51
|
Green AK, Stratton RC, Squires PE, Simpson AWM. Atrial natriuretic peptide attenuates elevations in Ca2+ and protects hepatocytes by stimulating net plasma membrane Ca2+ efflux. J Biol Chem 2007; 282:34542-54. [PMID: 17893148 DOI: 10.1074/jbc.m707115200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Elevations in intracellular Ca(2+) concentration and calpain activity are common early events in cellular injury, including that of hepatocytes. Atrial natriuretic peptide is a circulating hormone that has been shown to be hepatoprotective. The aim of this study was to examine the effects of atrial natriuretic peptide on potentially harmful elevations in cytosolic free Ca(2+) and calpain activity induced by extracellular ATP in rat hepatocytes. We show that atrial natriuretic peptide, through protein kinase G, attenuated both the amplitude and duration of ATP-induced cytosolic Ca(2+) rises in single hepatocytes. Atrial natriuretic peptide also prevented stimulation of calpain activity by ATP, taurolithocholate, or Ca(2+) mobilization by thapsigargin and ionomycin. We therefore investigated the cellular Ca(2+) handling mechanisms through which ANP attenuates this sustained elevation in cytosolic Ca(2+). We show that atrial natriuretic peptide does not modulate the release from or re-uptake of Ca(2+) into intracellular stores but, through protein kinase G, both stimulates plasma membrane Ca(2+) efflux from and inhibits ATP-stimulated Ca(2+) influx into hepatocytes. These findings suggest that stimulation of net plasma membrane Ca(2+) efflux (to which both Ca(2+) efflux stimulation and Ca(2+) influx inhibition contribute) is the key process through which atrial natriuretic peptide attenuates elevations in cytosolic Ca(2+) and calpain activity. Moreover we propose that plasma membrane Ca(2+) efflux is a valuable, previously undiscovered, mechanism through which atrial natriuretic peptide protects rat hepatocytes, and perhaps other cell types, against Ca(2+)-dependent injury.
Collapse
Affiliation(s)
- Anne K Green
- Department of Biological Sciences, The University of Warwick, Gibbet Hill Road, Coventry, UK.
| | | | | | | |
Collapse
|
52
|
Zhao Y, Migita K, Sato C, Usune S, Iwamoto T, Katsuragi T. Endoplasmic reticulum is a key organella in bradykinin-triggered ATP release from cultured smooth muscle cells. J Pharmacol Sci 2007; 105:57-65. [PMID: 17827868 DOI: 10.1254/jphs.fp0070865] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
ATP has broad functions as an autocrine/paracrine molecule. The mode of ATP release and its intracellular source, however, are little understood. Here we show that bradykinin via B(2)-receptor stimulation induces the extracellular release of ATP via the inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)]-signaling pathway in cultured taenia coli smooth muscle cells. It was found that bradykinin also increased the production of Ins(1,4,5)P(3) and 2-APB-inhibitable [Ca(2+)](i). The evoked release of ATP was suppressed by the Ca(2+)-channel blockers, nifedipine, and verapamil. Moreover, the extracellular release of ATP was elicited by photoliberation of Ins(1,4,5)P(3). Bradykinin caused a quick and transient accumulation of intracellular ATP from cells treated with 1% perchloric acid solution (PCA), but not with the cell lysis buffer. Peak accumulation was prevented by 2-APB and thapsigargin, but not by nifedipine or verapamil, inhibitors of extracellular release of ATP. These findings suggest that bradykinin elicits the extracellular release of ATP that is mediated by the Ins(1,4,5)P(3)-induced Ca(2+) signaling and, finally, leads to a Ca(2+)-dependent export of ATP from the cells. Furthermore, the bradykinin-induced transient accumulation of ATP in the cells treated with PCA may imply a possible release of ATP from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Yumei Zhao
- Department of Pharmacology, School of Medicine, Fukuoka University, Japan
| | | | | | | | | | | |
Collapse
|
53
|
Autoregulation in PC12 cells via P2Y receptors: Evidence for non-exocytotic nucleotide release from neuroendocrine cells. Purinergic Signal 2007; 3:367-75. [PMID: 18404450 PMCID: PMC2072914 DOI: 10.1007/s11302-007-9062-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/11/2007] [Indexed: 11/01/2022] Open
Abstract
Nucleotides are released not only from neurons, but also from various other types of cells including fibroblasts, epithelial, endothelial and glial cells. While ATP release from non-neural cells is frequently Ca(2+) independent and mostly non-vesicular, neuronal ATP release is generally believed to occur via exocytosis. To evaluate whether nucleotide release from neuroendocrine cells might involve a non-vesicular component, the autocrine/paracrine activation of P2Y(12) receptors was used as a biosensor for nucleotide release from PC12 cells. Expression of a plasmid coding for the botulinum toxin C1 light chain led to a decrease in syntaxin 1 detected in immunoblots of PC12 membranes. In parallel, spontaneous as well as depolarization-evoked release of previously incorporated [(3)H]noradrenaline from transfected cells was significantly reduced in comparison with the release from untransfected cells, thus indicating that exocytosis was impaired. In PC12 cells expressing the botulinum toxin C1 light chain, ADP reduced cyclic AMP synthesis to the same extent as in non-transfected cells. Likewise, the enhancement of cyclic AMP synthesis either due to the blockade of P2Y(12) receptors or due to the degradation of extracellular neucleotides by apyrase was not different between non-transfected and botulinum toxin C1 light chain expressing cells. However, the inhibition of cyclic AMP synthesis caused by depolarization-evoked release of endogenous nucleotides was either abolished or greatly reduced in cells expressing the botulinum toxin C1 light chain. Together, these results show that spontaneous nucleotide release from neuroendocrine cells may occur independently of vesicle exocytosis, whereas depolarization-evoked nucleotide release relies predominantly on exocytotic mechanisms.
Collapse
|
54
|
Correa PRAV, Kruglov EA, Thompson M, Leite MF, Dranoff JA, Nathanson MH. Succinate is a paracrine signal for liver damage. J Hepatol 2007; 47:262-9. [PMID: 17451837 PMCID: PMC1986575 DOI: 10.1016/j.jhep.2007.03.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/23/2007] [Accepted: 03/10/2007] [Indexed: 01/17/2023]
Abstract
BACKGROUND/AIMS A G-protein-coupled succinate receptor has recently been identified in several tissues, including the liver. The objectives of this work were to determine the hepatic cell types that express this receptor and to determine its physiological role. METHODS Expression and distribution of the succinate receptor was determined by RT-PCR and confocal immunofluorescence. Biochemical assays were used to measure succinate and cAMP. Cytosolic Ca2+ was monitored in single cells by time-lapse imaging. Western blot was used to study the effect of succinate on activation of hepatic stellate cells. RESULTS The succinate receptor was expressed in quiescent hepatic stellate cells, and expression decreased with activation. Ischemia induced release of succinate in isolated perfused livers. In contrast to what is observed in cell expression systems, succinate did not inhibit cAMP production or increase cytosolic Ca2+ in primary hepatic stellate cells. However, succinate accelerated stellate cell activation. CONCLUSIONS Hepatic stellate cells express the succinate receptor. Succinate may behave as a paracrine signal by which ischemic hepatocytes trigger stellate cell activation.
Collapse
Affiliation(s)
- Paulo Renato A V Correa
- Section of Digestive Diseases, Department of Internal Medicine, Room TAC S241D, Yale University School of Medicine, New Haven, CT 06520-8019, USA
| | | | | | | | | | | |
Collapse
|
55
|
Nagata J, Guerra MT, Shugrue CA, Gomes DA, Nagata N, Nathanson MH. Lipid rafts establish calcium waves in hepatocytes. Gastroenterology 2007; 133:256-67. [PMID: 17631147 PMCID: PMC2825880 DOI: 10.1053/j.gastro.2007.03.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 03/22/2007] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Polarity is critical for hepatocyte function. Ca(2+) waves are polarized in hepatocytes because the inositol 1,4,5-trisphosphate receptor (InsP3R) is concentrated in the pericanalicular region, but the basis for this localization is unknown. We examined whether pericanalicular localization of the InsP3R and its action to trigger Ca(2+) waves depends on lipid rafts. METHODS Experiments were performed using isolated rat hepatocyte couplets and pancreatic acini, plus SkHep1 cells as nonpolarized controls. The cholesterol depleting agent methyl-beta-cyclodextrin (mbetaCD) was used to disrupt lipid rafts. InsP3R isoforms were examined by immunoblot and immunofluorescence. Ca(2+) waves were examined by confocal microscopy. RESULTS Type II InsP3Rs initially were localized to only some endoplasmic reticulum fractions in hepatocytes, but redistributed into all fractions in mbetaCD-treated cells. This InsP3R isoform was concentrated in the pericanalicular region, but redistributed throughout the cell after mbetaCD treatment. Vasopressin-induced Ca(2+) signals began as apical-to-basal Ca(2+) waves, and mbetaCD slowed the wave speed and prolonged the rise time. MbetaCD had a similar effect on Ca(2+) waves in acinar cells but did not affect Ca(2+) signals in SkHep1 cells, suggesting that cholesterol depletion has similar effects among polarized epithelia, but this is not a nonspecific effect of mbetaCD. CONCLUSIONS Lipid rafts are responsible for the pericanalicular accumulation of InsP3R in hepatocytes, and for the polarized Ca(2+) waves that result. Signaling microdomains exist not only in the plasma membrane, but also in the nearby endoplasmic reticulum, which in turn, helps establish and maintain structural and functional polarity.
Collapse
Affiliation(s)
- Jun Nagata
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019, USA
| | | | | | | | | | | |
Collapse
|
56
|
Gonzales E, Prigent S, Abou-Lovergne A, Boucherie S, Tordjmann T, Jacquemin E, Combettes L. Rat hepatocytes express functional P2X receptors. FEBS Lett 2007; 581:3260-6. [PMID: 17597621 DOI: 10.1016/j.febslet.2007.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/17/2007] [Accepted: 06/07/2007] [Indexed: 11/25/2022]
Abstract
Extracellular ATP regulates many hepatic functions by stimulating purinergic receptors. Only the G protein-coupled P2Y receptors have been studied in hepatocytes. We investigated the functional expression of P2X receptors, the ATP-gated channels in rat hepatocytes. P2X4 and P2X7 transcripts and proteins were detected by RT-PCR and by both Western blotting and immunocytochemistry. High concentrations of ATP, and 2'-and 3'-O-(4-benzoylbenzoyl)-ATP the preferring agonist of P2X7, induced membrane blebbing and significant uptake of 4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-(triethylammonio)propyl]diiodide, both of which were inhibited by oxidised ATP, a blocker of P2X receptors. These results provide evidence that P2X4 and P2X7 receptors are expressed and functional on rat hepatocytes, possibly playing an important role in the purinergic signaling complex in these cells.
Collapse
Affiliation(s)
- Emmanuel Gonzales
- INSERM, Université Paris-Sud, UMR-S757, Bâtiment 443, 15 rue Georges Clémenceau, Orsay Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
57
|
Li Q, Wang Y. Coupling and internal noise sustain synchronized oscillation in calcium system. Biophys Chem 2007; 129:23-8. [PMID: 17537568 DOI: 10.1016/j.bpc.2007.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/01/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
In this work, the effects of coupling on two calcium subsystems were investigated, the cooperation between coupling and internal noise was also considered. When two non-identical subsystems are in steady state, coupling can induce oscillations, and distinctly enlarge the oscillatory region in bifurcation diagram. Besides, coupling can make the two non-identical oscillators synchronized. With the increment of the coupling strength, the cross-correlation time of the two oscillators firstly increases and then decreases to be constant, showing the synchronization without tuning coupling strength. When internal noise is considered, similar phenomena can also be obtained under the cooperation between coupling and internal noise.
Collapse
Affiliation(s)
- Qianshu Li
- The Institute for Chemical Physics, Beijing Institute of Technology, Beijing, 100081, PR China.
| | | |
Collapse
|
58
|
Fausther M, Lecka J, Kukulski F, Lévesque SA, Pelletier J, Zimmermann H, Dranoff JA, Sévigny J. Cloning, purification, and identification of the liver canalicular ecto-ATPase as NTPDase8. Am J Physiol Gastrointest Liver Physiol 2007; 292:G785-95. [PMID: 17095758 PMCID: PMC3952495 DOI: 10.1152/ajpgi.00293.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides regulate critical liver functions via the activation of specific transmembrane receptors. The hepatic levels of extracellular nucleotides, and therefore the related downstream signaling cascades, are modulated by cell-surface enzymes called ectonucleotidases, including nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2/CD39L1, and ecto-5'-nucleotidase/CD73. The goal of this study was to determine the molecular identity of the canalicular ecto-ATPase/ATPDase that we hypothesized to correspond to the recently cloned NTPDase8. Human and rat NTPDase8 cDNAs were cloned, and the genes were located on chromosome loci 9q34 and 3p13, respectively. The recombinant proteins, expressed in COS-7 and HEK293T cells, were biochemically characterized. NTPDase8 was also purified from rat liver by Triton X-100 solubilization, followed by DEAE, Affigel Blue, and concanavalin A chromatographies. Importantly, NTPDase8 was responsible for the major ectonucleotidase activity in liver. The ion requirement, apparent K(m) values, nucleotide hydrolysis profile, and preference as well as the resistance to azide were similar for recombinant NTPDase8s and both purified rat NTPDase8 and porcine canalicular ecto-ATPase/ATPDase. The partial NH(2)-terminal amino acid sequences of all NTPDase8s share high identity with the purified liver canalicular ecto-ATPase/ATPDase. Histochemical analysis showed high ectonucleotidase activities in bile canaliculi and large blood vessels of rat liver, in agreement with the immunolocalization of NTPDase1, 2, and 8 with antibodies developed for this study. No NTPDase3 expression could be detected in liver. In conclusion, NTPDase8 is the canalicular ecto-ATPase/ATPDase and is responsible for the main hepatic NTPDase activity. The canalicular localization of this enzyme suggests its involvement in the regulation of bile secretion and/or nucleoside salvage.
Collapse
Affiliation(s)
- Michel Fausther
- Centre de Recherche en Rhumatologie et Immunologie, 2705 Boulevard Laurier, local T1-49, G1V 4G2 Québec, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Transport into the nucleus is critical for regulation of gene transcription and other intranuclear events. Passage of molecules into the nucleus depends in part upon their size and the presence of appropriate targeting sequences. However, little is known about the effects of hormones or their second messengers on transport across the nuclear envelope. We used localized, two-photon activation of a photoactivatable green fluorescent protein to investigate whether hormones, via their second messengers, could alter nuclear permeability. Vasopressin and other hormones that increase cytosolic Ca2+ and activate protein kinase C increased permeability across the nuclear membrane of SKHep1 liver cells in a rapid unidirectional manner. An increase in cytosolic Ca2+ was both necessary and sufficient for this process. Furthermore, localized photorelease of caged Ca2+ near the nuclear envelope resulted in a local increase in nuclear permeability. Neither activation nor inhibition of protein kinase C affected nuclear permeability. These findings provide evidence that hormones linking to certain G protein-coupled receptors increase nuclear permeability via cytosolic Ca2+. Short term regulation of nuclear permeability may provide a novel mechanism by which such hormones permit transcription factors and other regulatory molecules to enter the nucleus, thereby regulating gene transcription in target cells.
Collapse
Affiliation(s)
- Elizabeth M. O'Brien
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Dawidson A. Gomes
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Sona Sehgal
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Michael H. Nathanson
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| |
Collapse
|
60
|
Dupont G, Combettes L, Leybaert L. Calcium Dynamics: Spatio‐Temporal Organization from the Subcellular to the Organ Level. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:193-245. [PMID: 17560283 DOI: 10.1016/s0074-7696(07)61005-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Many essential physiological processes are controlled by calcium. To ensure reliability and specificity, calcium signals are highly organized in time and space in the form of oscillations and waves. Interesting findings have been obtained at various scales, ranging from the stochastic opening of a single calcium channel to the intercellular calcium wave spreading through an entire organ. A detailed understanding of calcium dynamics thus requires a link between observations at different scales. It appears that some regulations such as calcium-induced calcium release or PLC activation by calcium, as well as the weak diffusibility of calcium ions play a role at all levels of organization in most cell types. To comprehend how calcium waves spread from one cell to another, specific gap-junctional coupling and paracrine signaling must also be taken into account. On the basis of a pluridisciplinar approach ranging from physics to physiology, a unified description of calcium dynamics is emerging, which could help understanding how such a small ion can mediate so many vital functions in living systems.
Collapse
Affiliation(s)
- Geneviève Dupont
- Theoretical Chronobiology Unit, Université Libre de Bruxelles, Faculté des Sciences, 1050 Brussels, Belgium
| | | | | |
Collapse
|
61
|
Fabre ACS, Vantourout P, Champagne E, Tercé F, Rolland C, Perret B, Collet X, Barbaras R, Martinez LO. Cell surface adenylate kinase activity regulates the F(1)-ATPase/P2Y (13)-mediated HDL endocytosis pathway on human hepatocytes. Cell Mol Life Sci 2006; 63:2829-37. [PMID: 17103109 PMCID: PMC2020515 DOI: 10.1007/s00018-006-6325-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have previously demonstrated on human hepatocytes that apolipoprotein A-I binding to an ecto-F(1)-ATPase stimulates the production of extracellular ADP that activates a P2Y(13)-mediated high-density lipoprotein (HDL) endocytosis pathway. Therefore, we investigated the mechanisms controlling the extracellular ATP/ADP level in hepatic cell lines and primary cultures to determine their impact on HDL endocytosis. Here we show that addition of ADP to the cell culture medium induced extracellular ATP production that was due to adenylate kinase [see text] and nucleoside diphosphokinase [see text] activities, but not to ATP synthase activity. We further observed that in vitro modulation of both ecto-NDPK and AK activities could regulate the ADP-dependent HDL endocytosis. But interestingly, only AK appeared to naturally participate in the pathway by consuming the ADP generated by the ecto-F(1)-ATPase. Thus controlling the extracellular ADP level is a potential target for reverse cholesterol transport regulation.
Collapse
Affiliation(s)
- A. C. S. Fabre
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - P. Vantourout
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - E. Champagne
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - F. Tercé
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - C. Rolland
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - B. Perret
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - X. Collet
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - R. Barbaras
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - L. O. Martinez
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| |
Collapse
|
62
|
Minagawa N, Ehrlich BE, Nathanson MH. Calcium signaling in cholangiocytes. World J Gastroenterol 2006; 12:3466-70. [PMID: 16773703 PMCID: PMC4087562 DOI: 10.3748/wjg.v12.i22.3466] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 01/14/2006] [Accepted: 01/24/2006] [Indexed: 02/06/2023] Open
Abstract
Cytosolic Ca2+ is an important second messenger in virtually every type of cell. Moreover, Ca2+ generally regulates multiple activities within individual cells. This article reviews the cellular machinery that is responsible for Ca2+ signaling in cholangiocytes. In addition, two Ca2+-mediated events in cholangiocytes are discussed: bicarbonate secretion and apoptosis. Finally, emerging evidence is reviewed that Ca2+ signaling is involved in the pathogenesis of diseases affecting the biliary tree and that Ca2+ signaling pathways can be manipulated to therapeutic advantage in the treatment of cholestatic disorders.
Collapse
Affiliation(s)
- Noritaka Minagawa
- Department of Medicine Pharmacology, Yale University School of Medicine, 1 Gilbert Street, Room TAC S241D, New Haven, CT 06519, USA
| | | | | |
Collapse
|
63
|
Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006; 2:409-30. [PMID: 18404480 PMCID: PMC2254478 DOI: 10.1007/s11302-006-9003-5] [Citation(s) in RCA: 729] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/23/2006] [Indexed: 12/17/2022] Open
Abstract
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases.
Collapse
Affiliation(s)
- Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts USA
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Québec Canada
| | - Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| |
Collapse
|
64
|
Entringer PF, Gondim KC, Meyer-Fernandes JR. Ecto-nucleotidase activities in the fat body of Rhodnius prolixus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 61:1-9. [PMID: 16380977 DOI: 10.1002/arch.20087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this study, we describe the ability of intact fat body of an insect, Rhodnius prolixus, to hydrolyze extracellular ATP. In these fat bodies, the ATP hydrolysis was low in the absence of any divalent metal, and was stimulated by MgCl(2). Both activities (in the absence or presence of MgCl(2)) were linear with time for at least 30 min. In order to confirm the observed nucleotidase activities as ecto-nucleotidases, we used an impermeant inhibitor, DIDS (4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid). This reagent inhibited both nucleotidase activities and its inhibitory effect was suppressed by ATP. Both ecto-nucleotidase activities were insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin, ouabain, vanadate, molybdate, sodium fluoride, levamizole, tartrate, p-NPP, sodium phosphate, and suramin. Concanavalin A, activator of some ecto-ATPases, was able to stimulate the Mg(2+)-independent nucleotidase activity, but not the Mg(2+)-dependent one. The Mg(2+)-independent nucleotidase activity was enhanced with increases in the pH in the range between 6.4-8.0, but the Mg(2+)-dependent nucleotidase activity was not affected. Besides MgCl(2) , the ecto-ATPase activity was also stimulated by CaCl(2),() MnCl(2), and SrCl(2), but not by ZnCl(2). ATP, ADP, and AMP were the best substrates for the Mg(2+)-dependent ecto-nucleotidase activity, and CTP, GTP, and UTP produced very low reaction rates. However, the Mg(2+)-independent nucleotidase activity recognized all these nucleotides producing similar reaction rates, but GTP was a less efficient substrate. The possible role of the two ecto-nucleotidase activities present on the cell surface of fat body of Rhodnius prolixus, which are distinguished by their substrate specificity and their response to Mg(2+), is discussed.
Collapse
Affiliation(s)
- Petter F Entringer
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Bloco H, sala H2-013, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | | | | |
Collapse
|
65
|
|
66
|
Dixon CJ, White PJ, Hall JF, Kingston S, Boarder MR. Regulation of human hepatocytes by P2Y receptors: control of glycogen phosphorylase, Ca2+, and mitogen-activated protein kinases. J Pharmacol Exp Ther 2005; 313:1305-13. [PMID: 15764738 DOI: 10.1124/jpet.104.082743] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the rat both short-term liver function, such as glycogen metabolism, and long-term events such as proliferation after partial hepatectomy, are in part controlled by release of nucleotides such as ATP acting on hepatocyte P2Y(1) and P2Y(2) receptors (members of a family of P2Y receptors for extracellular nucleotides such as ATP and UTP). Here, we have studied P2Y receptor regulation of signaling pathways involved in glycogen phosphorylase activation and proliferation of primary human hepatocytes. Stimulation of cultured hepatocytes with either ATP and UTP, but not UDP or 2-methylthio ADP, led to concentration-dependent increases in cytosolic free Ca(2+) concentration ([Ca(2+)](c); EC(50) for ATP = 3.3 microM, for UTP = 2.3 microM) and [(3)H]inositol (poly)phosphates (EC(50) for ATP = 9.4 microM, for UTP = 15.4 microM). ATP and UTP also stimulated glycogen phosphorylase in human hepatocytes, each with a threshold for activation of less than 1 microM. Application of 2-methylthio ADP up to 100 microM was ineffective. Phosphorylation of both extracellular signal-related kinase and c-Jun N-terminal kinase was stimulated by ATP and UTP, but not by 2-methylthio ADP or UDP, either alone or when costimulated with epidermal growth factor. In conclusion, in human hepatocytes P2Y receptors control both glycogen metabolism and proliferation-associated responses such as increased [Ca(2+)](c) and mitogen-activated protein kinase cascades. Regulation seems to be primarily through P2Y(2) receptors. In contrast with previous studies on rat hepatocytes, there is an absence of responses mediated by P2Y(1) receptors.
Collapse
Affiliation(s)
- C Jane Dixon
- The Cell Signaling Laboratory, Leicester School of Pharmacy, De Montfort University, UK
| | | | | | | | | |
Collapse
|
67
|
Etessami R, Chaumontet C, Laude H, Vilette D. Scratch-wounding renders cultivated cells less permissive to prion infection. Biochem Biophys Res Commun 2005; 330:5-10. [PMID: 15781224 DOI: 10.1016/j.bbrc.2005.02.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2005] [Indexed: 11/18/2022]
Abstract
Using permissive cell lines of epithelial or neuroglial origin, we found that scratch-wounding a small proportion of the recipient cells prior to prion exposure strongly reduced the cell culture's susceptibility to infection. We provide evidence suggesting that wound-triggered inhibition of prion infection was mediated by the release of nucleotides in the extracellular medium of injured cultures. While cell wounding or ATP treatment of unwounded target cells inhibited de novo infection, we found that they had no effect on steady-state infected cultures, indicating that these treatments affect the early stages of infection. These findings support the view that cells have the capacity to modulate their permissiveness to prion infection in response to external stimuli, such as a signalling molecule.
Collapse
Affiliation(s)
- Réza Etessami
- Unité de Virologie Immunologie Moléculaires, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | | | | | | |
Collapse
|
68
|
Sáez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MVL. Connexin-based gap junction hemichannels: gating mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1711:215-24. [PMID: 15955306 PMCID: PMC3617572 DOI: 10.1016/j.bbamem.2005.01.014] [Citation(s) in RCA: 310] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 01/20/2005] [Accepted: 01/26/2005] [Indexed: 01/16/2023]
Abstract
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.
Collapse
Affiliation(s)
- Juan C Sáez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
69
|
Abstract
Connexins form gap junction channels that provide a hydrophilic path between cell interiors. Some connexins, particularly the lens connexins, Cx46 and Cx50 and their orthologs, can form functional hemichannels in nonjunctional membranes. These hemichannels are a nonselective conduit to the extracellular medium and may jeopardize cell survival. The physiological function of hemichannels has remained elusive, but it has been postulated that hemichannels are involved in ATP-release caused by mechanical stimulation. Here we show with single-channel and whole cell electrophysiological studies that Cx46 hemichannels are mechanosensitive, like other families of ion channels and membrane-bound enzymes. The hemichannel response to mechanical stress is bipolar. At negative potentials stress opens the channel, and at positive potentials stress closes it. Physiologically, Cx46 hemichannels may assist accommodation of the ocular lens by providing a transient path for volume flow as the lens changes shape.
Collapse
Affiliation(s)
- Li Bao
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
70
|
Dixon CJ, Hall JF, Webb TE, Boarder MR. Regulation of rat hepatocyte function by P2Y receptors: focus on control of glycogen phosphorylase and cyclic AMP by 2-methylthioadenosine 5'-diphosphate. J Pharmacol Exp Ther 2004; 311:334-41. [PMID: 15152027 DOI: 10.1124/jpet.104.067744] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatocyte function is regulated by several P2Y receptor subtypes. Here we report that 2-methylthioadenosine 5'-diphosphate (2-MeSADP), an agonist at P2Y(1), P2Y(12), and P2Y(13) receptors, potently (threshold 30 nM) stimulates glycogen phosphorylase in freshly isolated rat hepatocytes. Antagonism by N(6)-methyl 2'-deoxyadenosine 3',5'-bisphosphate (MRS 2179) confirms that this response is mediated by P2Y(1) receptors. In addition, in these cells, both 2-MeSADP and UTP inhibited glucagon-stimulated cyclic AMP accumulation. This inhibitory effect of 2-MeSADP was not reversed by the P2Y(1) antagonists, adenosine-3'-phosphate-5'-phosphate (A3P5P) or MRS 2179, both in the range 1 to 300 microM, indicating that it was not mediated by P2Y(1) receptors. This contrasts with the increase in cytosolic free Ca(2+) concentration ([Ca(2+)](c)) induced by 2-MeSADP, which has shown to be inhibited by A3P5P. Pertussis toxin abolished the inhibitory effect of both UTP and 2-MeSADP. After culture of cells for 48 h, the ability of 2-MeSADP to inhibit cyclic AMP accumulation was greatly diminished. Reverse transcriptase-polymerase chain reaction analysis revealed that during this culture period, there was a decline in the ability to detect transcripts for P2Y(12) and P2Y(13) receptors, both of which are activated by 2-MeSADP and negatively coupled to adenylyl cyclase. However, in freshly isolated cells, the P2Y(12) and P2Y(13) receptor antagonist, 2-propylthio-beta,gamma-dichloromethylene-d-ATP (AR-C67085) (10 nM to 300 microM) did not alter the ability of 2-MeSADP to inhibit glucagon-stimulated cyclic AMP accumulation. We conclude that 2-MeSADP regulates rat hepatocyte glycogen phosphorylase by acting on P2Y(1) receptors coupled to raised [Ca(2+)](c), and by inhibiting cyclic AMP levels by an unknown G(i)-coupled receptor subtype, distinct from P2Y(1), P2Y(12), or P2Y(13) receptors.
Collapse
Affiliation(s)
- C Jane Dixon
- The Cell Signaling Laboratory, Leicester School of Pharmacy, The Hawthorn Building, De Montfort University, Leicester LE1 9BH, United Kingdom
| | | | | | | |
Collapse
|
71
|
Correa PRAV, Guerra MT, Leite MF, Spray DC, Nathanson MH. Endotoxin unmasks the role of gap junctions in the liver. Biochem Biophys Res Commun 2004; 322:718-26. [PMID: 15336523 DOI: 10.1016/j.bbrc.2004.07.192] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 10/26/2022]
Abstract
Gap junctions are thought to be necessary for proper tissue function. However, no clear hepatic phenotype has been described in patients lacking connexin 32 (Cx32), the principal gap junction in liver. To determine the physiological role of Cx32 in liver, we compared the response of wild type and Cx32-deficient mice to endotoxin, since this stress increases serum levels of hormones that bind to receptors that are asymmetrically distributed across the hepatic lobule. In hepatocyte couplets isolated from wild type mice, most hepatocytes could transfer microinjected dye to their neighbor even after treatment with endotoxin. Dye transfer was not observed in Cx32-deficient couplets. Treatment of hepatocyte couplets from wild type mice with vasopressin induced calcium (Ca(2+)) waves that crossed the couplets in a concentration-dependent fashion, but the delay in transmission was markedly prolonged at all concentrations in Cx32-deficient couplets. Expression of the vasopressin receptor and the inositol 1,4,5-trisphosphate receptor was not decreased by endotoxin or in Cx32-deficient couplets. Finally, endotoxin caused transient hypoglycemia and cholestasis in wild type animals, but hypoglycemia was slightly prolonged and cholestasis was much worse in Cx32-deficient mice treated with endotoxin. The hepatic response to endotoxin is markedly impaired in the absence of Cx32. Thus, an important role of gap junctions in the liver is to assure integrated and uniform tissue response in times of stress.
Collapse
Affiliation(s)
- Paulo R A V Correa
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
72
|
Pafundo DE, Mut P, Pérez Recalde M, González-Lebrero RM, Fachino V, Krumschnabel G, Schwarzbaum PJ. Effects of extracellular nucleotides and their hydrolysis products on regulatory volume decrease of trout hepatocytes. Am J Physiol Regul Integr Comp Physiol 2004; 287:R833-43. [PMID: 15217790 DOI: 10.1152/ajpregu.00199.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In trout hepatocytes, hypotonic swelling is followed by a compensatory shrinkage called regulatory volume decrease (RVD). It has been postulated that extracellular ATP and other nucleotides may interact with type 2 receptors (P(2)) to modulate this response. In addition, specific ectoenzymes hydrolyze ATP sequentially down to adenosine, which may bind to type 1 receptors (P(1)) and also influence RVD. Accordingly, in this study, we assessed the role of extracellular nucleoside 5'-tri- and diphosphates and of adenosine on RVD of trout hepatocytes. The extent of RVD after 40 min of maximum swelling was denoted as RVD(40), whereas the initial rate of RVD was called v(RVD). In the presence of hypotonic medium (60% of isotonic), hepatocytes swelled 1.6 times followed by v(RVD) of 1.7 min(-1) and RVD(40) of 60.2%. ATP, UTP, UDP, or ATPgammaS (P(2) agonists; 5 microM) increased v(RVD) 1.5-2 times, whereas no changes were observed in the values of RVD(40). Addition of 100 microM suramin or cibacron blue (P(2) antagonists) to the hypotonic medium produced no effect on v(RVD) but a 53-58% inhibition of RVD(40). Incubation of hepatocytes in the presence of either 5 microM [gamma-(32)P]ATP or [alpha-(32)P]ATP induced the extracellular release of [gamma-(32)P]P(i) (0.21 nmol.10(-6) cells(-1).min(-1)) and [alpha-(32)P]P(i) ( approximately 8 x 10(-3) nmol.10(-6) cells(-1).min(-1)), suggesting the presence of ectoenzymes capable of fully dephosphorylating ATP. Concerning the effect of P(1) activation on RVD, 5 microM adenosine, both in the presence and absence of 100 microM S-(4-nitrobenzil)-6-tioinosine (a blocker of adenosine uptake), decreased RVD(40) by 37-44%, whereas 8-phenyl theophylline, a P(1) antagonist, increased RVD(40) by 15%. Overall, results indicate that ATP, UTP, and UDP, acting via P(2), are important factors promoting RVD of trout hepatocytes, whereas adenosine binding to P(1) inhibits this process.
Collapse
Affiliation(s)
- D E Pafundo
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
73
|
The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2004. [DOI: 10.1016/j.msec.2003.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
74
|
Thevananther S, Sun H, Li D, Arjunan V, Awad SS, Wyllie S, Zimmerman TL, Goss JA, Karpen SJ. Extracellular ATP activates c-jun N-terminal kinase signaling and cell cycle progression in hepatocytes. Hepatology 2004; 39:393-402. [PMID: 14767992 DOI: 10.1002/hep.20075] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Partial hepatectomy leads to an orchestrated regenerative response, activating a cascade of cell signaling events necessary for cell cycle progression and proliferation of hepatocytes. However, the identity of the humoral factors that trigger the activation of these pathways in the concerted regenerative response in hepatocytes remains elusive. In recent years, extracellular ATP has emerged as a rapidly acting signaling molecule that influences a variety of liver functions, but its role in hepatocyte growth and regeneration is unknown. In this study, we sought to determine if purinergic signaling can lead to the activation of c-jun N-terminal kinase (JNK), a known central player in hepatocyte proliferation and liver regeneration. Hepatocyte treatment with ATPgammaS, a nonhydrolyzable ATP analog, recapitulated early signaling events associated with liver regeneration-that is, rapid and transient activation of JNK signaling, induction of immediate early genes c-fos and c-jun, and activator protein-1 (AP-1) DNA-binding activity. The rank order of agonist preference, UTP>ATP>ATPgammaS, suggests that the effects of extracellular ATP is mediated through the activation of P2Y2 receptors in hepatocytes. ATPgammaS treatment alone and in combination with epidermal growth factor (EGF) substantially increased cyclin D1 and proliferating cell nuclear antigen (PCNA) protein expression and hepatocyte proliferation in vitro. Extracellular ATP as low as 10 nM was sufficient to potentiate EGF-induced cyclin D1 expression. Infusion of ATP by way of the portal vein directly activated hepatic JNK signaling, while infusion of a P2 purinergic receptor antagonist prior to partial hepatectomy inhibited JNK activation. In conclusion, extracellular ATP is a hepatic mitogen that can activate JNK signaling and hepatocyte proliferation in vitro and initiate JNK signaling in regenerating liver in vivo. These findings have implications for enhancing our understanding of novel factors involved in the initiation of regeneration, liver growth, and development.
Collapse
Affiliation(s)
- Sundararajah Thevananther
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Activation of P2Y receptors by released nucleotides subserves important autocrine-paracrine functions in various non-neural tissues. To investigate how P2Y receptors are activated in a neuronal environment, we used PC12 cells in which nucleotides were found to elicit increases in inositol phosphates via P2Y2 and decreases in cAMP via P2Y12 receptors. Depolarization of PC12 cells raised inositol phosphates, and blockade of voltage-gated Ca2+ channels by Cd2+ or degradation of extracellular nucleotides by apyrase prevented this effect. In nondepolarized cells, apyrase did not affect inositol phosphates. Depolarization of PC12 cells also reduced the A2A receptor-mediated synthesis of cAMP. This effect was again prevented by Cd2+ or apyrase, but apyrase enhanced the synthesis of cAMP even in nondepolarized cells. Overexpression of rat P2Y2 receptors increased the nucleotide-dependent inositol phosphate accumulation and enhanced the effect of K+ depolarization. Nevertheless, apyrase still failed to alter spontaneous inositol phosphate accumulation. Expression of rat P2Y1 receptors, in contrast, led to huge increases in spontaneous inositol phosphate accumulation, which was reduced by a receptor antagonist or by apyrase. This increased synthesis of inositol phosphates could not be further enhanced by depolarization or receptor agonists, but when endogenous nucleotides were removed by superfusion, recombinant P2Y1 receptors could be activated to mediate an inhibition of M-type K+ channels. These results indicate that nucleoside diphosphate-sensitive (P2Y12 and P2Y1) receptors are activated by spontaneous nucleotide release, whereas triphosphate-sensitive (P2Y2) receptors require an excess of depolarization-evoked release to become activated.
Collapse
|
76
|
Schwiebert EM, Zsembery A. Extracellular ATP as a signaling molecule for epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1615:7-32. [PMID: 12948585 DOI: 10.1016/s0005-2736(03)00210-4] [Citation(s) in RCA: 357] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The charge of this invited review is to present a convincing case for the fact that cells release their ATP for physiological reasons. Many of our "purinergic" colleagues as well as ourselves have experienced resistance to this concept, because it is teleologically counter-intuitive. This review serves to integrate the three main tenets of extracellular ATP signaling: ATP release from cells, ATP receptors on cells, and ATP receptor-driven signaling within cells to affect cell or tissue physiology. First principles will be discussed in the Introduction concerning extracellular ATP signaling. All possible cellular mechanisms of ATP release will then be presented. Use of nucleotide and nucleoside scavengers as well as broad-specificity purinergic receptor antagonists will be presented as a method of detecting endogenous ATP release affecting a biological endpoint. Innovative methods of detecting released ATP by adapting luciferase detection reagents or by using "biosensors" will be presented. Because our laboratory has been primarily interested in epithelial cell physiology and pathophysiology for several years, the role of extracellular ATP in regulation of epithelial cell function will be the focus of this review. For ATP release to be physiologically relevant, receptors for ATP are required at the cell surface. The families of P2Y G protein-coupled receptors and ATP-gated P2X receptor channels will be introduced. Particular attention will be paid to P2X receptor channels that mediate the fast actions of extracellular ATP signaling, much like neurotransmitter-gated channels versus metabotropic heptahelical neurotransmitter receptors that couple to G proteins. Finally, fascinating biological paradigms in which extracellular ATP signaling has been implicated will be highlighted. It is the goal of this review to convert and attract new scientists into the exploding field of extracellular nucleotide signaling and to convince the reader that extracellular ATP is indeed a signaling molecule.
Collapse
Affiliation(s)
- Erik M Schwiebert
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 35294-0005, USA.
| | | |
Collapse
|
77
|
Moskvina E, Unterberger U, Boehm S. Activity-dependent autocrine-paracrine activation of neuronal P2Y receptors. J Neurosci 2003; 23:7479-88. [PMID: 12930786 PMCID: PMC6740772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Activation of P2Y receptors by released nucleotides subserves important autocrine-paracrine functions in various non-neural tissues. To investigate how P2Y receptors are activated in a neuronal environment, we used PC12 cells in which nucleotides were found to elicit increases in inositol phosphates via P2Y2 and decreases in cAMP via P2Y12 receptors. Depolarization of PC12 cells raised inositol phosphates, and blockade of voltage-gated Ca2+ channels by Cd2+ or degradation of extracellular nucleotides by apyrase prevented this effect. In nondepolarized cells, apyrase did not affect inositol phosphates. Depolarization of PC12 cells also reduced the A2A receptor-mediated synthesis of cAMP. This effect was again prevented by Cd2+ or apyrase, but apyrase enhanced the synthesis of cAMP even in nondepolarized cells. Overexpression of rat P2Y2 receptors increased the nucleotide-dependent inositol phosphate accumulation and enhanced the effect of K+ depolarization. Nevertheless, apyrase still failed to alter spontaneous inositol phosphate accumulation. Expression of rat P2Y1 receptors, in contrast, led to huge increases in spontaneous inositol phosphate accumulation, which was reduced by a receptor antagonist or by apyrase. This increased synthesis of inositol phosphates could not be further enhanced by depolarization or receptor agonists, but when endogenous nucleotides were removed by superfusion, recombinant P2Y1 receptors could be activated to mediate an inhibition of M-type K+ channels. These results indicate that nucleoside diphosphate-sensitive (P2Y12 and P2Y1) receptors are activated by spontaneous nucleotide release, whereas triphosphate-sensitive (P2Y2) receptors require an excess of depolarization-evoked release to become activated.
Collapse
Affiliation(s)
- Eugenia Moskvina
- Institute of Pharmacology, University of Vienna, A-1090 Vienna, Austria
| | | | | |
Collapse
|
78
|
Buckley KA, Golding SL, Rice JM, Dillon JP, Gallagher JA. Release and interconversion of P2 receptor agonists by human osteoblast-like cells. FASEB J 2003; 17:1401-10. [PMID: 12890693 DOI: 10.1096/fj.02-0940com] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleotides, acting as agonists at P2 receptors, are important extracellular signaling molecules in many tissues. In bone they affect both bone-forming osteoblast and bone-resorbing osteoclast cell activity. The presence of nucleotides in the extracellular microenvironment is largely determined by their release from cells and metabolism by ecto-enzymes, both of which have scarcely been studied in bone. We have investigated adenosine 5'-triphosphate (ATP) release from SaOS-2 osteoblastic cells and the activities of cell surface ecto-enzymes on ATP metabolism. ATP, but not LDH, was detected in SaOS-2 cell conditioned medium, suggesting these cells were actively releasing ATP. Introduction of ADP resulted in increased ATP concentrations in the medium, which was found not to be receptor mediated. Nucleotide inhibition and substrate specificity studies revealed an ecto-nucleoside diphosphokinase (ecto-NDPK) was responsible for the ADP-->ATP conversion; PCR and immunocytochemistry confirmed its presence. Analysis of ATP metabolism over time demonstrated overall ATP degradation was increased by inhibiting ecto-NDPK activity; confirming that the combined action of multiple osteoblast-expressed ecto-enzymes affected extracellular nucleotide concentration. The data establish the coexistence of ATP-consuming, and for the first time, ATP-generating activities on the osteoblast cell surface, the discovery of which has significant implications for studies involving P2 receptor subtypes in bone.
Collapse
Affiliation(s)
- K A Buckley
- Human Bone Cell Research Group, Department of Human Anatomy and Cell Biology, University of Liverpool, L69 3GE, UK.
| | | | | | | | | |
Collapse
|
79
|
Sung YJ, Sung Z, Ho CL, Lin MT, Wang JS, Yang SC, Chen YJ, Lin CH. Intercellular calcium waves mediate preferential cell growth toward the wound edge in polarized hepatic cells. Exp Cell Res 2003; 287:209-18. [PMID: 12837277 DOI: 10.1016/s0014-4827(03)00160-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During liver regeneration, hepatocytes sense the damage and initiate proliferation of the quiescent cells through poorly understood mechanisms. Here, we have used cultured hepatic cells to study the roles played by intercellular calcium in mediating wound-healing processes. Well-differentiated and polarized Hep-G2 cells repaired an experimentally induced wound by induction of cell divisions. The resulting cellular growth did not occur evenly across the healing cell lawn; instead, proliferations were three times more active within 150-200 microm from the wound edge than further away; this periwound preferential cell growth was not observed in the poorly differentiated and/or nonpolarized cells. We have provided experimental evidence demonstrating that the wounding procedure itself could elicit a propagating calcium wave, and interestingly, blocking this injury-associated intercellular calcium communication could effectively inhibit the biased cell growth along the margin of the wound. A photolithography-based patterned cell culture system was employed to help delineate the mechanisms underlying this type of calcium signaling. In conclusion, our results suggested that intercellular communications via propagating calcium waves coordinate regenerative cell proliferations in response to hepatic tissue losses.
Collapse
Affiliation(s)
- Yen-Jen Sung
- Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Silva SN, Pereira MM, Goes AM, Leite MF. Effect of biphasic calcium phosphate on human macrophage functions in vitro. J Biomed Mater Res A 2003; 65:475-81. [PMID: 12761838 DOI: 10.1002/jbm.a.10544] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bioceramics may initiate several and complex biological reactions in host tissues. The cell-biomaterial interaction can determine macrophage activation that may elicit and sustain inflammatory response at the implant site. The current study describes some of the in vitro phenomena regarding the effect of surface reactivity of biphasic calcium phosphate (BCP) granules on human macrophages locomotion and secretion. X-ray diffraction analysis indicated that the synthesized ceramic presented 80% hydroxyapatite and 20% tricalcium phosphate. When BCP was put in contact with human macrophage cells, we observed that cells and BCP granules attached to each other. Cells attached to BCP presented a higher intracellular free Ca(2+) concentration compared with nonattached neighbors and secreted calcium phosphate particles into the medium. Energy dispersive X-ray analysis showed that the secreted particles presented a calcium/phosphorus ratio of 1.64 +/- 0.05, similar to hydroxyapatite. We propose that the secreted particles create a transition zone that allows further macrophage adhesion.
Collapse
Affiliation(s)
- S N Silva
- Departamento de Eng. Metalúrgica e de Materiais, Universidade Federal de Minas Gerais, Rua Espírito Santo, 35-sala 206, Belo Horizonte-MG-30160-030, Brazil
| | | | | | | |
Collapse
|
81
|
Novak I, Amstrup J, Henriksen KL, Hede SE, Sørensen CE. ATP release and effects in pancreas. Drug Dev Res 2003. [DOI: 10.1002/ddr.10192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
82
|
Leite MF, Thrower EC, Echevarria W, Koulen P, Hirata K, Bennett AM, Ehrlich BE, Nathanson MH. Nuclear and cytosolic calcium are regulated independently. Proc Natl Acad Sci U S A 2003; 100:2975-80. [PMID: 12606721 PMCID: PMC151451 DOI: 10.1073/pnas.0536590100] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nuclear calcium (Ca(2+)) regulates a number of important cellular processes, including gene transcription, growth, and apoptosis. However, it is unclear whether Ca(2+) signaling is regulated differently in the nucleus and cytosol. To investigate this possibility, we examined subcellular mechanisms of Ca(2+) release in the HepG2 liver cell line. The type II isoform of the inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) was expressed to a similar extent in the endoplasmic reticulum and nucleus, whereas the type III InsP(3)R was concentrated in the endoplasmic reticulum, and the type I isoform was not expressed. Ca(2+) signals induced by low InsP(3) concentrations started earlier or were larger in the nucleus than in the cytosol, indicating higher sensitivity of nuclear Ca(2+) stores for InsP(3). Nuclear InsP(3)R channels were active at lower InsP(3) concentrations than InsP(3)R from cytosol. Enriched expression of type II InsP(3)R in the nucleus results in greater sensitivity of the nucleus to InsP(3), thus providing a mechanism for independent regulation of Ca(2+)-dependent processes in this cellular compartment.
Collapse
Affiliation(s)
- M F Leite
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, CEP 30310-100, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
P2 membrane receptors are specifically activated by extracellular nucleotides like ATP, ADP, UTP, and UDP. P2 receptors are subdivided into metabotropic P2Y and ionotropic P2X receptors. They are expressed in all tissues and induce a variety of biological effects. In epithelia, they are found in both the basolateral and the luminal membranes. Their widespread luminal expression in nearly all transporting epithelia and their effect on transport are summarized. The P2Y(2) receptor is a prominent luminal receptor in many epithelia. Other luminal P2 receptors include the P2X(7), P2Y(4), and P2Y(6) receptors. Functionally, luminal P2Y(2) receptor activation elicits differential effects on ion transport. In nearly all secretory epithelia, intracellular Ca(2+) concentration-activated ion conductances are stimulated by luminal nucleotides to induce Cl(-), K(+), or HCO(3)(-) secretion. This encompasses respiratory and various gastrointestinal epithelia or tissues like the conjunctiva of the eye and the epithelium of sweat glands. In the distal nephron, all active transport processes appear to be inhibited by luminal nucleotides. P2Y(2) receptors inhibit Ca(2+) and Na(+) absorption and K(+) secretion. Commonly, in all steroid-sensitive epithelia (lung, distal nephron, and distal colon), luminal ATP/UTP inhibits epithelial Na(+) channel-meditated Na(+) absorption. ATP is readily released from epithelial cells onto their luminal aspect, where ecto-nucleotidases promote their metabolism. Adenosine generated by the action of 5'-nucleotidase may elicit further effects on ion transport, often opposite those of ATP. ATP release from epithelia continues to be poorly understood. Integrated functional concepts for luminal P2 receptors are suggested: 1) luminal P2 receptors are part of an epithelial "secretory" defense mechanism; 2) they may be involved in the regulation of cell volume when transcellular solute transport is out of balance; 3) ATP and adenosine may be important autocrine/paracrine regulators mediating cellular protection and regeneration after ischemic cell damage; and 4) ATP and adenosine have been suggested to mediate renal cyst growth and enlargement in polycystic kidney disease.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Physiology, The Water and Salt Research Center, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
84
|
Decoding calcium wave signaling. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
85
|
Affiliation(s)
- M Fatima Leite
- Department of Physiology and Biophysics, UFMG, Belo Horizonte, Brazil
| | | |
Collapse
|
86
|
Wood E, Broekman MJ, Kirley TL, Diani-Moore S, Tickner M, Drosopoulos JHF, Islam N, Park JI, Marcus AJ, Rifkind AB. Cell-type specificity of ectonucleotidase expression and upregulation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Biochem Biophys 2002; 407:49-62. [PMID: 12392715 DOI: 10.1016/s0003-9861(02)00465-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report here that induction of ectoATPase by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is cell-type specific and not a generalized response to aryl hydrocarbon (Ah) receptor activation. TCDD increased [14C]-ATP and -ADP metabolism in two mouse hepatoma lines, Hepa1c1c7 and Hepa1-6 cells, but not in human hepatoma HepG2 or HuH-7 cells, human umbilical vein endothelial cells (HUVEC), chick hepatoma (LMH) cells, or chick primary hepatocytes or cardiac myocytes, even though all of those cell types were Ah receptor-responsive, as evidenced by cytochrome P4501A induction. To determine whether the differences in ectonucleotidase responsiveness to TCDD might be related to differences in cell-type ectonucleotidase expression, ATP and ADP metabolite patterns, the products of several classes of ectonucleotidases including ectonucleoside triphosphate diphosphohydrolases (E-NTPDases), ectophosphodiesterase/pyrophosphatases (E-NPP enzymes) and ectoalkaline phosphatase activities were examined. Those patterns, together with results of enzyme assays, Western blotting, or semiquantitative RT-PCR show that NTPDase2 is the main ectonucleotidase for murine and human hepatoma cells, NTPDase3 for chick hepatocytes and LMH cells, and an E-NPP enzyme for chick cardiac myocytes. Evidence for NTPDase2 expression was lacking in all cells except the mouse and human hepatoma cells. TCDD increased expression of the NTPDase2 gene but only in the mouse and not in the human hepatoma cells. TCDD did not increase NTPDase3, NTPDase1, E-NPP, or alkaline phosphatase in any of the cell types examined. The failure of TCDD to increase ATP metabolism in HUVEC, chick LMH cells, hepatocytes, and cardiac myocytes can be attributed to their lack of NTPDase2 expression, while the increase in ATP metabolism by TCDD in the mouse but not the human hepatoma cells can be explained by differences in TCDD effects on mouse and human hepatoma NTPDase2 gene expression. In addition to characterizing effects of TCDD on ectonucleotidases, these studies reveal major differences in the complements of ectonucleotidases present in different cell types. It is likely that such differences are important for cell-specific susceptibility to extracellular nucleotide toxicity and responses to purinergic signaling.
Collapse
Affiliation(s)
- Emily Wood
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP. Seven genes in vertebrates encode P2X receptor subunits, which are 40-50% identical in amino acid sequence. Each subunit has two transmembrane domains, separated by an extracellular domain (approximately 280 amino acids). Channels form as multimers of several subunits. Homomeric P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 channels and heteromeric P2X2/3 and P2X1/5 channels have been most fully characterized following heterologous expression. Some agonists (e.g., alphabeta-methylene ATP) and antagonists [e.g., 2',3'-O-(2,4,6-trinitrophenyl)-ATP] are strongly selective for receptors containing P2X1 and P2X3 subunits. All P2X receptors are permeable to small monovalent cations; some have significant calcium or anion permeability. In many cells, activation of homomeric P2X7 receptors induces a permeability increase to larger organic cations including some fluorescent dyes and also signals to the cytoskeleton; these changes probably involve additional interacting proteins. P2X receptors are abundantly distributed, and functional responses are seen in neurons, glia, epithelia, endothelia, bone, muscle, and hemopoietic tissues. The molecular composition of native receptors is becoming understood, and some cells express more than one type of P2X receptor. On smooth muscles, P2X receptors respond to ATP released from sympathetic motor nerves (e.g., in ejaculation). On sensory nerves, they are involved in the initiation of afferent signals in several viscera (e.g., bladder, intestine) and play a key role in sensing tissue-damaging and inflammatory stimuli. Paracrine roles for ATP signaling through P2X receptors are likely in neurohypophysis, ducted glands, airway epithelia, kidney, bone, and hemopoietic tissues. In the last case, P2X7 receptor activation stimulates cytokine release by engaging intracellular signaling pathways.
Collapse
Affiliation(s)
- R Alan North
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield, United Kingdom.
| |
Collapse
|
88
|
Junankar PR, Karjalainen A, Kirk K. The role of P2Y1 purinergic receptors and cytosolic Ca2+ in hypotonically activated osmolyte efflux from a rat hepatoma cell line. J Biol Chem 2002; 277:40324-34. [PMID: 12138101 DOI: 10.1074/jbc.m204712200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of HTC rat hepatoma cells to a 33% decrease in extracellular osmolality caused the cytosolic Ca(2+) concentration ([Ca(2+)](i)) to increase transiently by approximately 90 nm. This rise in [Ca(2+)](i) was inhibited strongly by apyrase, grade VII (which has a low ATP/ADPase ratio) but not by apyrase grade VI (which has a high ATP/ADPase ratio) or hexokinase, indicating that extracellular ADP and/or ATP play a role in the [Ca(2+)](i) increase. The hypotonically induced rise in [Ca(2+)](i) was prevented by the prior discharge of the intracellular Ca(2+) store of the cells by thapsigargin. Removal of extracellular Ca(2+) or inhibition of Ca(2+) influx by 1-10 microm Gd(3+) depleted the thapsigargin-sensitive Ca(2+) stores and thereby diminished the rise in [Ca(2+)](i). The hypotonically induced rise in [Ca(2+)](i) was prevented by adenosine 2'-phosphate-5'-phosphate (A2P5P) and pyridoxyl-5'-phosphate-6-azophenyl-2',4'-disulfonate, inhibitors of purinergic P2Y(1) receptors for which ADP is a major agonist. Both inhibitors also blocked the rise in [Ca(2+)](i) elicited by addition of ADP to cells in isotonic medium, whereas A2P5P had no effect on the rise in [Ca(2+)](i) elicited by the addition of the P2Y(2) and P2Y(4) receptor agonist, UTP. HTC cells were shown to express mRNA encoding for rat P2Y(1), P2Y(2), and P2Y(6) receptors. Inhibition of the hypotonically induced rise in [Ca(2+)](i) blocked hypotonically induced K(+) ((86)Rb(+)) efflux, modulated the hypotonically induced efflux of taurine, but had no significant effect on Cl(-) ((125)I-) efflux. The interaction of extracellular ATP and/or ADP with P2Y(1) purinergic receptors therefore plays a role in the response of HTC cells to osmotic swelling but does not account for activation of all the efflux pathways involved in the volume-regulatory response.
Collapse
Affiliation(s)
- Pauline R Junankar
- School of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
89
|
Jacobson KA, Jarvis MF, Williams M. Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 2002; 45:4057-93. [PMID: 12213051 DOI: 10.1021/jm020046y] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases/NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
90
|
Bode HP, Wang L, Cassio D, Leite MF, St-Pierre MV, Hirata K, Okazaki K, Sears ML, Meda P, Nathanson MH, Dufour JF. Expression and regulation of gap junctions in rat cholangiocytes. Hepatology 2002; 36:631-40. [PMID: 12198655 DOI: 10.1053/jhep.2002.35274] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocytes and other digestive epithelia exchange second messengers and coordinate their functions by communicating through gap junctions. However, little is known about intercellular communication in cholangiocytes. The aim of this study was to examine expression and regulation of gap junctions in cholangiocytes. Connexin expression was determined by confocal immunofluorescence in rat bile ducts and in normal rat cholangiocyte (NRC) cells, a polarized cholangiocyte cell line. Intercellular Ca(2+) signaling was monitored by fluorescent microscopy. Microinjection studies assessed regulation of gap junction permeability in NRC cells and in SKHep1 cells, a liver-derived cell line engineered to express connexin 43. Immunochemistry showed that cholangiocytes from normal rat liver as well as the NRC cells express connexin 43. Localization of apical, basolateral, and tight junction proteins confirmed that NRC cells are well polarized. Apical exposure to ATP induced Ca(2+) oscillations that were coordinated among neighboring NRC cells, and inhibition of gap junction conductance desynchronized the Ca(2+) oscillations. NRC cells transfected with a connexin 43 antisense were significantly less coupled. Transcellular dye spreading was inhibited by activation of protein kinase A or protein kinase C. The same was observed in transfected SKHep1 cells, which expressed only connexin 43. Rat cholangiocytes and NRC cells express connexin 43, which permits synchronization of Ca(2+) signals among cells. Permeability of connexin 43-gap junctions is negatively regulated by protein kinases A and C. In conclusion, cholangiocytes have the capacity for intercellular communication of second messenger signals via gap junctions in a fashion that is under hormonal control.
Collapse
Affiliation(s)
- Hans-Peter Bode
- Department of Gastroenterology, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Alvarado-Castillo C, Lozano-Zarain P, Mateo J, Harden TK, Boyer JL. A fusion protein of the human P2Y(1) receptor and NTPDase1 exhibits functional activities of the native receptor and ectoenzyme and reduced signaling responses to endogenously released nucleotides. Mol Pharmacol 2002; 62:521-8. [PMID: 12181428 DOI: 10.1124/mol.62.3.521] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To begin to address the functional interactions between constitutively released nucleotides, ectonucleotidase activity, and P2Y receptor-promoted signaling responses, we engineered the human P2Y(1) receptor in a fusion protein with a member of the ectonucleoside triphosphate diphosphohydrolase family, NTPDase1. Membranes prepared from Chinese hamster ovary (CHO)-K1 cells stably expressing either wild-type NTPDase1 or the P2Y(1) receptor-NTPDase1 fusion protein exhibited nucleotide-hydrolytic activities that were over 300-fold greater than activity measured in membranes from empty vector-transfected cells. The molecular ratio for nucleoside triphosphate versus diphosphate hydrolysis was approximately 1:0.4 for both the wild-type NTPDase1 and P2Y(1)-NTPDase1 fusion protein. Stable expression of the P2Y(1)-NTPDase1 fusion protein conferred an ADP and 2MeSADP-promoted Ca(2+) response to CHO-K1 cells. Moreover, the maximal capacity of the nonhydrolyzable agonist ADPbetaS to stimulate inositol phosphate accumulation was similar, and the EC(50) of ADPbetaS was lower in the fusion protein than the wild-type receptor. In contrast, the substantial nucleotide-hydrolyzing activity of the fusion protein resulted in a greater than 50-fold shift to the right of the concentration-effect curve of ADP for activation of phospholipase C compared with the wild-type receptor. Heterologous expression of the P2Y(1) and other P2Y receptors results in marked increases in basal inositol phosphate levels. Given the high nucleotidase activity and apparently normal receptor signaling activity of the P2Y(1) receptor-NTPDase1 fusion protein, we quantitated basal inositol phosphate accumulation in cells stably expressing either the wild-type P2Y(1) receptor or the fusion protein. Although marked elevation of inositol phosphate levels occurred with wild-type P2Y(1) receptor expression, levels in cells expressing the fusion protein were not different from those in wild-type CHO-K1 cells.
Collapse
Affiliation(s)
- Claudia Alvarado-Castillo
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | |
Collapse
|
92
|
Sauer H, Stanelle R, Hescheler J, Wartenberg M. The DC electrical-field-induced Ca2+ response and growth stimulation of multicellular tumor spheroids are mediated by ATP release and purinergic receptor stimulation. J Cell Sci 2002; 115:3265-73. [PMID: 12140258 DOI: 10.1242/jcs.115.16.3265] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It has been demonstrated that adenosine 5′-triphosphate (ATP) is actively secreted by cells, thereby eliciting Ca2+-dependent signal transduction cascades in an autocrine and paracrine manner. In the present study the effects of direct current (DC) electrical fields on ATP release, the intracellular Ca2+ concentration [Ca2+]i and growth of multicellular prostate tumor spheroids were investigated. Treatment of multicellular tumor spheroids by a single DC electrical field pulse with a field strength of 750 Vm-1 for 60 seconds resulted in a transient Ca2+ response, activation of c-Fos and growth stimulation. The initial [Ca2+]i signal was elicited at the anode-facing side of the spheroid and spread with a velocity of approximately 12 μm per second across the spheroid surface. The electrical-field-evoked Ca2+ response as well as c-Fos activation and growth stimulation of tumor spheroids were inhibited by pretreatment with the anion channel blockers NPPB, niflumic acid and tamoxifen. Furthermore, the Ca2+ response elicited by electrical field treatment was abolished following purinergic receptor desensitivation by repetitive treatment of tumor spheroids with ATP and pretreatment with the purinergic receptor antagonist suramin as well as with apyrase. Electrical field treatment of tumor spheroids resulted in release of ATP into the supernatant as evaluated by luciferin/luciferase bioluminescence. ATP release was efficiently inhibited in the presence of anion channel blockers. Our data suggest that electrical field treatment of multicellular tumor spheroids results in ATP release, which concomitantly activates purinergic receptors, elicits a Ca2+ wave spreading through the tumor spheroid tissue and stimulates tumor growth.
Collapse
Affiliation(s)
- Heinrich Sauer
- Department of Neurophysiology, University of Cologne, Robert-Koch-Strasse 39, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
93
|
Hirata K, Dufour JF, Shibao K, Knickelbein R, O'Neill AF, Bode HP, Cassio D, St-Pierre MV, LaRusso NF, Leite MF, Nathanson MH. Regulation of Ca(2+) signaling in rat bile duct epithelia by inositol 1,4,5-trisphosphate receptor isoforms. Hepatology 2002; 36:284-96. [PMID: 12143036 PMCID: PMC2987686 DOI: 10.1053/jhep.2002.34432] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cytosolic Ca(2+) (Ca(i)(2+)) regulates secretion of bicarbonate and other ions in the cholangiocyte. In other cell types, this second messenger acts through Ca(2+) waves, Ca(2+) oscillations, and other subcellular Ca(2+) signaling patterns, but little is known about the subcellular organization of Ca(2+) signaling in cholangiocytes. Therefore, we examined Ca(2+) signaling and the subcellular distribution of Ca(2+) release channels in cholangiocytes and in a model cholangiocyte cell line. The expression and subcellular distribution of inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) isoforms and the ryanodine receptor (RyR) were determined in cholangiocytes from normal rat liver and in the normal rat cholangiocyte (NRC) polarized bile duct cell line. Subcellular Ca(2+) signaling in cholangiocytes was examined by confocal microscopy. All 3 InsP(3)R isoforms were expressed in cholangiocytes, whereas RyR was not expressed. The type III InsP(3)R was the most heavily expressed isoform at the protein level and was concentrated apically, whereas the type I and type II isoforms were expressed more uniformly. The type III InsP(3)R was expressed even more heavily in NRC cells but was concentrated apically in these cells as well. Adenosine triphosphate (ATP), which increases Ca(2+) via InsP(3) in cholangiocytes, induced Ca(2+) oscillations in both cholangiocytes and NRC cells. Acetylcholine (ACh) induced apical-to-basal Ca(2+) waves. In conclusion, Ca(2+) signaling in cholangiocytes occurs as polarized Ca(2+) waves that begin in the region of the type III InsP(3)R. Differential subcellular localization of InsP(3)R isoforms may be an important molecular mechanism for the formation of Ca(2+) waves and oscillations in cholangiocytes. Because Ca(i)(2+) is in part responsible for regulating ductular secretion, these findings also may have implications for the molecular basis of cholestatic disorders.
Collapse
Affiliation(s)
- Keiji Hirata
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | | | - Kazunori Shibao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Roy Knickelbein
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Allison F. O'Neill
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Hans-Peter Bode
- Department of Gastroenterology, University of Bern, Bern, Switzerland
| | | | - Marie V. St-Pierre
- Department of Clinical Pharmacology, University of Zürich, Zürich, Switzerland
| | | | - M. Fatima Leite
- Department of Physiology and Biophysics, UFMG, Belo Horizonte, Brazil
| | - Michael H. Nathanson
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
94
|
Pusl T, Wu JJ, Zimmerman TL, Zhang L, Ehrlich BE, Berchtold MW, Hoek JB, Karpen SJ, Nathanson MH, Bennett AM. Epidermal growth factor-mediated activation of the ETS domain transcription factor Elk-1 requires nuclear calcium. J Biol Chem 2002; 277:27517-27. [PMID: 11971908 DOI: 10.1074/jbc.m203002200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic and nuclear Ca(2+) have been shown to differentially regulate transcription. However, the impact of spatially distinct Ca(2+) signals on mitogen-activated protein kinase-mediated gene expression remains unknown. Here we investigated the role of nuclear and cytosolic Ca(2+) signals in epidermal growth factor (EGF)-induced transactivation of the ternary complex factor Elk-1 using a GAL4-Elk-1 construct. EGF increased Ca(2+) in both the nucleus and cytosol of HepG2 or 293 cells. Pretreatment with the intracellular Ca(2+) chelator bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetraacetic acid significantly reduced EGF-induced transactivation of Elk-1, indicating that EGF-stimulated Elk-1 transcriptional activity is dependent on intracellular Ca(2+). To determine the relative contribution of nuclear and cytosolic Ca(2+) signals during EGF-mediated Elk-1 transactivation, Ca(2+) signals in either compartment were selectively impaired by targeted expression of the Ca(2+)-binding protein parvalbumin to either the nucleus or cytosol. Suppression of nuclear but not cytosolic Ca(2+) signals inhibited EGF-induced transactivation of Elk-1. However, suppression of nuclear Ca(2+) signals did not affect the ability of ERK either to become phosphorylated or to undergo translocation to the nucleus in response to EGF. Elk-1 phosphorylation and nuclear localization following EGF stimulation were also unaffected by suppressing nuclear Ca(2+) signals. These results suggest that nuclear Ca(2+) is required for EGF-mediated transcriptional activation of Elk-1 and that phosphorylation of Elk-1 alone is not sufficient to induce its transcriptional activation in response to EGF. Thus, subcellular targeting of parvalbumin reveals a distinct role for nuclear Ca(2+) signals in mitogen-activated protein kinase-mediated gene transcription.
Collapse
Affiliation(s)
- Thomas Pusl
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
O'Neill AF, Hagar RE, Zipfel WR, Nathanson MH, Ehrlich BE. Regulation of the type III InsP(3) receptor by InsP(3) and calcium. Biochem Biophys Res Commun 2002; 294:719-25. [PMID: 12056830 DOI: 10.1016/s0006-291x(02)00524-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been proposed that the inositol 1,4,5-trisphosphate receptor (InsP(3)R) type III acts as a trigger for InsP(3)-mediated calcium (Ca(2+)) signaling, because this InsP(3) isoform lacks feedback inhibition by cytosolic Ca(2+). We tested this hypothesis in RIN-m5F cells, which express predominantly the type III receptor. Extracellular ATP increases Ca(2+) in these cells, and we found that this effect is independent of extracellular Ca(2+) but is blocked by the InsP(3)R antagonist heparin. There was a dose-dependent increase in the number of cells responding to ATP and two-photon flash photolysis of caged-Ca(2+) heightened the sensitivity of RIN-m5F cells to this increase. These findings provide evidence that Ca(2+) increases the sensitivity of the InsP(3)R type III in intact cells and supports the idea that this isoform can act as a trigger for hormone-induced Ca(2+) signaling.
Collapse
|
96
|
Leite MF, Hirata K, Pusl T, Burgstahler AD, Okazaki K, Ortega JM, Goes AM, Prado MAM, Spray DC, Nathanson MH. Molecular basis for pacemaker cells in epithelia. J Biol Chem 2002; 277:16313-23. [PMID: 11850419 DOI: 10.1074/jbc.m109207200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Intercellular signaling is highly coordinated in excitable tissues such as heart, but the organization of intercellular signaling in epithelia is less clear. We examined Ca(2+) signaling in hepatoma cells expressing the hepatocyte gap junction protein connexin32 (cx32) or the cardiac gap junction protein cx43, plus a fluorescently tagged V(1a) vasopressin receptor (V(1a)R). Release of inositol 1,4,5-trisphosphate (InsP(3)) in wild type cells increased Ca(2+) in the injected cell but not in neighboring cells, while the Ca(2+) signal spread to neighbors when gap junctions were expressed. Photorelease of caged Ca(2+) rather than InsP(3) resulted in a small increase in Ca(2+) that did not spread to neighbors with or without gap junctions. However, photorelease of Ca(2+) in cells stimulated with low concentrations of vasopressin resulted in a much larger increase in Ca(2+), which spread to neighbors via gap junctions. Cells expressing tagged V(1a)R similarly had increased sensitivity to vasopressin, and could signal to neighbors via gap junctions. Higher concentrations of vasopressin elicited Ca(2+) signals in all cells. In cx32 or cx43 but not in wild type cells, this signaling was synchronized and began in cells expressing the tagged V(1a)R. Thus, intercellular Ca(2+) signals in epithelia are organized by three factors: 1) InsP(3) must be generated in each cell to support a Ca(2+) signal in that cell; 2) gap junctions are necessary to synchronize Ca(2+) signals among cells; and 3) cells with relatively increased expression of hormone receptor will initiate Ca(2+) signals and thus serve as pacemakers for their neighbors. Together, these factors may allow epithelia to act in an integrated, organ-level fashion rather than as a collection of isolated cells.
Collapse
Affiliation(s)
- M Fatima Leite
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Katsuragi T, Sato C, Guangyuan L, Honda K. Inositol(1,4,5)trisphosphate signal triggers a receptor-mediated ATP release. Biochem Biophys Res Commun 2002; 293:686-90. [PMID: 12054523 DOI: 10.1016/s0006-291x(02)00272-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular signal transduction pathways involved in ATP release evoked by angiotensin II (Ang II) were investigated in cultured guinea pig Taenia coli smooth muscle cells. Ang II (0.3-1 microM) elicited substantial release of ATP from the cells, but not from a human fibroblast cell line. However, Ang II even at 10 microM failed to cause a leakage of lactate dehydrogenase (LDH) from the smooth muscle cells. The release of ATP by Ang II was suppressed by 10 microM SC52458, an AT1 receptor antagonist, not by 10 microM PD123319, an AT2 receptor antagonist. The evoked release of ATP was almost completely inhibited in the presence of 10 microM U73122, a phospholipase C inhibitor, and 0.5 microM thapsigargin, a Ca2+-ATPase inhibitor. Furthermore, the release was hampered by 50 microM BAPTA/AM, an intracellular Ca2+ chelator, but not by 0.1 microM nifedipine, a voltage gated Ca2+ channel inhibitor. The basal release of ATP was increased by BAPTA/AM, but was reduced by U-73122. Ang II enhanced instantaneously inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) accumulation in the cells. The enhancing effect was perfectly antagonized by SC52458. These findings suggest that intracellular Ca2+ signals activated via stimulation of Ins(1,4,5)P3 receptor are involved in the release of ATP evoked by Ang II.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Angiotensin II/pharmacology
- Animals
- Calcium Channels/metabolism
- Calcium Signaling
- Cell Line
- Cells, Cultured
- Colon/cytology
- Guinea Pigs
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Pyridines/pharmacology
- Receptor, Angiotensin, Type 1
- Receptors, Angiotensin/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Tetrazoles/pharmacology
Collapse
Affiliation(s)
- Takeshi Katsuragi
- Department of Pharmacology, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | | | | |
Collapse
|
98
|
Hirata K, Pusl T, O'Neill AF, Dranoff JA, Nathanson MH. The type II inositol 1,4,5-trisphosphate receptor can trigger Ca2+ waves in rat hepatocytes. Gastroenterology 2002; 122:1088-100. [PMID: 11910359 DOI: 10.1053/gast.2002.32363] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Ca2+ regulates cell functions through signaling patterns such as Ca2+ oscillations and Ca2+ waves. The type I inositol 1,4,5-trisphosphate receptor is thought to support Ca2+ oscillations, whereas the type III inositol 1,4,5-trisphosphate receptor is thought to initiate Ca2+ waves. The role of the type II inositol 1,4,5-trisphosphate receptor is less clear, because it behaves like the type III inositol 1,4,5-trisphosphate receptor at the single-channel level but can support Ca2+ oscillations in intact cells. Because the type II inositol 1,4,5-trisphosphate receptor is the predominant isoform in liver, we examined whether this isoform can trigger Ca2+ waves in hepatocytes. METHODS The expression and distribution of inositol 1,4,5-trisphosphate receptor isoforms was examined in rat liver by immunoblot and confocal immunofluorescence. The effects of inositol 1,4,5-trisphosphate on Ca2+ signaling were examined in isolated rat hepatocyte couplets by using flash photolysis and time-lapse confocal microscopy. RESULTS The type II inositol 1,4,5-trisphosphate receptor was concentrated near the canalicular pole in hepatocytes, whereas the type I inositol 1,4,5-trisphosphate receptor was found elsewhere. Stimulation of hepatocytes with vasopressin or directly with inositol 1,4,5-trisphosphate induced Ca2+ waves that began in the canalicular region and then spread to the rest of the cell. Inositol 1,4,5-Trisphosphate-induced Ca2+ signals also increased more rapidly in the canalicular region. Hepatocytes did not express the ryanodine receptor, and cyclic adenosine diphosphate-ribose had no effect on Ca2+ signaling in these cells. CONCLUSIONS The type II inositol 1,4,5-trisphosphate receptor establishes a pericanalicular trigger zone from which Ca2+ waves originate in hepatocytes.
Collapse
Affiliation(s)
- Keiji Hirata
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019, USA
| | | | | | | | | |
Collapse
|
99
|
Schuster S, Marhl M, Höfer T. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1333-55. [PMID: 11874447 DOI: 10.1046/j.0014-2956.2001.02720.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review provides a comparative overview of recent developments in the modelling of cellular calcium oscillations. A large variety of mathematical models have been developed for this wide-spread phenomenon in intra- and intercellular signalling. From these, a general model is extracted that involves six types of concentration variables: inositol 1,4,5-trisphosphate (IP3), cytoplasmic, endoplasmic reticulum and mitochondrial calcium, the occupied binding sites of calcium buffers, and the fraction of active IP3 receptor calcium release channels. Using this framework, the models of calcium oscillations can be classified into 'minimal' models containing two variables and 'extended' models of three and more variables. Three types of minimal models are identified that are all based on calcium-induced calcium release (CICR), but differ with respect to the mechanisms limiting CICR. Extended models include IP3--calcium cross-coupling, calcium sequestration by mitochondria, the detailed gating kinetics of the IP3 receptor, and the dynamics of G-protein activation. In addition to generating regular oscillations, such models can describe bursting and chaotic calcium dynamics. The earlier hypothesis that information in calcium oscillations is encoded mainly by their frequency is nowadays modified in that some effect is attributed to amplitude encoding or temporal encoding. This point is discussed with reference to the analysis of the local and global bifurcations by which calcium oscillations can arise. Moreover, the question of how calcium binding proteins can sense and transform oscillatory signals is addressed. Recently, potential mechanisms leading to the coordination of oscillations in coupled cells have been investigated by mathematical modelling. For this, the general modelling framework is extended to include cytoplasmic and gap-junctional diffusion of IP3 and calcium, and specific models are compared. Various suggestions concerning the physiological significance of oscillatory behaviour in intra- and intercellular signalling are discussed. The article is concluded with a discussion of obstacles and prospects.
Collapse
Affiliation(s)
- Stefan Schuster
- Max Delbrück Centre for Molecular Medicine, Department of Bioinformatics, Berlin-Buch, Germany.
| | | | | |
Collapse
|
100
|
Bankir L, Ahloulay M, Devreotes PN, Parent CA. Extracellular cAMP inhibits proximal reabsorption: are plasma membrane cAMP receptors involved? Am J Physiol Renal Physiol 2002; 282:F376-92. [PMID: 11832418 DOI: 10.1152/ajprenal.00202.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glucagon binding to hepatocytes has been known for a long time to not only stimulate intracellular cAMP accumulation but also, intriguingly, induce a significant release of liver-borne cAMP in the blood. Recent experiments have shown that the well-documented but ill-understood natriuretic and phosphaturic actions of glucagon are actually mediated by this extracellular cAMP, which inhibits the reabsorption of sodium and phosphate in the renal proximal tubule. The existence of this "pancreato-hepatorenal cascade" indicates that proximal tubular reabsorption is permanently influenced by extracellular cAMP, the concentration of which is most probably largely dependent on the insulin-to-glucagon ratio. The possibility that renal cAMP receptors may be involved in this process is supported by the fact that cAMP has been shown to bind to brush-border membrane vesicles. In other cell types (i.e., adipocytes, erythrocytes, glial cells, cardiomyocytes), cAMP eggress and/or cAMP binding have also been shown to occur, suggesting additional paracrine effects of this nucleotide. Although not yet identified in mammals, cAMP receptors (cARs) are already well characterized in lower eukaryotes. The amoeba Dictyostelium discoideum expresses four different cARs during its development into a multicellular organism. cARs belong to the superfamily of seven transmembrane domain G protein-coupled receptors and exhibit a modest homology with the secretin receptor family (which includes PTH receptors). However, the existence of specific cAMP receptors in mammals remains to be demonstrated. Disturbances in the pancreato-hepatorenal cascade provide an adequate pathophysiological understanding of several unexplained observations, including the association of hyperinsulinemia and hypertension, the hepatorenal syndrome, and the hyperfiltration of diabetes mellitus. The observations reviewed in this paper show that cAMP should no longer be regarded only as an intracellular second messenger but also as a first messenger responsible for coordinated hepatorenal functions, and possibly for paracrine regulations in several other tissues.
Collapse
Affiliation(s)
- Lise Bankir
- Institut National de la Santé et de la Recherche Médicale Unité 367, Institut du Fer à Moulin, 75005 Paris, France.
| | | | | | | |
Collapse
|