51
|
Lee H, You G, Yeo S, Lee H, Mok H. Effects of Histidine Oligomers in Lipid Nanoparticles on siRNA Delivery. Macromol Biosci 2024; 24:e2400043. [PMID: 38819534 DOI: 10.1002/mabi.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/07/2024] [Indexed: 06/01/2024]
Abstract
In this study, histidine oligomer (oHis; 10mer)-incorporating LNPs (H10LNPs) are developed as a novel carrier for efficient siRNA delivery. Notably, the unmodified oHis (10mer) is greatly incorporated within LNPs through ionic interaction with siRNAs, which serves as an endosome escape enhancer. H10LNPs with a size of ≈65 nm demonstrate a significantly enhanced extent of endosomal escape, as evidenced by calcein assay and confocal microscopy images of intracellular fluorescence, surpassing conventional LNPs. Furthermore, the half inhibitory concentration (IC50) of the human endogenous globotriaosylceramide synthase (Gb3 synthase) gene in H10LNPs-treated cells exhibits a significant threefold decrease, compared to that in LNP-treated cells. Notably, H10LNPs maintain comparable biocompatibility and biodistribution both in vitro and in vivo. Considering that the fabricated siRNA H10LNPs exhibit excellent biocompatibility and superior gene silencing activity over conventional LNPs, these particles can be harnessed for the safe delivery of therapeutic siRNAs. Additionally, this study introduces promising, feasible, simple, and alternative formulation processes for integrating unmodified functional cationic peptides into LNPs to enhance the delivery efficiency of a wide range of nucleic acid-based drugs.
Collapse
Affiliation(s)
- Hyeondo Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gayeon You
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sangho Yeo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
52
|
Grau M, Wagner E. Strategies and mechanisms for endosomal escape of therapeutic nucleic acids. Curr Opin Chem Biol 2024; 81:102506. [PMID: 39096817 DOI: 10.1016/j.cbpa.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Despite impressive recent establishment of therapeutic nucleic acids as drugs and vaccines, their broader medical use is impaired by modest performance in intracellular delivery. Inefficient endosomal escape presents a major limitation responsible for inadequate cytosolic cargo release. Depending on the carrier, this endosomal barrier can strongly limit or even abolish nucleic acid delivery. Different recent endosomal escape strategies and their hypothesized mechanisms are reviewed.
Collapse
Affiliation(s)
- Melina Grau
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany; Center for Nanoscience (CeNS), LMU Munich, 80799 Munich, Germany.
| |
Collapse
|
53
|
Wang C, Ji L, Wang J, Zhang J, Qiu L, Chen S, Ni X. Amifostine loaded lipid-calcium carbonate nanoparticles as an oral drug delivery system for radiation protection. Biomed Pharmacother 2024; 177:117029. [PMID: 38991305 DOI: 10.1016/j.biopha.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Amifostine (AMF) as the first-line radiation protection drug, usually suffered from low compliance and short half-life upon clinical applications. The development of oral drug delivery system (DDS) for AMF is a promising solution. However, the inherent shortages of AMF present significant challenges in the design of suitable oral DDS. Here in this study, we utilized the ability of calcium ions to bind with AMF and prepared AMF loaded calcium carbonate (CC) core, CC/AMF, using phase transferred coprecipitation method. We further modified the CC/AMF using phospholipids to prepare AMF loaded lipid-calcium carbonate (LCC) hybrid nanoparticles (LCC/AMF) via a thin-film dispersion method. LCC/AMF combines the oral advantages of lipid nanoparticles with the drug-loading capabilities of CC, which was shown as uniform nano-sized formulation with decent stability in aqueous solution. With favorable intestinal transport and absorption effects, it effectively enhances the in vivo radiation protection efficacy of AMF through oral administration. More importantly, we further investigated the cellular accumulation profile and intracellular transport mechanism of LCC/AMF using MDCK and Caco-2 cell lines as models. This research not only alters the current administration method of AMF to enhance its convenience and compliance, but also provides insights and guidance for the development of more suitable oral DDS for AMF in the future.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| | - Shaoqing Chen
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| | - Xinye Ni
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
54
|
Zhao Y, Wang ZM, Song D, Chen M, Xu Q. Rational design of lipid nanoparticles: overcoming physiological barriers for selective intracellular mRNA delivery. Curr Opin Chem Biol 2024; 81:102499. [PMID: 38996568 PMCID: PMC11323194 DOI: 10.1016/j.cbpa.2024.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
This review introduces the typical delivery process of messenger RNA (mRNA) nanomedicines and concludes that the delivery involves a at least four-step SCER cascade and that high efficiency at every step is critical to guarantee high overall therapeutic outcomes. This SCER cascade process includes selective organ-targeting delivery, cellular uptake, endosomal escape, and cytosolic mRNA release. Lipid nanoparticles (LNPs) have emerged as a state-of-the-art vehicle for in vivo mRNA delivery. The review emphasizes the importance of LNPs in achieving selective, efficient, and safe mRNA delivery. The discussion then extends to the technical and clinical considerations of LNPs, detailing the roles of individual components in the SCER cascade process, especially ionizable lipids and helper phospholipids. The review aims to provide an updated overview of LNP-based mRNA delivery, outlining recent innovations and addressing challenges while exploring future developments for clinical translation over the next decade.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Zeyu Morgan Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Donghui Song
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Mengting Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
55
|
Zhang M, Hussain A, Hu B, Yang H, Li C, Guo S, Han X, Li B, Dai Y, Cao Y, Chi H, Weng Y, Qin CF, Huang Y. Atavistic strategy for the treatment of hyperuricemia via ionizable liposomal mRNA. Nat Commun 2024; 15:6463. [PMID: 39085241 PMCID: PMC11292028 DOI: 10.1038/s41467-024-50752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Hyperuricemia is associated with an increased risk of gout, hypertension, diabetes, and cardiovascular diseases. Most mammals maintain normal serum uric acid (SUA) via urate oxidase (Uox), an enzyme that metabolizes poorly-soluble UA to highly-soluble allantoin. In contrast, Uox became a pseudogene in humans and apes over the long course of evolution. Here we demonstrate an atavistic strategy for treating hyperuricemia based on endogenous expression of Uox in hepatocytes mediated by mRNA (mUox) loaded with an ionizable lipid nanoparticle termed iLAND. mUox@iLAND allows effective transfection and protein expression in vitro. A single dose of mUox@iLAND lowers SUA levels for several weeks in two female murine models, including a novel long-lasting model, which is also confirmed by metabolomics analysis. Together with the excellent safety profiles observed in vivo, the proposed mRNA agent demonstrates substantial potential for hyperuricemia therapy and the prevention of associated conditions.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiaofeng Han
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
- Rigerna Therapeutics Co. Ltd., Beijing, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Yuhong Cao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
| | - Hang Chi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
56
|
Islam F, Das S, Ashaduzzaman M, Sillman B, Yeapuri P, Nayan MU, Oupický D, Gendelman HE, Kevadiya BD. Development of an extended action fostemsavir lipid nanoparticle. Commun Biol 2024; 7:917. [PMID: 39080401 PMCID: PMC11289258 DOI: 10.1038/s42003-024-06589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
An extended action fostemsavir (FTR) lipid nanoparticle (LNP) formulation prevents human immunodeficiency virus type one (HIV-1) infection. This FTR formulation establishes a drug depot in monocyte-derived macrophages that extend the drug's plasma residence time. The LNP's physicochemical properties improve FTR's antiretroviral activities, which are linked to the drug's ability to withstand fluid flow forces and levels of drug cellular internalization. Each is, in measure, dependent on PEGylated lipid composition and flow rate ratios affecting the size, polydispersity, shape, zeta potential, stability, biodistribution, and antiretroviral efficacy. The FTR LNP physicochemical properties enable the drug-particle's extended actions.
Collapse
Affiliation(s)
- Farhana Islam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Md Ashaduzzaman
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE, 68182, USA
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
57
|
Kamanzi A, Zhang Y, Gu Y, Liu F, Berti R, Wang B, Saadati F, Ciufolini MA, Kulkarni J, Cullis P, Leslie S. Quantitative Visualization of Lipid Nanoparticle Fusion as a Function of Formulation and Process Parameters. ACS NANO 2024; 18:18191-18201. [PMID: 38968430 DOI: 10.1021/acsnano.3c12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Lipid nanoparticles (LNPs) have proven to be promising delivery vehicles for RNA-based vaccines and therapeutics, particularly in LNP formulations containing ionizable cationic lipids that undergo protonation/deprotonation in response to buffer pH changes. These nanoparticles are typically formulated using a rapid mixing technique at low pH, followed by a return to physiological pH that triggers LNP-LNP fusion. A detailed understanding of these dynamic processes is crucial to optimize the overall performance and efficiency of LNPs. However, knowledge gaps persist regarding how particle formation mechanisms impact drug loading and delivery functions. In this work, we employ single-molecule Convex Lens-induced Confinement (CLiC) microscopy in combination with Förster resonance energy transfer (FRET) measurements to study LNP fusion dynamics in relation to various formulation parameters, including lipid concentration, buffer conditions, drug loading ratio, PEG-lipid concentrations, and ionizable lipid selection. Our results reveal a strong correlation between the measured fusion dynamics and the formulation parameters used; these findings are consistent with DLS and Cryo-TEM-based assays. These measurements offer a cost-effective method for characterizing and screening potential drug candidates and can provide additional insights into their design, with opportunities for optimization.
Collapse
Affiliation(s)
- Albert Kamanzi
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yao Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - Yifei Gu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Faith Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Romain Berti
- ScopeSys, Inc., 2366 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Benjamin Wang
- ScopeSys, Inc., 2366 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Fariba Saadati
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Marco A Ciufolini
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jayesh Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- NanoVation Therapeutics, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Pieter Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Sabrina Leslie
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
58
|
Liu Y, Wang R, Chen Q, Chang Y, Chen Q, Fukumoto K, Wang B, Yu J, Luo C, Ma J, Chen X, Murayama Y, Umeda K, Kodera N, Harada Y, Sekine SI, Li J, Tadakuma H. Organ-Specific Gene Expression Control Using DNA Origami-Based Nanodevices. NANO LETTERS 2024; 24:8410-8417. [PMID: 38920331 PMCID: PMC11249008 DOI: 10.1021/acs.nanolett.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.
Collapse
Affiliation(s)
- Yuxiang Liu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Ruixuan Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qimingxing Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Yan Chang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qi Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Kodai Fukumoto
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Bingxun Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jianchen Yu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Changfeng Luo
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jiayuan Ma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Xiaoxia Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Zhejiang
Provincial Key Laboratory of Pancreatic Disease Hangzhou, Zhejiang University School of Medicine First Affiliated
Hospital, Zhejiang 310009, People’s Republic
of China
| | - Yuko Murayama
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kenichi Umeda
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshie Harada
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Shun-ichi Sekine
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Jianfeng Li
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| | - Hisashi Tadakuma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| |
Collapse
|
59
|
Su K, Shi L, Sheng T, Yan X, Lin L, Meng C, Wu S, Chen Y, Zhang Y, Wang C, Wang Z, Qiu J, Zhao J, Xu T, Ping Y, Gu Z, Liu S. Reformulating lipid nanoparticles for organ-targeted mRNA accumulation and translation. Nat Commun 2024; 15:5659. [PMID: 38969646 PMCID: PMC11226454 DOI: 10.1038/s41467-024-50093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Fully targeted mRNA therapeutics necessitate simultaneous organ-specific accumulation and effective translation. Despite some progress, delivery systems are still unable to fully achieve this. Here, we reformulate lipid nanoparticles (LNPs) through adjustments in lipid material structures and compositions to systematically achieve the pulmonary and hepatic (respectively) targeted mRNA distribution and expression. A combinatorial library of degradable-core based ionizable cationic lipids is designed, following by optimisation of LNP compositions. Contrary to current LNP paradigms, our findings demonstrate that cholesterol and phospholipid are dispensable for LNP functionality. Specifically, cholesterol-removal addresses the persistent challenge of preventing nanoparticle accumulation in hepatic tissues. By modulating and simplifying intrinsic LNP components, concurrent mRNA accumulation and translation is achieved in the lung and liver, respectively. This targeting strategy is applicable to existing LNP systems with potential to expand the progress of precise mRNA therapy for diverse diseases.
Collapse
Affiliation(s)
- Kexin Su
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lu Shi
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Tao Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xinxin Yan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lixin Lin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chaoyang Meng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yuxuan Chen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chaorong Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zichuan Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Junjie Qiu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiahui Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tengfei Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Ping
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Shuai Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
60
|
Mukalel AJ, Hamilton AG, Billingsley MM, Li J, Thatte AS, Han X, Safford HC, Padilla MS, Papp T, Parhiz H, Weissman D, Mitchell MJ. Oxidized mRNA Lipid Nanoparticles for In Situ Chimeric Antigen Receptor Monocyte Engineering. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2312038. [PMID: 39628840 PMCID: PMC11611297 DOI: 10.1002/adfm.202312038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 12/06/2024]
Abstract
Chimeric antigen receptor (CAR) monocyte and macrophage therapies are promising solid tumor immunotherapies that can overcome the challenges facing conventional CAR T cell therapy. mRNA lipid nanoparticles (mRNA-LNPs) offer a viable platform for in situ engineering of CAR monocytes with transient and tunable CAR expression to reduce off-tumor toxicity and streamline cell manufacturing. However, identifying LNPs with monocyte tropism and intracellular delivery potency is difficult using traditional screening techniques. Here, ionizable lipid design and high-throughput in vivo screening are utilized to identify a new class of oxidized LNPs with innate tropism and mRNA delivery to monocytes. A library of oxidized (oLNPs) and unoxidized LNPs (uLNPs) is synthesized to evaluate mRNA delivery to immune cells. oLNPs demonstrate notable differences in morphology, ionization energy, and pKa, therefore enhancing delivery to human macrophages, but not T cells. Subsequently, in vivo library screening with DNA barcodes identifies an oLNP formulation, C14-O2, with innate tropism to monocytes. In a proof-of-concept study, the C14-O2 LNP is used to engineer functional CD19-CAR monocytes in situ for robust B cell aplasia (45%) in healthy mice. This work highlights the utility of oxidized LNPs as a promising platform for engineering CAR macrophages/monocytes for solid tumor CAR monocyte therapy.
Collapse
Affiliation(s)
- Alvin J. Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alex G. Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Margaret M. Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jacqueline Li
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ajay S. Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marshall S. Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tyler Papp
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hamideh Parhiz
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
61
|
S PR, Banerjee R, Drummond CJ, Conn CE. Permanently Charged Cationic Lipids-Evolution from Excipients to Therapeutic Lipids. SMALL SCIENCE 2024; 4:2300270. [PMID: 40212121 PMCID: PMC11935225 DOI: 10.1002/smsc.202300270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/28/2024] [Indexed: 04/13/2025] Open
Abstract
Cationic lipids are crucial in medical and biotechnological applications including cellular transfection and gene delivery. Ionizable cationic lipids are critical components of the mRNA-based COVID vaccines while permanently charged cationic lipids have shown promise in cancer treatment. Despite significant research progress over the past few decades in designing improved, biocompatible cationic lipids, their transfection efficiency remains lower than that of viral vectors. Cationic lipids with additional functionalities like fusogenicity, stimuli-responsiveness, targeting capabilities, and therapeutic activity have been engineered to improve their performance. This review highlights the importance of molecular hybridization toward the design of biocompatible cationic lipids having fusogenic, stimuli-responsive, targeting, or therapeutic properties. This review mainly focuses on cationic lipids, having a permanent positive charge in the headgroup region, as these are typically employed to both increase cellular interactions and for improved loading, particularly for anionic nucleic acid-based therapeutics and vaccines. Structure-activity relationships between the lipid chemical structure (headgroup, spacer, hydrocarbon chain) and, to a lesser extent, the self-assembled nanostructure and the intrinsic biological activity of the multi-functional cationic lipids are described. Finally, the challenges involved in developing smart lipids without affecting their inherent capacity to self-assemble into structured nano-carriers are discussed.
Collapse
Affiliation(s)
- Pushpa Ragini S
- Academy of Scientific and Innovation Research (AcSIR)Ghaziabad201002India
- Department of Oils, Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyHyderabad500 007India
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| | - Rajkumar Banerjee
- Academy of Scientific and Innovation Research (AcSIR)Ghaziabad201002India
- Department of Oils, Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyHyderabad500 007India
| | - Calum J. Drummond
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| | - Charlotte E. Conn
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| |
Collapse
|
62
|
Khawar MB, Afzal A, Si Y, Sun H. Steering the course of CAR T cell therapy with lipid nanoparticles. J Nanobiotechnology 2024; 22:380. [PMID: 38943167 PMCID: PMC11212433 DOI: 10.1186/s12951-024-02630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024] Open
Abstract
Lipid nanoparticles (LNPs) have proven themselves as transformative actors in chimeric antigen receptor (CAR) T cell therapy, surpassing traditional methods and addressing challenges like immunogenicity, reduced toxicity, and improved safety. Promising preclinical results signal a shift toward safer and more effective CAR T cell treatments. Ongoing research aims to validate these findings in clinical trials, marking a new era guided by LNPs utility in CAR therapy. Herein, we explore the preference for LNPs over traditional methods, highlighting the versatility of LNPs and their effective delivery of nucleic acids. Additionally, we address key challenges in clinical considerations, heralding a new era in CAR T cell therapy.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Ali Afzal
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China.
| |
Collapse
|
63
|
Ranjan S, Bosch S, Lukkari H, Schirmer J, Aaltonen N, Nieminen HJ, Lehto VP, Urtti A, Lajunen T, Rilla K. Development of Focused Ultrasound-Assisted Nanoplexes for RNA Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1089. [PMID: 38998694 PMCID: PMC11243722 DOI: 10.3390/nano14131089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
RNA-based therapeutics, including siRNA, have obtained recognition in recent years due to their potential to treat various chronic and rare diseases. However, there are still limitations to lipid-based drug delivery systems in the clinical use of RNA therapeutics due to the need for optimization in the design and the preparation process. In this study, we propose adaptive focused ultrasound (AFU) as a drug loading technique to protect RNA from degradation by encapsulating small RNA in nanoliposomes, which we term nanoplexes. The AFU method is non-invasive and isothermal, as nanoplexes are produced without direct contact with any external materials while maintaining precise temperature control according to the desired settings. The controllability of sample treatments can be effectively modulated, allowing for a wide range of ultrasound intensities to be applied. Importantly, the absence of co-solvents in the process eliminates the need for additional substances, thereby minimizing the potential for cross-contaminations. Since AFU is a non-invasive method, the entire process can be conducted under sterile conditions. A minimal volume (300 μL) is required for this process, and the treatment is speedy (10 min in this study). Our in vitro experiments with silencer CD44 siRNA, which performs as a model therapeutic drug in different mammalian cell lines, showed encouraging results (knockdown > 80%). To quantify gene silencing efficacy, we employed quantitative polymerase chain reaction (qPCR). Additionally, cryo-electron microscopy (cryo-EM) and atomic force microscopy (AFM) techniques were employed to capture images of nanoplexes. These images revealed the presence of individual nanoparticles measuring approximately 100-200 nm in contrast with the random distribution of clustered complexes observed in ultrasound-untreated samples of liposome nanoparticles and siRNA. AFU holds great potential as a standardized liposome processing and loading method because its process is fast, sterile, and does not require additional solvents.
Collapse
Affiliation(s)
- Sanjeev Ranjan
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | - Stef Bosch
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Hannamari Lukkari
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
- FinVector Oy, 70210 Kuopio, Finland
| | - Johanna Schirmer
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Niina Aaltonen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Heikki J Nieminen
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | - Vesa-Pekka Lehto
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Tatu Lajunen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
64
|
Gao Z. Strategies for enhanced gene delivery to the central nervous system. NANOSCALE ADVANCES 2024; 6:3009-3028. [PMID: 38868835 PMCID: PMC11166101 DOI: 10.1039/d3na01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/12/2024] [Indexed: 06/14/2024]
Abstract
The delivery of genes to the central nervous system (CNS) has been a persistent challenge due to various biological barriers. The blood-brain barrier (BBB), in particular, hampers the access of systemically injected drugs to parenchymal cells, allowing only a minimal percentage (<1%) to pass through. Recent scientific insights highlight the crucial role of the extracellular space (ECS) in governing drug diffusion. Taking into account advancements in vectors, techniques, and knowledge, the discussion will center on the most notable vectors utilized for gene delivery to the CNS. This review will explore the influence of the ECS - a dynamically regulated barrier-on drug diffusion. Furthermore, we will underscore the significance of employing remote-control technologies to facilitate BBB traversal and modulate the ECS. Given the rapid progress in gene editing, our discussion will also encompass the latest advances focused on delivering therapeutic editing in vivo to the CNS tissue. In the end, a brief summary on the impact of Artificial Intelligence (AI)/Machine Learning (ML), ultrasmall, soft endovascular robots, and high-resolution endovascular cameras on improving the gene delivery to the CNS will be provided.
Collapse
Affiliation(s)
- Zhenghong Gao
- Mechanical Engineering, The University of Texas at Dallas USA
| |
Collapse
|
65
|
Ma Y, Chen Y, Li Z, Zhao Y. Rational Design of Lipid-Based Vectors for Advanced Therapeutic Vaccines. Vaccines (Basel) 2024; 12:603. [PMID: 38932332 PMCID: PMC11209477 DOI: 10.3390/vaccines12060603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Recent advancements in vaccine delivery systems have seen the utilization of various materials, including lipids, polymers, peptides, metals, and inorganic substances, for constructing non-viral vectors. Among these, lipid-based nanoparticles, composed of natural, synthetic, or physiological lipid/phospholipid materials, offer significant advantages such as biocompatibility, biodegradability, and safety, making them ideal for vaccine delivery. These lipid-based vectors can protect encapsulated antigens and/or mRNA from degradation, precisely tune chemical and physical properties to mimic viruses, facilitate targeted delivery to specific immune cells, and enable efficient endosomal escape for robust immune activation. Notably, lipid-based vaccines, exemplified by those developed by BioNTech/Pfizer and Moderna against COVID-19, have gained approval for human use. This review highlights rational design strategies for vaccine delivery, emphasizing lymphoid organ targeting and effective endosomal escape. It also discusses the importance of rational formulation design and structure-activity relationships, along with reviewing components and potential applications of lipid-based vectors. Additionally, it addresses current challenges and future prospects in translating lipid-based vaccine therapies for cancer and infectious diseases into clinical practice.
Collapse
Affiliation(s)
- Yufei Ma
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Yiang Chen
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Zilu Li
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
66
|
Fedorovskiy AG, Antropov DN, Dome AS, Puchkov PA, Makarova DM, Konopleva MV, Matveeva AM, Panova EA, Shmendel EV, Maslov MA, Dmitriev SE, Stepanov GA, Markov OV. Novel Efficient Lipid-Based Delivery Systems Enable a Delayed Uptake and Sustained Expression of mRNA in Human Cells and Mouse Tissues. Pharmaceutics 2024; 16:684. [PMID: 38794346 PMCID: PMC11125954 DOI: 10.3390/pharmaceutics16050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Over the past decade, mRNA-based therapy has displayed significant promise in a wide range of clinical applications. The most striking example of the leap in the development of mRNA technologies was the mass vaccination against COVID-19 during the pandemic. The emergence of large-scale technology and positive experience of mRNA immunization sparked the development of antiviral and anti-cancer mRNA vaccines as well as therapeutic mRNA agents for genetic and other diseases. To facilitate mRNA delivery, lipid nanoparticles (LNPs) have been successfully employed. However, the diverse use of mRNA therapeutic approaches requires the development of adaptable LNP delivery systems that can control the kinetics of mRNA uptake and expression in target cells. Here, we report effective mRNA delivery into cultured mammalian cells (HEK293T, HeLa, DC2.4) and living mouse muscle tissues by liposomes containing either 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2X3) or the newly applied 1,30-bis(cholest-5-en-3β-yloxycarbonylamino)-9,13,18,22-tetraaza-3,6,25,28-tetraoxatriacontane tetrahydrochloride (2X7) cationic lipids. Using end-point and real-time monitoring of Fluc mRNA expression, we showed that these LNPs exhibited an unusually delayed (of over 10 h in the case of the 2X7-based system) but had highly efficient and prolonged reporter activity in cells. Accordingly, both LNP formulations decorated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) provided efficient luciferase production in mice, peaking on day 3 after intramuscular injection. Notably, the bioluminescence was observed only at the site of injection in caudal thigh muscles, thereby demonstrating local expression of the model gene of interest. The developed mRNA delivery systems hold promise for prophylactic applications, where sustained synthesis of defensive proteins is required, and open doors to new possibilities in mRNA-based therapies.
Collapse
Affiliation(s)
- Artem G. Fedorovskiy
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Denis N. Antropov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Anton S. Dome
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Pavel A. Puchkov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Daria M. Makarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Maria V. Konopleva
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Anastasiya M. Matveeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Eugenia A. Panova
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
| | - Elena V. Shmendel
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Mikhail A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| |
Collapse
|
67
|
Scherer D, Burger M, Leroux JC. Revival of Bioengineered Proteins as Carriers for Nucleic Acids. Bioconjug Chem 2024; 35:561-566. [PMID: 38621363 PMCID: PMC11099893 DOI: 10.1021/acs.bioconjchem.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Affiliation(s)
- David Scherer
- Institute of Pharmaceutical
Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Michael Burger
- Institute of Pharmaceutical
Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical
Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
68
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
69
|
Zhao B, Kamanzi A, Zhang Y, Chan KYT, Robertson M, Leslie S, Cullis PR. Determination of the interior pH of lipid nanoparticles using a pH-sensitive fluorescent dye-based DNA probe. Biosens Bioelectron 2024; 251:116065. [PMID: 38330772 DOI: 10.1016/j.bios.2024.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Lipid nanoparticles (LNPs) containing ionizable cationic lipids are proven delivery systems for therapeutic nucleic acids, such as small interfering RNA (siRNA). It is important to understand the relationship between the interior pH of LNPs and the pH of the external environment to understand LNP formulation and function. Here, we developed a simple and rapid approach for determining the pH of the LNP core using a pH-sensitive fluorescent dye-based DNA probe. LNP siRNA systems containing pH-responsive DNA probes (LNP-siRNA&DNA) were generated by rapid mixing of lipids in ethanol and pH 4 aqueous buffer containing siRNA and DNA probes. We demonstrated that DNA probes were readily encapsulated in LNP systems and were sequestered into an environment at a high concentration as evidenced by an inter-probe FRET signal. It was shown that the pH of LNP encapsulated probes closely follows the pH increase or decrease of the external environment. This indicates that the clinically approved LNP RNA systems with similar lipid compositions (e.g., Onpattro and Comirnaty) are highly permeable to protons and that the pH of the interior environment closely mirrors the external environment. The pH-dependent response of the probe in LNPs was also confirmed under buffer conditions at various pHs. Furthermore, we showed that the pH-sensitive DNA probe can be incorporated into LNP systems at levels that allow the pH response to be monitored at a single LNP level using convex lens-induced confinement (CLiC) confocal microscopy. Direct visualization of the internal pH of single particles with the fluorescent DNA probe was achieved by CLiC for LNP-siRNA&DNA systems formulated under both high and normal ionic strength conditions.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Albert Kamanzi
- Michael Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Yao Zhang
- Michael Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Karen Y T Chan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Madelaine Robertson
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Sabrina Leslie
- Michael Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
70
|
Hu M, Li X, You Z, Cai R, Chen C. Physiological Barriers and Strategies of Lipid-Based Nanoparticles for Nucleic Acid Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303266. [PMID: 37792475 DOI: 10.1002/adma.202303266] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Lipid-based nanoparticles (LBNPs) are currently the most promising vehicles for nucleic acid drug (NAD) delivery. Although their clinical applications have achieved success, the NAD delivery efficiency and safety are still unsatisfactory, which are, to a large extent, due to the existence of multi-level physiological barriers in vivo. It is important to elucidate the interactions between these barriers and LBNPs, which will guide more rational design of efficient NAD vehicles with low adverse effects and facilitate broader applications of nucleic acid therapeutics. This review describes the obstacles and challenges of biological barriers to NAD delivery at systemic, organ, sub-organ, cellular, and subcellular levels. The strategies to overcome these barriers are comprehensively reviewed, mainly including physically/chemically engineering LBNPs and directly modifying physiological barriers by auxiliary treatments. Then the potentials and challenges for successful translation of these preclinical studies into the clinic are discussed. In the end, a forward look at the strategies on manipulating protein corona (PC) is addressed, which may pull off the trick of overcoming those physiological barriers and significantly improve the efficacy and safety of LBNP-based NADs delivery.
Collapse
Affiliation(s)
- Mingdi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, Beijing, 100049, China
| | - Xiaoyan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| |
Collapse
|
71
|
Tae H, Park S, Tan LY, Yang C, Lee YA, Choe Y, Wüstefeld T, Jung S, Cho NJ. Elucidating Structural Configuration of Lipid Assemblies for mRNA Delivery Systems. ACS NANO 2024; 18:11284-11299. [PMID: 38639114 DOI: 10.1021/acsnano.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The development of mRNA delivery systems utilizing lipid-based assemblies holds immense potential for precise control of gene expression and targeted therapeutic interventions. Despite advancements in lipid-based gene delivery systems, a critical knowledge gap remains in understanding how the biophysical characteristics of lipid assemblies and mRNA complexes influence these systems. Herein, we investigate the biophysical properties of cationic liposomes and their role in shaping mRNA lipoplexes by comparing various fabrication methods. Notably, an innovative fabrication technique called the liposome under cryo-assembly (LUCA) cycle, involving a precisely controlled freeze-thaw-vortex process, produces distinctive onion-like concentric multilamellar structures in cationic DOTAP/DOPE liposomes, in contrast to a conventional extrusion method that yields unilamellar liposomes. The inclusion of short-chain DHPC lipids further modulates the structure of cationic liposomes, transforming them from multilamellar to unilamellar structures during the LUCA cycle. Furthermore, the biophysical and biological evaluations of mRNA lipoplexes unveil that the optimal N/P charge ratio in the lipoplex can vary depending on the structure of initial cationic liposomes. Cryo-EM structural analysis demonstrates that multilamellar cationic liposomes induce two distinct interlamellar spacings in cationic lipoplexes, emphasizing the significant impact of the liposome structures on the final structure of mRNA lipoplexes. Taken together, our results provide an intriguing insight into the relationship between lipid assembly structures and the biophysical characteristics of the resulting lipoplexes. These relationships may open the door for advancing lipid-based mRNA delivery systems through more streamlined manufacturing processes.
Collapse
Affiliation(s)
- Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Li Yang Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Chungmo Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yong-An Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - Younghwan Choe
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Torsten Wüstefeld
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 637551, Singapore
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
72
|
Xu X, Yin J, Yang Y, Liu H, Yu J, Luo X, Zhang Y, Song X. Advances in co-pathogenesis of the united airway diseases. Respir Med 2024; 225:107580. [PMID: 38484897 DOI: 10.1016/j.rmed.2024.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
According to the concept of "united airway diseases", the airway is a single organ in which upper and lower airway diseases are commonly comorbid. A range of inflammatory factors have been found to play an important role in the chain reaction of upper and lower airway diseases. However, the amount of research on this concept remains limited. The underlying mechanism of the relationship between typical diseases of the united airway, such as asthma, allergic rhinitis, and chronic sinusitis, also needs to be further explored. This review highlights the interaction between upper and lower respiratory diseases gathered from epidemiological, histoembryology, neural mechanistic, microbiological, and clinical studies, revealing the relationship between the upper and lower respiratory tracts.
Collapse
Affiliation(s)
- Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Huifang Liu
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; The 2nd School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong, China
| | - Jingyi Yu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xianghuang Luo
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| |
Collapse
|
73
|
Jiang Y, Zhang Y, Liu C, Liu J, Xue W, Wang Z, Li X. Tumor-activated IL-2 mRNA delivered by lipid nanoparticles for cancer immunotherapy. J Control Release 2024; 368:663-675. [PMID: 38492862 DOI: 10.1016/j.jconrel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Interleukin-2 (IL-2) exhibits the unique capacity to modulate immune functions, potentially exerting antitumor effects by stimulating immune responses, making it highly promising for immunotherapy. However, the clinical use of recombinant IL-2 protein faces significant limitations due to its short half-life and systemic toxicity. To overcome these challenges and fully exploit IL-2's potential in tumor immunotherapy, this study reports the development of a tumor-activated IL-2 mRNA, delivered via lipid nanoparticles (LNPs). Initially, ionizable lipid U-101 derived nanoparticles (U-101-LNP) were prepared using microfluidic technology. Subsequent in vitro and in vivo delivery tests demonstrated that U-101-LNP achieved more effective transfection than the approved ALC-0315-LNP. Following this, IL-2F mRNAs, encoding fusion proteins comprising IL-2, a linker, and CD25 (IL-2Rα), were designed and synthesized through in vitro transcription. A cleavable linker, consisting of the peptide sequence SGRSEN↓IRTA, was selected for cleavage by matrix metalloproteinase-14 (MMP-14). IL-2F mRNA was then encapsulated in U-101-LNP to create U-101-LNP/IL-2F mRNA complexes. After optimization, assessments of expression efficiency, masking, and release characteristics revealed that IL-2F with linker C4 demonstrated superior performance. Finally, the antitumor activity of IL-2F mRNA was evaluated. The results indicated that U-101-LNP/IL-2F mRNA achieved the strongest antitumor effect, with an inhibition rate of 70.3%. Immunohistochemistry observations revealed significant expressions of IL-2, IFN-γ, and CD8, suggesting an up-regulation of immunomodulation in tumor tissues. This effect could be ascribed to the expression of IL-2F, followed by the cleavage of the linker under the action of MMP-14 in tumor tissue, which sustainably releases IL-2. H&E staining of tissues treated with U-101-LNP/IL-2F mRNA showed no abnormalities. Further evaluations indicated that the U-101-LNP/IL-2F mRNA group maintained proper levels of inflammatory factors without obvious alterations in liver and renal functions. Taken together, the U-101-LNP/IL-2F mRNA formulation demonstrated effective antitumor activity and safety, which suggests potential applicability in clinical immunotherapy.
Collapse
Affiliation(s)
- Yuhao Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jinyu Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wenliang Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zihao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
74
|
Müller JA, Schäffler N, Kellerer T, Schwake G, Ligon TS, Rädler JO. Kinetics of RNA-LNP delivery and protein expression. Eur J Pharm Biopharm 2024; 197:114222. [PMID: 38387850 DOI: 10.1016/j.ejpb.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Lipid nanoparticles (LNPs) employing ionizable lipids are the most advanced technology for delivery of RNA, most notably mRNA, to cells. LNPs represent well-defined core-shell particles with efficient nucleic acid encapsulation, low immunogenicity and enhanced efficacy. While much is known about the structure and activity of LNPs, less attention is given to the timing of LNP uptake, cytosolic transfer and protein expression. However, LNP kinetics is a key factor determining delivery efficiency. Hence quantitative insight into the multi-cascaded pathway of LNPs is of interest to elucidate the mechanism of delivery. Here, we review experiments as well as theoretical modeling of the timing of LNP uptake, mRNA-release and protein expression. We describe LNP delivery as a sequence of stochastic transfer processes and review a mathematical model of subsequent protein translation from mRNA. We compile probabilities and numbers obtained from time resolved microscopy. Specifically, live-cell imaging on single cell arrays (LISCA) allows for high-throughput acquisition of thousands of individual GFP reporter expression time courses. The traces yield the distribution of mRNA life-times, expression rates and expression onset. Correlation analysis reveals an inverse dependence of gene expression efficiency and transfection onset-times. Finally, we discuss why timing of mRNA release is critical in the context of codelivery of multiple nucleic acid species as in the case of mRNA co-expression or CRISPR/Cas gene editing.
Collapse
Affiliation(s)
- Judith A Müller
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | - Nathalie Schäffler
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | - Thomas Kellerer
- Multiphoton Imaging Lab, Munich University of Applied Sciences, Munich, Germany
| | - Gerlinde Schwake
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | | | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
| |
Collapse
|
75
|
Roh EH, Sullivan MO, Epps TH. Which Lipid Nanoparticle (LNP) Designs Work? A Simple Kinetic Model Linking LNP Chemical Structure to In Vivo Delivery Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13399-13410. [PMID: 38466900 DOI: 10.1021/acsami.3c15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Although lipid nanoparticles (LNPs) are the predominant nanocarriers for short-interfering RNA (siRNA) delivery, most therapies use nearly identical formulations that have taken 30 years to design but lack the diverse property ranges necessary for versatile application. This dearth in variety and the extended timeline for implementation are attributed to a limited understanding of how LNP properties facilitate overcoming biological barriers. Herein, a simple kinetic model was developed by using major rate-limiting steps for siRNA delivery, and this model enabled the identification of a critical parameter to predict LNP efficacy without extensive experimental testing. A volume-averaged log D, the "solubility" of charged molecules as a function of pH weighted by component volume fractions, resulted in a good correlation between LNP composition and siRNA delivery. Both the effects of modifying the structures of ionizable lipids and LNP composition on gene silencing were easily captured in the model predictions. Thus, this approach provides a robust LNP structure-activity relationship to dramatically accelerate the realization of effective LNP formulations.
Collapse
Affiliation(s)
- Esther H Roh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
76
|
Abstract
Carriers for RNA delivery must be dynamic, first stabilizing and protecting therapeutic RNA during delivery to the target tissue and across cellular membrane barriers and then releasing the cargo in bioactive form. The chemical space of carriers ranges from small cationic lipids applied in lipoplexes and lipid nanoparticles, over medium-sized sequence-defined xenopeptides, to macromolecular polycations applied in polyplexes and polymer micelles. This perspective highlights the discovery of distinct virus-inspired dynamic processes that capitalize on mutual nanoparticle-host interactions to achieve potent RNA delivery. From the host side, subtle alterations of pH, ion concentration, redox potential, presence of specific proteins, receptors, or enzymes are cues, which must be recognized by the RNA nanocarrier via dynamic chemical designs including cleavable bonds, alterable physicochemical properties, and supramolecular assembly-disassembly processes to respond to changing biological microenvironment during delivery.
Collapse
Affiliation(s)
- Simone Berger
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Ulrich Lächelt
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna1090, Austria
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| |
Collapse
|
77
|
Pattipeiluhu R, Zeng Y, Hendrix MMRM, Voets IK, Kros A, Sharp TH. Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection. Nat Commun 2024; 15:1303. [PMID: 38347001 PMCID: PMC10861598 DOI: 10.1038/s41467-024-45666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Efficient cytosolic delivery of RNA molecules remains a formidable barrier for RNA therapeutic strategies. Lipid nanoparticles (LNPs) serve as state-of-the-art carriers that can deliver RNA molecules intracellularly, as exemplified by the recent implementation of several vaccines against SARS-CoV-2. Using a bottom-up rational design approach, we assemble LNPs that contain programmable lipid phases encapsulating small interfering RNA (siRNA). A combination of cryogenic transmission electron microscopy, cryogenic electron tomography and small-angle X-ray scattering reveals that we can form inverse hexagonal structures, which are present in a liquid crystalline nature within the LNP core. Comparison with lamellar LNPs reveals that the presence of inverse hexagonal phases enhances the intracellular silencing efficiency over lamellar structures. We then demonstrate that lamellar LNPs exhibit an in situ transition from a lamellar to inverse hexagonal phase upon interaction with anionic membranes, whereas LNPs containing pre-programmed liquid crystalline hexagonal phases bypass this transition for a more efficient one-step delivery mechanism, explaining the increased silencing effect. This rational design of LNPs with defined lipid structures aids in the understanding of the nano-bio interface and adds substantial value for LNP design, optimization and use.
Collapse
Affiliation(s)
- Roy Pattipeiluhu
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- BioNTech SE, An der Goldgrube 12, 55131, Mainz, Germany
| | - Ye Zeng
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marco M R M Hendrix
- Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ilja K Voets
- Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom.
| |
Collapse
|
78
|
Wu L, Li X, Qian X, Wang S, Liu J, Yan J. Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines in Tumor Immunity. Vaccines (Basel) 2024; 12:186. [PMID: 38400169 PMCID: PMC10891594 DOI: 10.3390/vaccines12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have attracted extensive attention in tumor immunotherapy. Targeting immune cells in cancer therapy has become a strategy of great research interest. mRNA vaccines are a potential choice for tumor immunotherapy, due to their ability to directly encode antigen proteins and stimulate a strong immune response. However, the mode of delivery and lack of stability of mRNA are key issues limiting its application. LNPs are an excellent mRNA delivery carrier, and their structural stability and biocompatibility make them an effective means for delivering mRNA to specific targets. This study summarizes the research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity. The role of LNPs in improving mRNA stability, immunogenicity, and targeting is discussed. This review aims to systematically summarize the latest research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity to provide new ideas and strategies for tumor immunotherapy, as well as to provide more effective treatment plans for patients.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| |
Collapse
|
79
|
Das S, Zheng C, Lodge TP, Siepmann JI, Mahanthappa MK, Calabrese MA, Reineke TM. Self-Assembly of Unusually Stable Thermotropic Network Phases by Cellobiose-Based Guerbet Glycolipids. Biomacromolecules 2024; 25:1291-1302. [PMID: 38170593 DOI: 10.1021/acs.biomac.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bicontinuous thermotropic liquid crystal (LC) materials, e.g., double gyroid (DG) phases, have garnered significant attention due to the potential utility of their 3D network structures in wide-ranging applications. However, the utility of these materials is significantly constrained by the lack of robust molecular design rules for shape-filling amphiphiles that spontaneously adopt the saddle curvatures required to access these useful supramolecular assemblies. Toward this aim, we synthesized anomerically pure Guerbet-type glycolipids bearing cellobiose head groups and branched alkyl tails and studied their thermotropic LC self-assembly. Using a combination of differential scanning calorimetry, polarized optical microscopy, and small-angle X-ray scattering, our studies demonstrate that Guerbet cellobiosides exhibit a strong propensity to self-assemble into DG morphologies over wide thermotropic phase windows. The stabilities of these assemblies sensitively depend on the branched alkyl tail structure and the anomeric configuration of the glycolipid in a previously unrecognized manner. Complementary molecular simulations furnish detailed insights into the observed self-assembly characteristics, thus unveiling molecular motifs that foster network phase self-assembly that will enable future designs and applications of network LC materials.
Collapse
Affiliation(s)
- Soumi Das
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Caini Zheng
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE #151, Minneapolis, Minnesota 55455, United States
| | - J Ilja Siepmann
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE #151, Minneapolis, Minnesota 55455, United States
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE #151, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
80
|
Escalona-Rayo O, Papadopoulou P, Slütter B, Kros A. Biological recognition and cellular trafficking of targeted RNA-lipid nanoparticles. Curr Opin Biotechnol 2024; 85:103041. [PMID: 38154322 DOI: 10.1016/j.copbio.2023.103041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Lipid nanoparticles (LNPs) have unlocked the potential of ribonucleic acid (RNA) therapeutics and vaccines. Production and large-scale manufacturing methods for RNA-LNPs have been established and rapidly accelerate. Despite this, basic research on LNPs is still required, due to their high assembly complexity and fairly new development, including research on lipid organization, transfection optimization, and in vivo behavior. Understanding fundamental aspects of LNPs that is, how lipid composition and physicochemical properties affect their biodistribution, cell recognition, and transfection, could propel their clinical development and facilitate overcoming current challenges. Herein, we review recent developments in the field of LNP technology and summarize the main findings focusing on nano-bio interactions.
Collapse
Affiliation(s)
- Oscar Escalona-Rayo
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Panagiota Papadopoulou
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Bram Slütter
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
81
|
Haase F, Pöhmerer J, Yazdi M, Grau M, Zeyn Y, Wilk U, Burghardt T, Höhn M, Hieber C, Bros M, Wagner E, Berger S. Lipoamino bundle LNPs for efficient mRNA transfection of dendritic cells and macrophages show high spleen selectivity. Eur J Pharm Biopharm 2024; 194:95-109. [PMID: 38065313 DOI: 10.1016/j.ejpb.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/31/2023]
Abstract
Messenger RNA (mRNA) is a powerful tool for nucleic acid-based therapies and vaccination, but efficient and specific delivery to target tissues remains a significant challenge. In this study, we demonstrate lipoamino xenopeptide carriers as components of highly efficient mRNA LNPs. These lipo-xenopeptides are defined as 2D sequences in different 3D topologies (bundles or different U-shapes). The polar artificial amino acid tetraethylene pentamino succinic acid (Stp) and various lipophilic tertiary lipoamino fatty acids (LAFs) act as ionizable amphiphilic units, connected in different ratios via bisamidated lysines as branching units. A series of more lipophilic LAF4-Stp1 carriers with bundle topology is especially well suited for efficient encapsulation of mRNA into LNPs, facilitated cellular uptake and strongly enhanced endosomal escape. These LNPs display improved, faster transfection kinetics compared to standard LNP formulations, with high potency in a variety of tumor cell lines (including N2a neuroblastoma, HepG2 and Huh7 hepatocellular, and HeLa cervical carcinoma cells), J774A.1 macrophages, and DC2.4 dendritic cells. High transfection levels were obtained even in the presence of serum at very low sub-microgram mRNA doses. Upon intravenous application of only 3 µg mRNA per mouse, in vivo mRNA expression is found with a high selectivity for dendritic cells and macrophages, resulting in a particularly high overall preferred expression in the spleen.
Collapse
Affiliation(s)
- Franziska Haase
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany.
| | - Jana Pöhmerer
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany.
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany.
| | - Melina Grau
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany.
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany.
| | - Tobias Burghardt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany.
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany.
| | - Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany.
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany.
| |
Collapse
|
82
|
Wang C, Zhao C, Wang W, Liu X, Deng H. Biomimetic noncationic lipid nanoparticles for mRNA delivery. Proc Natl Acad Sci U S A 2023; 120:e2311276120. [PMID: 38079547 PMCID: PMC10743463 DOI: 10.1073/pnas.2311276120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Although the tremendous progress has been made for mRNA delivery based on classical cationic carriers, the excess cationic charge density of lipids was necessary to compress mRNA through electrostatic interaction, and with it comes inevitably adverse events including the highly inflammatory and cytotoxic effects. How to develop the disruptive technologies to overcome cationic nature of lipids remains a major challenge for safe and efficient mRNA delivery. Here, we prepared noncationic thiourea lipids nanoparticles (NC-TNP) to compress mRNA by strong hydrogen bonds interaction between thiourea groups of NC-TNP and the phosphate groups of mRNA, abandoning the hidebound and traditional electrostatic force to construct mRNA-cationic lipids formulation. NC-TNP was a delivery system for mRNA with simple, convenient, and repeatable preparation technology and showed negligible inflammatory and cytotoxicity side effects. Furthermore, we found that NC-TNP could escape the recycling pathway to inhibit the egress of internalized nanoparticles from the intracellular compartment to the extracellular milieu which was a common fact in mRNA-LNP (lipid nanoparticles) formulation. Therefore, NC-TNP-encapsulated mRNA showed higher gene transfection efficiency in vitro and in vivo than mRNA-LNP formulation. Unexpectedly, NC-TNP showed spleen targeting delivery ability with higher accumulation ratio (spleen/liver), compared with traditional LNP. Spleen-targeting NC-TNP with mRNA exhibited high mRNA-encoded antigen expression in spleen and elicited robust immune responses. Overall, our work establishes a proof of concept for the construction of a noncationic system for mRNA delivery with good inflammatory safety profiles, high gene transfection efficiency, and spleen-targeting delivery to induce permanent and robust humoral and cell-mediated immunity for disease treatments.
Collapse
Affiliation(s)
- Changrong Wang
- Department of Biotechnology, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an710126, China
| | - Caiyan Zhao
- Department of Biotechnology, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an710126, China
| | - Weipeng Wang
- Department of Biotechnology, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an710126, China
| | - Xiaoqing Liu
- Department of Biotechnology, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an710126, China
| | - Hongzhang Deng
- Department of Biotechnology, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an710126, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
| |
Collapse
|
83
|
Philipp J, Dabkowska A, Reiser A, Frank K, Krzysztoń R, Brummer C, Nickel B, Blanchet CE, Sudarsan A, Ibrahim M, Johansson S, Skantze P, Skantze U, Östman S, Johansson M, Henderson N, Elvevold K, Smedsrød B, Schwierz N, Lindfors L, Rädler JO. pH-dependent structural transitions in cationic ionizable lipid mesophases are critical for lipid nanoparticle function. Proc Natl Acad Sci U S A 2023; 120:e2310491120. [PMID: 38055742 PMCID: PMC10723131 DOI: 10.1073/pnas.2310491120] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/28/2023] [Indexed: 12/08/2023] Open
Abstract
Lipid nanoparticles (LNPs) are advanced core-shell particles for messenger RNA (mRNA) based therapies that are made of polyethylene glycol (PEG) lipid, distearoylphosphatidylcholine (DSPC), cationic ionizable lipid (CIL), cholesterol (chol), and mRNA. Yet the mechanism of pH-dependent response that is believed to cause endosomal release of LNPs is not well understood. Here, we show that eGFP (enhanced green fluorescent protein) protein expression in the mouse liver mediated by the ionizable lipids DLin-MC3-DMA (MC3), DLin-KC2-DMA (KC2), and DLinDMA (DD) ranks MC3 ≥ KC2 > DD despite similar delivery of mRNA per cell in all cell fractions isolated. We hypothesize that the three CIL-LNPs react differently to pH changes and hence study the structure of CIL/chol bulk phases in water. Using synchrotron X-ray scattering a sequence of ordered CIL/chol mesophases with lowering pH values are observed. These phases show isotropic inverse micellar, cubic Fd3m inverse micellar, inverse hexagonal [Formula: see text] and bicontinuous cubic Pn3m symmetry. If polyadenylic acid, as mRNA surrogate, is added to CIL/chol, excess lipid coexists with a condensed nucleic acid lipid [Formula: see text] phase. The next-neighbor distance in the excess phase shows a discontinuity at the Fd3m inverse micellar to inverse hexagonal [Formula: see text] transition occurring at pH 6 with distinctly larger spacing and hydration for DD vs. MC3 and KC2. In mRNA LNPs, DD showed larger internal spacing, as well as retarded onset and reduced level of DD-LNP-mediated eGFP expression in vitro compared to MC3 and KC2. Our data suggest that the pH-driven Fd3m-[Formula: see text] transition in bulk phases is a hallmark of CIL-specific differences in mRNA LNP efficacy.
Collapse
Affiliation(s)
- Julian Philipp
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich80539, Germany
| | - Aleksandra Dabkowska
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Anita Reiser
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich80539, Germany
| | - Kilian Frank
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich80539, Germany
| | - Rafał Krzysztoń
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich80539, Germany
| | - Christiane Brummer
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich80539, Germany
| | - Bert Nickel
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich80539, Germany
| | - Clement E. Blanchet
- European Molecular Biology Laboratory Hamburg Outstation c/o Deutsches Elektronen-Synchrotron, Hamburg22607, Germany
| | - Akhil Sudarsan
- Institute of Physics, University of Augsburg, Augsburg86159, Germany
| | - Mohd Ibrahim
- Institute of Physics, University of Augsburg, Augsburg86159, Germany
| | - Svante Johansson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Pia Skantze
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Urban Skantze
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Sofia Östman
- Animal Sciences and Technologies, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Marie Johansson
- Animal Sciences and Technologies, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Neil Henderson
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | | | - Bård Smedsrød
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø, Tromsø9019, Norway
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Augsburg86159, Germany
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Mölndal431 83, Sweden
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich80539, Germany
| |
Collapse
|
84
|
Bolsoni J, Liu D, Mohabatpour F, Ebner R, Sadhnani G, Tafech B, Leung J, Shanta S, An K, Morin T, Chen Y, Arguello A, Choate K, Jan E, Ross CJ, Brambilla D, Witzigmann D, Kulkarni J, Cullis PR, Hedtrich S. Lipid Nanoparticle-Mediated Hit-and-Run Approaches Yield Efficient and Safe In Situ Gene Editing in Human Skin. ACS NANO 2023; 17:22046-22059. [PMID: 37918441 PMCID: PMC10655174 DOI: 10.1021/acsnano.3c08644] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Despite exciting advances in gene editing, the efficient delivery of genetic tools to extrahepatic tissues remains challenging. This holds particularly true for the skin, which poses a highly restrictive delivery barrier. In this study, we ran a head-to-head comparison between Cas9 mRNA or ribonucleoprotein (RNP)-loaded lipid nanoparticles (LNPs) to deliver gene editing tools into epidermal layers of human skin, aiming for in situ gene editing. We observed distinct LNP composition and cell-specific effects such as an extended presence of RNP in slow-cycling epithelial cells for up to 72 h. While obtaining similar gene editing rates using Cas9 RNP and mRNA with MC3-based LNPs (10-16%), mRNA-loaded LNPs proved to be more cytotoxic. Interestingly, ionizable lipids with a pKa ∼ 7.1 yielded superior gene editing rates (55%-72%) in two-dimensional (2D) epithelial cells while no single guide RNA-dependent off-target effects were detectable. Unexpectedly, these high 2D editing efficacies did not translate to actual skin tissue where overall gene editing rates between 5%-12% were achieved after a single application and irrespective of the LNP composition. Finally, we successfully base-corrected a disease-causing mutation with an efficacy of ∼5% in autosomal recessive congenital ichthyosis patient cells, showcasing the potential of this strategy for the treatment of monogenic skin diseases. Taken together, this study demonstrates the feasibility of an in situ correction of disease-causing mutations in the skin that could provide effective treatment and potentially even a cure for rare, monogenic, and common skin diseases.
Collapse
Affiliation(s)
- Juliana Bolsoni
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Danny Liu
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Fatemeh Mohabatpour
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Ronja Ebner
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Gaurav Sadhnani
- Berlin
Institute of Health @ Charité Universitätsmedizin, Berlin 10117, Germany
| | - Belal Tafech
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Jerry Leung
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Selina Shanta
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Kevin An
- NanoVation
Therapeutics, 2405 Wesbrook
Mall, Vancouver V6T 1Z3, BC, Canada
| | - Tessa Morin
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Yihang Chen
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Alfonso Arguello
- University
of Montréal, Faculty of Pharmacy, Montréal H3T 1J4, Quebec, Canada
| | - Keith Choate
- Departments
of Dermatology, Genetics, and Pathology, Yale University School of Medicine, New Haven 06510, Connecticut, United States
| | - Eric Jan
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Colin J.D. Ross
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Davide Brambilla
- University
of Montréal, Faculty of Pharmacy, Montréal H3T 1J4, Quebec, Canada
| | - Dominik Witzigmann
- NanoVation
Therapeutics, 2405 Wesbrook
Mall, Vancouver V6T 1Z3, BC, Canada
| | - Jayesh Kulkarni
- NanoVation
Therapeutics, 2405 Wesbrook
Mall, Vancouver V6T 1Z3, BC, Canada
| | - Pieter R. Cullis
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Sarah Hedtrich
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
- Berlin
Institute of Health @ Charité Universitätsmedizin, Berlin 10117, Germany
- Department
of Infectious Diseases and Respiratory Medicine, Charité -
Universitätsmedizin Berlin, corporate
member of Freie Universität Berlin and Humboldt Universität, Berlin 10117, Germany
- Max-Delbrück
Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| |
Collapse
|
85
|
Huang P, Deng H, Wang C, Zhou Y, Chen X. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307822. [PMID: 37929780 DOI: 10.1002/adma.202307822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA)-based therapy has emerged as a powerful, safe, and rapidly scalable therapeutic approach that involves technologies for both mRNA itself and the delivery vehicle. Although there are some unique challenges for different applications of mRNA therapy, a common challenge for all mRNA therapeutics is the transport of mRNA into the target cell cytoplasm for sufficient protein expression. This review is focused on the behaviors at the cellular level of nanotechnology-mediated mRNA delivery systems, which have not been comprehensively reviewed yet. First, the four main therapeutic applications of mRNA are introduced, including immunotherapy, protein replacement therapy, genome editing, and cellular reprogramming. Second, common types of mRNA cargos and mRNA delivery systems are summarized. Third, strategies to enhance mRNA delivery efficiency during the cellular trafficking process are highlighted, including accumulation to the cell, internalization into the cell, endosomal escape, release of mRNA from the nanocarrier, and translation of mRNA into protein. Finally, the challenges and opportunities for the development of nanotechnology-mediated mRNA delivery systems are presented. This review can provide new insights into the future fabrication of mRNA nanocarriers with desirable cellular trafficking performance.
Collapse
Affiliation(s)
- Pei Huang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| |
Collapse
|