Wu Y, Xu H, Drescher K, Dunkel J. Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Phys Biol 2021; 18:10.1088/1478-3975/abdc0e. [PMID: 33462162 PMCID: PMC8506656 DOI: 10.1088/1478-3975/abdc0e] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor.
Collapse
Affiliation(s)
- Gerard C L Wong
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - Jyot D Antani
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX 77843, United States of America
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX 77843, United States of America
| | - Jing Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA24061, United States of America
| | - Beiyan Nan
- Department of Biology, Texas A & M University, College Station, Texas, TX 77845, United States of America
| | - Marco J Kühn
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Louis Bru
- Department of Molecular Biology & Biochemistry, University of California—Irvine, California, CA 92697, United States of America
| | | | - Albert Siryaporn
- Department of Molecular Biology & Biochemistry, University of California—Irvine, California, CA 92697, United States of America
- Department of Physics & Astronomy, University of California—Irvine, California, CA 92697, United States of America
| | - Jacinta C Conrad
- William A Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, TX 77204, United States of America
| | - Francesco Carrara
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Yutaka Yawata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Yves V Brun
- University of Montreal, Faculty of Medicine, Montreal, Quebec, H3C 3J7, Canada
| | - Gregory B Whitfield
- University of Montreal, Faculty of Medicine, Montreal, Quebec, H3C 3J7, Canada
| | - Calvin K Lee
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - Jaime de Anda
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - William C Schmidt
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - George A O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States of America
| | - Kyle A Floyd
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, CA 95060, United States of America
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, CA 95060, United States of America
| | - Shuai Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China
| | - Fan Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Lori A Zacharoff
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, CA 90089, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, CA 90089, United States of America
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, CA 90089, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, CA 90089, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, CA 90089, United States of America
| | - Sibel Ebru Yalcin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, CT 06516, United States of America
- Microbial Sciences Institute, Yale University, New Haven, Connecticut, CT 06516, United States of America
| | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, CT 06516, United States of America
- Microbial Sciences Institute, Yale University, New Haven, Connecticut, CT 06516, United States of America
| | - Mauricio D Rojas-Andrade
- Department of Materials Science and Engineering, University of California—Irvine, Irvine, California CA 92697, United States of America
| | - Allon I Hochbaum
- Department of Molecular Biology & Biochemistry, University of California—Irvine, California, CA 92697, United States of America
- Department of Materials Science and Engineering, University of California—Irvine, Irvine, California CA 92697, United States of America
- Department of Chemistry, University of California—Irvine, Irvine, California, CA 92697, United States of America
- Department of Chemical and Biomolecular Engineering, University of California—Irvine, Irvine, California, CA 92697, United States of America
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, CT 06511, United States of America
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland MD 20815, United States of America
| | - Yilin Wu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People’s Republic of China
| | - Haoran Xu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People’s Republic of China
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139-4307, United States of America
| |
Collapse
|
52
|
Wucher BR, Elsayed M, Adelman JS, Kadouri DE, Nadell CD. Bacterial predation transforms the landscape and community assembly of biofilms. Curr Biol 2021; 31:2643-2651.e3. [PMID: 33826904 PMCID: PMC8588571 DOI: 10.1016/j.cub.2021.03.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/02/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023]
Abstract
The bacterium Bdellovibrio bacteriovorus attaches to the exterior of a Gram-negative prey cell, enters the periplasm, and harvests resources to replicate before lysing the host to find new prey.1-7 Predatory bacteria such as this are common in many natural environments,8-13 as are groups of matrix-bound prey cell clusters, termed biofilms.14-16 Despite the ubiquity of both predatory bacteria and biofilm-dwelling prey, the interaction between B. bacteriovorus and prey inside biofilms has received little attention and has not yet been studied at the micrometer scale. Filling this knowledge gap is critical to understanding bacterial predator-prey interaction in nature. Here we show that B. bacteriovorus is able to attack biofilms of the pathogen Vibrio cholerae, but only up until a critical maturation threshold past which the prey biofilms are protected from their predators. Using high-resolution microscopy and detailed spatial analysis, we determine the relative contributions of matrix secretion and cell-cell packing of the prey biofilm toward this protection mechanism. Our results demonstrate that B. bacteriovorus predation in the context of this protection threshold fundamentally transforms the sub-millimeter-scale landscape of biofilm growth, as well as the process of community assembly as new potential biofilm residents enter the system. We conclude that bacterial predation can be a key factor influencing the spatial community ecology of microbial biofilms.
Collapse
Affiliation(s)
- Benjamin R Wucher
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07101, USA
| | - James S Adelman
- Department of Biological Sciences, The University of Memphis, 3700 Walker Avenue, Memphis, TN 38117, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07101, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA.
| |
Collapse
|
53
|
Adade EE, Al Lakhen K, Lemus AA, Valm AM. Recent progress in analyzing the spatial structure of the human microbiome: distinguishing biogeography and architecture in the oral and gut communities. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 18:275-283. [PMID: 35936977 PMCID: PMC9351436 DOI: 10.1016/j.coemr.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fueled by technological advances in methods for sample collection and preservation in sequencing studies, and in advances in computational analyses of high content image data, the spatial structure of the human microbiome is coming to light. In this mini-review, we summarize recent developments in our understanding of the structure of two human microbiomes: the lower gut and the oral cavity. We focus on only the most recent literature and we make an important distinction between two forms of spatial structure, governed by scale: biogeography and architecture. By segmenting the study of microbiome spatial structure into two categories, we demonstrate the potential to greatly advance our understanding of the mechanistic principles that link structure and function in the microbiome.
Collapse
Affiliation(s)
- Emmanuel E. Adade
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222 USA
| | - Khalid Al Lakhen
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222 USA
| | - Alex A. Lemus
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222 USA
| | - Alex M. Valm
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222 USA,Corresponding author.
| |
Collapse
|
54
|
Bhattacharjee T, Amchin DB, Ott JA, Kratz F, Datta SS. Chemotactic migration of bacteria in porous media. Biophys J 2021; 120:3483-3497. [PMID: 34022238 DOI: 10.1016/j.bpj.2021.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/11/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Chemotactic migration of bacteria-their ability to direct multicellular motion along chemical gradients-is central to processes in agriculture, the environment, and medicine. However, current understanding of migration is based on studies performed in bulk liquid, despite the fact that many bacteria inhabit tight porous media such as soils, sediments, and biological gels. Here, we directly visualize the chemotactic migration of Escherichia coli populations in well-defined 3D porous media in the absence of any other imposed external forcing (e.g., flow). We find that pore-scale confinement is a strong regulator of migration. Strikingly, cells use a different primary mechanism to direct their motion in confinement than in bulk liquid. Furthermore, confinement markedly alters the dynamics and morphology of the migrating population-features that can be described by a continuum model, but only when standard motility parameters are substantially altered from their bulk liquid values to reflect the influence of pore-scale confinement. Our work thus provides a framework to predict and control the migration of bacteria, and active matter in general, in complex environments.
Collapse
Affiliation(s)
- Tapomoy Bhattacharjee
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey
| | - Daniel B Amchin
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Jenna A Ott
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Felix Kratz
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Sujit S Datta
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
55
|
Abstract
Bacteria grow on surfaces in complex immobile communities known as biofilms, which are composed of cells embedded in an extracellular matrix. Within biofilms, bacteria often interact with members of their own species and cooperate or compete with members of other species via quorum sensing (QS). QS is a process by which microbes produce, secrete, and subsequently detect small molecules called autoinducers (AIs) to assess their local population density. We explore the competitive advantage of QS through agent-based simulations of a spatial model in which colony expansion via extracellular matrix production provides greater access to a limiting diffusible nutrient. We note a significant difference in results based on whether AI production is constitutive or limited by nutrient availability: If AI production is constitutive, simple QS-based matrix-production strategies can be far superior to any fixed strategy. However, if AI production is limited by nutrient availability, QS-based strategies fail to provide a significant advantage over fixed strategies. To explain this dichotomy, we derive a biophysical limit for the dynamic range of nutrient-limited AI concentrations in biofilms. This range is remarkably small (less than 10-fold) for the realistic case in which a growth-limiting diffusible nutrient is taken up within a narrow active growth layer. This biophysical limit implies that for QS to be most effective in biofilms AI production should be a protected function not directly tied to metabolism.
Collapse
|
56
|
Hierarchical transitions and fractal wrinkling drive bacterial pellicle morphogenesis. Proc Natl Acad Sci U S A 2021; 118:2023504118. [PMID: 33972433 PMCID: PMC8157956 DOI: 10.1073/pnas.2023504118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multicellular bacterial communities called biofilms and pellicles significantly influence medical infections and industrial biofouling. Biofilms and pellicles often act as reservoirs of toxigenic bacteria. Here, we report a fractal wrinkling morphogenesis program that underlies pellicle formation in the model biofilm former and global pathogen, Vibrio cholerae. Pellicle morphogenesis is marked by the emergence of a cascade of self-similar structures with fractal-like scaling in wavelength, which increases surface area and presumably enhances nutrient transport and signaling among community members. This morphogenesis program can be altered by varying the spatial heterogeneity of the community. Thus, bacterial pellicles could provide tractable model systems to understand overarching principles driving morphogenesis and for engineering of functional soft biomaterials. Bacterial cells can self-organize into structured communities at fluid–fluid interfaces. These soft, living materials composed of cells and extracellular matrix are called pellicles. Cells residing in pellicles garner group-level survival advantages such as increased antibiotic resistance. The dynamics of pellicle formation and, more generally, how complex morphologies arise from active biomaterials confined at interfaces are not well understood. Here, using Vibrio cholerae as our model organism, a custom-built adaptive stereo microscope, fluorescence imaging, mechanical theory, and simulations, we report a fractal wrinkling morphogenesis program that differs radically from the well-known coalescence of wrinkles into folds that occurs in passive thin films at fluid–fluid interfaces. Four stages occur: growth of founding colonies, onset of primary wrinkles, development of secondary curved ridge instabilities, and finally the emergence of a cascade of finer structures with fractal-like scaling in wavelength. The time evolution of pellicle formation depends on the initial heterogeneity of the film microstructure. Changing the starting bacterial seeding density produces three variations in the sequence of morphogenic stages, which we term the bypass, crystalline, and incomplete modes. Despite these global architectural transitions, individual microcolonies remain spatially segregated, and thus, the community maintains spatial and genetic heterogeneity. Our results suggest that the memory of the original microstructure is critical in setting the morphogenic dynamics of a pellicle as an active biomaterial.
Collapse
|
57
|
Abstract
Biofilms are structured communities formed by a single or multiple microbial species. Within biofilms, bacteria are embedded into extracellular matrix, allowing them to build macroscopic objects. Biofilm structure can respond to environmental changes such as the presence of antibiotics or predators. By adjusting expression levels of surface and extracellular matrix components, bacteria tune cell-to-cell interactions. One major challenge in the field is the fact that these components are very diverse among different species. Deciphering how physical interactions within biofilms are affected by changes in gene expression is a promising approach to obtaining a more unified picture of how bacteria modulate biofilms. This review focuses on recent advances in characterizing attractive and repulsive forces between bacteria in correlation with biofilm structure, dynamics, and spreading. How bacteria control physical interactions to maximize their fitness is an emerging theme.
Collapse
Affiliation(s)
- Berenike Maier
- Institute for Biological Physics and Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany;
| |
Collapse
|
58
|
Koshy-Chenthittayil S, Archambault L, Senthilkumar D, Laubenbacher R, Mendes P, Dongari-Bagtzoglou A. Agent Based Models of Polymicrobial Biofilms and the Microbiome-A Review. Microorganisms 2021; 9:417. [PMID: 33671308 PMCID: PMC7922883 DOI: 10.3390/microorganisms9020417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The human microbiome has been a focus of intense study in recent years. Most of the living organisms comprising the microbiome exist in the form of biofilms on mucosal surfaces lining our digestive, respiratory, and genito-urinary tracts. While health-associated microbiota contribute to digestion, provide essential nutrients, and protect us from pathogens, disturbances due to illness or medical interventions contribute to infections, some that can be fatal. Myriad biological processes influence the make-up of the microbiota, for example: growth, division, death, and production of extracellular polymers (EPS), and metabolites. Inter-species interactions include competition, inhibition, and symbiosis. Computational models are becoming widely used to better understand these interactions. Agent-based modeling is a particularly useful computational approach to implement the various complex interactions in microbial communities when appropriately combined with an experimental approach. In these models, each cell is represented as an autonomous agent with its own set of rules, with different rules for each species. In this review, we will discuss innovations in agent-based modeling of biofilms and the microbiota in the past five years from the biological and mathematical perspectives and discuss how agent-based models can be further utilized to enhance our comprehension of the complex world of polymicrobial biofilms and the microbiome.
Collapse
Affiliation(s)
- Sherli Koshy-Chenthittayil
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; (S.K.-C.); (L.A.); (P.M.)
| | - Linda Archambault
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; (S.K.-C.); (L.A.); (P.M.)
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | - Pedro Mendes
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; (S.K.-C.); (L.A.); (P.M.)
- Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
59
|
Jin X, Marshall JS. Mechanics of biofilms formed of bacteria with fimbriae appendages. PLoS One 2020; 15:e0243280. [PMID: 33290393 PMCID: PMC7723297 DOI: 10.1371/journal.pone.0243280] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022] Open
Abstract
Gram-negative bacteria, as well as some Gram-positive bacteria, possess hair-like appendages known as fimbriae, which play an important role in adhesion of the bacteria to surfaces or to other bacteria. Unlike the sex pili or flagellum, the fimbriae are quite numerous, with of order 1000 fimbriae appendages per bacterial cell. In this paper, a recently developed hybrid model for bacterial biofilms is used to examine the role of fimbriae tension force on the mechanics of bacterial biofilms. Each bacterial cell is represented in this model by a spherocylindrical particle, which interact with each other through collision, adhesion, lubrication force, and fimbrial force. The bacterial cells absorb water and nutrients and produce extracellular polymeric substance (EPS). The flow of water and EPS, and nutrient diffusion within these substances, is computed using a continuum model that accounts for important effects such as osmotic pressure gradient, drag force on the bacterial cells, and viscous shear. The fimbrial force is modeled using an outer spherocylinder capsule around each cell, which can transmit tensile forces to neighboring cells with which the fimbriae capsule collides. We find that the biofilm structure during the growth process is dominated by a balance between outward drag force on the cells due to the EPS flow away from the bacterial colony and the inward tensile fimbrial force acting on chains of cells connected by adhesive fimbriae appendages. The fimbrial force also introduces a large rotational motion of the cells and disrupts cell alignment caused by viscous torque imposed by the EPS flow. The current paper characterizes the competing effects of EPS drag and fimbrial force using a series of computations with different values of the ratio of EPS to bacterial cell production rate and different numbers of fimbriae per cell.
Collapse
Affiliation(s)
- Xing Jin
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Jeffrey S. Marshall
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
- * E-mail:
| |
Collapse
|
60
|
Zhang M, Zhang J, Wang Y, Wang J, Achimovich AM, Acton ST, Gahlmann A. Non-invasive single-cell morphometry in living bacterial biofilms. Nat Commun 2020; 11:6151. [PMID: 33262347 PMCID: PMC7708432 DOI: 10.1038/s41467-020-19866-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Fluorescence microscopy enables spatial and temporal measurements of live cells and cellular communities. However, this potential has not yet been fully realized for investigations of individual cell behaviors and phenotypic changes in dense, three-dimensional (3D) bacterial biofilms. Accurate cell detection and cellular shape measurement in densely packed biofilms are challenging because of the limited resolution and low signal to background ratios (SBRs) in fluorescence microscopy images. In this work, we present Bacterial Cell Morphometry 3D (BCM3D), an image analysis workflow that combines deep learning with mathematical image analysis to accurately segment and classify single bacterial cells in 3D fluorescence images. In BCM3D, deep convolutional neural networks (CNNs) are trained using simulated biofilm images with experimentally realistic SBRs, cell densities, labeling methods, and cell shapes. We systematically evaluate the segmentation accuracy of BCM3D using both simulated and experimental images. Compared to state-of-the-art bacterial cell segmentation approaches, BCM3D consistently achieves higher segmentation accuracy and further enables automated morphometric cell classifications in multi-population biofilms.
Collapse
Affiliation(s)
- Mingxing Zhang
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Ji Zhang
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Yibo Wang
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Jie Wang
- Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Alecia M Achimovich
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Scott T Acton
- Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
61
|
Steinbach G, Crisan C, Ng SL, Hammer BK, Yunker PJ. Accumulation of dead cells from contact killing facilitates coexistence in bacterial biofilms. J R Soc Interface 2020; 17:20200486. [PMID: 33292099 PMCID: PMC7811593 DOI: 10.1098/rsif.2020.0486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial communities are governed by a wide variety of social interactions, some of which are antagonistic with potential significance for bacterial warfare. Several antagonistic mechanisms, such as killing via the type VI secretion system (T6SS), require killer cells to directly contact target cells. The T6SS is hypothesized to be a highly potent weapon, capable of facilitating the invasion and defence of bacterial populations. However, we find that the efficacy of contact killing is severely limited by the material consequences of cell death. Through experiments with Vibrio cholerae strains that kill via the T6SS, we show that dead cell debris quickly accumulates at the interface that forms between competing strains, preventing physical contact and thus preventing killing. While previous experiments have shown that T6SS killing can reduce a population of target cells by as much as 106-fold, we find that, as a result of the formation of dead cell debris barriers, the impact of contact killing depends sensitively on the initial concentration of killer cells. Killer cells are incapable of invading or eliminating competitors on a community level. Instead, bacterial warfare itself can facilitate coexistence between nominally antagonistic strains. While a variety of defensive strategies against microbial warfare exist, the material consequences of cell death provide target cells with their first line of defence.
Collapse
Affiliation(s)
- Gabi Steinbach
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cristian Crisan
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
62
|
Peschek N, Herzog R, Singh PK, Sprenger M, Meyer F, Fröhlich KS, Schröger L, Bramkamp M, Drescher K, Papenfort K. RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae. Nat Commun 2020; 11:6067. [PMID: 33247102 PMCID: PMC7695739 DOI: 10.1038/s41467-020-19890-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrio cholerae, the cause of cholera disease, exhibits a characteristic curved rod morphology, which promotes infectivity and motility in dense hydrogels. Periplasmic protein CrvA determines cell curvature in V. cholerae, yet the regulatory factors controlling CrvA are unknown. Here, we discover the VadR small RNA (sRNA) as a post-transcriptional inhibitor of the crvA mRNA. Mutation of vadR increases cell curvature, whereas overexpression has the inverse effect. We show that vadR transcription is activated by the VxrAB two-component system and triggered by cell-wall-targeting antibiotics. V. cholerae cells failing to repress crvA by VadR display decreased survival upon challenge with penicillin G indicating that cell shape maintenance by the sRNA is critical for antibiotic resistance. VadR also blocks the expression of various key biofilm genes and thereby inhibits biofilm formation in V. cholerae. Thus, VadR is an important regulator for synchronizing peptidoglycan integrity, cell shape, and biofilm formation in V. cholerae.
Collapse
Affiliation(s)
- Nikolai Peschek
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
| | - Roman Herzog
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Marcel Sprenger
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
| | - Fabian Meyer
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Kathrin S Fröhlich
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Luise Schröger
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
| | - Marc Bramkamp
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany.
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany.
- Microverse Cluster, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
63
|
Fernandez NL, Hsueh BY, Nhu NTQ, Franklin JL, Dufour YS, Waters CM. Vibrio cholerae adapts to sessile and motile lifestyles by cyclic di-GMP regulation of cell shape. Proc Natl Acad Sci U S A 2020; 117:29046-29054. [PMID: 33139575 PMCID: PMC7682387 DOI: 10.1073/pnas.2010199117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cell morphology of rod-shaped bacteria is determined by the rigid net of peptidoglycan forming the cell wall. Alterations to the rod shape, such as the curved rod, occur through manipulating the process of cell wall synthesis. The human pathogen Vibrio cholerae typically exists as a curved rod, but straight rods have been observed under certain conditions. While this appears to be a regulated process, the regulatory pathways controlling cell shape transitions in V. cholerae and the benefits of switching between rod and curved shape have not been determined. We demonstrate that cell shape in V. cholerae is regulated by the bacterial second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) by posttranscriptionally repressing expression of crvA, a gene encoding an intermediate filament-like protein necessary for curvature formation in V. cholerae. This regulation is mediated by the transcriptional cascade that also induces production of biofilm matrix components, indicating that cell shape is coregulated with V. cholerae's induction of sessility. During microcolony formation, wild-type V. cholerae cells tended to exist as straight rods, while genetically engineering cells to maintain high curvature reduced microcolony formation and biofilm density. Conversely, straight V. cholerae mutants have reduced swimming speed when using flagellar motility in liquid. Our results demonstrate regulation of cell shape in bacteria is a mechanism to increase fitness in planktonic and biofilm lifestyles.
Collapse
Affiliation(s)
- Nicolas L Fernandez
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Brian Y Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Nguyen T Q Nhu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Joshua L Franklin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Yann S Dufour
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
64
|
Cont A, Rossy T, Al-Mayyah Z, Persat A. Biofilms deform soft surfaces and disrupt epithelia. eLife 2020; 9:56533. [PMID: 33025904 PMCID: PMC7556879 DOI: 10.7554/elife.56533] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
During chronic infections and in microbiota, bacteria predominantly colonize their hosts as multicellular structures called biofilms. A common assumption is that biofilms exclusively interact with their hosts biochemically. However, the contributions of mechanics, while being central to the process of biofilm formation, have been overlooked as a factor influencing host physiology. Specifically, how biofilms form on soft, tissue-like materials remains unknown. Here, we show that biofilms of the pathogens Vibrio cholerae and Pseudomonas aeruginosa can induce large deformations of soft synthetic hydrogels. Biofilms buildup internal mechanical stress as single cells grow within the elastic matrix. By combining mechanical measurements and mutations in matrix components, we found that biofilms deform by buckling, and that adhesion transmits these forces to their substrates. Finally, we demonstrate that V. cholerae biofilms can generate sufficient mechanical stress to deform and even disrupt soft epithelial cell monolayers, suggesting a mechanical mode of infection.
Collapse
Affiliation(s)
- Alice Cont
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tamara Rossy
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zainebe Al-Mayyah
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
65
|
Rooney LM, Amos WB, Hoskisson PA, McConnell G. Intra-colony channels in E. coli function as a nutrient uptake system. THE ISME JOURNAL 2020; 14:2461-2473. [PMID: 32555430 PMCID: PMC7490401 DOI: 10.1038/s41396-020-0700-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
The ability of microorganisms to grow as aggregated assemblages has been known for many years, however their structure has remained largely unexplored across multiple spatial scales. The development of the Mesolens, an optical system which uniquely allows simultaneous imaging of individual bacteria over a 36 mm2 field of view, has enabled the study of mature Escherichia coli macro-colony biofilm architecture like never before. The Mesolens enabled the discovery of intra-colony channels on the order of 10 μm in diameter, that are integral to E. coli macro-colony biofilms and form as an emergent property of biofilm growth. These channels have a characteristic structure and re-form after total mechanical disaggregation of the colony. We demonstrate that the channels are able to transport particles and play a role in the acquisition of and distribution of nutrients through the biofilm. These channels potentially offer a new route for the delivery of dispersal agents for antimicrobial drugs to biofilms, ultimately lowering their impact on public health and industry.
Collapse
Affiliation(s)
- Liam M Rooney
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - William B Amos
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Gail McConnell
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| |
Collapse
|
66
|
|
67
|
Qin B, Fei C, Bridges AA, Mashruwala AA, Stone HA, Wingreen NS, Bassler BL. Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science 2020; 369:71-77. [PMID: 32527924 DOI: 10.1126/science.abb8501] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
Bacterial biofilms represent a basic form of multicellular organization that confers survival advantages to constituent cells. The sequential stages of cell ordering during biofilm development have been studied in the pathogen and model biofilm-former Vibrio cholerae It is unknown how spatial trajectories of individual cells and the collective motions of many cells drive biofilm expansion. We developed dual-view light-sheet microscopy to investigate the dynamics of biofilm development from a founder cell to a mature three-dimensional community. Tracking of individual cells revealed two distinct fates: one set of biofilm cells expanded ballistically outward, while the other became trapped at the substrate. A collective fountain-like flow transported cells to the biofilm front, bypassing members trapped at the substrate and facilitating lateral biofilm expansion. This collective flow pattern was quantitatively captured by a continuum model of biofilm growth against substrate friction. Coordinated cell movement required the matrix protein RbmA, without which cells expanded erratically. Thus, tracking cell lineages and trajectories in space and time revealed how multicellular structures form from a single founder cell.
Collapse
Affiliation(s)
- Boyang Qin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Andrew A Bridges
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ameya A Mashruwala
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. .,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
68
|
Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol 2020; 28:668-681. [PMID: 32663461 DOI: 10.1016/j.tim.2020.03.016] [Citation(s) in RCA: 707] [Impact Index Per Article: 141.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
Biofilms consist of microbial communities embedded in a 3D extracellular matrix. The matrix is composed of a complex array of extracellular polymeric substances (EPS) that contribute to the unique attributes of biofilm lifestyle and virulence. This ensemble of chemically and functionally diverse biomolecules is termed the 'matrixome'. The composition and mechanisms of EPS matrix formation, and its role in biofilm biology, function, and microenvironment are being revealed. This perspective article highlights recent advances about the multifaceted role of the 'matrixome' in the development, physical-chemical properties, and virulence of biofilms. We emphasize that targeting biofilm-specific conditions such as the matrixome could lead to precise and effective antibiofilm approaches. We also discuss the limited knowledge in the context of polymicrobial biofilms, and the need for more in-depth analyses of the EPS matrix in mixed communities that are associated with many human infectious diseases.
Collapse
Affiliation(s)
- L Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland
| | - Z Ren
- Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - H Koo
- Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Center for Innovation and Precision Dentistry, University of Pennsylvania School of Dental Medicine, School of Engineering and Applied Sciences, Philadelphia, PA, USA
| | - T Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland.
| |
Collapse
|
69
|
Zhang X, Yuan H, Wang Y, Guan L, Zeng Z, Jiang Z, Zhang X. Cell Surface Energy Affects the Structure of Microalgal Biofilm. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3057-3063. [PMID: 32160744 DOI: 10.1021/acs.langmuir.0c00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microalgae biofilm-based culture systems have wide applications in environmental engineering and biotechnology. Biofilm structure is critical for the transport of nutrients, gas, and signaling molecules in a microalgal biofilm. This work aims to understand the influence of cell surface energy (SE) on the microalgal biofilm structure. Three microalgae species were used as model cells in the study: Chlorella sp., Nannochloris oculata, and Chlorella pyrenoidosa. First, by mediating biofilm culture conditions, we obtained Chlorella sp. cells with SEs of 40.4 ± 1.5, 44.7 ± 1.0, and 62. 7 ± 1.2 mJ/m2, N. oculata cells with SEs of 47.7 ± 0.5, 41.1 ± 1.0, and 62.6 ± 1.2 mJ/m2, and C. pyrenoidosa cells with SEs of 64.0 ± 0.6, 62.1 ± 0.7, and 62.8 ± 0.6 mJ/m2. Then, based on the characterizations of biofilm structures, we found that cell SE can significantly affect the microalgae biofilm structure. When the cell SEs ranged from 40 to 50 mJ/m2, the microalgae cells formed heterogeneous biofilms with a large number of open voids, and the biofilm porosity was higher than 20%. Alternatively, when the cell SEs ranged from 50 to 65 mJ/m2, the cells formed a flat, homogeneous biofilm with the porosity lower than 20%. Finally, the influencing mechanism of cell SE on biofilm structure was interpreted based on the thermodynamic theory via analyzing the co-adhesion energy between cells. The study has important implications in understanding factors that influence the biofilm structures.
Collapse
Affiliation(s)
- Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Research Center of Energy Saving and Environmental Protection, Beijing 100083, China
| | - Hao Yuan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Libo Guan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziyi Zeng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| |
Collapse
|
70
|
Paula AJ, Hwang G, Koo H. Dynamics of bacterial population growth in biofilms resemble spatial and structural aspects of urbanization. Nat Commun 2020; 11:1354. [PMID: 32170131 PMCID: PMC7070081 DOI: 10.1038/s41467-020-15165-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Biofilms develop from bacteria bound on surfaces that grow into structured communities (microcolonies). Although surface topography is known to affect bacterial colonization, how multiple individual settlers develop into microcolonies simultaneously remains underexplored. Here, we use multiscale population-growth and 3D-morphometric analyses to assess the spatiotemporal development of hundreds of bacterial colonizers towards submillimeter-scale microcolony communities. Using an oral bacterium (Streptococcus mutans), we find that microbial cells settle on the surface randomly under sucrose-rich conditions, regardless of surface topography. However, only a subset of colonizers display clustering behavior and growth following a power law. These active colonizers expand three-dimensionally by amalgamating neighboring bacteria into densely populated microcolonies. Clustering and microcolony assembly are dependent on exopolysaccharides, while population growth dynamics and spatial structure are affected by cooperative or antagonistic microbes. Our work suggests that biofilm assembly resembles certain spatial-structural features of urbanization, where population growth and expansion can be influenced by type of settlers, neighboring cells, and further community merging and scaffolding occurring at various scales.
Collapse
Affiliation(s)
- Amauri J Paula
- Solid-Biological Interface Group (SolBIN), Department of Physics, Universidade Federal do Ceará, P.O. Box 6030, 60455-900, Fortaleza, CE, Brazil.
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Geelsu Hwang
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Pennsylvania, PA, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
71
|
Stochastic pulsing of gene expression enables the generation of spatial patterns in Bacillus subtilis biofilms. Nat Commun 2020; 11:950. [PMID: 32075967 PMCID: PMC7031267 DOI: 10.1038/s41467-020-14431-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
Stochastic pulsing of gene expression can generate phenotypic diversity in a genetically identical population of cells, but it is unclear whether it has a role in the development of multicellular systems. Here, we show how stochastic pulsing of gene expression enables spatial patterns to form in a model multicellular system, Bacillus subtilis bacterial biofilms. We use quantitative microscopy and time-lapse imaging to observe pulses in the activity of the general stress response sigma factor σB in individual cells during biofilm development. Both σB and sporulation activity increase in a gradient, peaking at the top of the biofilm, even though σB represses sporulation. As predicted by a simple mathematical model, increasing σB expression shifts the peak of sporulation to the middle of the biofilm. Our results demonstrate how stochastic pulsing of gene expression can play a key role in pattern formation during biofilm development. Stochastic pulsing of gene expression can generate phenotypic diversity in a genetically identical population of cells. Here, the authors show that stochastic pulsing in the expression of a sigma factor enables the formation of spatial patterns in a multicellular system, Bacillus subtilis bacterial biofilms.
Collapse
|
72
|
Morinaga K, Yoshida K, Takahashi K, Nomura N, Toyofuku M. Peculiarities of biofilm formation by Paracoccus denitrificans. Appl Microbiol Biotechnol 2020; 104:2427-2433. [PMID: 32002601 PMCID: PMC7223048 DOI: 10.1007/s00253-020-10400-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/24/2023]
Abstract
Most bacteria form biofilms, which are thick multicellular communities covered in extracellular matrix. Biofilms can become thick enough to be even observed by the naked eye, and biofilm formation is a tightly regulated process. Paracoccus denitrificans is a non-motile, Gram-negative bacterium that forms a very thin, unique biofilm. A key factor in the biofilm formed by this bacterium is a large surface protein named biofilm-associated protein A (BapA), which was recently reported to be regulated by cyclic diguanosine monophosphate (cyclic-di-GMP or c-di-GMP). Cyclic-di-GMP is a major second messenger involved in biofilm formation in many bacteria. Though cyclic-di-GMP is generally reported as a positive regulatory factor in biofilm formation, it represses biofilm formation in P. denitrificans. Furthermore, quorum sensing (QS) represses biofilm formation in this bacterium, which is also reported as a positive regulator of biofilm formation in most bacteria. The QS signal used in P. denitrificans is hydrophobic and is delivered through membrane vesicles. Studies on QS show that P. denitrificans can potentially form a thick biofilm but maintains a thin biofilm under normal growth conditions. In this review, we discuss the peculiarities of biofilm formation by P. denitrificans with the aim of deepening the overall understanding of bacterial biofilm formation and functions.
Collapse
Affiliation(s)
- Kana Morinaga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Keitaro Yoshida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2-17-2-1, Tsukisamu-higashi, Toyohira-ku, Sapporo, Japan
| | - Kohei Takahashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
73
|
Larson BT, Ruiz-Herrero T, Lee S, Kumar S, Mahadevan L, King N. Biophysical principles of choanoflagellate self-organization. Proc Natl Acad Sci U S A 2020; 117:1303-1311. [PMID: 31896587 PMCID: PMC6983409 DOI: 10.1073/pnas.1909447117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inspired by the patterns of multicellularity in choanoflagellates, the closest living relatives of animals, we quantify the biophysical processes underlying the morphogenesis of rosette colonies in the choanoflagellate Salpingoeca rosetta We find that rosettes reproducibly transition from an early stage of 2-dimensional (2D) growth to a later stage of 3D growth, despite the underlying variability of the cell lineages. Our perturbative experiments demonstrate the fundamental importance of a basally secreted extracellular matrix (ECM) for rosette morphogenesis and show that the interaction of the ECM with cells in the colony physically constrains the packing of proliferating cells and, thus, controls colony shape. Simulations of a biophysically inspired model that accounts for the size and shape of the individual cells, the fraction of ECM, and its stiffness relative to that of the cells suffices to explain our observations and yields a morphospace consistent with observations across a range of multicellular choanoflagellate colonies. Overall, our biophysical perspective on rosette development complements previous genetic perspectives and, thus, helps illuminate the interplay between cell biology and physics in regulating morphogenesis.
Collapse
Affiliation(s)
- Ben T Larson
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
| | - Teresa Ruiz-Herrero
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Stacey Lee
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
- Department of Physics, Harvard University, Cambridge, MA 02138
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Kavli Institute for NanoBio Science and Technology, Harvard University, Cambridge, MA 02138
| | - Nicole King
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
74
|
Pearce P, Song B, Skinner DJ, Mok R, Hartmann R, Singh PK, Jeckel H, Oishi JS, Drescher K, Dunkel J. Flow-Induced Symmetry Breaking in Growing Bacterial Biofilms. PHYSICAL REVIEW LETTERS 2019; 123:258101. [PMID: 31922766 DOI: 10.1103/physrevlett.123.258101] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 06/10/2023]
Abstract
Bacterial biofilms represent a major form of microbial life on Earth and serve as a model active nematic system, in which activity results from growth of the rod-shaped bacterial cells. In their natural environments, ranging from human organs to industrial pipelines, biofilms have evolved to grow robustly under significant fluid shear. Despite intense practical and theoretical interest, it is unclear how strong fluid flow alters the local and global architectures of biofilms. Here, we combine highly time-resolved single-cell live imaging with 3D multiscale modeling to investigate the mechanisms by which flow affects the dynamics of all individual cells in growing biofilms. Our experiments and cell-based simulations reveal three quantitatively different growth phases in strong external flow and the transitions between them. In the initial stages of biofilm development, flow induces a downstream gradient in cell orientation, causing asymmetrical dropletlike biofilm shapes. In the later developmental stages, when the majority of cells are sheltered from the flow by the surrounding extracellular matrix, buckling-induced cell verticalization in the biofilm core restores radially symmetric biofilm growth, in agreement with predictions of a 3D continuum model.
Collapse
Affiliation(s)
- Philip Pearce
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Boya Song
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Rachel Mok
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jeffrey S Oishi
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
- Department of Physics, Bates College, Lewiston, Maine 04240, USA
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| |
Collapse
|
75
|
Abstract
Biofilms are surface-associated bacterial communities that play both beneficial and harmful roles in nature, medicine, and industry. Tolerant and persister cells are thought to underlie biofilm-related bacterial recurrence in medical and industrial contexts. Here, we review recent progress aimed at understanding the mechanical features that drive biofilm resilience and the biofilm formation process at single-cell resolution. We discuss findings regarding mechanisms underlying bacterial tolerance and persistence in biofilms and how these phenotypes are linked to antibiotic resistance. New strategies for combatting tolerance and persistence in biofilms and possible methods for biofilm eradication are highlighted to inspire future development.
Collapse
|
76
|
Bridges AA, Bassler BL. The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLoS Biol 2019; 17:e3000429. [PMID: 31710602 PMCID: PMC6872173 DOI: 10.1371/journal.pbio.3000429] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/21/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Vibrio cholerae possesses multiple quorum-sensing (QS) systems that control virulence and biofilm formation among other traits. At low cell densities, when QS autoinducers are absent, V. cholerae forms biofilms. At high cell densities, when autoinducers have accumulated, biofilm formation is repressed, and dispersal occurs. Here, we focus on the roles of two well-characterized QS autoinducers that function in parallel. One autoinducer, called cholerae autoinducer-1 (CAI-1), is used to measure Vibrio abundance, and the other autoinducer, called autoinducer-2 (AI-2), is widely produced by different bacterial species and presumed to enable V. cholerae to assess the total bacterial cell density of the vicinal community. The two V. cholerae autoinducers funnel information into a shared signal relay pathway. This feature of the QS system architecture has made it difficult to understand how specific information can be extracted from each autoinducer, how the autoinducers might drive distinct output behaviors, and, in turn, how the bacteria use QS to distinguish kin from nonkin in bacterial communities. We develop a live-cell biofilm formation and dispersal assay that allows examination of the individual and combined roles of the two autoinducers in controlling V. cholerae behavior. We show that the QS system works as a coincidence detector in which both autoinducers must be present simultaneously for repression of biofilm formation to occur. Within that context, the CAI-1 QS pathway is activated when only a few V. cholerae cells are present, whereas the AI-2 pathway is activated only at much higher cell density. The consequence of this asymmetry is that exogenous sources of AI-2, but not CAI-1, contribute to satisfying the coincidence detector to repress biofilm formation and promote dispersal. We propose that V. cholerae uses CAI-1 to verify that some of its kin are present before committing to the high-cell–density QS mode, but it is, in fact, the broadly made autoinducer AI-2 that sets the pace of the V. cholerae QS program. This first report of unique roles for the different V. cholerae autoinducers suggests that detection of kin fosters a distinct outcome from detection of nonkin. The pathogenic bacterium Vibrio cholerae uses both kin and nonkin quorum-sensing autoinducer molecules to control its biofilm life cycle; this study shows that each autoinducer plays a unique role in regulating biofilm formation and dispersal.
Collapse
Affiliation(s)
- Andrew A. Bridges
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
77
|
Gu H, Lee SW, Carnicelli J, Jiang Z, Ren D. Antibiotic Susceptibility of Escherichia coli Cells during Early-Stage Biofilm Formation. J Bacteriol 2019; 201:e00034-19. [PMID: 31061169 PMCID: PMC6707912 DOI: 10.1128/jb.00034-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Bacteria form complex multicellular structures on solid surfaces known as biofilms, which allow them to survive in harsh environments. A hallmark characteristic of mature biofilms is the high-level antibiotic tolerance (up to 1,000 times) compared with that of planktonic cells. Here, we report our new findings that biofilm cells are not always more tolerant to antibiotics than planktonic cells in the same culture. Specifically, Escherichia coli RP437 exhibited a dynamic change in antibiotic susceptibility during its early-stage biofilm formation. This phenomenon was not strain specific. Upon initial attachment, surface-associated cells became more sensitive to antibiotics than planktonic cells. By controlling the cell adhesion and cluster size using patterned E. coli biofilms, cells involved in the interaction between cell clusters during microcolony formation were found to be more susceptible to ampicillin than cells within clusters, suggesting a role of cell-cell interactions in biofilm-associated antibiotic tolerance. After this stage, biofilm cells became less susceptible to ampicillin and ofloxacin than planktonic cells. However, when the cells were detached by sonication, both antibiotics were more effective in killing the detached biofilm cells than the planktonic cells. Collectively, these results indicate that biofilm formation involves active cellular activities in adaption to the attached life form and interactions between cell clusters to build the complex structure of a biofilm, which can render these cells more susceptible to antibiotics. These findings shed new light on bacterial antibiotic susceptibility during biofilm formation and can guide the design of better antifouling surfaces, e.g., those with micron-scale topographic structures to interrupt cell-cell interactions.IMPORTANCE Mature biofilms are known for their high-level tolerance to antibiotics; however, antibiotic susceptibility of sessile cells during early-stage biofilm formation is not well understood. In this study, we aim to fill this knowledge gap by following bacterial antibiotic susceptibility during early-stage biofilm formation. We found that the attached cells have a dynamic change in antibiotic susceptibility, and during certain phases, they can be more sensitive to antibiotics than planktonic counterparts in the same culture. Using surface chemistry-controlled patterned biofilm formation, cell-surface and cell-cell interactions were found to affect the antibiotic susceptibility of attached cells. Collectively, these findings provide new insights into biofilm physiology and reveal how adaptation to the attached life form may influence antibiotic susceptibility of bacterial cells.
Collapse
Affiliation(s)
- Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA
| | - Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA
| | - Joseph Carnicelli
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA
| | - Zhaowei Jiang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, USA
- Department of Biology, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
78
|
Wickramasinghe NN, Ravensdale JT, Coorey R, Dykes GA, Scott Chandry P. In situ characterisation of biofilms formed by psychrotrophic meat spoilage pseudomonads. BIOFOULING 2019; 35:840-855. [PMID: 31558055 DOI: 10.1080/08927014.2019.1669021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Psychrotrophic Pseudomonas species form biofilms on meat during refrigerated and temperature abuse conditions. Biofilm growth leads to slime formation on meat which is a key organoleptic degradation characteristic. Limited research has been undertaken characterising biofilms grown on meat during chilled aerobic storage. In this work, biofilms formed by two key meat spoilage organisms, Pseudomonas fragi and Pseudomonas lundensis were studied in situ using five strains from each species. Biofilm structures were studied using confocal microscope images, cellular arrangement, cell counts and biomass quantifications. This work demonstrated that highly dense, compact biofilms are a characteristic of P. fragi strains. P. lundensis formed biofilms with loosely arranged cells. The cells in P. fragi biofilm appear to be vertically oriented whereas this characteristic was absent in P. lundensis biofilms formed under identical conditions. Despite the continued access to nutrients, biofilms formed on meat by proteolytic Pseudomonas species dispersed after a population maximum was reached.
Collapse
Affiliation(s)
- Nirmani N Wickramasinghe
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
- Agriculture and Food, CSIRO, Werribee, Victoria, Australia
| | - Joshua T Ravensdale
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Gary A Dykes
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | | |
Collapse
|
79
|
Bisht K, Wakeman CA. Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations. Front Microbiol 2019; 10:1908. [PMID: 31507548 PMCID: PMC6718512 DOI: 10.3389/fmicb.2019.01908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
The association of microorganisms into biofilms produces functionally organized microbial structures that promote community survival in a wide range of environments. Much like when individual cells within a multicellular organism express different genes from the same DNA blueprint, individual microbial cells located within different regions of a biofilm structure can exhibit distinct genetic programs. These spatially defined regions of physiologically differentiated cells are reminiscent of the role of tissues in multicellular organisms, with specific subpopulations in the microbial community serving defined roles to promote the overall health of the biofilm. The functions of these subpopulations are quite diverse and can range from dormant cells that can withstand antibiotic onslaughts to cells actively producing extracellular polymeric substances providing integrity to the entire community. The purpose of this review is to discuss the diverse roles of subpopulations in the stability and function of clonal biofilms, the methods for studying these subpopulations, and the ways these subpopulations can potentially be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine Ann Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
80
|
Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R. The 1.9 Å crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion. J Biol Chem 2019; 294:14499-14511. [PMID: 31439670 DOI: 10.1074/jbc.ra119.008335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
Growth of the cholera bacterium Vibrio cholerae in a biofilm community contributes to both its pathogenicity and survival in aquatic environmental niches. The major components of V. cholerae biofilms include Vibrio polysaccharide (VPS) and the extracellular matrix proteins RbmA, RbmC, and Bap1. To further elucidate the previously observed overlapping roles of Bap1 and RbmC in biofilm architecture and surface attachment, here we investigated the structural and functional properties of Bap1. Soluble expression of Bap1 was possible only after the removal of an internal 57-amino-acid-long hydrophobic insertion sequence. The crystal structure of Bap1 at 1.9 Å resolution revealed a two-domain assembly made up of an eight-bladed β-propeller interrupted by a β-prism domain. The structure also revealed metal-binding sites within canonical calcium blade motifs, which appear to have structural rather than functional roles. Contrary to results previously observed with RbmC, the Bap1 β-prism domain did not exhibit affinity for complex N-glycans, suggesting an altered role of this domain in biofilm-surface adhesion. Native polyacrylamide gel shift analysis did suggest that Bap1 exhibits lectin activity with a preference for anionic or linear polysaccharides. Our results suggest a model for V. cholerae biofilms in which Bap1 and RbmC play dominant but differing adhesive roles in biofilms, allowing bacterial attachment to diverse environmental or host surfaces.
Collapse
Affiliation(s)
- Katherine Kaus
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Alison Biester
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Ethan Chupp
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Jianyi Lu
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Charlie Visudharomn
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| |
Collapse
|
81
|
A Dual-Species Biofilm with Emergent Mechanical and Protective Properties. J Bacteriol 2019; 201:JB.00670-18. [PMID: 30833350 DOI: 10.1128/jb.00670-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/23/2019] [Indexed: 12/14/2022] Open
Abstract
Many microbes coexist within biofilms, or multispecies communities of cells encased in an extracellular matrix. However, little is known about the microbe-microbe interactions relevant for creating these structures. In this study, we explored a striking dual-species biofilm between Bacillus subtilis and Pantoea agglomerans that exhibited characteristics that were not predictable from previous work examining monoculture biofilms. Coculture wrinkle formation required a P. agglomerans exopolysaccharide as well as the B. subtilis amyloid-like protein TasA. Unexpectedly, other B. subtilis matrix components essential for monoculture biofilm formation were not necessary for coculture wrinkling (e.g., the exopolysaccharide EPS, the hydrophobin BslA, and cell chaining). In addition, B. subtilis cell chaining prevented coculture wrinkling, even though chaining was previously associated with more robust monoculture biofilms. We also observed that increasing the relative proportion of P. agglomerans (which forms completely featureless monoculture colonies) increased coculture wrinkling. Using microscopy and rheology, we observed that these two bacteria assemble into an organized layered structure that reflects the physical properties of both monocultures. This partitioning into distinct regions negatively affected the survival of P. agglomerans while also serving as a protective mechanism in the presence of antibiotic stress. Taken together, these data indicate that studying cocultures is a productive avenue to identify novel mechanisms that drive the formation of structured microbial communities.IMPORTANCE In the environment, many microbes form biofilms. However, the interspecies interactions underlying bacterial coexistence within these biofilms remain understudied. Here, we mimic environmentally relevant biofilms by studying a dual-species biofilm formed between Bacillus subtilis and Pantoea agglomerans and subjecting the coculture to chemical and physical stressors that it may experience in the natural world. We determined that both bacteria contribute structural elements to the coculture, which is reflected in its overall viscoelastic behavior. Existence within the coculture can be either beneficial or detrimental depending on the context. Many of the features and determinants of the coculture biofilm appear distinct from those identified in monoculture biofilm studies, highlighting the importance of characterizing multispecies consortia to understand naturally occurring bacterial interactions.
Collapse
|
82
|
Giacomucci S, Cros CDN, Perron X, Mathieu-Denoncourt A, Duperthuy M. Flagella-dependent inhibition of biofilm formation by sub-inhibitory concentration of polymyxin B in Vibrio cholerae. PLoS One 2019; 14:e0221431. [PMID: 31430343 PMCID: PMC6701800 DOI: 10.1371/journal.pone.0221431] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/06/2019] [Indexed: 01/02/2023] Open
Abstract
Biofilm formation is a common strategy used by bacteria in order to survive and persist in the environment. In Vibrio cholerae (V. cholerae), a Gram-negative pathogen responsible for the cholera disease, biofilm-like aggregates are important for the pathogenesis and disease transmission. Biofilm formation is initiated by the attachment of the bacteria to a surface, followed by maturation stages involving the formation of a biofilm matrix. In V. cholerae, flagella are essential for the initial step of biofilm formation, allowing the bacteria to swim and to detect a surface. In this study, we explored the effect of polymyxin B (PmB), a cationic bacterial antimicrobial peptide, on biofilm formation in pathogenic V. cholerae strains belonging to the O1 and O139 serotypes. We found that sub-inhibitory concentration of PmB induces a reduction of the biofilm formation by V. cholerae O1 and O139. Experiment on preformed biofilm demonstrated that the biofilm formation inhibition occurs at the initial step of biofilm formation, where the flagella are essential. We further characterize the effect of PmB on V. cholerae flagellation. Our results demonstrate that the flagellin expression is not reduced in presence of sub-inhibitory concentration of PmB. However, a decrease of the abundance of flagellin associated with the bacterial cells together with an increase in the secretome was observed. Electron microscopy observations also suggest that the abundance of aflagellated bacteria increases upon PmB supplementation. Finally, in agreement with the effect on the flagellation, a reduction of the bacterial motility is observed. Altogether, our results suggest that the PmB affect V. cholerae flagella resulting in a decrease of the motility and a compromised ability to form biofilm.
Collapse
Affiliation(s)
- Sean Giacomucci
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Candice Danabé-Nieto Cros
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Xavier Perron
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Annabelle Mathieu-Denoncourt
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Marylise Duperthuy
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
83
|
Cattò C, Cappitelli F. Testing Anti-Biofilm Polymeric Surfaces: Where to Start? Int J Mol Sci 2019; 20:E3794. [PMID: 31382580 PMCID: PMC6696330 DOI: 10.3390/ijms20153794] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Present day awareness of biofilm colonization on polymeric surfaces has prompted the scientific community to develop an ever-increasing number of new materials with anti-biofilm features. However, compared to the large amount of work put into discovering potent biofilm inhibitors, only a small number of papers deal with their validation, a critical step in the translation of research into practical applications. This is due to the lack of standardized testing methods and/or of well-controlled in vivo studies that show biofilm prevention on polymeric surfaces; furthermore, there has been little correlation with the reduced incidence of material deterioration. Here an overview of the most common methods for studying biofilms and for testing the anti-biofilm properties of new surfaces is provided.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
84
|
Vishwakarma J, Vavilala S. Evaluating the antibacterial and antibiofilm potential of sulphated polysaccharides extracted from green algaeChlamydomonas reinhardtii. J Appl Microbiol 2019; 127:1004-1017. [DOI: 10.1111/jam.14364] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/25/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- J. Vishwakarma
- School of Biological Sciences UM‐DAE Centre for Excellence in Basic Sciences, University of Mumbai Santacruz East, Mumbai India
| | - S.L. Vavilala
- School of Biological Sciences UM‐DAE Centre for Excellence in Basic Sciences, University of Mumbai Santacruz East, Mumbai India
| |
Collapse
|
85
|
Vibrio cholerae filamentation promotes chitin surface attachment at the expense of competition in biofilms. Proc Natl Acad Sci U S A 2019; 116:14216-14221. [PMID: 31239347 PMCID: PMC6628660 DOI: 10.1073/pnas.1819016116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human pathogen Vibrio cholerae, when not inside of a host, grows in cell clusters (biofilms) on pieces of detritus in aquatic environments. Here we discovered that some isolates of V. cholerae can change their shape from small comma-shaped cells to long filaments in seawater. This altered cell shape allows cells to make new types of biofilms, and provides an advantage in quickly colonizing particles in seawater, at the expense of longer-term competitive ability. The filamentous cell-shape strategy is particularly effective at competing in environments with quick turnover of chitin particles. This result showcases how bacterial cell shape can be coupled to environmental success during surface occupation, competition within biofilms, and dispersal to new resource patches. Collective behavior in spatially structured groups, or biofilms, is the norm among microbes in their natural environments. Though biofilm formation has been studied for decades, tracing the mechanistic and ecological links between individual cell morphologies and the emergent features of cell groups is still in its infancy. Here we use single-cell–resolution confocal microscopy to explore biofilms of the human pathogen Vibrio cholerae in conditions mimicking its marine habitat. Prior reports have noted the occurrence of cellular filamentation in V. cholerae, with variable propensity to filament among both toxigenic and nontoxigenic strains. Using a filamenting strain of V. cholerae O139, we show that cells with this morphotype gain a profound competitive advantage in colonizing and spreading on particles of chitin, the material many marine Vibrio species depend on for growth in seawater. Furthermore, filamentous cells can produce biofilms that are independent of primary secreted components of the V. cholerae biofilm matrix; instead, filamentous biofilm architectural strength appears to derive at least in part from the entangled mesh of cells themselves. The advantage gained by filamentous cells in early chitin colonization and growth is countered in long-term competition experiments with matrix-secreting V. cholerae variants, whose densely packed biofilm structures displace competitors from surfaces. Overall, our results reveal an alternative mode of biofilm architecture that is dependent on filamentous cell morphology and advantageous in environments with rapid chitin particle turnover. This insight provides an environmentally relevant example of how cell morphology can impact bacterial fitness.
Collapse
|
86
|
Passos da Silva D, Matwichuk ML, Townsend DO, Reichhardt C, Lamba D, Wozniak DJ, Parsek MR. The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix. Nat Commun 2019; 10:2183. [PMID: 31097723 PMCID: PMC6522473 DOI: 10.1038/s41467-019-10201-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa biofilms are composed of exopolysaccharides (EPS), exogenous DNA, and proteins that hold these communities together. P. aeruginosa produces lectins LecA and LecB, which possess affinities towards sugars found in matrix EPS and mediate adherence of P. aeruginosa to target host cells. Here, we demonstrate that LecB binds to Psl, a key matrix EPS, and this leads to increased retention of both cells and EPS in a growing biofilm. This interaction is predicted to occur between the lectin and the branched side chains present on Psl. Finally, we show that LecB coordinates Psl localization in the biofilm. This constitutes a unique function for LecB and identifies it as a matrix protein that contributes to biofilm structure through EPS interactions.
Collapse
Affiliation(s)
| | | | | | | | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Sede Secondaria di Basovizza, Trieste, Italy
| | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, Ohio State University, Columbus, OH, USA
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, USA.
- Integrative Microbiology Research Centre, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
87
|
Hartmann R, Singh PK, Pearce P, Mok R, Song B, Díaz-Pascual F, Dunkel J, Drescher K. Emergence of three-dimensional order and structure in growing biofilms. NATURE PHYSICS 2019; 15:251-256. [PMID: 31156716 PMCID: PMC6544526 DOI: 10.1038/s41567-018-0356-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 10/19/2018] [Indexed: 05/22/2023]
Abstract
Surface-attached bacterial biofilms are self-replicating active liquid crystals and the dominant form of bacterial life on earth (1-4). In conventional liquid crystals and solid-state materials, the interaction potentials between the molecules that comprise the system determine the material properties. However, for growth-active biofilms it is unclear whether potential-based descriptions can account for the experimentally observed morphologies, and which potentials would be relevant. Here, we overcame previous limitations of single-cell imaging techniques (5,6) to reconstruct and track all individual cells inside growing three-dimensional (3D) biofilms with up to 10,000 individuals. Based on these data, we identify, constrain, and provide a microscopic basis for an effective cell-cell interaction potential, which captures and predicts the growth dynamics, emergent architecture, and local liquid crystalline order of Vibrio cholerae biofilms. Furthermore, we show how external fluid flows control the microscopic structure and 3D morphology of biofilms. Our analysis implies that local cellular order and global biofilm architecture in these active bacterial communities can arise from mechanical cell-cell interactions, which cells can modulate by regulating the production of particular matrix components. These results establish an experimentally validated foundation for improved continuum theories of active matter and thereby contribute to solving the important problem of controlling biofilm growth.
Collapse
Affiliation(s)
- Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg,
DE
- Department of Physics, Philipps-Universität Marburg, 35032
Marburg, DE
| | - Praveen K. Singh
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg,
DE
| | - Philip Pearce
- Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
| | - Rachel Mok
- Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
| | - Boya Song
- Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
| | | | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg,
DE
- Department of Physics, Philipps-Universität Marburg, 35032
Marburg, DE
| |
Collapse
|
88
|
Qi L, Christopher GF. Role of Flagella, Type IV Pili, Biosurfactants, and Extracellular Polymeric Substance Polysaccharides on the Formation of Pellicles by Pseudomonas aeruginosa. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5294-5304. [PMID: 30883129 DOI: 10.1021/acs.langmuir.9b00271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbial biofilms are viscoelastic materials formed by bacteria, which occur on solid surfaces, at liquid interfaces, or in free solution. Although solid surface biofilms have been widely studied, pellicles, biofilms at liquid interfaces, have had significantly less focus. In this work, interfacial shear rheology and scanning electron microscopy imaging are used to characterize how flagella, type IV pili, biosurfactants, and extracellular polymeric substance polysaccharides affect the formation of pellicles by Pseudomonas aeruginosa at an air/water interface. Pellicles still form with the loss of a single biological attachment mechanism, which is hypothesized to be due to surface tension-aided attachment. Changes in the surface structure of the pellicles are observed when changing both the function/structure of type IV pili, removing the flagella, or stopping the expression of biosurfactants. However, these changes do not appear to affect pellicle elasticity in a consistent way. Traits that affect adsorption and growth/spreading appear to affect pellicles in a manner consistent with literature results for solid surface biofilms; small differences are seen in attachment-related mechanisms, which may occur due to surface tension.
Collapse
Affiliation(s)
- Lingjuan Qi
- Department of Mechanical Engineering , Texas Tech University , Lubbock 79409 , United States
| | - Gordon F Christopher
- Department of Mechanical Engineering , Texas Tech University , Lubbock 79409 , United States
| |
Collapse
|
89
|
Warren MR, Sun H, Yan Y, Cremer J, Li B, Hwa T. Spatiotemporal establishment of dense bacterial colonies growing on hard agar. eLife 2019; 8:e41093. [PMID: 30855227 PMCID: PMC6411370 DOI: 10.7554/elife.41093] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/20/2019] [Indexed: 01/21/2023] Open
Abstract
The physical interactions of growing bacterial cells with each other and with their surroundings significantly affect the structure and dynamics of biofilms. Here a 3D agent-based model is formulated to describe the establishment of simple bacterial colonies expanding by the physical force of their growth. With a single set of parameters, the model captures key dynamical features of colony growth by non-motile, non EPS-producing E. coli cells on hard agar. The model, supported by experiment on colony growth in different types and concentrations of nutrients, suggests that radial colony expansion is not limited by nutrients as commonly believed, but by mechanical forces. Nutrient penetration instead governs vertical colony growth, through thin layers of vertically oriented cells lifting up their ancestors from the bottom. Overall, the model provides a versatile platform to investigate the influences of metabolic and environmental factors on the growth and morphology of bacterial colonies.
Collapse
Affiliation(s)
- Mya R Warren
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
| | - Hui Sun
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
- Department of MathematicsUniversity of California, San DiegoLa JollaUnited States
- Department of Mathematics and StatisticsCalifornia State University, Long BeachLong BeachUnited States
| | - Yue Yan
- Department of MathematicsUniversity of California, San DiegoLa JollaUnited States
- School of Mathematical SciencesFudan UniversityShanghaiChina
| | - Jonas Cremer
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
| | - Bo Li
- Department of MathematicsUniversity of California, San DiegoLa JollaUnited States
| | - Terence Hwa
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
| |
Collapse
|
90
|
Kayser J, Schreck CF, Yu Q, Gralka M, Hallatschek O. Emergence of evolutionary driving forces in pattern-forming microbial populations. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0106. [PMID: 29632260 DOI: 10.1098/rstb.2017.0106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Evolutionary dynamics are controlled by a number of driving forces, such as natural selection, random genetic drift and dispersal. In this perspective article, we aim to emphasize that these forces act at the population level, and that it is a challenge to understand how they emerge from the stochastic and deterministic behaviour of individual cells. Even the most basic steric interactions between neighbouring cells can couple evolutionary outcomes of otherwise unrelated individuals, thereby weakening natural selection and enhancing random genetic drift. Using microbial examples of varying degrees of complexity, we demonstrate how strongly cell-cell interactions influence evolutionary dynamics, especially in pattern-forming systems. As pattern formation itself is subject to evolution, we propose to study the feedback between pattern formation and evolutionary dynamics, which could be key to predicting and potentially steering evolutionary processes. Such an effort requires extending the systems biology approach from the cellular to the population scale.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Jona Kayser
- Department of Physics, University of California, Berkeley, CA 94720, USA.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Carl F Schreck
- Department of Physics, University of California, Berkeley, CA 94720, USA.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - QinQin Yu
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Matti Gralka
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, CA 94720, USA .,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
91
|
Yan J, Fei C, Mao S, Moreau A, Wingreen NS, Košmrlj A, Stone HA, Bassler BL. Mechanical instability and interfacial energy drive biofilm morphogenesis. eLife 2019; 8:43920. [PMID: 30848725 PMCID: PMC6453567 DOI: 10.7554/elife.43920] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/06/2019] [Indexed: 11/17/2022] Open
Abstract
Surface-attached bacterial communities called biofilms display a diversity of morphologies. Although structural and regulatory components required for biofilm formation are known, it is not understood how these essential constituents promote biofilm surface morphology. Here, using Vibrio cholerae as our model system, we combine mechanical measurements, theory and simulation, quantitative image analyses, surface energy characterizations, and mutagenesis to show that mechanical instabilities, including wrinkling and delamination, underlie the morphogenesis program of growing biofilms. We also identify interfacial energy as a key driving force for mechanomorphogenesis because it dictates the generation of new and the annihilation of existing interfaces. Finally, we discover feedback between mechanomorphogenesis and biofilm expansion, which shapes the overall biofilm contour. The morphogenesis principles that we discover in bacterial biofilms, which rely on mechanical instabilities and interfacial energies, should be generally applicable to morphogenesis processes in tissues in higher organisms. Engineers have long studied how mechanical instabilities cause patterns to form in inanimate materials, and recently more attention has been given to how such forces affect biological systems. For example, stresses can build up within a tissue if one layer grows faster than an adjacent layer. The tissue can release this stress by wrinkling, folding or creasing. Though ancient and single-celled, bacteria can also develop spectacular patterns when they exist in the lifestyle known as a biofilm: a community of cells adhered to a surface. But do mechanical instabilities drive the patterns seen in biofilms? To investigate, Yan, Fei, Mao et al. grew biofilms of the bacterium called Vibrio cholerae – which causes the disease cholera – on solid, non-growing ‘substrates’. This work revealed that as the biofilms grow, their expansion is constrained by the substrate, and this situation generates mechanical stresses. To release the stresses, the biofilm initially folds to form wrinkles. Later, as the biofilm expands further, small parts of it detach from the substrate to form blisters. The same forces that keep water droplets spherical (known as interfacial forces) dictate how the blisters evolve, interact, and eventually shape the expanding biofilm. Using these principles, Yan et al. could engineer the biofilm into desired shapes. Collectively, the results presented by Yan et al. connect the shape of the biofilm surface with its material properties, in particular its stiffness. Understanding this relationship could help researchers to develop new ways to remove harmful biofilms, such as those that cause disease or that damage underwater structures. The stiffness of biofilms is already known to affect how well bacteria can resist antibiotics. Future studies could look for new genes or compounds that change the material properties of a biofilm, thereby altering the biofilm surface.
Collapse
Affiliation(s)
- Jing Yan
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Sheng Mao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Alexis Moreau
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, United States.,The Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
92
|
Jemielita M, Wingreen NS, Bassler BL. Quorum sensing controls Vibrio cholerae multicellular aggregate formation. eLife 2018; 7:42057. [PMID: 30582742 PMCID: PMC6351105 DOI: 10.7554/elife.42057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022] Open
Abstract
Bacteria communicate and collectively regulate gene expression using a process called quorum sensing (QS). QS relies on group-wide responses to signal molecules called autoinducers. Here, we show that QS activates a new program of multicellularity in Vibrio cholerae. This program, which we term aggregation, is distinct from the canonical surface-biofilm formation program, which QS represses. Aggregation is induced by autoinducers, occurs rapidly in cell suspensions, and does not require cell division, features strikingly dissimilar from those characteristic of V. cholerae biofilm formation. Extracellular DNA limits aggregate size, but is not sufficient to drive aggregation. A mutagenesis screen identifies genes required for aggregate formation, revealing proteins involved in V. cholerae intestinal colonization, stress response, and a protein that distinguishes the current V. cholerae pandemic strain from earlier pandemic strains. We suggest that QS-controlled aggregate formation is important for V. cholerae to successfully transit between the marine niche and the human host.
Collapse
Affiliation(s)
- Matthew Jemielita
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
93
|
A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Cell 2018; 176:268-280.e13. [PMID: 30554875 DOI: 10.1016/j.cell.2018.10.059] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/11/2018] [Accepted: 10/29/2018] [Indexed: 11/23/2022]
Abstract
Vibrio cholerae uses a quorum-sensing (QS) system composed of the autoinducer 3,5-dimethylpyrazin-2-ol (DPO) and receptor VqmA (VqmAVc), which together repress genes for virulence and biofilm formation. vqmA genes exist in Vibrio and in one vibriophage, VP882. Phage-encoded VqmA (VqmAPhage) binds to host-produced DPO, launching the phage lysis program via an antirepressor that inactivates the phage repressor by sequestration. The antirepressor interferes with repressors from related phages. Like phage VP882, these phages encode DNA-binding proteins and partner antirepressors, suggesting that they, too, integrate host-derived information into their lysis-lysogeny decisions. VqmAPhage activates the host VqmAVc regulon, whereas VqmAVc cannot induce phage-mediated lysis, suggesting an asymmetry whereby the phage influences host QS while enacting its own lytic-lysogeny program without interference. We reprogram phages to activate lysis in response to user-defined cues. Our work shows that a phage, causing bacterial infections, and V. cholerae, causing human infections, rely on the same signal molecule for pathogenesis.
Collapse
|
94
|
Kayser J, Schreck CF, Gralka M, Fusco D, Hallatschek O. Collective motion conceals fitness differences in crowded cellular populations. Nat Ecol Evol 2018; 3:125-134. [PMID: 30510177 PMCID: PMC6309230 DOI: 10.1038/s41559-018-0734-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022]
Abstract
Many cellular populations are tightly-packed, such as microbial colonies and biofilms, or tissues and tumors in multicellular organisms. Movement of one cell in those crowded assemblages requires motion of others, so that cell displacements are correlated over many cell diameters. Whenever movement is important for survival or growth, these correlated rearrangements could couple the evolutionary fate of different lineages. Yet, little is known about the interplay between mechanical forces and evolution in dense cellular populations. Here, by tracking slower-growing clones at the expanding edge of yeast colonies, we show that the collective motion of cells prevents costly mutations from being weeded out rapidly. Joint pushing by neighboring cells generates correlated movements that suppress the differential displacements required for selection to act. This mechanical screening of fitness differences allows slower-growing mutants to leave more descendants than expected under non-mechanical models, thereby increasing their chance for evolutionary rescue. Our work suggests that, in crowded populations, cells cooperate with surrounding neighbors through inevitable mechanical interactions. This effect has to be considered when predicting evolutionary outcomes, such as the emergence of drug resistance or cancer evolution.
Collapse
Affiliation(s)
- Jona Kayser
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Carl F Schreck
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Matti Gralka
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Diana Fusco
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA. .,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
95
|
Yan J, Moreau A, Khodaparast S, Perazzo A, Feng J, Fei C, Mao S, Mukherjee S, Košmrlj A, Wingreen NS, Bassler BL, Stone HA. Bacterial Biofilm Material Properties Enable Removal and Transfer by Capillary Peeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804153. [PMID: 30368924 PMCID: PMC8865467 DOI: 10.1002/adma.201804153] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/30/2018] [Indexed: 05/22/2023]
Abstract
Biofilms, surface-attached communities of bacterial cells, are a concern in health and in industrial operations because of persistent infections, clogging of flows, and surface fouling. Extracellular matrices provide mechanical protection to biofilm-dwelling cells as well as protection from chemical insults, including antibiotics. Understanding how biofilm material properties arise from constituent matrix components and how these properties change in different environments is crucial for designing biofilm removal strategies. Here, using rheological characterization and surface analyses of Vibrio cholerae biofilms, it is discovered how extracellular polysaccharides, proteins, and cells function together to define biofilm mechanical and interfacial properties. Using insight gained from our measurements, a facile capillary peeling technology is developed to remove biofilms from surfaces or to transfer intact biofilms from one surface to another. It is shown that the findings are applicable to other biofilm-forming bacterial species and to multiple surfaces. Thus, the technology and the understanding that have been developed could potentially be employed to characterize and/or treat biofilm-related infections and industrial biofouling problems.
Collapse
Affiliation(s)
- Jing Yan
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Alexis Moreau
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Sepideh Khodaparast
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Antonio Perazzo
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Jie Feng
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Sheng Mao
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Sampriti Mukherjee
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA
| |
Collapse
|
96
|
Circular pellicles formed by Pseudomonas alkylphenolica KL28 are a sophisticated architecture principally designed by matrix substance. J Microbiol 2018; 56:790-797. [PMID: 30353464 DOI: 10.1007/s12275-018-8252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Abstract
The colonization of liquid surfaces as floating biofilms or pellicles is a bacterial adaptation to optimally occupy the airliquid (A-L) niche. In aerobic heterotrophs, pellicle formation is beneficial for the utilization of O2 and nonpolar organic compounds. Pseudomonas alkylphenolica KL28, an alkylphenol degrader, forms flat circular pellicles that are 0.3-0.5 mm in diameter. In this study, we first monitored the pellicle developmental patterns of multicellular organization from the initial settlement stage. The pellicles developed by clonal growth and mutants for flagella and pilus formation established normal pellicles. In contrast, the mutants of an epm gene cluster for biosynthesis of alginate-like polymer were incompetent in cell alignment for initial two-dimensional (2D) pellicle growth, suggesting the role of the Epm polymer as a structural scaffold for pellicle biofilms. Microscopic observation revealed that the initial 2D growth transited to multilayers by an accumulated self-produced extracellular polymeric substance that may exert a constraint force. Electron microscopy and confocal laser scanning microscopy revealed that the fully matured pellicle structures were densly packed with matrix-encased cells displaying distinct arrangements. The cells on the surface of the pellicle were relatively flat, and those inside were longitudinally cross-packed. The extracellular polysaccharide stained by Congo red was denser on the pellicle rim and a thin film was observed in the open spaces, indicative of its role in pellicle flotation. Our results demonstrate that P. alkylphenolica KL28 coordinately dictates the cell arrangements of pellicle biofilms by the controlled growth of constituent cells that accumulate extracellular polymeric substances.
Collapse
|
97
|
Beroz F, Yan J, Sabass B, Stone HA, Bassler BL, Wingreen NS, Meir Y. Verticalization of bacterial biofilms. NATURE PHYSICS 2018; 14:954-960. [PMID: 30906420 PMCID: PMC6426328 DOI: 10.1038/s41567-018-0170-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/11/2018] [Indexed: 05/18/2023]
Abstract
Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically-aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modeling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an "inverse domino effect". The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.
Collapse
Affiliation(s)
- Farzan Beroz
- Joseph Henry Laboratories of Physics, Princeton University, Princeton NJ 08544, USA
| | - Jing Yan
- Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA
| | - Benedikt Sabass
- Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton NJ 08544, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton NJ 08544, USA
| | - Yigal Meir
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
98
|
Exopolysaccharide protects Vibrio cholerae from exogenous attacks by the type 6 secretion system. Proc Natl Acad Sci U S A 2018; 115:7997-8002. [PMID: 30021850 PMCID: PMC6077691 DOI: 10.1073/pnas.1808469115] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This work demonstrates that exopolysaccharide (EPS) produced by Vibrio cholerae can protect against exogenous type 6 secretion system (T6SS) attacks from different bacterial species. This protection does not affect the ability of the EPS-producing cell to use their own T6SS to attack other bacteria, indicating that EPS does not simply increase the physical distance between cells to afford protection. Furthermore, this protective effect does not depend on other genes involved in biofilm biogenesis, suggesting that EPSs can determine the outcomes of antagonistic bacterial–bacterial interactions independent of their typical function in biofilm formation. Thus, extracellular biopolymers of bacteria may play a role in modulating resistance to exogenous attacks by other bacteria as well as providing potential resistance to host innate immune mechanisms. The type 6 secretion system (T6SS) is a nanomachine used by many Gram-negative bacteria, including Vibrio cholerae, to deliver toxic effector proteins into adjacent eukaryotic and bacterial cells. Because the activity of the T6SS is dependent on direct contact between cells, its activity is limited to bacteria growing on solid surfaces or in biofilms. V. cholerae can produce an exopolysaccharide (EPS) matrix that plays a role in adhesion and biofilm formation. In this work, we investigated the effect of EPS production on T6SS activity between cells. We found that EPS produced by V. cholerae cells functions as a unidirectional protective armor that blocks exogenous T6SS attacks without interfering with its own T6SS functionality. This EPS armor is effective against both same-species and heterologous attackers. Mutations modulating the level of EPS biosynthesis gene expression result in corresponding modulation in V. cholerae resistance to exogenous T6SS attack. These results provide insight into the potential role of extracellular biopolymers, including polysaccharides, capsules, and S-layers in protecting bacterial cells from attacks involving cell-associated macromolecular protein machines that cannot readily diffuse through these mechanical defenses.
Collapse
|
99
|
Abstract
Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.
Collapse
|
100
|
Noirot-Gros MF, Shinde S, Larsen PE, Zerbs S, Korajczyk PJ, Kemner KM, Noirot PH. Dynamics of Aspen Roots Colonization by Pseudomonads Reveals Strain-Specific and Mycorrhizal-Specific Patterns of Biofilm Formation. Front Microbiol 2018; 9:853. [PMID: 29774013 PMCID: PMC5943511 DOI: 10.3389/fmicb.2018.00853] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/13/2018] [Indexed: 12/20/2022] Open
Abstract
Rhizosphere-associated Pseudomonas fluorescens are known plant growth promoting (PGP) and mycorrhizal helper bacteria (MHB) of many plants and ectomycorrhizal fungi. We investigated the spatial and temporal dynamics of colonization of mycorrhizal and non-mycorrhizal Aspen seedlings roots by the P. fluorescens strains SBW25, WH6, Pf0-1, and the P. protegens strain Pf-5. Seedlings were grown in laboratory vertical plates systems, inoculated with a fluorescently labeled Pseudomonas strain, and root colonization was monitored over a period of 5 weeks. We observed unexpected diversity of bacterial assemblies on seedling roots that changed over time and were strongly affected by root mycorrhization. P. fluorescens SBW25 and WH6 stains developed highly structured biofilms with internal void spaces forming channels. On mycorrhizal roots bacteria appeared encased in a mucilaginous substance in which they aligned side by side in parallel arrangements. The different phenotypic classes of bacterial assemblies observed for the four Pseudomonas strains were summarized in a single model describing transitions between phenotypic classes. Our findings also reveal that bacterial assembly phenotypes are driven by interactions with mucilaginous materials present at roots.
Collapse
Affiliation(s)
| | - Shalaka Shinde
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter E Larsen
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Sarah Zerbs
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter J Korajczyk
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Philippe H Noirot
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|