51
|
Hakki M, Marshall EE, De Niro KL, Geballe AP. Binding and nuclear relocalization of protein kinase R by human cytomegalovirus TRS1. J Virol 2006; 80:11817-26. [PMID: 16987971 PMCID: PMC1642616 DOI: 10.1128/jvi.00957-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes block the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) and the consequent shutoff of cellular protein synthesis that occur during infection with vaccinia virus (VV) deleted of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). To further define the underlying mechanism, we first evaluated the effect of pTRS1 on protein kinase R (PKR), the double-stranded RNA (dsRNA)-dependent eIF2alpha kinase. Immunoblot analyses revealed that pTRS1 expression in the context of a VVDeltaE3L recombinant decreased levels of PKR in the cytoplasm and increased its levels in the nucleus of infected cells, an effect not seen with wild-type VV or a VVDeltaE3L recombinant virus expressing E3L. This effect of pTRS1 was confirmed by visualizing the nuclear relocalization of PKR-EGFP expressed by transient transfection. PKR present in both the nuclear and cytoplasmic fractions was nonphosphorylated, indicating that it was unactivated when TRS1 was present. PKR also accumulated in the nucleus during HCMV infection as determined by indirect immunofluorescence and immunoblot analysis. Binding assays revealed that pTRS1 interacted with PKR in mammalian cells and in vitro. This interaction required the same carboxy-terminal region of pTRS1 that is necessary to rescue VVDeltaE3L replication in HeLa cells. The carboxy terminus of pIRS1 was also required for rescue of VVDeltaE3L and for mediating an interaction of pIRS1 with PKR. These results suggest that these HCMV genes directly interact with PKR and inhibit its activation by sequestering it in the nucleus, away from both its activator, cytoplasmic dsRNA, and its substrate, eIF2alpha.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
52
|
Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM. The evolution and diversification of Dicers in plants. FEBS Lett 2006; 580:2442-50. [PMID: 16638569 DOI: 10.1016/j.febslet.2006.03.072] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/24/2006] [Accepted: 03/28/2006] [Indexed: 12/30/2022]
Abstract
Most multicellular organisms regulate developmental transitions by microRNAs, which are generated by an enzyme, Dicer. Insects and fungi have two Dicer-like genes, and many animals have only one, yet the plant, Arabidopsis, has four. Examining the poplar and rice genomes revealed that they contain five and six Dicer-like genes, respectively. Analysis of these genes suggests that plants require a basic set of four Dicer types which were present before the divergence of mono- and dicotyledonous plants ( approximately 200 million years ago), but after the divergence of plants from green algae. A fifth type of Dicer seems to have evolved in monocots.
Collapse
Affiliation(s)
- Rogerio Margis
- CSIRO Plant Industry, P.O. Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
53
|
Dey M, Cao C, Dar AC, Tamura T, Ozato K, Sicheri F, Dever TE. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell 2005; 122:901-13. [PMID: 16179259 DOI: 10.1016/j.cell.2005.06.041] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 05/05/2005] [Accepted: 06/29/2005] [Indexed: 01/27/2023]
Abstract
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.
Collapse
Affiliation(s)
- Madhusudan Dey
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Nie Y, Ding L, Kao PN, Braun R, Yang JH. ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing. Mol Cell Biol 2005; 25:6956-63. [PMID: 16055709 PMCID: PMC1190226 DOI: 10.1128/mcb.25.16.6956-6963.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RNA-editing enzyme ADAR1 modifies adenosines by deamination and produces A-to-I mutations in mRNA. ADAR1 was recently demonstrated to function in host defense and in embryonic erythropoiesis during fetal liver development. The mechanisms for these phenotypic effects are not yet known. Here we report a novel function of ADAR1 in the regulation of gene expression by interacting with the nuclear factor 90 (NF90) proteins, known regulators that bind the antigen response recognition element (ARRE-2) and have been demonstrated to stimulate transcription and translation. ADAR1 upregulates NF90-mediated gene expression by interacting with the NF90 proteins, including NF110, NF90, and NF45. A knockdown of NF90 with small interfering RNA suppresses this function of ADAR1. Coimmunoprecipitation and double-stranded RNA (dsRNA) digestion demonstrate that ADAR1 is associated with NF110, NF90, and NF45 through the bridge of cellular dsRNA. Studies with ADAR1 deletions demonstrate that the dsRNA binding domain and a region covering the Z-DNA binding domain and the nuclear export signal comprise the complete function of ADAR1 in upregulating NF90-mediated gene expression. These data suggest that ADAR1 has the potential both to change information content through editing of mRNA and to regulate gene expression through interacting with the NF90 family proteins.
Collapse
Affiliation(s)
- Yongzhan Nie
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
55
|
Fasciano S, Hutchins B, Handy I, Patel RC. Identification of the heparin-binding domains of the interferon-induced protein kinase, PKR. FEBS J 2005; 272:1425-39. [PMID: 15752359 PMCID: PMC3969814 DOI: 10.1111/j.1742-4658.2005.04575.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PKR is an interferon-induced serine-threonine protein kinase that plays an important role in the mediation of the antiviral and antiproliferative actions of interferons. PKR is present at low basal levels in cells and its expression is induced at the transcriptional level by interferons. PKR's kinase activity stays latent until it binds to its activator. In the case of virally infected cells, double-stranded (ds) RNA serves as PKR's activator. The dsRNA binds to PKR via two copies of an evolutionarily conserved motif, thus inducing a conformational change, unmasking the ATP-binding site and leading to autophosphorylation of PKR. Activated PKR then phosphorylates the alpha-subunit of the protein synthesis initiation factor 2 (eIF2alpha) thereby inducing a general block in the initiation of protein synthesis. In addition to dsRNA, polyanionic agents such as heparin can also activate PKR. In contrast to dsRNA-induced activation of PKR, heparin-dependent PKR activation has so far remained uncharacterized. In order to understand the mechanism of heparin-induced PKR activation, we have mapped the heparin-binding domains of PKR. Our results indicate that PKR has two heparin-binding domains that are nonoverlapping with its dsRNA-binding domains. Although both these domains can function independently of each other, they function cooperatively when present together. Point mutations created within these domains rendered PKR defective in heparin-binding, thereby confirming their essential role. In addition, these mutants were defective in kinase activity as determined by both in vitro and in vivo assays.
Collapse
Affiliation(s)
- Stephen Fasciano
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
56
|
Lemaire PA, Lary J, Cole JL. Mechanism of PKR activation: dimerization and kinase activation in the absence of double-stranded RNA. J Mol Biol 2005; 345:81-90. [PMID: 15567412 DOI: 10.1016/j.jmb.2004.10.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 10/07/2004] [Accepted: 10/08/2004] [Indexed: 11/16/2022]
Abstract
The kinase PKR is a central component of the interferon antiviral pathway. PKR is activated upon binding double-stranded (ds) RNA to undergo autophosphorylation. Although PKR is known to dimerize, the relationship between dimerization and activation remains unclear. Here, we directly characterize dimerization of PKR in free solution using analytical ultracentrifugation and correlate self-association with autophosphorylation activity. Latent, unphosphorylated PKR exists predominantly as a monomer at protein concentrations below 2 mg/ml. A monomer sedimentation coefficient of s(20,w)(0)=3.58 S and a frictional ratio of f/f(0)=1.62 indicate an asymmetric shape. Sedimentation equilibrium measurements indicate that PKR undergoes a weak, reversible monomer-dimer equilibrium with K(d)=450 microM. This dimerization reaction serves to initiate a previously unrecognized dsRNA-independent autophosphorylation reaction. The resulting activated enzyme is phosphorylated on the two critical threonine residues present in the activation loop and is competent to phosphorylate the physiological substrate, eIF2alpha. Dimer stability is enhanced by approximately 500-fold upon autophosphorylation. We propose a chain reaction model for PKR dsRNA-independent activation where dimerization of latent enzyme followed by intermolecular phosphorylation serves as the initiation step. Subsequent propagation steps likely involve phosphorylation of latent PKR monomers by activated enzyme within high-affinity heterodimers. Our results support a model whereby dsRNA functions by bringing PKR monomers into close proximity in a manner that is analogous to the dimerization of free PKR.
Collapse
Affiliation(s)
- Peter A Lemaire
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
57
|
Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T. Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2005; 57:173-88. [PMID: 15821876 DOI: 10.1007/s11103-004-6853-5] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 11/29/2004] [Indexed: 05/19/2023]
Abstract
Proteins that specifically bind double-stranded RNA (dsRNA) are involved in the regulation of cellular signaling events and gene expression, and are characterized by a conserved dsRNA-binding motif (dsRBM). Here we report the biochemical properties of nine such gene products, each containing one or two dsRBMs: four Arabidopsis Dicer-like proteins (DCL1-4), Arabidopsis HYL1 and four of its homologs (DRB2, DRB4, DRB5 and OsDRB1). DCL1, DCL3, HYL1 and the four HYL1 homologs exhibit significant dsRNA-binding activity, indicating that these proteins are involved in RNA metabolism. The dsRBMs from dsRBM-containing proteins (dsRBPs) also function as a protein-protein interaction domain and homo- and heterodimerization are essential for biological functioning of these proteins. We show that DRB4 interacts specifically with DCL4, and HYL1 most strongly interacts with DCL1. These results indicate that each HYL1/DRB family protein interacts with one specific partner among the four Dicer-like proteins. Localization studies using GFP fusion proteins demonstrate that DCL1, DCL4, HYL1 and DRB4 localize in the nucleus, while DRB2 is present in the cytoplasm. Subcellular localizations of HYL1, DRB4, DCL1 and DCL4 further strengthen the notion that HYL1 and DCL1, and DRB4 and DCL4, exist as complexes. The presented data suggest that each member of the HYL1/DRB protein family may individually modulate Dicer function through heterodimerization with a Dicer-like protein in vivo.
Collapse
Affiliation(s)
- Akihiro Hiraguri
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Hitti EG, Sallacz NB, Schoft VK, Jantsch MF. Oligomerization activity of a double-stranded RNA-binding domain. FEBS Lett 2004; 574:25-30. [PMID: 15358534 DOI: 10.1016/j.febslet.2004.07.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 07/25/2004] [Indexed: 11/25/2022]
Abstract
Xenopus laevis RNA-binding protein A (Xlrbpa) is a highly conserved, ubiquitously expressed hnRNP- and ribosome-associated RNA-binding protein that contains three double stranded RNA-binding domains (dsRBDs) in tandem arrangement. A two-hybrid screen with Xlrbpa as a bait recovered Xlrbpa itself as the strongest interaction partner, indicating multimerization of this protein. To search for regions responsible for the observed interaction, we conducted two-hybrid assays with Xlrbpa deletion constructs and identified the third dsRBD of Xlrbpa as the exclusive interacting domain. Additionally, these results were confirmed by coimmunoprecipitation experiments with truncated proteins expressed both in yeast and Xenopus oocytes. In PACT, the human homologue of Xlrbpa, we could demonstrate that the third dsRBD displays the same multimerization activity. Interestingly, this domain is essential for the activation of the dsRNA-activated protein kinase PKR. Addition of RNAses to coimmunoprecipitation experiments did not affect the dimerization, suggesting that the interaction is independent of RNA-binding. We report here a homomultimerization activity of a type B dsRBD and suggest possible implications that include a model for PKR activation by PACT.
Collapse
Affiliation(s)
- Edward G Hitti
- Max F. Perutz Laboratories, Department of Cell Biology and Genetics, Institute of Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
59
|
Elia A, Vyas J, Laing KG, Clemens MJ. Ribosomal protein L22 inhibits regulation of cellular activities by the Epstein-Barr virus small RNA EBER-1. ACTA ACUST UNITED AC 2004; 271:1895-905. [PMID: 15128299 DOI: 10.1111/j.1432-1033.2004.04099.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epstein-Barr virus (EBV) is a potent mitogenic and antiapoptotic agent for B lymphocytes and is associated with several different types of human tumour. The abundantly expressed small viral RNA, EBER-1, binds to the growth inhibitory and pro-apoptotic protein kinase R (PKR) and blocks activation of the latter by double-stranded RNA. Recent evidence has suggested that expression of EBER-1 alone in EBV-negative B cells promotes a tumorigenic phenotype and that this may be related to inhibition of the pro-apoptotic effects of PKR. The ribosomal protein L22 binds to EBER-1 in virus-infected cells, but the significance of this has not previously been established. We report here that L22 and PKR compete for a common binding site on EBER-1. As a result of this competition, L22 interferes with the ability of the small RNA to inhibit the activation of PKR by dsRNA. Transient expression of EBER-1 in murine embryonic fibroblasts stimulates reporter gene expression and partially reverses the inhibitory effect of PKR. However, EBER-1 is also stimulatory when transfected into PKR knockout cells, suggesting an additional, PKR-independent, mode of action of the small RNA. Expression of L22 prevents both the PKR-dependent and -independent effects of EBER-1 in vivo. These results suggest that the association of L22 with EBER-1 in EBV-infected cells can attenuate the biological effects of the viral RNA. Such effects include both the inhibition of PKR and additional mechanism(s) by which EBER-1 stimulates gene expression.
Collapse
Affiliation(s)
- Androulla Elia
- Translational Control Group, Department of Basic Medical Sciences, St George's Hospital Medical School, London, UK
| | | | | | | |
Collapse
|
60
|
Dave RS, Pomerantz RJ. RNA interference: on the road to an alternate therapeutic strategy! Rev Med Virol 2004; 13:373-85. [PMID: 14625885 DOI: 10.1002/rmv.407] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RNA interference (RNAi) is a newly described natural biological phenomenon mediated by small interfering RNA (siRNA) molecules which target viral mRNA for degradation by cellular enzymes. RNAi has become a method of choice for studying gene function, especially in mammalian systems. With proof-of-concept studies already presented against a wide variety of human pathogens and several innovative methods of delivering the siRNA to a wide variety of primary cells available, the role for siRNA as a potential therapeutic strategy is becoming increasingly clear. This review presents recent advances in this direction.
Collapse
Affiliation(s)
- Rajnish S Dave
- Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
61
|
Gupta V, Huang X, Patel RC. The carboxy-terminal, M3 motifs of PACT and TRBP have opposite effects on PKR activity. Virology 2003; 315:283-91. [PMID: 14585331 DOI: 10.1016/s0042-6822(03)00589-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PKR is an interferon(IFN)-induced, serine-threonine protein kinase, which plays a crucial role in IFN's antiviral and antiproliferative actions. The three known activators of PKR are dsRNA, heparin, and PACT. PACT activates PKR by direct protein-protein interaction in response to cellular stress. The human TAR (trans-activating region)-binding protein (TRBP), which is very homologous to PACT, also interacts with PKR, leading to an inhibition of PKR activity. Since these two highly homologous proteins have opposite effects on PKR, we examined if they interact with PKR differently by assaying their interaction with various point mutants of PKR. Our results indicate that TRBP and PACT interact with PKR through the same residues, and no differences were identified in these two interactions. Domain swap experiments between PACT and TRBP indicated that the inhibitory effects of TRBP on PKR activity are mediated through its carboxy-terminal residues, which contain TRBP's third dsRNA-binding motif.
Collapse
Affiliation(s)
- Vishal Gupta
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|
62
|
Hung ML, Chao P, Chang KY. dsRBM1 and a proline-rich domain of RNA helicase A can form a composite binder to recognize a specific dsDNA. Nucleic Acids Res 2003; 31:5741-53. [PMID: 14500838 PMCID: PMC206459 DOI: 10.1093/nar/gkg759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The double-stranded RNA-binding motif (dsRBM) is a widely distributed motif frequently found within proteins with sequence non-specific RNA duplex-binding activity. In addition to the binding of double-stranded RNA, some dsRBMs also participate in complex formation via protein-protein interactions. Interestingly, a lot of proteins containing multiple dsRBMs have only some of their dsRBMs with the expected RNA duplex-binding competency proven, while the functions of the other dsRBMs remain unknown. We show here that the dsRBM1 of RNA helicase A (RHA) can cooperate with a C-terminal domain of proline-rich content to gain novel nucleic acid-binding activities. This integrated nucleic acid-binding module is capable of associating with the consensus sequences of the constitutive transport element (CTE) RNA of type D retrovirus against RNA duplex competitors. Remarkably, binding activity for double-stranded DNA corresponding to the consensus sequences of the cyclic-AMP responsive element also resides within this composite nucleic acid binder. It thus suggests that the dsRBM fold can be used as a platform for the building of a ligand binding module capable of non-RNA macromolecule binding with an accessory sequence, and functional assessment for a newly identified protein containing dsRBM fold should be more cautious.
Collapse
Affiliation(s)
- Ming-Lung Hung
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
| | | | | |
Collapse
|
63
|
Reichman TW, Parrott AM, Fierro-Monti I, Caron DJ, Kao PN, Lee CG, Li H, Mathews MB. Selective regulation of gene expression by nuclear factor 110, a member of the NF90 family of double-stranded RNA-binding proteins. J Mol Biol 2003; 332:85-98. [PMID: 12946349 DOI: 10.1016/s0022-2836(03)00885-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA)-binding proteins have been implicated in several biological processes including the regulation of gene expression. cDNA sequences predict that the proteins have a functional nuclear localization signal and two dsRNA-binding motifs (dsRBMs), and are identical at their N termini. Isoforms are predicted to diverge at their C termini as well as by the insertion of four amino acid residues (NVKQ) between the two dsRBMs. In this study, we verified the expression of four of the isoforms by cDNA cloning and mass spectrometric analysis of proteins isolated from human cells. Cell fractionation studies showed that NF90 and its heteromeric partner, NF45, are predominantly nuclear and largely chromatin-associated. The C-terminally extended NF90 species, NF110, are almost exclusively chromatin-bound. Both NF110 isoforms are more active than NF90 isoforms in stimulating transcription from the proliferating cell nuclear antigen reporter in a transient expression system. NF110b, which carries the NVKQ insert, was identified as the strongest activator. It stimulated transcription of some, but not all, promoters in a fashion that suggested that it functions in concert with other transcription factors. Finally, we demonstrate that NF110b associates with the dsRBM-containing transcriptional co-activator, RNA helicase A, independently of RNA binding.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., P.O. Box 1709, Newark, NJ 07103-1709, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Ward SV, Samuel CE. The PKR kinase promoter binds both Sp1 and Sp3, but only Sp3 functions as part of the interferon-inducible complex with ISGF-3 proteins. Virology 2003; 313:553-66. [PMID: 12954221 DOI: 10.1016/s0042-6822(03)00347-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The protein kinase regulated by RNA (PKR) is an important mediator of the antiviral and antiproliferative actions of interferon (IFN). The promoter of the PKR gene contains a novel 15-bp element designated KCS that is required for both basal and IFN-inducible transcription, with KCS function dependent upon both position and orientation relative to the ISRE element. Novel inducible protein complexes (iKIBP1, iKIBP2) that require both the KCS and the ISRE element sequences for their formation have been identified and characterized. Transcription factors Sp1 and Sp3 were found to be KCS-binding proteins by electrophoretic mobility shift analyses (EMSA) and Sepharose bead-KCS oligonucleotide pull-down assays. However, only Sp3 but not Sp1 was a constituent of the inducible iKIBP complexes. EMSA also identified STAT1, STAT2, and IRF-9 as components of the iKIBP complexes, indicating that ISGF-3 participates in iKIBP complex formation. Proteins bound at the KCS element in the absence of ISRE were able to recruit both STAT1 and STAT2 to the KCS element; recruitment was dependent upon IFN-alpha treatment. Chromatin immunoprecipitation assays revealed that the binding of Sp3, similar to STAT1 and STAT2, at the PKR promoter in vivo was IFN-dependent, but that Sp1 binding was not dependent upon IFN treatment. These results, taken together, strongly suggest a role for Sp1 in basal and Sp3 in inducible transcription of PKR and that a potential function of the KCS element is to facilitate the recruitment of ISGF-3 complex components to the PKR promoter to stimulate transcription.
Collapse
Affiliation(s)
- Simone Visosky Ward
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | |
Collapse
|
65
|
Gallo A, Keegan LP, Ring GM, O'Connell MA. An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J 2003; 22:3421-30. [PMID: 12840004 PMCID: PMC165651 DOI: 10.1093/emboj/cdg327] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this report, we establish that Drosophila ADAR (adenosine deaminase acting on RNA) forms a dimer on double-stranded (ds) RNA, a process essential for editing activity. The minimum region required for dimerization is the N-terminus and dsRNA-binding domain 1 (dsRBD1). Single point mutations within dsRBD1 abolish RNA-binding activity and dimer formation. These mutations and glycerol gradient analysis indicate that binding to dsRNA is important for dimerization. However, dimerization can be uncoupled from dsRNA-binding activity, as a deletion of the N-terminus (amino acids 1-46) yields a monomeric ADAR that retains the ability to bind dsRNA but is inactive in an editing assay, demonstrating that ADAR is only active as a dimer. Different isoforms of ADAR with different editing activities can form heterodimers and this can have a significant effect on editing in vitro as well as in vivo. We propose a model for ADAR dimerization whereby ADAR monomers first contact dsRNA; however, it is only when the second monomer binds and a dimer is formed that deamination occurs.
Collapse
Affiliation(s)
- Angela Gallo
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | |
Collapse
|
66
|
Abstract
The dsRNA binding proteins (DRBPs) comprise a growing family of eukaryotic, prokaryotic, and viral-encoded products that share a common evolutionarily conserved motif specifically facilitating interaction with dsRNA. Proteins harboring dsRNA binding domains (DRBDs) have been reported to interact with as little as 11 bp of dsRNA, an event that is independent of nucleotide sequence arrangement. More than 20 DRBPs have been identified and reportedly function in a diverse range of critically important roles in the cell. Examples include the dsRNA-dependent protein kinase PKR that functions in dsRNA signaling and host defense against virus infection and DICER, which is implicated in RNA interference (RNAi) -mediated gene silencing. Other DRBPs such as Staufen, adenosine deaminase acting on RNA (ADAR), and spermatid perinuclear RNA binding protein (SPNR) are known to play essential roles in development, translation, RNA editing, and stability. In many cases, homozygous and even heterozygous disruption of DRBPs in animal models results in embryonic lethality. These results implicate the recognition of dsRNA as an evolutionarily conserved mechanism important in the regulation of gene expression and in host defense and underscore the diversity of essential biological tasks performed by dsRNA-related processes in the cell.
Collapse
Affiliation(s)
- Laura R Saunders
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
67
|
Reichman TW, Mathews MB. RNA binding and intramolecular interactions modulate the regulation of gene expression by nuclear factor 110. RNA (NEW YORK, N.Y.) 2003; 9:543-554. [PMID: 12702813 PMCID: PMC1370420 DOI: 10.1261/rna.2181103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 01/17/2003] [Indexed: 05/24/2023]
Abstract
Nuclear factor 110 (NF110) belongs to the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA) binding proteins that regulate gene expression at the transcriptional level in vertebrates. The proteins are identical at their N terminus, which functions as a negative regulatory region, but have distinct C termini as a result of alternate splicing. Maximal transcriptional activity of NF110 requires its C-terminal domain and a central domain that contains a nuclear localization signal and two dsRNA-binding motifs (dsRBMs). We find that dsRNA binding is reduced by RGG and GQSY motifs present in the C-terminal region. To directly evaluate the role of RNA binding in transactivation, we conducted site-directed mutagenesis to substitute conserved residues in one or both of the dsRBMs. The mutations reduced the ability of NF110 to stimulate gene expression to an extent that paralleled the mutants' reduced ability to bind dsRNA. Full activity was restored when the dsRBM-containing region of NF110 was replaced with the RNA-binding region of the protein kinase PKR. Finally, NF110-mediated transactivation was inhibited by cotransfection of a plasmid encoding an artificial highly structured RNA. These data suggest that NF110 and its homologs are regulated by cis-acting domains present in some of the protein isoforms, and via interactions with RNAs that bind to their dsRBMs. We propose a model in which structured RNAs regulate gene expression by modulating transcription through interactions with members of the NF90 protein family.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and the Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark 01701-1709, USA
| | | |
Collapse
|
68
|
Dorin D, Bonnet MC, Bannwarth S, Gatignol A, Meurs EF, Vaquero C. The TAR RNA-binding protein, TRBP, stimulates the expression of TAR-containing RNAs in vitro and in vivo independently of its ability to inhibit the dsRNA-dependent kinase PKR. J Biol Chem 2003; 278:4440-8. [PMID: 12475984 DOI: 10.1074/jbc.m208954200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRBP (HIV-1 transactivating response (TAR) RNA-binding protein) and PKR, the interferon-induced dsRNA-regulated protein kinase, contain two dsRNA binding domains. They both bind to HIV-1 TAR RNAs through different sites. Binding to dsRNA activates PKR that phosphorylates the eukaryotic initiation factor eIF-2alpha leading to protein synthesis inhibition. TRBP and PKR can heterodimerize, which inhibits the kinase function of PKR and has a positive effect on HIV-1 expression. In this study, an in vitro reticulocyte assay revealed the poor expression of TAR containing CAT RNAs compared with CAT RNAs. Addition of TRBP restored translation efficiency of TAR-CAT RNA and decreased the phosphorylation status of eIF-2alpha, confirming its role as a PKR inhibitor. Unexpectedly, eIF-2alpha was phosphorylated in the presence of TAR-CAT as well as CAT RNA devoid of the TAR structure. TRBP inhibited eIF-2alpha phosphorylation in both cases, suggesting that it restores the translation of TAR-CAT RNA independently and in addition to its ability to inhibit PKR. TRBP activity on gene expression was then analyzed in a PKR-free environment using PKR-deficient murine embryo fibroblasts. In a transient reporter gene assay, TRBP stimulated the expression of a TAR-containing luciferase 3.8-fold whereas the reporter gene with mutated TAR structures or devoid of TAR was stimulated 1.5- to 2.4-fold. Overall, the activity of TRBP2 was higher when the 5'-end of the mRNA was structured and was mediated independently by each dsRBD in TRBP. Increasing concentrations of TRBP showed no significant modification of the luciferase RNA levels, suggesting that TRBP stimulates translation of TAR-containing RNAs. Therefore, TRBP is an important cellular factor for efficient translation of dsRNA containing transcripts, both by inhibiting PKR and in a PKR-independent pathway.
Collapse
Affiliation(s)
- Dominique Dorin
- INSERM U511, Hôpital La Pitié-Salpêtrière, 75643 Paris Cedex 13, France
| | | | | | | | | | | |
Collapse
|
69
|
Tian B, Mathews MB. Phylogenetics and Functions of the Double-Stranded RNA-Binding Motif: A Genomic Survey. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY VOLUME 74 2003; 74:123-58. [PMID: 14510075 DOI: 10.1016/s0079-6603(03)01012-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bin Tian
- Johnson and Johnson Pharmaceutical Research and Development, San Diego, California 92121, USA
| | | |
Collapse
|
70
|
Peters GA, Khoo D, Mohr I, Sen GC. Inhibition of PACT-mediated activation of PKR by the herpes simplex virus type 1 Us11 protein. J Virol 2002; 76:11054-64. [PMID: 12368348 PMCID: PMC136652 DOI: 10.1128/jvi.76.21.11054-11064.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PACT, a protein activator of PKR, can cause inhibition of cellular protein synthesis and apoptosis. Here, we report that the Us11 protein of herpes simplex virus type 1 can block PKR activation by PACT both in vitro and in vivo. Although Us11 can bind to both PKR and PACT, mutational analyses revealed that the binding of Us11 to PKR, and not to PACT, was essential for its inhibitory action. Similar analyses also revealed that the inhibitory effect was mediated by an interaction between the C-terminal half of Us11 and the N-terminal domain of PKR. The binding of Us11 to PKR did not block the binding of PKR to PACT but prevented its activation. Us11 is the first example of a viral protein that can inhibit the action of PACT on PKR.
Collapse
Affiliation(s)
- Gregory A Peters
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
71
|
Huang X, Hutchins B, Patel RC. The C-terminal, third conserved motif of the protein activator PACT plays an essential role in the activation of double-stranded-RNA-dependent protein kinase (PKR). Biochem J 2002; 366:175-86. [PMID: 11985496 PMCID: PMC1222748 DOI: 10.1042/bj20020204] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2002] [Revised: 04/16/2002] [Accepted: 05/02/2002] [Indexed: 11/17/2022]
Abstract
One of the key mediators of the antiviral and antiproliferative actions of interferon is double-stranded-RNA-dependent protein kinase (PKR). PKR activity is also involved in the regulation of cell proliferation, apoptosis and signal transduction. We have recently identified PACT, a novel protein activator of PKR, as an important modulator of PKR activity in cells in the absence of viral infection. PACT heterodimerizes with PKR and activates it by direct protein-protein interactions. Endogenous PACT acts as an activator of PKR in response to diverse stress signals, such as serum starvation and peroxide or arsenite treatment, and is therefore a novel, stress-modulated physiological activator of PKR. In this study, we have characterized the functional domains of PACT that are required for PKR activation. Our results have shown that, unlike the N-terminal conserved domains 1 and 2, the third conserved domain of PACT is dispensable for its binding of double-stranded RNA and inter action with PKR. However, a deletion of domain 3 results in a loss of PKR activation ability, in spite of a normal interaction with PKR, thereby indicating that domain 3 plays an essential role in PKR activation. Purified recombinant domain 3 could also activate PKR efficiently in vitro. Our results indicate that, although dispensable for PACT's high-affinity interaction with PKR, the third motif is essential for PKR activation. In addition, domain 3 and eukaryotic initiation factor 2alpha both interact with PKR through the same region within PKR, which we have mapped to lie between amino acid residues 318 and 551.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, U.S.A
| | | | | |
Collapse
|
72
|
Luo M, Duchaîne TF, DesGroseillers L. Molecular mapping of the determinants involved in human Staufen-ribosome association. Biochem J 2002; 365:817-24. [PMID: 12133005 PMCID: PMC1222739 DOI: 10.1042/bj20020263] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The human double-stranded (ds) RNA-binding protein Staufen (hStau) is considered to have a role in RNA transport and its localization. By using sedimentation analysis on sucrose gradients, we showed that the Staufen isoform with an apparent molecular mass of 55 kDa (Stau(55)) co-fractionated with ribosomes and associated with both the 40 and 60 S ribosomal subunits, suggesting that the Staufen isoform hStau(55) plays some role in translation. To map the determinant(s) involved in this association, we generated a series of deletion mutants and analysed their subcellular distribution by cell fractionation and fluorescent immunomicroscopy. Our results demonstrated that multiple determinants promote hStau(55)-ribosome association via both an RNA-binding-dependent mechanism and protein-protein interaction. The RNA-binding activity of the ds RNA-binding protein domain 3 (dsRBD3) but not that of dsRBD4 is the first determinant. Although necessary for stable association with ribosomes, dsRBD3 alone is not sufficient and needs other determinants as co-factors. Consistently, when expressed together, dsRBD4 and the tubulin-binding domain constitute the minimal Stau(55)/ribosome protein-protein association domain. This region of Stau(55) is sufficient to associate with ribosomes independently, but requires the RNA-binding activity of dsRBD3 for complete association. Thus the results are consistent with a putative role for Stau(55) in the regulation of translation.
Collapse
Affiliation(s)
- Ming Luo
- Department of Biochemistry, University of Montreal, P.O. Box 6128, Station Centre Ville, Montreal, Canada H3C 3J7
| | | | | |
Collapse
|
73
|
Dar AC, Sicheri F. X-ray crystal structure and functional analysis of vaccinia virus K3L reveals molecular determinants for PKR subversion and substrate recognition. Mol Cell 2002; 10:295-305. [PMID: 12191475 DOI: 10.1016/s1097-2765(02)00590-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vaccinia virus protein K3L subverts the mammalian antiviral defense mechanism by inhibiting the RNA-dependent protein kinase PKR. K3L is a structural mimic of PKR's natural substrate, the translation initiation factor eIF2alpha. To further our understanding of K3L inhibitory function and PKR substrate recognition, we have solved the 1.8 A X-ray crystal structure of K3L. The structure consists of a five-strand beta barrel with an intervening helix insert region similar in topology to the functionally divergent S1 domain. Mutational analysis identifies two proximal regions of the K3L structure as possessing specialized PKR binding and inhibitory function. Further analysis reveals that PKR dimerization composes a key switch that regulates both its catalytic activation and its molecular recognition of K3L and eIF2alpha.
Collapse
Affiliation(s)
- Arvin C Dar
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
74
|
Ward SV, Samuel CE. Regulation of the interferon-inducible PKR kinase gene: the KCS element is a constitutive promoter element that functions in concert with the interferon-stimulated response element. Virology 2002; 296:136-46. [PMID: 12036325 DOI: 10.1006/viro.2002.1356] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RNA-dependent protein kinase PKR plays important roles in the antiviral and antiproliferative actions of IFN. The IFN-inducible promoter of the human PKR gene contains a 15-bp DNA element designated KCS. The KCS element is located 4 bp upstream of the interferon-stimulated response element (ISRE) and is required for both basal and IFN-inducible transcription. We have examined the effect of insertion mutations between the KCS and the ISRE elements, as well as altered orientation of the KCS element relative to the ISRE element, to assess a possible functional interaction between them. Large insertions (>or=93 bp) between the KCS and ISRE elements significantly reduced both basal and IFN-inducible promoter activity. The function of the KCS element was dependent on the orientation of KCS relative to the ISRE element. Multimerization of the KCS element increased both basal and IFN-inducible transcription. Electrophoretic mobility shift analyses (EMSA) identified IFN-inducible protein complex formation that required both the KCS and the ISRE DNA element sequences. The novel IFN-inducible protein complexes contained the transcription factor STAT1, as shown by supershift analyses and by their presence in extracts prepared from STAT1 wild-type but not from STAT1-/- null cells. These results, taken together, strongly suggest that the KCS and ISRE elements of the human PKR promoter represent a functional unit.
Collapse
Affiliation(s)
- Simone Visosky Ward
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
75
|
Bannwarth S, Talakoub L, Letourneur F, Duarte M, Purcell DF, Hiscott J, Gatignol A. Organization of the human tarbp2 gene reveals two promoters that are repressed in an astrocytic cell line. J Biol Chem 2001; 276:48803-13. [PMID: 11641396 DOI: 10.1074/jbc.m104645200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRBP1 and TRBP2 are isoforms of a double-stranded RNA-binding protein that differ in their N-terminal end and were each identified by binding to human immunodeficiency virus type 1 (HIV-1) trans-activation-responsive RNA. TRBP1 and TRBP2 also bind and modulate the function of the double-stranded RNA-activated protein kinase, protein kinase R. Both proteins increase long terminal repeat expression in human and murine cells, and their gene has been mapped to human chromosome 12. We have isolated and characterized the complete tarbp2 gene (5493 bp) coding for the two TRBP proteins. Two adjacent promoters initiate transcription of alternative first exons for TRBP1 and TRBP2 mRNAs that are spliced onto common downstream exons. TRBP2 transcription and translation start sites are localized within the first intron of TRBP1. TRBP promoters are TATA-less but have CCAAT boxes, a CpG island, and several potential binding sites for transcriptional factors. Promoter deletion analysis identified two regions from position -1397 to -330 for TRBP1 and from position -330 to +38 for TRBP2 that are important for promoter function. TRBP2 promoter activity was expressed at a higher level compared with TRBP1 promoter. In addition, a specific down-regulation of TRBP1 and TRBP2 promoter activity was identified in human astrocytic cell line U251MG compared with HeLa cells. This minimal TRBP promoter activity may account for minimal HIV-1 replication in astrocytes.
Collapse
Affiliation(s)
- S Bannwarth
- Molecular Oncology Group, McGill AIDS Centre, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | |
Collapse
|
76
|
Saelens X, Kalai M, Vandenabeele P. Translation inhibition in apoptosis: caspase-dependent PKR activation and eIF2-alpha phosphorylation. J Biol Chem 2001; 276:41620-8. [PMID: 11555640 DOI: 10.1074/jbc.m103674200] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The protein kinase PKR is a major player in the cellular antiviral response, acting mainly by phosphorylation of the alpha-subunit of the eukaryotic translation initiation factor 2 (eIF2-alpha) to block de novo protein synthesis. PKR activation requires binding of double-stranded RNA or PACT/RAX proteins to its regulatory domain. Since several reports have demonstrated that translation is inhibited in apoptosis, we investigated whether PKR and eIF2-alpha phosphorylation contribute to this process. We show that PKR is proteolysed and that eIF2-alpha is phosphorylated at the early stages of apoptosis induced by various stimuli. Both events coincide with the onset of caspase activity and are prevented by caspase inhibitors. Using site-directed mutagenesis we show that PKR is specifically proteolysed at Asp(251) during cellular apoptosis. This site is cleaved in vitro by recombinant caspase-3, caspase-7, and caspase-8 and not by the proinflammatory caspase-1 and caspase-11. The released kinase domain efficiently phosphorylates eIF2-alpha at the cognate Ser(51) residue, and its overexpression in mammalian cells impairs the translation of its own mRNA and of reporter mRNAs. Our results demonstrate a new and caspase-dependent activation mode for PKR, leading to eIF2-alpha phosphorylation and translation inhibition in apoptosis.
Collapse
Affiliation(s)
- X Saelens
- Department of Molecular Biology, Unit of Molecular Signaling and Cell Death, Flanders Interuniversity Institute for Biotechnology and Ghent University, 9000 Ghent, Belgium
| | | | | |
Collapse
|
77
|
Daher A, Longuet M, Dorin D, Bois F, Segeral E, Bannwarth S, Battisti PL, Purcell DF, Benarous R, Vaquero C, Meurs EF, Gatignol A. Two dimerization domains in the trans-activation response RNA-binding protein (TRBP) individually reverse the protein kinase R inhibition of HIV-1 long terminal repeat expression. J Biol Chem 2001; 276:33899-905. [PMID: 11438532 DOI: 10.1074/jbc.m103584200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trans-activation response (TAR) RNA-binding protein (TRBP) is a cellular protein that binds to the human immunodeficiency virus-1 (HIV-1) TAR element RNA. It has two double-stranded RNA binding domains (dsRBDs), but only one is functional for TAR binding. TRBP interacts with the interferon-induced protein kinase R (PKR) and inhibits its activity. We used the yeast two-hybrid assay to map the interaction sites between the two proteins. We show that TRBP and PKR-N (178 first amino acids of PKR) interact with PKR wild type and inhibit the PKR-induced yeast growth defect in this assay. We characterized two independent PKR-binding sites in TRBP. These sites are located in each dsRBD in TRBP, indicating that PKR-TRBP interaction does not require the RNA binding activity present only in dsRBD2. TRBP and its fragments that interact with PKR reverse the PKR-induced suppression of HIV-1 long terminal repeat expression. In addition, TRBP activates the HIV-1 long terminal repeat expression to a larger extent than the addition of each domain. These data suggest that TRBP activates gene expression in PKR-dependent and PKR-independent manners.
Collapse
Affiliation(s)
- A Daher
- Molecular Oncology Group/McGill AIDS Centre, Lady Davis Institute for Medical Research, 3755 Côte Ste Catherine, Montréal H3T 1E2, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Donzé O, Abbas-Terki T, Picard D. The Hsp90 chaperone complex is both a facilitator and a repressor of the dsRNA-dependent kinase PKR. EMBO J 2001; 20:3771-80. [PMID: 11447118 PMCID: PMC125551 DOI: 10.1093/emboj/20.14.3771] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PKR, a member of the eukaryotic initiation-factor 2alpha (eIF-2alpha) kinase family, mediates the host antiviral response and is implicated in tumor suppression and apoptosis. Here we show that PKR is regulated by the heat shock protein 90 (Hsp90) molecular chaperone complex. Mammalian PKR expressed in budding yeast depends on several components of the Hsp90 complex for accumulation and activity. In mammalian cells, inhibition of Hsp90 function with geldanamycin (GA) during de novo synthesis of PKR also interferes with its accumulation and activity. Hsp90 and its co-chaperone p23 bind to PKR through its N-terminal double-stranded (ds) RNA binding region as well as through its kinase domain. Both dsRNA and GA induce the rapid dissociation of Hsp90 and p23 from mature PKR, activate PKR both in vivo and in vitro and within minutes trigger the phosphorylation of the PKR substrate eIF-2alpha. A short-term exposure of cells to the Hsp90 inhibitors GA or radicicol not only derepresses PKR, but also activates the Raf-MAPK pathway. This suggests that the Hsp90 complex may more generally assist the regulatory domains of kinases and other Hsp90 substrates.
Collapse
Affiliation(s)
- O Donzé
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland.
| | | | | |
Collapse
|
79
|
Ung TL, Cao C, Lu J, Ozato K, Dever TE. Heterologous dimerization domains functionally substitute for the double-stranded RNA binding domains of the kinase PKR. EMBO J 2001; 20:3728-37. [PMID: 11447114 PMCID: PMC125533 DOI: 10.1093/emboj/20.14.3728] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The protein kinase PKR (dsRNA-dependent protein kinase) phosphorylates the eukaryotic translation initiation factor eIF2alpha to downregulate protein synthesis in virus-infected cells. Two double-stranded RNA binding domains (dsRBDs) in the N-terminal half of PKR are thought to bind the activator double-stranded RNA, mediate dimerization of the protein and target PKR to the ribosome. To investigate further the importance of dimerization for PKR activity, fusion proteins were generated linking the PKR kinase domain to heterologous dimerization domains. Whereas the isolated PKR kinase domain (KD) was non-functional in vivo, expression of a glutathione S-transferase-KD fusion, or co-expression of KD fusions containing the heterodimerization domains of the Xlim-1 and Ldb1 proteins, restored PKR activity in yeast cells. Finally, coumermycin-mediated dimerization of a GyrB-KD fusion protein increased eIF2alpha phosphorylation and inhibited reporter gene translation in mammalian cells. These results demonstrate the critical importance of dimerization for PKR activity in vivo, and suggest that a primary function of double-stranded RNA binding to the dsRBDs of native PKR is to promote dimerization and activation of the kinase domain.
Collapse
Affiliation(s)
| | | | - Jianming Lu
- Laboratories of Gene Regulation and Development and
Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| | - Keiko Ozato
- Laboratories of Gene Regulation and Development and
Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| | - Thomas E. Dever
- Laboratories of Gene Regulation and Development and
Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| |
Collapse
|
80
|
Jammi NV, Beal PA. Phosphorylation of the RNA-dependent protein kinase regulates its RNA-binding activity. Nucleic Acids Res 2001; 29:3020-9. [PMID: 11452027 PMCID: PMC55795 DOI: 10.1093/nar/29.14.3020] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha), inhibiting the function of the eIF2 complex and continued initiation of translation. When bound to an activating RNA and ATP, PKR undergoes autophosphorylation reactions at multiple serine and threonine residues. This autophosphorylation reaction stimulates the eIF2alpha kinase activity of PKR. The binding of certain viral RNAs inhibits the activation of PKR. Wild-type PKR is obtained as a highly phosphorylated protein when overexpressed in Escherichia coli. We report here that treatment of the isolated phosphoprotein with the catalytic subunit of protein phosphatase 1 dephosphorylates the enzyme. The in vitro autophosphorylation and eIF2alpha kinase activities of the dephosphorylated enzyme are stimulated by addition of RNA. Thus, inactivation by phosphatase treatment of autophosphorylated PKR obtained from overexpression in bacteria generates PKR in a form suitable for in vitro analysis of the RNA-induced activation mechanism. Furthermore, we used gel mobility shift assays, methidiumpropyl-EDTA.Fe footprinting and affinity chromatography to demonstrate differences in the RNA-binding properties of phospho- and dephosphoPKR. We found that dephosphorylation of PKR increases binding affinity of the enzyme for both kinase activating and inhibiting RNAs. These results are consistent with an activation mechanism that includes release of the activating RNA upon autophosphorylation of PKR prior to phosphorylation of eIF2alpha.
Collapse
Affiliation(s)
- N V Jammi
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
81
|
Zhang F, Romano PR, Nagamura-Inoue T, Tian B, Dever TE, Mathews MB, Ozato K, Hinnebusch AG. Binding of double-stranded RNA to protein kinase PKR is required for dimerization and promotes critical autophosphorylation events in the activation loop. J Biol Chem 2001; 276:24946-58. [PMID: 11337501 DOI: 10.1074/jbc.m102108200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase PKR is activated by double-stranded RNA (dsRNA) and phosphorylates translation initiation factor 2alpha to inhibit protein synthesis in virus-infected mammalian cells. PKR contains two dsRNA binding motifs (DRBMs I and II) required for activation by dsRNA. There is strong evidence that PKR activation requires dimerization, but the role of dsRNA in dimer formation is controversial. By making alanine substitutions predicted to remove increasing numbers of side chain contacts between the DRBMs and dsRNA, we found that dimerization of full-length PKR in yeast was impaired by the minimal combinations of mutations required to impair dsRNA binding in vitro. Mutation of Ala-67 to Glu in DRBM-I, reported to abolish dimerization without affecting dsRNA binding, destroyed both activities in our assays. By contrast, deletion of a second dimerization region that overlaps the kinase domain had no effect on PKR dimerization in yeast. Human PKR contains at least 15 autophosphorylation sites, but only Thr-446 and Thr-451 in the activation loop were found here to be critical for kinase activity in yeast. Using an antibody specific for phosphorylated Thr-451, we showed that Thr-451 phosphorylation is stimulated by dsRNA binding. Our results provide strong evidence that dsRNA binding is required for dimerization of full-length PKR molecules in vivo, leading to autophosphorylation in the activation loop and stimulation of the eIF2alpha kinase function of PKR.
Collapse
Affiliation(s)
- F Zhang
- Laboratory of Gene Regulation and Development, NICHHD, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Vattem KM, Staschke KA, Wek RC. Mechanism of activation of the double-stranded-RNA-dependent protein kinase, PKR: role of dimerization and cellular localization in the stimulation of PKR phosphorylation of eukaryotic initiation factor-2 (eIF2). EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3674-84. [PMID: 11432733 DOI: 10.1046/j.1432-1327.2001.02273.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An important defense against viral infection involves inhibition of translation by PKR phosphorylation of the alpha subunit of eIF2. Binding of viral dsRNAs to two dsRNA-binding domains (dsRBDs) in PKR leads to relief of an inhibitory region and activation of eIF2 kinase activity. Interestingly, while deletion of the regulatory region of PKR significantly induces activity in vitro, the truncated kinase does not inhibit translation in vivo, suggesting that these sequences carry out additional functions required for PKR control. To delineate these functions and determine the order of events leading to activation of PKR, we fused truncated PKR to domains of known function and assayed the chimeras for in vivo activity. We found that fusion of a heterologous dimerization domain with the PKR catalytic domain enhanced autophosphorylation and eIF2 kinase function in vivo. The dsRBDs also mediate ribosome association and we proposed that such targeting increases the localized concentration of PKR, enhancing interaction between PKR molecules. We addressed this premise by linking the truncated PKR to RAS sequences mediating farnesylation and membrane localization and found that the fusion protein was functional in vivo. These results indicate that cellular localization along with oligomerization enhances interaction between PKR molecules. Alanine substitution for the phosphorylation site, threonine 446, impeded in vivo and in vitro activity of the PKR fusion proteins, while aspartate or glutamate substitutions partially restored the function of the truncated kinase. These results indicate that both dimerization and cellular localization play a role in transient protein-protein interactions and that trans-autophosphorylation is the final step in the mechanism of activation of PKR.
Collapse
Affiliation(s)
- K M Vattem
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | | | | |
Collapse
|
83
|
Liu C, Xu HY, Liu DX. Induction of caspase-dependent apoptosis in cultured cells by the avian coronavirus infectious bronchitis virus. J Virol 2001; 75:6402-9. [PMID: 11413307 PMCID: PMC114363 DOI: 10.1128/jvi.75.14.6402-6409.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Avian coronavirus infectious bronchitis virus (IBV) is the causative agent of chicken infectious bronchitis, an acute, highly contagious viral respiratory disease. Replication of IBV in Vero cells causes extensive cytopathic effects (CPE), leading to destruction of the entire monolayer and the death of infected cells. In this study, we investigated the cell death processes during acute IBV infection and the underlying mechanisms. The results show that both necrosis and apoptosis may contribute to the death of infected cells in lytic IBV infection. Caspase-dependent apoptosis, as characterized by chromosomal condensation, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase degradation, was detected in IBV-infected Vero cells. Addition of the general caspase inhibitor z-VAD-FMK to the culture media showed inhibition of the hallmarks of apoptosis and increase of the release of virus to the culture media at 16 h postinfection. However, neither the necrotic process nor the productive replication of IBV in Vero cells was severely affected by the inhibition of apoptosis. Screening of 11 IBV-encoded proteins suggested that a 58-kDa mature cleavage product could induce apoptotic changes in cells transiently expressing the protein. This study adds one more example to the growing list of animal viruses that induce apoptosis during their replication cycles.
Collapse
Affiliation(s)
- C Liu
- Institute of Molecular Agrobiology, 1 Research Link, The National University of Singapore, Singapore 117406, Singapore.
| | | | | |
Collapse
|
84
|
Li S, Koromilas AE. Dominant negative function by an alternatively spliced form of the interferon-inducible protein kinase PKR. J Biol Chem 2001; 276:13881-90. [PMID: 11278390 DOI: 10.1074/jbc.m008140200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The double-stranded RNA (dsRNA)-activated protein kinase PKR (protein kinase dsRNA-dependent) plays an important role in the regulation of protein synthesis by phosphorylating the alpha-subunit of eukaryotic initiation factor 2. Through this activity, PKR is thought to mediate the antiviral and antiproliferative actions of interferon. Here, we show that the human T cell leukemia Jurkat cells express an alternatively spliced form of PKR with a deletion of exon 7 (PKRDeltaE7), resulting in a truncated protein that retains the two dsRNA-binding motifs. PKRDeltaE7 exhibits a dominant negative function by inhibiting both PKR autophosphorylation and eukaryotic initiation factor 2 alpha-subunit phosphorylation in vitro and in vivo. Reverse transcriptase-polymerase chain reaction assays showed that PKRDeltaE7 is expressed in a broad range of human tissues at variable levels. Interestingly, expression of PKRDeltaE7 is higher in Jurkat cells than in normal peripheral blood mononuclear cells, raising the possibility of a role in cell proliferation and/or transformation. Thus, expression of alternatively spliced forms of PKR may represent a novel mechanism of PKR autoregulation with important implications in the control of cell proliferation.
Collapse
Affiliation(s)
- S Li
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | | |
Collapse
|
85
|
Tian B, Mathews MB. Functional characterization of and cooperation between the double-stranded RNA-binding motifs of the protein kinase PKR. J Biol Chem 2001; 276:9936-44. [PMID: 11134010 DOI: 10.1074/jbc.m007328200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interferon-inducible double-stranded RNA (dsRNA)-activated protein kinase PKR is regulated by dsRNAs that interact with the two dsRNA-binding motifs (dsRBMs) in its N terminus. The dsRBM is a conserved protein motif found in many proteins from most organisms. In this study, we investigated the biochemical functions and cytological activities of the two PKR dsRBMs (dsRBM1 and dsRBM2) and the cooperation between them. We found that dsRBM1 has a higher affinity for binding to dsRNA than dsRBM2. In addition, dsRBM1 has RNA-annealing activity that is not displayed by dsRBM2. Both dsRBMs have an intrinsic ability to dimerize (dsRBM2) or multimerize (dsRBM1). Binding to dsRNA inhibits oligomerization of dsRBM1 but not dsRBM2 and strongly inhibits the dimerization of the intact PKR N terminus (p20) containing both dsRBMs. dsRBM1, like p20, activates reporter gene expression in transfection assays, and it plays a determinative role in localizing PKR to the nucleolus and cytoplasm of the cell. Thus, dsRBM2 has weak or no activity in dsRNA binding, stimulation of gene expression, and PKR localization, but it strongly enhances these functions of dsRBM1 when contained in p20. However, dsRBM2 does not enhance the annealing activity of dsRBM1. This study shows that the dsRBMs of PKR possess distinct properties and that some, but not all, of the functions of the enzyme depend on cooperation between the two motifs.
Collapse
Affiliation(s)
- B Tian
- Department of Biochemistry and Molecular Biology and Graduate School of Biomedical Sciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | |
Collapse
|
86
|
Vattem KM, Staschke KA, Zhu S, Wek RC. Inhibitory sequences in the N-terminus of the double-stranded-RNA-dependent protein kinase, PKR, are important for regulating phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha). EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1143-53. [PMID: 11179981 DOI: 10.1046/j.1432-1327.2001.01979.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During viral infection, phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) by the interferon-induced RNA-dependent protein kinase, PKR, leads to inhibition of translation initiation and viral proliferation. Activation of PKR is mediated by association of virally encoded double-stranded RNAs (dsRNAs) with two dsRNA binding domains (dsRBDs) located in the N-terminus of PKR. To better understand the molecular mechanisms regulating PKR, we characterized the activities of wild-type and mutant versions of human PKR expressed and purified from yeast. The catalytic rate of eIF2alpha phosphorylation by our purified PKR was increased in response to dsRNA, but not single-stranded RNA or DNA, consistent with the properties previously described for PKR purified from mammalian sources. While both dsRBD1 and dsRBD2 were required for activation of PKR by dsRNA, only deletion of dsRBD1 severely reduced the basal eIF2alpha kinase activity. Removal of as few as 25 residues at the C-terminal junction of dsRBD2 dramatically increased eIF2alpha kinase activity and characterization of larger deletions that included dsRBD1 demonstrated that removal of these negative-acting sequences could bypass the dsRBD1 requirement for in vitro phosphorylation of eIF2alpha. Heparin, a known in vitro activator of PKR, enhanced eIF2alpha phosphorylation by PKR mutants lacking their entire N-terminal sequences, including the dsRBDs. The results indicate that induction of PKR activity is mediated by multiple mechanisms, one of which involves release of inhibition by negative-acting sequences in PKR.
Collapse
Affiliation(s)
- K M Vattem
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
87
|
Duarte M, Graham K, Daher A, Battisti PL, Bannwarth S, Segeral E, Jeang KT, Gatignol A. Characterization of TRBP1 and TRBP2. J Biomed Sci 2000. [DOI: 10.1007/bf02253365] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
88
|
Kawagishi-Kobayashi M, Cao C, Lu J, Ozato K, Dever TE. Pseudosubstrate inhibition of protein kinase PKR by swine pox virus C8L gene product. Virology 2000; 276:424-34. [PMID: 11040133 DOI: 10.1006/viro.2000.0561] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interferon-induced protein kinase PKR is activated upon binding double-stranded RNA and phosphorylates the translation initiation factor eIF2alpha on Ser-51 to inhibit protein synthesis in virally infected cells. Swinepox virus C8L and vaccinia virus K3L gene products structurally resemble the amino-terminal third of eIF2alpha. We demonstrate that the C8L protein, like the K3L protein, can reverse the toxic effects caused by high level expression of human PKR in yeast cells. In addition, expression of either the K3L or C8L gene product was found to reverse the inhibition of reporter gene translation caused by PKR expression in mammalian cells. The inhibitory function of the K3L and C8L gene products in these assays was found to be critically dependent on residues near the carboxyl-termini of the proteins including a sequence motif shared among eIF2alpha and the C8L and K3L gene products. Thus, despite significant sequence differences both the C8L and K3L proteins function as pseudosubstrate inhibitors of PKR.
Collapse
Affiliation(s)
- M Kawagishi-Kobayashi
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland, 20892-2716, USA
| | | | | | | | | |
Collapse
|
89
|
Duchaîne T, Wang HJ, Luo M, Steinberg SV, Nabi IR, DesGroseillers L. A novel murine Staufen isoform modulates the RNA content of Staufen complexes. Mol Cell Biol 2000; 20:5592-601. [PMID: 10891497 PMCID: PMC86020 DOI: 10.1128/mcb.20.15.5592-5601.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse Staufen (mStau) is a double-stranded RNA-binding protein associated with polysomes and the rough endoplasmic reticulum (RER). We describe a novel endogenous isoform of mStau (termed mStau(i)) which has an insertion of six amino acids within dsRBD3, the major double-stranded RNA (dsRNA)-binding domain. With a structural change of the RNA-binding domain, this conserved and widely distributed isoform showed strongly impaired dsRNA-binding ability. In transfected cells, mStau(i) exhibited the same tubulovesicular distribution (RER) as mStau when weakly expressed; however, when overexpressed, mStau(i) was found in large cytoplasmic granules. Markers of the RER colocalized with mStau(i)-containing granules, showing that overexpressed mStau(i) could still be associated with the RER. Cotransfection of mStau(i) with mStau relocalized overexpressed mStau(i) to the reticular RER, suggesting that they can form a complex on the RER and that a balance between these isoforms is important to achieve proper localization. Coimmunoprecipitation demonstrated that the two mStau isoforms are components of the same complex in vivo. Analysis of the immunoprecipitates showed that mStau is a component of an RNA-protein complex and that the association with mStau(i) drastically reduces the RNA content of the complex. We propose that this new isoform, by forming a multiple-isoform complex, regulates the amount of RNA in mStau complexes in mammalian cells.
Collapse
Affiliation(s)
- T Duchaîne
- Departments of Biochemistry, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | |
Collapse
|
90
|
Vuyisich M, Beal PA. Regulation of the RNA-dependent protein kinase by triple helix formation. Nucleic Acids Res 2000; 28:2369-74. [PMID: 10871369 PMCID: PMC102732 DOI: 10.1093/nar/28.12.2369] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2000] [Accepted: 04/21/2000] [Indexed: 11/14/2022] Open
Abstract
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phos-phorylates the alpha-subunit of the translation initiation factor eIF-2, inhibiting its function. PKR is activated in vitro by binding to double-stranded RNA (dsRNA) molecules of approximately 30 bp or longer. Here we show that triple helix forming oligonucleotides (TFOs) inhibit dsRNA binding to the isolated RNA binding domain of PKR. The inhibition is specific to the targeted RNA and dependent on TFO length. Binding to a 30 bp duplex is inhibited by a 28 nt TFO and a 20 nt TFO with an IC(50) of 35 +/- 2 and 210 +/- 22 nM, respectively. An 18 nt TFO partially inhibits binding. The activation of the kinase domain of PKR by a 30 bp RNA duplex is also inhibited by a 28 nt TFO. Inhibition of binding is most effective when the triple helix is formed prior to addition of the protein. These results indicate that triplex formation can be used to prevent the binding of an RNA binding protein with dsRNA-binding motifs.
Collapse
Affiliation(s)
- M Vuyisich
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
91
|
Abstract
As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell.
Collapse
Affiliation(s)
- M Gale
- University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | |
Collapse
|
92
|
Mouland AJ, Mercier J, Luo M, Bernier L, DesGroseillers L, Cohen EA. The double-stranded RNA-binding protein Staufen is incorporated in human immunodeficiency virus type 1: evidence for a role in genomic RNA encapsidation. J Virol 2000; 74:5441-51. [PMID: 10823848 PMCID: PMC112028 DOI: 10.1128/jvi.74.12.5441-5451.2000] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human Staufen (hStau), a double-stranded RNA (dsRNA)-binding protein that is involved in mRNA transport, is incorporated in human immunodeficiency virus type 1 (HIV-1) and in other retroviruses, including HIV-2 and Moloney murine leukemia virus. Sucrose and Optiprep gradient analyses reveal cosedimentation of hStau with purified HIV-1, while subtilisin assays demonstrate that it is internalized. hStau incorporation in HIV-1 is selective, is dependent on an intact functional dsRNA-binding domain, and quantitatively correlates with levels of encapsidated HIV-1 genomic RNA. By coimmunoprecipitation and reverse transcription-PCR analyses, we demonstrate that hStau is associated with HIV-1 genomic RNA in HIV-1-expressing cells and purified virus. Overexpression of hStau enhances virion incorporation levels, and a corresponding, threefold increase in HIV-1 genomic RNA encapsidation levels. This coordinated increase in hStau and genomic RNA packaging had a significant negative effect on viral infectivity. This study is the first to describe hStau within HIV-1 particles and provides evidence that hStau binds HIV-1 genomic RNA, indicating that it may be implicated in retroviral genome selection and packaging into assembling virions.
Collapse
MESH Headings
- Binding Sites
- Cell Line
- Centrifugation, Density Gradient
- Cloning, Molecular
- Drosophila Proteins
- Gene Expression
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Genome, Viral
- HIV-1/chemistry
- HIV-1/genetics
- HIV-1/metabolism
- HIV-1/pathogenicity
- HIV-2/chemistry
- HIV-2/metabolism
- Humans
- Moloney murine leukemia virus/chemistry
- Moloney murine leukemia virus/metabolism
- Mutation/genetics
- Precipitin Tests
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Viral/analysis
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/analysis
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Substrate Specificity
- Subtilisin/metabolism
- Transfection
- Virus Assembly
Collapse
Affiliation(s)
- A J Mouland
- Departments of Microbiology & Immunology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
Highly structured and double-stranded (ds) RNAs are adaptable and potent biochemical entities. They interact with dsRNA-binding proteins (RBPs), the great majority of which contain a sequence called the dsRNA-binding motif (dsRBM). This approximately 70-amino-acid sequence motif forms a tertiary structure that interacts with dsRNA, with partially duplexed RNA and, in some cases, with RNA-DNA hybrids, generally without obvious RNA sequence specificity. At least nine families of functionally diverse proteins contain one or more dsRBMs. The motif also participates in complex formation through protein-protein interactions.
Collapse
Affiliation(s)
- I Fierro-Monti
- Dept of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, 185 South Orange Ave., Newark, NJ 07103-2714, USA
| | | |
Collapse
|
94
|
Daviet L, Erard M, Dorin D, Duarte M, Vaquero C, Gatignol A. Analysis of a binding difference between the two dsRNA-binding domains in TRBP reveals the modular function of a KR-helix motif. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2419-31. [PMID: 10759868 DOI: 10.1046/j.1432-1327.2000.01256.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Double-stranded RNA-binding proteins constitute a large family with conserved domains called dsRBDs. One of these, TRBP, a protein that binds HIV-1 TAR RNA, has two dsRBDs (dsRBD1 and dsRBD2), as indicated by computer sequence homology. However, a 24-amino-acid deletion in dsRBD2 completely abolishes RNA binding, suggesting that only one domain is functional. To analyse further the similarities and differences between these domains, we expressed them independently and measured their RNA-binding affinities. We found that dsRBD2 has a dissociation constant of 5.9 x 10-8 M, whereas dsRBD1 binds RNA minimally. Binding analysis of 25-amino-acid peptides in TRBP and other related proteins showed that only one peptide in TRBP and one in Drosophila Staufen bind TAR and a GC-rich TAR-mimic RNA. Whereas a 25-mer peptide derived from dsRBD2 (TR5) bound TAR RNA, the equivalent peptide in dsRBD1 (TR6) did not. Molecular modelling indicates that this difference can mainly be ascribed to the replacement of Arg by His residues. Mutational analyses in homologous peptides also show the importance of residues K2 and L3. Analysis of 15-amino-acid peptides revealed that, in addition to TR13 (from TRBP dsRBD2), one peptide in S6 kinase has RNA-binding properties. On the basis of previous and the present results, we can define, in a broader context than that of TRBP, the main outlines of a modular KR-helix motif required for binding TAR. This structural motif exists independently from the dsRBD context and therefore has a modular function.
Collapse
Affiliation(s)
- L Daviet
- U332 INSERM, U529 INSERM, Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | | | | | |
Collapse
|
95
|
Coolidge CJ, Patton JG. A new double-stranded RNA-binding protein that interacts with PKR. Nucleic Acids Res 2000; 28:1407-17. [PMID: 10684936 PMCID: PMC111047 DOI: 10.1093/nar/28.6.1407] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1999] [Revised: 01/26/2000] [Accepted: 01/26/2000] [Indexed: 11/13/2022] Open
Abstract
We have identified a 74 kDa double-stranded (ds)RNA-binding protein that shares extensive homology with the mouse spermatid perinuclear RNA-binding (Spnr) protein. p74 contains two dsRNA-binding motifs (dsRBMs) that are essential for preferential binding to dsRNA. Previously, dsRNA-binding proteins were shown to undergo homo- and heterodimerization, raising the possibility that regulation of activity could be controlled by interactions between different family members. Homodimerization is required to activate the dsRNA-dependent protein kinase PKR, whereas hetero-dimerization between PKR and other dsRNA-binding proteins can inhibit kinase activity. We have found that p74 also interacts with PKR, both the wild-type enzyme and a catalytically defective mutant (K296R). While co-expression of p74 and wild-type PKR in the yeast Saccharomyces cerevisiae did not alter PKR activity, co-expression of p74 and the catalytically defective K296R mutant surprisingly resulted in abnormal morphology and cell death in transformants that maintained a high level of p74 expression. These transformants could be rescued by overexpression of the alpha-subunit of wild-type eukaryotic translation initiation factor 2 (eIF2alpha), one of the known substrates for PKR. We hypothesize that competing heterodimers between p74-K296R PKR and eIF2alpha-K296R PKR may control cell growth such that stabilization of the p74-K296R PKR heterodimer induces abnormal morphology and cell death.
Collapse
Affiliation(s)
- C J Coolidge
- Department of Molecular Biology, Box 1820, Station B, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
96
|
Li S, Nagai K, Koromilas AE. A diminished activation capacity of the interferon-inducible protein kinase PKR in human T lymphocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1598-606. [PMID: 10712589 DOI: 10.1046/j.1432-1327.2000.01134.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The double-stranded (ds) RNA activated protein kinase PKR is an interferon (IFN)-inducible serine/threonine protein that regulates protein synthesis through the phosphorylation of the alpha subunit of translation initiation factor 2 (eIF-2alpha). PKR activation in cells is induced by virus infection or treatment with dsRNA and is modulated by a number of viral and cellular factors. To better understand the mechanisms of PKR action we have analyzed and compared the mode of PKR activation in a number of cell lines of different histological origin. Here we show that PKR activation and phosphorylation of eIF-2alpha are both diminished in various virus-transformed and nontransformed human T cells. Priming of T cells with IFN does not restore PKR activation. In vitro kinase assays show that the diminished PKR activation in T cells correlates with the presence of a 60-kDa (p60) phosphoprotein coimmunoprecipitated with PKR. P60 is absent from PKR immunoprecipitates from non T cells. Incubation of active PKR with T cell extracts results in inhibition of PKR autophosphorylation, which is proportional to the amount of phosphorylated p60 in the kinase reactions. Treatment of T cells with proteasome inhibitors or incubation of PKR immunoprecipitates with phosphatase inhibitors does not restore PKR activation. However, phosphorylation of p60 is enhanced upon treatment with the phosphatase inhibitor microcystin. These data show that the impaired activation capacity of PKR in human T cells is exerted at the post-translational levels in a manner that is independent of cell transformation or virus infection.
Collapse
Affiliation(s)
- S Li
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada
| | | | | |
Collapse
|
97
|
Rafie-Kolpin M, Chefalo PJ, Hussain Z, Hahn J, Uma S, Matts RL, Chen JJ. Two heme-binding domains of heme-regulated eukaryotic initiation factor-2alpha kinase. N terminus and kinase insertion. J Biol Chem 2000; 275:5171-8. [PMID: 10671563 DOI: 10.1074/jbc.275.7.5171] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In heme deficiency, protein synthesis in reticulocytes is inhibited by activation of heme-regulated alpha-subunit of eukaryotic initiation factor-2alpha (eIF-2alpha) kinase (HRI). Previous studies indicate that HRI contains two distinct heme-binding sites per HRI monomer. To study the role of the N terminus in the heme regulation of HRI, two N-terminally truncated mutants, Met2 and Met3 (deletion of the first 103 and 130 amino acids, respectively), were prepared. Met2 and Met3 underwent autophosphorylation and phosphorylated eIF-2alpha with a specific activity of approximately 50% of that of the wild type HRI. These mutants were significantly less sensitive to heme regulation both in vivo and in vitro. In addition, the heme contents of purified Met2 and Met3 HRI were less than 5% of that of the wild type HRI. These results indicated that the N terminus was important but was not the only domain involved in the heme-binding and heme regulation of HRI. Heme binding of the individual HRI domains showed that both N terminus and kinase insertion were able to bind hemin, whereas the C terminus and the catalytic domains were not. Thus, both the N terminus and the kinase insertion, which are unique to HRI, are involved in the heme binding and the heme regulation of HRI.
Collapse
Affiliation(s)
- M Rafie-Kolpin
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Korth MJ, Katze MG. Evading the interferon response: hepatitis C virus and the interferon-induced protein kinase, PKR. Curr Top Microbiol Immunol 1999; 242:197-224. [PMID: 10592662 DOI: 10.1007/978-3-642-59605-6_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M J Korth
- Regional Primate Research Center, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
99
|
Abstract
The double stranded RNA (dsRNA)-activated protein kinase PKR is a ubiquitously expressed serine/threonine protein kinase that is induced by interferon and activated by dsRNA, cytokine, growth factor and stress signals. It is essential for cells to respond adequately to different stresses including growth factor deprivation, products of the inflammatory response (TNF) and bacterial (lipopolysaccharide) and viral (dsRNA) products. As a vital component of the cellular antiviral response pathway, PKR is autophosphorylated and activated on binding to dsRNA. This results in inhibition of protein synthesis via the phosphorylation of eIF2alpha and also induces transcription of inflammatory genes by PKR-dependent signaling of the activation of different transcription factors. Along with RNaseL, PKR constitutes the antiviral arm of a group of mammalian stress response proteins that have counterparts in yeast. What began as adaptation to amino acid deprivation and sensing unfolded proteins in the endoplasmic reticulum has evolved into a family of sophisticated mammalian stress response proteins able to mediate cellular responses to both physical and biological stress.
Collapse
Affiliation(s)
- B R Williams
- Department of Cancer Biology NB40, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio, OH 44195, USA
| |
Collapse
|
100
|
Isono K, Yamamoto H, Satoh K, Kobayashi H. An Arabidopsis cDNA encoding a DNA-binding protein that is highly similar to the DEAH family of RNA/DNA helicase genes. Nucleic Acids Res 1999; 27:3728-35. [PMID: 10471743 PMCID: PMC148629 DOI: 10.1093/nar/27.18.3728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A cDNA encoding a putative RNA and/or DNA helicase has been isolated from Arabidopsis thaliana cDNA libraries. The cloned cDNA is 5166 bases long, and its largest open reading frame encodes 1538 amino acids. The central region of the predicted protein is homologous to a group of nucleic acid helicases from the DEAD/H family. However, the N- and C-terminal regions of the Arabidopsis cDNA product are distinct from these animal DEIH proteins. We have found that the C-terminal region contains three characteristic sequences: (i) two DNA-binding segments that form a probe helix (PH) involved in DNA recognition; (ii) an SV40-type nuclear localization signal; and (iii) 11 novel tandem-repeat sequences each consisting of about 28 amino acids. We have designated this cDNA as NIH (nuclear DEIH-boxhelicase). Functional character-ization of a recombinant fusion product containing the repeated region indicates that NIH may form homodimers, and that this is the active form in solution. Based on this information and the observation that the sequence homology is limited to the DEAH regions, we conclude that the biological roles of the plant helicase NIH differ from those of the animal DEIH family.
Collapse
Affiliation(s)
- K Isono
- Laboratory of Plant Cell Technology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|