51
|
Ficzycz A, Eskiw C, Meyer D, Marley KE, Hurt M, Ovsenek N. Expression, activity, and subcellular localization of the Yin Yang 1 transcription factor in Xenopus oocytes and embryos. J Biol Chem 2001; 276:22819-25. [PMID: 11294833 DOI: 10.1074/jbc.m011188200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that acts as an activator, repressor, or initiator of transcription of numerous cellular and viral genes. Previous studies in tissue culture model systems suggest YY1 plays a role in development and differentiation in multiple cell types, but the biological role of YY1 in vertebrate oocytes and embryos is not well understood. Here we analyzed expression, activity, and subcellular localization profiles of YY1 during Xenopus laevis development. Abundant levels of YY1 mRNA and protein were detected in early stage oocytes and in all subsequent stages of oocyte and embryonic development through to swimming larval stages. The DNA binding activity of YY1 was detected only in early oocytes (stages I and II) and in embryos after the midblastula transition (MBT), which suggested that its potential to modulate gene expression may be specifically repressed in the intervening period of development. Experiments to determine transcriptional activity showed that addition of YY1 recognition sites upstream of the thymidine kinase promoter had no stimulatory or repressive effect on basal transcription in oocytes and post-MBT embryos. Although the apparent transcriptional inactivity of YY1 in oocytes could be explained by the absence of DNA binding activity at this stage of development, the lack of transcriptional activity in post-MBT embryos was not expected given the ability of YY1 to bind its recognition elements. Subsequent Western blot and immunocytochemical analyses showed that YY1 is localized in the cytoplasm in oocytes and in cells of developing embryos well past the MBT. These findings suggest a novel mode of YY1 regulation during early development in which the potential transcriptional function of the maternally expressed factor is repressed by cytoplasmic localization.
Collapse
Affiliation(s)
- A Ficzycz
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | |
Collapse
|
52
|
Liu JL, Kung HJ. Marek's disease herpesvirus transforming protein MEQ: a c-Jun analogue with an alternative life style. Virus Genes 2001; 21:51-64. [PMID: 11022789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In order to adapt to and to cope with an often hostile host environment, many viruses have evolved to encode products that are homologous to cellular proteins. These proteins exploit the existing host machinery and allow viruses to readily integrate into the host functional network. As a result, viruses are able to maneuver their journey seemingly effortlessly inside the host cell to achieve ultimate survival. Such molecular mimicries sometime go overboard, allowing viruses to overtake the cellular pathways or evade the immune system as do many of the retroviral oncogenes. Retroviral oncogenes are derived directly from host genes, and they are virtually identical to host genes in sequences except those mutations that make them unregulatable by host. Oncogenic herpesviruses also encode oncogenes, or transforming genes, which have independently evolved and are distantly related to host genes. However, these genes do share consensus structural motifs with cellular genes involved in cell growth and apoptosis and are functional analogues to host genes. The Marek's disease virus oncoprotein, MEQ, is one such example. MEQ is a basic region-leucine zipper (bZIP) transactivator which shares extensive homology with the Jun/Fos family of transcription factors within the bZIP domain, but not in other regions. Like all other bZIP proteins, MEQ is capable of dimerizing with itself and with a variety of bZIP partners including c-Jun, B-Jun, c-Fos, CREB, ATF-1, ATF-2, and SNF. MEQ-Jun heterodimers bind to a TRE/CRE-like sequence in the meq promoter region and have been shown to up-regulate MEQ expression in both chicken embryo fibroblasts and F9 cells. In addition, the bZIP and transactivation domains are interchangeable between MEQ and c-Jun in terms of transforming potential; i.e. MEQ can functionally substitute for c-Jun. These properties enable MEQ to engage in host cell processes by disguising itself as c-Jun. On the other hand, there are properties of MEQ notably different from c-Jun, which include its capability to bind RNA, to bind a CACAC-bent DNA structure as a homodimer, to inhibit apoptosis, and to interact with CDK2. MEQ's subcellular localization in the nucleolus and coiled body, is also different from Jun/Fos family of transactivators. These unique features may provide the MEQ with additional facility in regulating MDV replication, establishing latency, and cellular transformation. In this review, we will attempt to summarize the past research progress on MDV meq, with a focused on the similarities and differences between MEQ and cellular proteins, and between MEQ and other viral oncoproteins.
Collapse
Affiliation(s)
- J L Liu
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
53
|
Berndt JA, Kim JG, Tosic M, Kim C, Hudson LD. The transcriptional regulator Yin Yang 1 activates the myelin PLP gene. J Neurochem 2001; 77:935-42. [PMID: 11331422 DOI: 10.1046/j.1471-4159.2001.00307.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inauguration of the myelin program in developing oligodendrocytes requires the activation of those genes that encode the myelin proteins and the enzymes responsible for the synthesis and degradation of myelin lipids. An activator of the most abundantly expressed myelin protein, proteolipid protein (PLP), has been identified in a yeast one-hybrid system. The ubiquitously expressed zinc finger protein Yin Yang 1 (YY1) recognizes the myelin PLP promoter in vitro and in vivo. When overexpressed in an oligodendrocyte cell line, YY1 enhances transcription of the PLP promoter. A truncated version of YY1 that includes only the four zinc finger domains has little effect. The binding site for YY1 in the PLP promoter (site 3) fits the YY1 consensus site and DNA-protein complexes containing site 3 can be supershifted with an antibody directed against YY1 protein. Moreover, oligonucleotides with a mutated version of the PLP promoter site 3 are unable to bind to nuclear proteins or to compete for binding in a gel shift system. Finally, mutation of this site greatly reduces the activity of a 1-kb PLP promoter region in transfected glial cells. Our results suggest that PLP is a target gene for the transcriptional regulator YY1. This versatile transcription factor and nuclear matrix protein may boost transcription of the PLP gene to meet the demands of actively myelinating oligodendrocytes.
Collapse
Affiliation(s)
- J A Berndt
- Laboratory of Developmental Neurogenetics, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
54
|
Pizzorno MC. Nuclear cathepsin B-like protease cleaves transcription factor YY1 in differentiated cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1536:31-42. [PMID: 11335102 DOI: 10.1016/s0925-4439(01)00032-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Differentiation of pluripotent cells into differentiated cell types involves changes in many aspects of cellular biochemistry. Many of these changes result in alterations of gene expression, which may occur by changing the activity of transcription factors. The cell line NTERA-2 (NT2) can be differentiated into various cell types by incubation with retinoic acid. The differentiated cell type is also permissive for infection with the human herpesvirus cytomegalovirus (CMV). The transcription factor YY1 has been shown to regulate the immediate-early promoter of CMV in a differentiation specific manner by binding to one site at -958 to -950 and to at least two sites in the enhancer. It is demonstrated here that there is a second YY1 site in the modulator between -995 and -987. Levels of YY1 DNA binding activity and protein decrease in NT2 cells as they are differentiated with retinoic acid. This decrease in protein is due to the degradation of YY1 by a cathepsin B-like activity found in nuclear extracts. The cleavage products of YY1 include the intact C-terminal half of the protein, which contains the zinc fingers and the DNA binding activity. This suggests a mechanism that allows expression of the CMV immediate-early promoter in differentiated cells.
Collapse
Affiliation(s)
- M C Pizzorno
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA.
| |
Collapse
|
55
|
Wu F, Lee AS. YY1 as a regulator of replication-dependent hamster histone H3.2 promoter and an interactive partner of AP-2. J Biol Chem 2001; 276:28-34. [PMID: 11018030 DOI: 10.1074/jbc.m006074200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In analyzing cis-regulatory elements important for cell cycle control of the replication-dependent hamster histone H3.2 gene, we discovered a binding site for the transcription factor YY1 embedded within GC-rich sequences between the two tandem CCAAT repeats proximal to the TATA element. Base mutations that specifically eliminated YY1 binding resulted in suppression of the S phase induction of the H3.2 promoter. In addition, we discovered that YY1 is an interactive partner of AP-2, which also binds the H3.2 promoter and regulates its cell cycle-dependent expression. The critical domains for YY1 and AP-2A interaction are mapped, revealing that the N-terminal portion of YY1 (amino acids 1-300) and the DNA-binding/dimerization region of AP-2A are required. Our results suggest that YY1, acting as a transcription factor binding to its site on the promoter, or through protein-protein interaction with AP-2, may be part of a regulatory network including key cell cycle regulators such as c-Myc and Rb in controlling growth- and differentiation-regulated gene expression.
Collapse
Affiliation(s)
- F Wu
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9176, USA
| | | |
Collapse
|
56
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, Montecino M, Zaidi K, Javed A. Subnuclear organization and trafficking of regulatory proteins: Implications for biological control and cancer. J Cell Biochem 2001. [DOI: 10.1002/1097-4644(2000)79:35+<84::aid-jcb1130>3.0.co;2-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
57
|
Thébault S, Basbous J, Gay B, Devaux C, Mesnard JM. Sequence requirement for the nucleolar localization of human I-mfa domain-containing protein (HIC p40). Eur J Cell Biol 2000; 79:834-8. [PMID: 11139147 DOI: 10.1078/0171-9335-00111] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human I-mfa domain-containing protein (HIC) mRNA produces two protein isoforms, HIC p32 and p40, synthesized from alternative translational initiations. p32 translation is initiated from a standard AUG codon and p40 is an N-terminal extension of p32 generated from an upstream GUG codon. The two isoforms show different subcellular localization: p32 is distributed throughout the cytoplasm whereas p40 can be found both in the cytoplasm and the nucleolus. To investigate the possibility that p40 contains a nucleolus targeting sequence in its N-terminal region, COS cells were transfected with an eukaryotic expression vector coding for green fluorescent protein (GFP) fused to the p40 N terminus. The localization of this fusion protein in the nucleolus indicated that the N-terminal amino acids of p40 probably contain a nucleolar localization signal (NoLS). To find the structural motifs required for nucleolar localization of p40, deletion mutants were expressed in COS cells as fusion polypeptides with GFP. We defined a domain of 19 amino acids near the N terminus that contains an arginine-rich subdomain that conforms to other known NoLS. To demonstrate that this sequence is an authentic NoLS, the sequence was fused to GFP. This fusion protein was observed to migrate into the nucleolus. Taken together, our studies demonstrate that p40 contains a NoLS.
Collapse
Affiliation(s)
- S Thébault
- Institut de Biologie, Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS EP 2104, Montpellier, France
| | | | | | | | | |
Collapse
|
58
|
Staal A, Enserink JM, Stein JL, Stein GS, van Wijnen AJ. Molecular characterization of celtix-1, a bromodomain protein interacting with the transcription factor interferon regulatory factor 2. J Cell Physiol 2000; 185:269-79. [PMID: 11025449 DOI: 10.1002/1097-4652(200011)185:2<269::aid-jcp12>3.0.co;2-l] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transcriptional control at the G1/S-phase transition of the cell cycle requires functional interactions of multimeric promoter regulatory complexes that contain DNA binding proteins, transcriptional cofactors, and/or chromatin modifying enzymes. Transcriptional regulation of the human histone H4/n gene (FO108) is mediated by Interferon Regulatory Factor-2 (IRF-2), as well as other histone gene promoter factors. To identify proteins that interact with cell-cycle regulatory factors, we performed yeast two-hybrid analysis with IRF-2 and identified a novel human protein termed Celtix-1 which binds to IRF-2. Celtix-1 contains several phylogenetically conserved domains, including a bromodomain, which is found in a number of transcriptional cofactors. Using a panel of IRF-2 deletion mutants in yeast two-hybrid assays, we established that Celtix-1 contacts the C-terminus of IRF-2. Celtix-1 directly interacts with IRF-2 based on binding studies with glutathione S-transferase (GST)/IRF-2 fusion proteins, and immunofluorescence studies suggest that Celtix-1 and IRF-2 associate in situ. Celtix-1 is distributed throughout the nucleus in a heterodisperse pattern. A subset of Celtix-1 colocalizes with the hyperacetylated forms of histones H3 and H4, as well as with the hyperphosphorylated, transcriptionally active form of RNA polymerase II. We conclude that the bromodomain protein Celtix-1 is a novel IRF-2 interacting protein that associates with transcriptionally active chromatin in situ.
Collapse
Affiliation(s)
- A Staal
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | |
Collapse
|
59
|
Sienna N, Larson DE, Sells BH. Dexamethasone stimulates ribosomal protein L32 gene transcription in rat myoblasts. Mol Cell Endocrinol 2000; 167:127-37. [PMID: 11000527 DOI: 10.1016/s0303-7207(00)00282-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Incubation of rat L6 myoblasts for 24 h with 10(-7) M dexamethasone, a glucocorticoid analogue, resulted in a 2.5-fold increase in the rate of ribosomal protein L32 (rpL32) gene transcription with a corresponding increase in the level of rpL32 mRNA. The increased rate of transcription was accompanied by a dramatic enhancement in binding of the delta, but not beta and gamma, factors to the rpL32 gene promoter as measured by gel mobility shift assays. This increased binding reflects a change in the activity of the delta factor since its level is unchanged by dexamethasone treatment. The presence of the glucocorticoid analogue RU38486 reversed the stimulating effect of dexamethasone on rpL32 gene transcription and binding of the delta factor to the delta element. These results suggest that the mechanism which enhances rpL32 gene transcription in dexamethasone-treated rat L6 myoblasts involves glucocorticoid-receptor mediated changes in the activity of the delta factor.
Collapse
Affiliation(s)
- N Sienna
- Department of Molecular Biology and Genetics, University of Guelph, Ont. N1G 2W1, Guelph, Canada
| | | | | |
Collapse
|
60
|
Hoffmann H, Green J, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Expression screening of factors binding to the osteocalcin bone-specific promoter element OC box I: isolation of a novel osteoblast differentiation-specific factor. J Cell Biochem 2000; 80:156-68. [PMID: 11029763 DOI: 10.1002/1097-4644(20010101)80:1<156::aid-jcb150>3.0.co;2-f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Contributing to bone-specific expression of the osteocalcin gene is the promoter element OC Box I (-99 to -76), which binds both Hox proteins and another nonhomeodomain factor (designated OCBP for osteocalcin-box binding protein) (Hoffmann et al. [1996] J Cell Biochem 61:310-324). OCBP correlates with increased promoter activity and may, therefore, be important to development or maintenance of the osteoblast phenotype. To identify OCBP candidates, we used a multimerized OC Box I sequence to screen a gammagt11 cDNA expression library, constructed from the rat osteosarcoma osteoblastic ROS 17/2.8 cell line, for cDNA clones encoding factors that recognize this element. Mutant OC Box I sequences that do not bind OCBP and/or homeodomain proteins were used to counterscreen the cDNA isolates. Clones showing binding specificity were sequenced and further characterized for patterns of expression in different tissues and cell lines. Among the characterized nonhomeodomain-related isolates, we identified a nucleolin, a clone encoding rCAP2 that is related to myogenic differentiation and more importantly, a cDNA clone containing a previously uncharacterized gene that has been designated as a cell differentiation-related factor (DRF). DRF mRNA is highly expressed in ROS 17/2.8 cells and in a developmentally regulated pattern during osteoblast differentiation, being upregulated at the postproliferative maturation transition and coinciding with the induction of osteocalcin gene expression. The 7.7-kb transcript encoded by clone 44 is abundantly expressed in osteoblasts, but the mRNA was not present at detectable levels in bone and soft tissues by Northern blot analysis. However, related expressed sequence tags were recently reported in cDNA libraries of rat lung and mouse sympathetic ganglion. The identification of DRF represents a novel osteoblast differentiation-specific marker related to osteocalcin expression. The identification of DRF may further facilitate definition of gene regulatory mechanisms mediating the final stages of bone cell differentiation
Collapse
Affiliation(s)
- H Hoffmann
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
61
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, Montecino M, Choi J, Zaidi K, Javed A. Intranuclear trafficking of transcription factors: implications for biological control. J Cell Sci 2000; 113 ( Pt 14):2527-33. [PMID: 10862710 DOI: 10.1242/jcs.113.14.2527] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The subnuclear organization of nucleic acids and cognate regulatory factors suggests that there are functional interrelationships between nuclear structure and gene expression. Nuclear proteins that are localized in discrete domains within the nucleus include the leukemia-associated acute myelogenous leukemia (AML) and promyelocytic leukemia (PML) factors, the SC-35 RNA-processing factors, nucleolar proteins and components of both transcriptional and DNA replication complexes. Mechanisms that control the spatial distribution of transcription factors within the three-dimensional context of the nucleus may involve the sorting of regulatory information, as well as contribute to the assembly and activity of sites that support gene expression. Molecular, cellular, genetic and biochemical approaches have identified distinct protein segments, termed intranuclear-targeting signals, that are responsible for directing regulatory factors to specific subnuclear sites. Gene rearrangements that remove or alter intranuclear-targeting signals are prevalent in leukemias and have been linked to altered localization of regulatory factors within the nucleus. These modifications in the intranuclear targeting of transcription factors might abrogate fidelity of gene expression in tumor cells by influencing the spatial organization and/or assembly of machineries involved in the synthesis and processing of gene transcripts.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
A key event in the regulation of eukaryotic gene expression is the posttranslational modification of nucleosomal histones, which converts regions of chromosomes into transcriptionally active or inactive chromatin. The most well studied posttranslational modification of histones is the acetylation of epsilon-amino groups on conserved lysine residues in the histones' amino-terminal tail domains. Significant advances have been made in the past few years toward the identification of histone acetyltransferases and histone deacetylases. Currently, there are over a dozen cloned histone acetyltransferases and at least eight cloned human histone deacetylases. Interestingly, many histone deacetylases can function as transcriptional corepressors and, often, they are present in multi-subunit complexes. More intriguing, at least some histone deacetylases are associated with chromatin-remodeling machines. In addition, several studies have pointed to the possible involvement of histone deacetylases in human cancer. The availability of the cloned histone deacetylase genes has provided swift progress in the understanding of the mechanisms of deacetylases, their role in transcription, and their possible role in health and disease.
Collapse
Affiliation(s)
- W D Cress
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida
| | | |
Collapse
|
63
|
Javed A, Guo B, Hiebert S, Choi JY, Green J, Zhao SC, Osborne MA, Stifani S, Stein JL, Lian JB, van Wijnen AJ, Stein GS. Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. J Cell Sci 2000; 113 ( Pt 12):2221-31. [PMID: 10825294 DOI: 10.1242/jcs.113.12.2221] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Runt related transcription factors RUNX (AML/CBF(alpha)/PEBP2(alpha)) are key regulators of hematopoiesis and osteogenesis. Using co-transfection experiments with four natural promoters, including those of the osteocalcin (OC), multi drug resistance (MDR), Rous Sarcoma Virus long terminal repeat (LTR), and bone sialoprotein (BSP) genes, we show that each of these promoters responds differently to the forced expression of RUNX proteins. However, the three RUNX subtypes (i.e. AML1, AML2, and AML3) regulate each promoter in a similar manner. Although the OC promoter is activated in a C terminus dependent manner, the MDR, LTR and BSP promoters are repressed by three distinct mechanisms, either independent of or involving the AML C terminus, or requiring only the conserved C-terminal pentapeptide VWRPY. Using yeast two hybrid assays we find that the C terminus of AML1 interacts with a Groucho/TLE/R-esp repressor protein. Co-expression assays reveal that TLE proteins repress AML dependent activation of OC gene transcription. Western and northern blot analyses suggest that TLE expression is regulated reciprocally with the levels of OC gene expression during osteoblast differentiation. Digital immunofluorescence microscopy results show that TLE1 and TLE2 are both associated with the nuclear matrix, and that a significant subset of each colocalizes with AML transcription factors. This co-localization of TLE and AML proteins is lost upon removing the C terminus of AML family members. Our findings indicate that suppression of AML-dependent gene activation by TLE proteins involves functional interactions with the C terminus of AML at the nuclear matrix in situ. Our data are consistent with the concept that the C termini of AML proteins support activation or repression of cell-type specific genes depending on the regulatory organization of the target promoter and subnuclear localization.
Collapse
Affiliation(s)
- A Javed
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Lentiviruses are associated with chronic diseases of the hematological and neurological systems in animals and man. In particular, human immunodeficiency virus type 1 (HIV-1) is the etiological agent of the global AIDS epidemic. The genomes of lentiviruses are complex, encoding a number of regulatory and accessory proteins not found in other retroviruses. This complexity is reflected in their replication cycle, which reveals intricate regulatory pathways and unique mechanisms for viral persistence. In this review, we highlight some of these unique features for HIV-1, with particular focus on the transcriptional and posttranscriptional control of gene expression. Although our understanding of the biology of HIV-1 is far from complete, the knowledge gained thus far has already led to novel strategies for both virus intervention and exploiting the lentiviruses for therapeutic applications.
Collapse
Affiliation(s)
- H Tang
- Department of Medicine and Biology, University of California, San Diego 92093-0665, USA.
| | | | | |
Collapse
|
65
|
Point mutations at positions 663 and 666 associated with mental disorders alter the binding site for transcription factor YY1 in the human tryptophan dioxygenase gene intron 6. Mol Biol 2000. [DOI: 10.1007/bf02759638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
66
|
Palková Z, Spanielová H, Gottifredi V, Hollanderová D, Forstová J, Amati P. The polyomavirus major capsid protein VP1 interacts with the nuclear matrix regulatory protein YY1. FEBS Lett 2000; 467:359-64. [PMID: 10675569 DOI: 10.1016/s0014-5793(00)01170-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Polyomavirus reaches the nucleus in a still encapsidated form, and the viral genome is readily found in association with the nuclear matrix. This association is thought to be essential for viral replication. In order to identify the protein(s) involved in the virus-nuclear matrix interaction, we focused on the possible roles exerted by the multifunctional cellular nuclear matrix protein Yin Yang 1 (YY1) and by the viral major capsid protein VP1. In the present work we report on the in vivo association between YY1 and VP1. Using the yeast two-hybrid system we demonstrate that the VP1 and YY1 proteins physically interact through the D-E region of VP1 and the activation domain of YY1.
Collapse
Affiliation(s)
- Z Palková
- Instituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena 324, 00161, Rome, Italy
| | | | | | | | | | | |
Collapse
|
67
|
Romey MC, Pallares-Ruiz N, Mange A, Mettling C, Peytavi R, Demaille J, Claustres M. A naturally occurring sequence variation that creates a YY1 element is associated with increased cystic fibrosis transmembrane conductance regulator gene expression. J Biol Chem 2000; 275:3561-7. [PMID: 10652351 DOI: 10.1074/jbc.275.5.3561] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have identified previously a novel complex mutant allele in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in a patient affected with cystic fibrosis (CF). This allele contained a mutation in CFTR exon 11 known to cause CF (S549R(T>G)), associated with the first alteration described so far in the minimal CFTR promoter region (-102T>A). Studies on genotype-phenotype correlations revealed striking differences between patients carrying mutation (S549R(T>G)) alone, who had a severe disease, and patients carrying the complex allele (-102(T>A)+S549R(T>G)), who exhibited milder forms of CF. We thus postulated that the sequence change (-102T>A) may attenuate the effects of the severe (S549R(T>G)) mutation through regulation of CFTR expression. Analysis of transiently transfected cell lines with wild-type and -102A variant human CFTR-directed luciferase reporter genes demonstrates that constructs containing the -102A variant (which creates a Yin Yang 1 (YY1) core element) increases CFTR expression significantly. Electrophoretic mobility shift assays indicate that the -102 site is located in a region of multiple DNA-protein interactions and that the -102A allele recruits specifically an additional nuclear protein related to YY1. The finding that the YY1-binding allele causes a significant increase in CFTR expression in vitro may allow a better understanding of the milder phenotype observed in patients who carry a severe CF mutation within the same gene.
Collapse
Affiliation(s)
- M C Romey
- Laboratoire de Génétique Moléculaire, Centre Spitalier Universitaire, 34060 Montpellier
| | | | | | | | | | | | | |
Collapse
|
68
|
Tchénio T, Casella JF, Heidmann T. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res 2000; 28:411-5. [PMID: 10606637 PMCID: PMC102531 DOI: 10.1093/nar/28.2.411] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
LINEs are endogenous mobile genetic elements which have dispersed and accumulated in the genomes of most higher eukaryotes via germline transposition, with up to 100 000 copies for the human LINE-1 (L1H) sequences. Although severely repressed in most normal tissues, L1H is still functional, with evidence for both germline and somatic-essentially in tumors-transpositions. Yet, no transcription factor that could regulate their transcription and be responsible for their transposition has hitherto been described. Here we show that factors belonging to the family of the testis-determining factor gene SRY (the SOX family) can modulate L1H promoter activity over a 10-fold range in a transient transfection assay using a luciferase reporter gene. These effects depend on two functional SRY binding sites which can be identified within the L1H promoter via mobility shift assays. Induction of endogenous L1Hs upon ectopic expression of the SOX11 transcription factor is further demonstrated, thus strengthening the physiological relevance of these new-and highly dispersed-target sites for the otherwise unclassical transcription factors of the SRY family.
Collapse
Affiliation(s)
- T Tchénio
- Unité des Rétrovirus Endogènes et Eléments Rétroï des des Eucaryotes Supérieurs, UMR1573 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | |
Collapse
|
69
|
Feister HA, Torrungruang K, Thunyakitpisal P, Parker GE, Rhodes SJ, Bidwell JP. NP/NMP4 transcription factors have distinct osteoblast nuclear matrix subdomains. J Cell Biochem 2000. [DOI: 10.1002/1097-4644(20001201)79:3<506::aid-jcb150>3.0.co;2-a] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
70
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, Javed A, McNeil S, Pockwinse SM. Insight into regulatory factor targeting to transcriptionally active subnuclear sites. Exp Cell Res 1999; 253:110-6. [PMID: 10579916 DOI: 10.1006/excr.1999.4680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms that coordinate the spatial organization of genes and regulatory proteins within the three-dimensional context of nuclear architecture contribute to the sorting of regulatory information as well as the assembly and activity of sites within the nucleus that support gene expression. In this article we will present an overview of experimental approaches that provide insight into the trafficking of the hematopoietic and bone-specific AML/CBF family of regulatory factors to transcriptionally active subnuclear sites.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
71
|
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
72
|
Jacobsen BM, Skalnik DG. YY1 binds five cis-elements and trans-activates the myeloid cell-restricted gp91(phox) promoter. J Biol Chem 1999; 274:29984-93. [PMID: 10514482 DOI: 10.1074/jbc.274.42.29984] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Four transcriptional activating cis-elements within the gp91(phox) promoter bind a protein complex of similar mobility and binding specificity, denoted BID (binding increased during differentiation). The intensity of BID complexes increases upon myeloid cell differentiation, coincident with induction of gp91(phox) expression, and BID competes with the transcriptional repressor CDP for binding to each of these promoter elements. To determine the identity of BID, an expression library was ligand screened with the BID-binding site that surrounds the -145-base pair (bp) region of the gp91(phox) promoter. One recovered factor that exhibits the expected binding specificity is YY1, a ubiquitous multifunctional transcription factor. BID complexes that form with the four binding sites within the gp91(phox) promoter are disrupted by YY1 antiserum, and a fifth YY1-binding site was detected in the -412-bp promoter region. Overexpression of YY1 in transient co-transfection assays trans-activates a minimal promoter containing two copies of the -145-bp binding site from the gp91(phox) promoter. Neither the level of YY1 protein nor DNA binding activity increases during myeloid cell differentiation. These studies identify a target gene of YY1 function in mature myeloid cells, and demonstrate that YY1 function can be controlled during myeloid development by the modulation of a competing DNA-binding factor.
Collapse
Affiliation(s)
- B M Jacobsen
- Herman B Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
73
|
Mishra RK, Karch F. Boundaries that demarcate structural and functional domains of chromatin. J Biosci 1999. [DOI: 10.1007/bf02941252] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
Thomas MJ, Seto E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene 1999; 236:197-208. [PMID: 10452940 DOI: 10.1016/s0378-1119(99)00261-9] [Citation(s) in RCA: 385] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The transcription factor YY1 is a complex protein that is involved in repressing and activating a diverse number of promoters. Numerous studies have attempted to understand how this one factor can act both as a repressor and an activator in such a wide set of different contexts. The fact that YY1 interacts with a number of key regulatory proteins (e.g. TBP, TFIIB, TAFII55, Sp1, and E1A) has suggested that these interactions are important for determining which particular function of YY1 is displayed at a specific promoter. Two groups of proteins, previously known to function as corepressors and coactivators, that now seem likely to modulate YY1's functions, are the histone deacetylases (HDAC) and histone acetyltransferases (HAT). These two groups of enzymes modify histones, and this modification is proposed to alter chromatin structure. Acetylated histones are typically localized to active chromatin while deacetylated histones colocalize with transcriptionally inactive chromatin. When these enzymes are directed to a promoter through a DNA binding factor such as YY1, that promoter can be activated or repressed. This review will discuss the recent work dealing with the different proteins that interact with YY1, with particular emphasis on ones that modify chromatin, and how they could be involved in regulating YY1's activities.
Collapse
Affiliation(s)
- M J Thomas
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | |
Collapse
|
75
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, Pockwinse SH, McNeil S. Implications for interrelationships between nuclear architecture and control of gene expression under microgravity conditions. FASEB J 1999; 13 Suppl:S157-66. [PMID: 10352158 DOI: 10.1096/fasebj.13.9001.s157] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Components of nuclear architecture are functionally interrelated with control of gene expression. There is growing appreciation that multiple levels of nuclear organization integrate the regulatory cues that support activation and suppression of genes as well as the processing of gene transcripts. The linear representation of genes and promoter elements provide the potential for responsiveness to physiological regulatory signals. Parameters of chromatin structure and nucleosome organization support synergism between activities at independent regulatory sequences and render promoter elements accessible or refractory to transcription factors. Association of genes, transcription factors, and the machinery for transcript processing with the nuclear matrix facilitates fidelity of gene expression within the three-dimensional context of nuclear architecture. Mechanisms must be defined that couple nuclear morphology with enzymatic parameters of gene expression. The recent characterization of factors that mediate chromatin remodeling and identification of intranuclear targeting signals that direct transcription factors to subnuclear domains where gene expression occurs link genetic and structural components of transcriptional control. Nuclear reorganization and aberrant intranuclear trafficking of transcription factors for developmental and tissue-specific control occurs in tumor cells and in neurological disorders. Compromises in nuclear structure-function interrelationships can occur as a consequence of microgravity-mediated perturbations in cellular architecture.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Ericsson J, Usheva A, Edwards PA. YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes. J Biol Chem 1999; 274:14508-13. [PMID: 10318878 DOI: 10.1074/jbc.274.20.14508] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ying Yang 1 (YY1) is shown to bind to the proximal promoters of the genes encoding 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, farnesyl diphosphate (FPP) synthase, and the low density lipoprotein (LDL) receptor. To investigate the potential effect of YY1 on the expression of SREBP-responsive genes, HepG2 cells were transiently transfected with luciferase reporter constructs under the control of promoters derived from either HMG-CoA synthase, FPP synthase, or the LDL receptor genes. The luciferase activity of each construct increased when HepG2 cells were incubated in lipid-depleted media or when the cells were cotransfected with a plasmid encoding mature sterol regulatory element-binding protein (SREBP)-1a. In each case, the increase in luciferase activity was attenuated by coexpression of wild-type YY1 but not by coexpression of mutant YY1 proteins that are known to be defective in either DNA binding or in modulating transcription of other known YY1-responsive genes. In contrast, incubation of cells in lipid-depleted media resulted in induction of an HMG-CoA reductase promoter-luciferase construct by a process that was unaffected by coexpression of wild-type YY1. Electromobility shift assays were used to demonstrate that the proximal promoters of the HMG-CoA synthase, FPP synthase, and the LDL receptor contain YY1 binding sites and that YY1 displaced nuclear factor Y from the promoter of the HMG-CoA synthase gene. We conclude that YY1 inhibits the transcription of specific SREBP-dependent genes and that, in the case of the HMG-CoA synthase gene, this involves displacement of nuclear factor Y from the promoter. We hypothesize that YY1 plays a regulatory role in the transcriptional regulation of specific SREBP-responsive genes.
Collapse
Affiliation(s)
- J Ericsson
- Departments of Biological Chemistry and Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
77
|
Abstract
Differentiation of mammalian cells implies cessation of DNA replication and cell proliferation; the potential controls of this coupling are examined here. It is clear that the known or proposed mechanisms of down-regulation of replicative cellular activities vary in different lineages of cell differentiation, and occur in all phases of the cell cycle. In G1 these regulators include p21/Cip1 or p27/Kip1, pRb, and p53; the novel, recently reported mechanisms of their action are summarized. In S phase the availability of nucleotide precursors, the origin recognition complex (ORC), and other replication proteins may be important in differentiation, and in G2 phase the cdc2/cyclin B complex and replication licensing factors determine normal G2 traverse versus an arrest or polyploidisation. Other replication-related mechanisms include transcription factors, e.g., Sp1, telomerase, and nuclear matrix changes. Thus, differentiation alters the activity not only of the various checkpoint proteins, but also of the components of the replicative machinery itself.
Collapse
Affiliation(s)
- F D Coffman
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey, 07103, USA.
| | | |
Collapse
|
78
|
Montecino M, van Wijnen AJ, Lian JB, Stein JL, Stein GS. Phosphorylation-mediated control of chromatin organization and transcriptional activity of the tissue-specific osteocalcin gene. J Cell Biochem 1999; 72:586-94. [PMID: 10022617 DOI: 10.1002/(sici)1097-4644(19990315)72:4<586::aid-jcb13>3.0.co;2-k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have analyzed the linkage of protein phosphorylation to the remodeling of chromatin structure that accompanies transcriptional activity of the rat osteocalcin (OC) gene in bone-derived cells. Short incubations with okadaic acid, an inhibitor of protein phosphatases 1 and 2A, induced marked changes in the chromatin organization of the OC gene promoter. These changes were reflected by loss of the two DNase I hypersensitive sites normally present in bone-derived cells expressing this gene. These hypersensitive sites include the elements that control basal tissue-specific expression, as well as steroid hormone regulation. Indeed, the absence of hypersensitivity was accompanied by inhibition of basal and vitamin D-dependent enhancement of OC gene transcription. The effects of okadaic acid on OC chromatin structure and gene activity were specific and reversible. Staurosporine, a protein kinase C inhibitor, did not significantly affect transcriptional activity or DNase I hypersensitivity of the OC gene. We conclude that cellular phosphorylation-dephosphorylation events distinct from protein kinase C-dependent reactions are required for both chromatin remodeling and transcriptional activity of the OC gene in osseous cells.
Collapse
Affiliation(s)
- M Montecino
- Department of Cell Biology & Cancer Center, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | |
Collapse
|
79
|
|
80
|
Kropotov A, Sedova V, Ivanov V, Sazeeva N, Tomilin A, Krutilina R, Oei SL, Griesenbeck J, Buchlow G, Tomilin N. A novel human DNA-binding protein with sequence similarity to a subfamily of redox proteins which is able to repress RNA-polymerase-III-driven transcription of the Alu-family retroposons in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:336-46. [PMID: 10095767 DOI: 10.1046/j.1432-1327.1999.00162.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we identified a novel protein which may contribute to the transcriptional inactivity of Alu retroposons in vivo. A human cDNA clone encoding this protein (ACR1) was isolated from a human expression library using South-western screening with an Alu subfragment, implicated in the regulation of Alu in vitro transcription and interacting with a HeLa nuclear protein down-regulated in adenovirus-infected cells. Bacterially expressed ACR1 is demonstrated to inhibit RNA polymerase III (Pol III)-dependent Alu transcription in vitro but showed no repression of transcription of a tRNA gene or of a reporter gene under control of a Pol II promoter. ACR1 mRNA is also found to be down-regulated in adenovirus-infected HeLa cells, consistent with a possible repressor function of the protein in vivo. ACR1 is mainly (but not exclusively) located in cytoplasm and appears to be a member of a weakly characterized redox protein family having a central, highly conserved sequence motif, PGAFTPXCXXXXLP. One member of the family identified earlier as peroxisomal membrane protein (PMP)20 is known to interact in a sequence-specific manner with a yeast homolog of mammalian cyclosporin-A-binding protein cyclophilin, and mammalian cyclophilin A (an abundant ubiquitously expressed protein) is known to interact with human transcriptional repressor YY1, which is a major sequence-specific Alu-binding protein in human cells. It appears, therefore, that transcriptional silencing of Alu in vivo is a result of complex interactions of many proteins which bind to its Pol III promoter.
Collapse
Affiliation(s)
- A Kropotov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
|
82
|
Affiliation(s)
- T J Barrett
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
83
|
Lian JB, Stein GS, Stein JL, van Wijnen AJ. Regulated expression of the bone-specific osteocalcin gene by vitamins and hormones. VITAMINS AND HORMONES 1999; 55:443-509. [PMID: 9949687 DOI: 10.1016/s0083-6729(08)60941-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J B Lian
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
84
|
Guo C, Davis AT, Yu S, Tawfic S, Ahmed K. Role of protein kinase CK2 in phosphorylation nucleosomal proteins in relation to transcriptional activity. Mol Cell Biochem 1999; 191:135-42. [PMID: 10094402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Protein kinase CK2 undergoes rapid translocation to nuclear matrix and nucleosomes on androgenic stimulation of growth in prostatic epithelial cells. Further, CK2 appears to be regulated differentially in the transcriptionally active and inactive nucleosomes. We have investigated the role of CK2 in phosphorylation of nucleosome-associated proteins in the transcriptionally active and inactive nucleosomes that were isolated from ventral prostate subjected to different androgenic status in vivo. Proteins associated with these nucleosomes were phosphorylated via the intrinsic protein kinase activity, using [gamma-32P]ATP in the absence and presence of GTP. Several proteins appear to be potential substrates for CK2 associated with the nucleosomes. Among them are proteins that are differentially associated with the transcriptionally active and inactive nucleosomes. Phosphorylation of several of these proteins is modulated depending not only on their sites of association (i.e., active vs. inactive nucleosomes) but also on the state of transcriptional activity. Differential phosphorylation of specific proteins by CK2 associated with the active and inactive nucleosomes may be pertinent to the process of transcription regulation.
Collapse
Affiliation(s)
- C Guo
- Department of Laboratory Medicine and Pathology, University of Minnesota and the Department of Veterans Affairs Medical Center, Minneapolis 55417, USA
| | | | | | | | | |
Collapse
|
85
|
Qin W, Golovkina TV, Peng T, Nepomnaschy I, Buggiano V, Piazzon I, Ross SR. Mammary gland expression of mouse mammary tumor virus is regulated by a novel element in the long terminal repeat. J Virol 1999; 73:368-76. [PMID: 9847341 PMCID: PMC103842 DOI: 10.1128/jvi.73.1.368-376.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) infects both lymphoid tissue and lactating mammary gland during its infectious cycle, but some endogenous MMTVs are transcribed only in lymphoid cells. We found a lymphoid cell-specific endogenous MMTV that was converted to a milk-borne, infectious virus through recombination with an exogenously transmitted MMTV. The changed expression pattern correlated with the alteration of a single base pair in the long terminal repeat of the lymphoid cell-specific virus. Transgenic mice with the element from either the milk-borne or lymphoid cell-specific virus upstream of the chloramphenicol acetyltransferase reporter gene showed the same pattern of expression as the virus from which the regulatory sequences were derived. Electrophoretic mobility shift assays with mammary cell extracts showed that the site from the milk-borne virus was preferentially bound by a prolactin-inducible factor that poorly bound the altered site from the lymphoid cell-specific virus. The complex that formed on the milk-borne virus-specific oligonucleotide supershifted with anti-Stat5b antibody. Mice lacking either Stat5a or Stat5b had dramatically reduced levels of MMTV transcripts in mammary gland but not in lymphoid tissue. Thus, a member of the STAT family of transcription factors is involved in the tissue-specific expression of mouse mammary tumor virus in vivo. This is the first example of the involvement of a member of the STAT family of transcription factors in the control of tissue-specific expression.
Collapse
Affiliation(s)
- W Qin
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, McNeil S, Pockwinse SM. Transcriptional control within the three-dimensional context of nuclear architecture: Requirements for boundaries and direction. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(1999)75:32+<24::aid-jcb4>3.0.co;2-v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
87
|
Galvagni F, Cartocci E, Oliviero S. The dystrophin promoter is negatively regulated by YY1 in undifferentiated muscle cells. J Biol Chem 1998; 273:33708-13. [PMID: 9837957 DOI: 10.1074/jbc.273.50.33708] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dystrophin gene transcription is up-regulated during muscle cell differentiation. Its expression in muscle cells is induced by the binding of the positive regulators serum response factor and dystrophin promoter bending factor (DPBF) on a regulatory CArG element present on the promoter. Here we show that the dystrophin CArG box is also recognized by the zinc finger nuclear factor YY1. Transient transfection experiments show that YY1 negatively regulates dystrophin transcription in C2C12 muscle cells. On the dystrophin CArG element YY1 competes with the structural factor DPBF. We further show that YY1 and DPBF binding to the CArG element induce opposite DNA bends suggesting that their binding induces alternative promoter structures. Along with C2C12 myotube formation YY1 is reduced and we observed that YY1, but not DPBF, is a substrate of m-calpain, a protease that is up-regulated in muscle cell differentiation. Thus, high levels of YY1 in non-differentiated muscle cells down-regulate the dystrophin promoter, at least in part, by interfering with the spatial organization of the promoter.
Collapse
Affiliation(s)
- F Galvagni
- Dipartimento di Biologia Molecolare, Università di Siena, via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
88
|
Montecino M, Frenkel B, Lian J, Stein J, Stein G. Requirement of distal and proximal promoter sequences for chromatin organization of the osteocalcin gene in bone‐derived cells. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19961101)63:2<221::aid-jcb9>3.0.co;2-#] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Martin Montecino
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts 01655‐0106
| | - Baruch Frenkel
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts 01655‐0106
| | - Jane Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts 01655‐0106
| | - Janet Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts 01655‐0106
| | - Gary Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts 01655‐0106
| |
Collapse
|
89
|
Eliassen KA, Baldwin A, Sikorski EM, Hurt MM. Role for a YY1-binding element in replication-dependent mouse histone gene expression. Mol Cell Biol 1998; 18:7106-18. [PMID: 9819397 PMCID: PMC109292 DOI: 10.1128/mcb.18.12.7106] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the highly conserved replication-dependent histone gene family increases dramatically as a cell enters the S phase of the eukaryotic cell cycle. Requirements for normal histone gene expression in vivo include an element, designated alpha, located within the protein-encoding sequence of nucleosomal histone genes. Mutation of 5 of 7 nucleotides of the mouse H3.2 alpha element to yield the sequence found in an H3.3 replication-independent variant abolishes the DNA-protein interaction in vitro and reduces expression fourfold in vivo. A yeast one-hybrid screen of a HeLa cell cDNA library identified the protein responsible for recognition of the histone H3.2 alpha sequence as the transcription factor Yin Yang 1 (YY1). YY1 is a ubiquitous and highly conserved transcription factor reported to be involved in both activation and repression of gene expression. Here we report that the in vitro histone alpha DNA-protein interaction depends on YY1 and that mutation of the nucleotides required for the in vitro histone alpha DNA-YY1 interaction alters the cell cycle phase-specific up-regulation of the mouse H3.2 gene in vivo. Because all mutations or deletions of the histone alpha sequence both abolish interactions in vitro and cause an in vivo decrease in histone gene expression, the recognition of the histone alpha element by YY1 is implicated in the correct temporal regulation of replication-dependent histone gene expression in vivo.
Collapse
Affiliation(s)
- K A Eliassen
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4370, USA
| | | | | | | |
Collapse
|
90
|
Solway J, Forsythe SM, Halayko AJ, Vieira JE, Hershenson MB, Camoretti-Mercado B. Transcriptional regulation of smooth muscle contractile apparatus expression. Am J Respir Crit Care Med 1998; 158:S100-8. [PMID: 9817732 DOI: 10.1164/ajrccm.158.supplement_2.13tac500] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The transcriptional regulatory mechanisms that control gene expression during differentiation and contractile protein accumulation are becoming well understood in skeletal and cardiac muscle lineages. Current understanding of smooth muscle-specific gene transcription is much more limited, though recent studies have begun to shed light on this topic. In this review, we summarize some of the themes emerging from these studies and identify transcriptional regulatory elements common to several smooth muscle genes. These include potential binding sites for serum response factor, Sp1, AP2, Mhox, and YY1, as well as a potential transforming growth factor-beta control element. We speculate that it may be possible to manipulate smooth muscle-specific gene expression in asthma or pulmonary arterial hypertension as an eventual therapy.
Collapse
Affiliation(s)
- J Solway
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Pulmonary Biology, Critical Care, Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
91
|
Dandri M, Petersen J, Stockert RJ, Harris TM, Rogler CE. Metabolic labeling of woodchuck hepatitis B virus X protein in naturally infected hepatocytes reveals a bimodal half-life and association with the nuclear framework. J Virol 1998; 72:9359-64. [PMID: 9765489 PMCID: PMC110361 DOI: 10.1128/jvi.72.11.9359-9364.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to identify potential sites of hepadnavirus X protein action, we have investigated the subcellular distribution and the stability of woodchuck hepatitis virus (WHV) X protein (WHx) in primary hepatocytes isolated from woodchucks with persistent WHV infection. In vivo cell labeling and cell fractionation studies showed that the majority of WHx is a soluble cytoplasmic protein while a minor part of newly synthesized WHx is associated with a nuclear framework fraction (20%) and with cytoskeletal components (5 to 10%). Pulse-chase experiments revealed that cytoplasmic WHx has a short half-life and decays with bimodal kinetics (approximately 20 min and 3 h). The rates of association and turnover of nucleus-associated WHx suggest that compartmentalization may be responsible for the bimodal turnover observed in the cytoplasm.
Collapse
Affiliation(s)
- M Dandri
- Marion Bessin Liver Research Center, Department of Medicine, Jack and Pearl Resnick Campus of the Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
92
|
van der Meijden CM, Vaughan PS, Staal A, Albig W, Doenecke D, Stein JL, Stein GS, van Wijnen AJ. Selective expression of specific histone H4 genes reflects distinctions in transcription factor interactions with divergent H4 promoter elements. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:82-100. [PMID: 9767124 DOI: 10.1016/s0167-4781(98)00147-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Expression of many histone H4 genes is stringently controlled during the cell cycle to maintain a functional coupling of histone biosynthesis with DNA replication. The histone H4 multigene family provides a paradigm for understanding cell cycle control of gene transcription. All functional histone H4 gene copies are highly conserved in the mRNA coding region. However, the putative promoter regions of these H4 genes are divergent. We analyzed three representative mouse H4 genes to assess whether variation in H4 promoter sequences has functional consequences for the relative level and temporal control of expression of distinct H4 genes. Using S1 nuclease protection assays with gene-specific probes and RNA from synchronized cells, we show that the mRNA level of each H4 gene is temporally coupled to DNA synthesis. However, there are differences in the relative mRNA levels of these three H4 gene copies in several cell types. Based on gel shift assays, nucleotide variations in the promoters of these H4 genes preclude or reduce binding of several histone gene transcription factors, including IRF2, HiNF-D, SP-1 and/or YY1. Therefore, differential regulation of H4 genes is directly attributable to evolutionary divergence in H4 promoter organization which dictates the potential for regulatory interactions with cognate H4 transcription factors. This regulatory flexibility in H4 promoter organization may maximize options for transcriptional control of histone H4 gene expression in response to the onset of DNA synthesis and cell cycle progression in a broad spectrum of cell types and developmental stages.
Collapse
Affiliation(s)
- C M van der Meijden
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Choi JY, van Wijnen AJ, Aslam F, Leszyk JD, Stein JL, Stein GS, Lian JB, Penman S. Developmental association of the beta-galactoside-binding protein galectin-1 with the nuclear matrix of rat calvarial osteoblasts. J Cell Sci 1998; 111 ( Pt 20):3035-43. [PMID: 9739077 DOI: 10.1242/jcs.111.20.3035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein composition of the nuclear matrix changes significantly as the osteoblast matures from a proliferating pre-osteoblast to an osteocyte embedded in a mineralized matrix. These matrix protein are the result of developmental stage-specific gene expression during osteoblast differentiation. To isolate nuclear matrix proteins unique to the bone phenotype we analyzed nuclear matrix preparations from cultures of rat calvarial osteoblasts by high resolution two-dimensional gel electrophoresis at two different stages: proliferation (day 3) and differentiation (day 18, mineralized). We characterized one protein (14 kDa; pI 5.0), that was detectable only in the nuclear matrix of differentiated osteoblasts. By mass spectrometry and microsequencing, this protein was identified as the beta -galactoside-binding protein galectin-1. Both immunofluorescence staining of nuclear matrix preparations with the galectin-1 antibody and western blot analysis of subcellular fractions confirmed that galectin-1 is only associated with the nuclear matrix in differentiated osteoblasts as the result of differential retention. Galectin-1 protein and mRNA are present throughout osteoblast differentiation. Galectin-1 is present in the cytoplasmic and nuclear fractions in both proliferating and differentiated osteoblasts. However, its only stable binding is to the nuclear matrix of the differentiated osteoblast; but, in proliferating osteoblasts, galectin-1 is not retained in the nuclear matrix. Taken together, our results suggest that developmental association of galectin-1 with the nuclear matrix reflects differential subnuclear binding of galectin-1 during osteoblast differentiation.
Collapse
Affiliation(s)
- J Y Choi
- Department of Cell Biology and Cancer Center, and Protein Chemistry Facility, University of Massachusetts Medical Center, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Xie J, Briggs JA, Briggs RC. Human hematopoietic cell specific nuclear protein MNDA interacts with the multifunctional transcription factor YY1 and stimulates YY1 DNA binding. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980915)70:4<489::aid-jcb6>3.0.co;2-f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
95
|
|
96
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, Pockwinse S, McNeil S. Interrelationships of nuclear structure and transcriptional control: Functional consequences of being in the right place at the right time. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980801)70:2<200::aid-jcb6>3.0.co;2-s] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
97
|
Brown JL, Mucci D, Whiteley M, Dirksen ML, Kassis JA. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1998; 1:1057-64. [PMID: 9651589 DOI: 10.1016/s1097-2765(00)80106-9] [Citation(s) in RCA: 317] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genes of the Polycomb group (PcG) of Drosophila encode proteins necessary for the maintenance of transcriptional repression of homeotic genes. PcG proteins are thought to act by binding as multiprotein complexes to DNA through Polycomb group response elements (PREs); however, specific DNA binding has not been demonstrated for any of the PcG proteins. We have identified a sequence-specific DNA binding protein that interacts with a PRE from the Drosophila engrailed gene. This protein (PHO) is a homolog of the ubiquitous mammalian transcription factor Yin Yang-1 and is encoded by pleiohomeotic, a known member of the PcG. We propose that PHO acts to anchor PcG protein complexes to DNA.
Collapse
Affiliation(s)
- J L Brown
- Laboratory of Developmental Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
98
|
Tan SH, Bartsch D, Schwarz E, Bernard HU. Nuclear matrix attachment regions of human papillomavirus type 16 point toward conservation of these genomic elements in all genital papillomaviruses. J Virol 1998; 72:3610-22. [PMID: 9557642 PMCID: PMC109582 DOI: 10.1128/jvi.72.5.3610-3622.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gene functions, transcriptional regulation, and genome replication of human papillomaviruses (HPVs) have been extensively studied. Thus far, however, there has been little research on the organization of HPV genomes in the nuclei of infected cells. As a first step to understand how chromatin and suprachromatin structures may modulate the life cycles of these viruses, we have identified and mapped interactions of HPV DNAs with the nuclear matrix. The endogenous genomes of HPV type 16 (HPV-16) which are present in SiHa, HPKI, and HPKII cells, adhere in vivo to the nuclear matrixes of these cell lines. A tight association with the nuclear matrix in vivo may be common to all genital HPV types, as the genomes of HPV-11, HPV-16, HPV-18, and HPV-33 showed high affinity in vitro to preparations of the nuclear matrix of C33A cells, as did the well-known nuclear matrix attachment region (MAR) of the cellular beta interferon gene. Affinity to the nuclear matrix is not evenly spread over the HPV-16 genome. Five genomic segments have strong MAR properties, while the other parts of the genome have low or no affinity. Some of the five MARs correlate with known cis-responsive elements: a strong MAR lies in the 5' segment of the long control region (LCR), and another one lies in the E6 gene, flanking the HPV enhancer, the replication origin, and the E6 promoter. The strongest MAR coincides with the E5 gene and the early-late intergenic region. Weak MAR activity is present in the E1 and E2 genes and in the 3' part of L2. The in vitro map of MAR activity appears to reflect MAR properties in vivo, as we found for two selected fragments with and without MAR activity. As is typical for many MARs, the two segments with highest affinity, namely, the 5' LCR and the early-late intergenic region, have an extraordinarily high A-T content (up to 85%). It is likely that these MARs have specific functions in the viral life cycle, as MARs predicted by nucleotide sequence analysis, patterns of A-T content, transcription factor YY1 binding sites, and likely topoisomerase II cleavage sites are conserved in similar positions throughout all genital HPVs.
Collapse
Affiliation(s)
- S H Tan
- Institute of Molecular and Cell Biology, National University of Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
99
|
Sanchez V, Angeletti PC, Engler JA, Britt WJ. Localization of human cytomegalovirus structural proteins to the nuclear matrix of infected human fibroblasts. J Virol 1998; 72:3321-9. [PMID: 9525659 PMCID: PMC109810 DOI: 10.1128/jvi.72.4.3321-3329.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intranuclear assembly of herpesvirus subviral particles remains an incompletely understood process. Previous studies have described the nuclear localization of capsid and tegument proteins as well as intranuclear tegumentation of capsid-like particles. The temporally and spatially regulated replication of viral DNA suggests that assembly may also be regulated by compartmentalization of structural proteins. We have investigated the intranuclear location of several structural and nonstructural proteins of human cytomegalovirus (HCMV). Tegument components including pp65 (ppUL83) and ppUL69 and capsid components including the major capsid protein (pUL86) and the small capsid protein (pUL48/49) were retained within the nuclear matrix (NM), whereas the immediate-early regulatory proteins IE-1 and IE-2 were present in the soluble nuclear fraction. The association of pp65 with the NM resisted washes with 1 M guanidine hydrochloride, and direct binding to the NM could be demonstrated by far-Western blotting. Furthermore, pp65 exhibited accumulation along the nuclear periphery and in far-Western analysis bound to proteins which comigrated with proteins of the size of nuclear lamins. A direct interaction between pp65 and lamins was demonstrated by coprecipitation of lamins in immune complexes containing pp65. Together, our findings provide evidence that major virion structural proteins localized to a nuclear compartment, the NM, during permissive infection of human fibroblasts.
Collapse
Affiliation(s)
- V Sanchez
- Department of Microbiology, University of Alabama at Birmingham, 35233, USA
| | | | | | | |
Collapse
|
100
|
Bushmeyer SM, Atchison ML. Identification of YY1 sequences necessary for association with the nuclear matrix and for transcriptional repression functions. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980315)68:4<484::aid-jcb8>3.0.co;2-m] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|